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Abstract 16 

Human neuroimaging and animal studies have linked neural activity in orbitofrontal cortex 17 

(OFC) to valuation of positive and negative outcomes. Additional evidence shows that neural 18 

oscillations, representing the coordinated activity of neuronal ensembles, support information 19 

processing in both animal and human prefrontal regions. However, the role of OFC neural 20 

oscillations in reward-processing in humans remains unknown, partly due to the difficulty of 21 

recording oscillatory neural activity from deep brain regions. Here, we examined the role of OFC 22 

neural oscillations (<30Hz) in reward processing by combining intracranial OFC recordings with 23 

a gambling task in which patients made economic decisions under uncertainty. Our results show 24 

that power in different oscillatory bands are associated with distinct components of reward 25 

evaluation. Specifically, we observed a double dissociation, with a selective theta band 26 

oscillation increase in response to monetary gains and a beta band increase in response to losses. 27 

These effects were interleaved across OFC in overlapping networks and were accompanied by 28 

increases in oscillatory coherence between OFC electrode sites in theta and beta band during 29 

gain and loss processing, respectively. These results provide evidence that gain and loss 30 

processing in human OFC are supported by distinct low-frequency oscillations in networks, and 31 

provide evidence that participating neuronal ensembles are organized functionally through 32 

oscillatory coherence, rather than local anatomical segregation. 33 

34 
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Introduction 35 

The human orbitofrontal cortex (OFC) is a critical node in reward-based decision-making: 36 

activity in OFC reflects value computations [1,2] and damage to OFC results in abnormal choice 37 

behavior [3,4]. Among the proposed functions of OFC, valuation and outcome processing are 38 

central.  Valuation of positive and negative outcomes, which are necessary to learn about states 39 

of the world to inform future approach and avoidance behavior, have been associated with neural 40 

activity in OFC in both fMRI and animal studies [5–8]. 41 

 42 

Despite considerable progress, important questions remain regarding the organization of 43 

neuronal ensembles in valuation processes in OFC. In particular, while there is an increasing 44 

appreciation of the importance of neural oscillations in cognitive processing, whether they play a 45 

role in reward processing in OFC is unclear. Neural oscillations are generated by concurrent 46 

excitability fluctuations in groups of neurons, which generate periodic activity changes organized 47 

in several oscillatory bands (e.g. theta, 4-8 Hz, alpha 8-12 Hz and beta, 12-30Hz). Ongoing 48 

oscillations modulate input selection by favoring information that arrives at particular times in an 49 

oscillatory cycle, and allow the coordination of ensembles of neurons that share relevant 50 

information by establishing transiently synchronized networks [9]. Oscillatory coherence, in 51 

which oscillations across brain regions show a consistent phase relationship, is proposed to 52 

facilitate cross-areal communication by favoring phase-dependent activation of neurons [10]. 53 

Neural oscillations have been implicated in a variety of cognitive processes. In human studies, 54 

they have been extensively examined in non-invasive EEG and MEG studies and more recently 55 

in intracranial research (electrocorticography; ECoG). These studies have associated low-56 

frequency neuronal oscillations with a variety of cognitive processes, including working memory 57 
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[11,12], attention [13,14], sensory processing [15,16], motor control [17,18]  and goal direction 58 

[19,20]. Prefrontal low-frequency oscillations have been specifically implicated in working 59 

memory, attention and spatial navigation [11,13,21,22]. Regarding reward processing, distinct 60 

scalp EEG frequency bands in prefrontal cortex have been shown to be differentially sensitive to 61 

gain and loss outcomes in the beta and theta bands, respectively [23,24].  62 

 63 

Despite the proposed important of oscillatory processes in prefrontal function and the central role 64 

of OFC in reward-related processes, the nature of the involvement of oscillatory neural 65 

processing and coherence processes in reward processing in the human OFC remains poorly 66 

understood. This is in part due to due to the difficulty of measuring oscillatory activity in deep 67 

brain regions such as OFC using non-invasive approaches. Here, we leverage a unique patient 68 

population, human epilepsy patients undergoing intracranial monitoring, to directly examine the 69 

role of oscillatory neural activity in the human OFC during reward processing. Here we focus on 70 

low frequency (<30Hz) activity in a previous gambling task [25] to assess the association 71 

between oscillatory activity in OFC and reward processing.  72 

 73 

Our results show that functionally distinct networks respond to gain and loss processing within 74 

OFC. Specifically, we observed a clear functional dissociation between sites in OFC associated 75 

with processing gain- and loss information, consistent with past EEG findings of frontal 76 

engagement in reward processing.  However, unlike previous EEG findings, we found that 77 

monetary gains were associated with an increase in theta power (4-8Hz) whereas losses were 78 

associated with an increase in beta power (12-30 Hz) power. In addition, these frequency-79 

specific power modulations were accompanied by selective increases in coherence, supporting 80 
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the notion that reward-relevant information is organized in parallel neural ensembles oscillating 81 

in different frequencies. Anatomically, coherent theta/beta oscillations after gains/losses were not 82 

restricted to sites encoding gains/losses, indicating that coherence is an OFC-wide phenomenon. 83 

Finally, gain and loss networks were interspersed throughout the orbital surface, and did not 84 

follow any simple anatomical distribution (e.g., clusters or gradients). These results demonstrate 85 

that anatomically distributed  low frequency oscillations differentially encode reward-related 86 

information in the human OFC, with power modulation in the theta and beta bands encoding 87 

gains and losses. In addition, gain and loss processing networks are not clustered anatomically. 88 

Instead, selective increases in OFC-wide oscillatory coherence suggest that these separate 89 

ensembles may be organized functionally through coherence. The combination of analysis of 90 

neural oscillations with decision-making models provides a novel approach to understand the 91 

neural basis of decision-making within and across brain areas. 92 

 93 

Results 94 

We recorded LFP activity from 210 electrodes (192 after quality control; see Methods) in 10 95 

patients while they played a gambling task (see Fig. 1A and Fig. S1 for electrode locations). 96 

Briefly, participants played 200 trials in which the choose between a sure prize and a risky 97 

gamble (Fig. 1B). Patient choices were dependent on gamble win probability, expected utility 98 

and risk (all p<10-15, random effects logit analysis) and was similar to that of healthy subjects 99 

(Fig. 1C, grey line; all comparisons p>0.2). Local field potentials (LFP) were recorded from all 100 

ECoG electrodes and frequency-band decomposed using a wavelet approach. We focus here on 101 

activity in low frequency bands (<30Hz); results from high-frequency analyses (70-200 Hz) were 102 

reported previously [26]. 103 
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 104 

Dissociation modulation of OFC low-frequency activity by outcome valence  105 

To characterize whether power modulation in low frequency bands (theta, 4-8Hz; alpha, 8-12Hz; 106 

beta, 12-30Hz) carried relevant reward-related information during outcome evaluation, we 107 

generated a time-frequency representation (TFR) or neural activity using a wavelet approach.  108 

We observed power modulation across the theta and beta frequency bands, time locked to the 109 

reveal epoch (0-1.5 post-outcome reveal; Fig. 1D and S2). We then carried out linear regressions 110 

to identify gain/loss power modulation in each time-frequency tile.  Specifically, we examined 111 

how much variance in neural power (percentage of explained variance, %EV) could be explained 112 

by gain/loss regressors across time and frequency bands (see Methods).  113 

 114 

This generated Event-Related Computational Profiles (ERCPs) containing time x frequency 115 

depictions of the level of association between power and regressors of interest, which reveal the 116 

frequency specificity and timing of information encoding. We first examined the association 117 

between power encoding and gain events (i.e. trials in which the subject opted to gamble and 118 

won; Fig. 2) by averaging ERCPs across all patients and electrodes in our sample (n=192). We 119 

observed a significant association between gains and power in the delta-theta frequency bands 120 

(1-8Hz; Fig. 2A and C). Because slow oscillations in the delta band are difficult to estimate 121 

adequately given the duration of our analysis windows (~0.5-1s), we centered on analyzing the 122 

theta-band (4-8Hz). Fig. 2C shows an example electrode in which gain trials were associated 123 

with an increase in power compared to all other trials. Next, we performed a similar analysis for 124 

loss trials (Fig. 2B and D), which revealed a different activity pattern, with losses associated with 125 

modulation in the beta (12-30Hz) frequency band (Fig. 2B; individual electrode example in Fig. 126 
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2D). The average variance in the neural signal explained by gain outcomes was higher for the 127 

theta than for the beta frequency band, whereas the opposite was true for loss outcomes (Fig. 128 

2E), indicating a double dissociation between beta-theta frequencies and outcome encoding. The 129 

direction of modulation was consistent across electrodes, with a majority showing increased 130 

theta power in gain trials (Fig. S4).  131 

 132 

To verify that these results were not driven by inter-subject or inter-electrode variation in neural 133 

activity, we used a nested mixed-effects model that included patient and electrode identity as 134 

random effects (see Methods). We found that regressions for both gains and losses were 135 

significantly active (p<10
-5

, corrected for multiple comparisons across frequency bands), 136 

indicating that gain/loss computations were robust across electrodes and patients. These results 137 

are consistent with a dissociable association between reward encoding in low frequency bands, 138 

with theta and beta band activity associated with gain and loss events, respectively. 139 

 140 

Overlapping anatomical distribution of gain and loss responses  141 

Previous fMRI results have suggested an anatomical gradient of win/loss encoding, with loss 142 

responsivity higher in medial aspects of the OFC, and win processing located more laterally 143 

[7,27]. To examine whether there was anatomical segregation of gain- and loss-encoding in our 144 

ECoG dataset, we investigated the anatomical location of the encoding electrodes in our 145 

population. 146 

 147 

We defined encoding electrodes as those showing a significant relationship between power 148 

modulation in beta (for losses) and theta (for gains) using a clustering approach followed by a 149 
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permutation test (see Methods). Overall, we found that a similar proportion of electrodes 150 

encoded wins (30/192; 15.6%) and losses (29/192; 15.1%). A few electrodes encoded both losses 151 

and wins (6/192, 3.1%), but this proportion is not significantly overrepresented compared to a 152 

random overlap of both networks (p=0.58, chi-square test).  Next, we examined the anatomical 153 

localization of these electrodes. To enable comparison across patients, patient scans and their 154 

corresponding electrode locations were normalized to template space (see Methods). We found 155 

that gain- and loss-encoding sets of electrodes were not segregated in distinct Brodmann areas, 156 

but instead were intermixed across the entire OFC surface (Fig. 3 and Fig. S4) suggesting 157 

anatomically distributed OFC encoding of gain and loss information.  158 

 159 

Neural activity in OFC shows outcome and frequency-specific coherence 160 

Since cortical sites engaged in gain and loss processing are not anatomically clustered, another 161 

possibility is that they are instead organized as a functional ensemble through coordinated 162 

changes in inter-electrode coherence. Coherent neural oscillations have been proposed as a 163 

potential mechanism to achieve functional communication across cortical sites, which could play 164 

a role in sharing outcome-specific information across OFC sites. To assess whether neural 165 

oscillations were engaged during outcome processing, we examined low frequency coherence 166 

after outcome reveal. To assess this possibility, we calculated coherence at the time of the 167 

outcome reveal event across all low-frequency bands (1-30Hz) for all pairs of OFC electrodes for 168 

each patient in our dataset. To compensate for potential differences in baseline coherence across 169 

patients and electrodes, we used a within-electrode analytical strategy, calculating coherence 170 

separately for different trial types (loss, win and safe bet) after the gamble outcome reveal. The 171 

resulting coherence estimates were then compared using a mixed-model approach (see Methods) 172 
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that include electrode and patient identity as random effects terms. 173 

 174 

The results showed that win and loss events were accompanied by significant increases in 175 

coherence, in a frequency-specific manner consistent with the power encoding results. 176 

Specifically, gain events were accompanied by an increase in theta-band coherence (Fig. 4C), 177 

whereas loss events were associated with an increase in beta coherence (Fig. 4D). To verify that 178 

these coherence increases were not solely driven by an increase in power modulation, we 179 

conducted a linear regression analysis in which we examined the association between the 180 

average power across electrodes in each pair and their coherence, separately for each frequency 181 

band (theta/beta). We found no evidence that higher coherence was associated with higher power 182 

values across electrode pairs (both p>0.3), revealing that the coherence effects were separable 183 

from the power modulation effects. As was the case with the power results, there was a double 184 

dissociation between gain/loss outcome encoding and frequency-specific coherence increases 185 

(Fig. 4E).  Finally, direct comparison of the time-courses of gain-theta and loss-beta power and 186 

coherence modulation showed comparable time profiles and onsets (Fig. S5). 187 

 188 

Comparison to HFA results 189 

In a previous study, we described encoding of reward-related information in high-frequency 190 

activity (HFA) in human OFC [26]. Because gain and loss information was also reflected in 191 

HFA, we examined the relationship between HFA and low-frequency encoding in human OFC 192 

by directly comparing both sets of results. First, we compared the proportion of cortical sites 193 

encoding gains and losses in low and high- frequencies. We found that a comparable number of 194 

cortical sites encoded theta-gain (n=29/192 electrodes) and beta-loss (n=30/192 electrodes), and 195 
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comparable to the proportion of HFA-gain (n=45/192) and HFA-loss (n=33/192) encoding sites 196 

we reported earlier. Thus, outcome encoding in beta/theta and HFA recruited activation in a 197 

comparable number of cortical sites.   198 

 199 

One possibility is that low and HFA encoding reflect activation of the same network of cortical 200 

sites. To examine whether that was the case, we next examined the proportion of cortical sites 201 

encoding outcomes in both HFA and low frequencies. We found that electrodes encoding gains 202 

in both HFA and theta band activity were not overrepresented (n=9/192 vs 8.15/192 expected 203 

from random mixing, p=0.13, �2 test). However, electrodes encoding in both HFA and beta were 204 

slightly overrepresented (n=9/192 observed vs 4.53/192 expected from random mixing, p<0.05, 205 

�2 test). Overall, these results do not provide strong support for the notion that modulation in 206 

both low frequencies and HFA occurs in the same cortical sites. 207 

 208 

Discussion 209 

We assessed whether neuronal oscillations, implicated in a variety of cognitive processes in 210 

human prefrontal cortex, play a role in processing reward outcomes in the OFC. To test this 211 

notion, we carried out multi-electrode ECoG recordings directly from the OFC of human 212 

neurosurgical patients while they made a series of decisions under uncertainty in gambling game. 213 

Our results show that low-frequency neural activity in human OFC encodes information about 214 

reward outcomes, with losses and gains having separable physiological and anatomical 215 

substrates. Specifically, we found that gains were associated with power increases in theta-band 216 

(4-8Hz), whereas losses were associated with power increase in the beta band (12-30Hz). 217 

Cortical sites showing significant theta/beta power modulation were not anatomically segregated, 218 
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but rather interspersed across the orbitofrontal surface. Finally, we observed a concomitant 219 

increase in OFC-wide coherence in theta (for gains) and beta (for losses) that was not driven by 220 

power increases. 221 

 222 

Oscillations encode reward-related information 223 

Prefrontal low-frequency oscillations have been implicated in a variety of cognitive processes, 224 

including working memory, attention, language and spatial navigation [11,13,21,22,28]. Here, 225 

we add to the growing body of work  implicating neural oscillations in reward outcome 226 

processing in decision-making [23,24]. EEG studies also suggest a differential role for low-227 

frequency bands in reward processing, with theta and beta-band activity as the main oscillatory 228 

substrates for gain and loss processing, but the nature of their association varies across studies. 229 

For instance, increases in beta power were associated with gain processing [23,29,30], and 230 

increases in theta power with losses or negative feedback [23,31]. MEG recordings in humans 231 

have also proposed an increase in theta OFC is associated with win outcomes [32]. However, 232 

other EEG studies shows a reverse pattern more consistent with the one we report here, with beta 233 

activation in response to no reward or error conditions (comparable to our loss trials) and theta in 234 

reward conditions [24,33]. 235 

 236 

There are several possible explanations for these discrepancies. One possibility is that they are 237 

due to methodological differences between EEG/MEG/ECoG. However, even within modality, 238 

opposite effects can be found (e.g. EEG [30,33]), which makes this unlikely to be the only source 239 

of discrepancy. Another possibility is that there are differences in the source of oscillatory 240 

activity. EEG sources vary between prefrontal (Fz) and lateral (F6), with common estimated 241 
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anatomical locations in ACC and LPFC, but they are unlikely to capture activity originating from 242 

the OFC. However, given that these areas are all implicated in reward processing [5,8,34,35] and 243 

the proposed role of oscillations in establishing functional connectivity across brain areas [10], it 244 

is possible that  LPFC/ACC and OFC oscillations are functionally related. If that was the case, 245 

discrepancies between OFC and LPFC/ACC oscillations may reflect the different roles (bottom-246 

up vs top-down) established by both reward-responsive areas, or their relative temporal 247 

organization. For example, reward information may be processed first in OFC and then 248 

communicated to LPFC, and this functional communication may be reflected in oscillatory 249 

activity or in temporal activation patterns.  250 

 251 

Another possible explanation relates to the different definitions of gains and losses across tasks. 252 

In some EEG studies, losses refer to a negative money gain [23] (but see [24]). In our study, loss 253 

events can also be described as absence of reward, rather than an actual loss (e.g. negative gains), 254 

a design that we adopted because of limitations, including human subjects protections and 255 

working with patients. Thus, encoding of losses may be associated with a different neural 256 

representation altogether. Finally, it is also possible that they reflect different cognitive demands 257 

across tasks. Unlike some of the non-invasive experiments, our gambling task does not require 258 

working memory. Since working memory load is associated with theta band power [36], it is 259 

possible that the different cognitive demands of a working memory-reward task, as compared to 260 

a gambling task with no memory demands, engages another circuitry indexed by different 261 

oscillatory mechanisms. Despite these discrepancies, these different studies consistently show 262 

that neural activity across theta and beta bands is recruited during feedback processing, and that 263 

they represent separate neural processing channels for gains and losses.  264 
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 265 

Functional organization of low frequency responses to gains and losses 266 

Neuroimaging data suggests anatomically-segregated processing for different aspects of reward 267 

in OFC, for options varying in desirability (appetitive/aversive), abstractness (primary rewards 268 

such as food, water vs. secondary rewards such as money), as well as for valuation/choice 269 

processes [7,27,37,38], suggesting the existence of anatomical segregation of reward functions. 270 

Our data, however, does not support anatomical segregation of gain and loss low frequency 271 

encoding across OFC subregions in our task (Fig. S3). Rather, we observed that win and loss 272 

networks were distributed across the orbitofrontal surface (Fig. 4), which is also consistent with a 273 

similar pattern with reward-related HFA encoding [26], suggesting that separation of reward 274 

information is not associated with anatomical segregation.  275 

 276 

Instead, coordination of distinct types of reward across cortical sites may be supported by 277 

functional activity patterns manifesting as oscillatory coherence.  In support of this hypothesis, 278 

we observed a generalized increase in low-frequency coherence across OFC electrodes during 279 

reward outcome. Consistent with the power modulation results, this coherence increase was 280 

frequency- and outcome-specific, with separate beta and theta coherence increases following 281 

losses and gains, respectively (Fig. 4). 282 

 283 

There are several potential functional roles for these coherence increases. Low frequency 284 

oscillations in monkey PFC reflect abstract rules relevant to ongoing behavior, with beta and 285 

alpha synchronies organizing neural ensembles representing different rules [20]. A similar 286 

mechanism may be at play here, with theta and beta ensembles carrying complementary but 287 
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distinct reward information. In addition, coherence has been proposed to support functional 288 

communication across cortical sites [10]. Thus, one possibility is that synchronous oscillations in 289 

OFC facilitate information sharing across cortical sites with distinct encoding properties. 290 

Furthermore, we observed that coherence increases are not driven by power increases. For 291 

example, loss (gain) events, which are associated with an increase in beta (theta) power, may 292 

entrain other OFC sites through oscillatory coherence without directly modulating their 293 

oscillatory power. Coherent oscillations may also provide a mechanism to broadcast reward 294 

relevant information from OFC to other reward-responsive cortical areas (e.g. LPFC), reflecting 295 

cross-areal information processing, an idea that will need to be tested in future experiments. 296 

 297 

Overall, the existence of these separate oscillatory networks, in addition to the diffuse anatomical 298 

organization described above, supports the notion that parallel neural ensembles carry different 299 

but complementary types of reward-related information. Interestingly, the increase in theta 300 

coherence was not limited to the time of outcome reveal, but showed a peak that ramped up 301 

before gamble reveal (Fig. S3). Given that patients choose to gamble more often in trials in 302 

which win probability is higher (Fig. 1C), expectation of reward is correlated with win outcomes 303 

in our dataset. Thus, it is possible that this pre-reveal activation reflects a reward expectation 304 

effect. Consistent with this idea, neurons in the orbitofrontal cortex of rodents have been shown 305 

to phase-lock to theta band oscillations in anticipation of reward [39], and theta-band activity is 306 

also modulated in human frontal cortex [40]. Theta is also related to attentional processes in 307 

other cortical regions, compared to a role of beta in top-down processing [41], so an alternative 308 

explanation would be an increase in attention in trials in which a positive outcome is expected. 309 

 310 
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Separate oscillatory mechanisms for gain and loss processing – functional relevance 311 

The existence of separate, but related encoding mechanisms across different frequency bands for 312 

gain and loss processing in the human OFC raises a number of questions on their neurobiological 313 

origin and functional significance. Low frequency LFP activity captures a diverse number of 314 

voltage generators, the most prominent ones being postsynaptic currents, both excitatory and 315 

inhibitory. In contrast, activity in higher frequency bands (60Hz and above, i.e. high frequency 316 

activity; HFA) reflects  local cortical activation, including neuronal spiking and dendritic 317 

currents [42,43]. Thus, it is possible that encoding in low frequency and HFA may capture 318 

different activation aspects of the same neuronal ensembles. For example, theta/beta activation 319 

may reflect input to OFC cortical sites, with HFA reflecting spiking output of the same neuronal 320 

population. If these processes reflected different aspects of activation of a single neuronal 321 

population, we would expect significant overlap between low-frequency and HFA encoding 322 

sites. However, in our dataset the amount of overlap was modest, with only a slight 323 

overrepresentation of concurrent HFA and beta-loss encoding, and none for theta-gain encoding. 324 

These observations suggest that low-frequency and HFA encoding mechanisms do not simply 325 

reflect different activation aspects of the same neuronal population. One possibility is that 326 

localized low-frequency input modulates activity throughout other OFC sites by modulating the 327 

degree of oscillatory coherence (Fig. 4), which could facilitate synchronous spiking in entrained 328 

sites and information propagation to downstream targets [44]. 329 

 330 

The question arises on the specific roles of beta and theta frequency bands in reward processing. 331 

One possibility is that they reflect different information processing streams or cognitive 332 

processes. Different oscillations may index the engagement of distinct downstream targets, 333 
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reflecting the need for different adaptive behavioral strategies after gain/loss events. If this was 334 

the case, one can imagine loss events favoring a strategy change after adverse events (i.e. 335 

‘switch’), with win events favoring perseverance and continued attention after reward (i.e. 336 

‘stay’). However, previous evidence suggests this may not be the case: beta-band activation has 337 

been proposed to play a role in maintaining, rather than altering, ongoing behavioral patterns 338 

[41].  Consistent with this, electrical stimulation of the caudate nucleus results in extraneous 339 

modulation of beta-band activity and repetitive OCD-like behavior and negative affective states 340 

in macaques [45]. Alternatively, the engaged theta/beta networks could be related not to 341 

behavioral, but to emotional responses after positive/negative events. Consistent with this idea, 342 

prefrontal human beta rhythms, including the ventromedial prefrontal [46] and anterior cingulate 343 

cortices [47] have been implicated in emotional processing and mood regulation. In addition, 344 

beta coherence in limbic areas (hippocampus and amygdala) has been associated with mood in 345 

human patients [48], and different frequency bands in the amygdala-hippocampal circuit underlie 346 

separation of emotionally relevant information [49]. In the context of our decision-making task, 347 

unexpected losses are expected to have a negative emotional impact [50]. Thus, prefrontal beta 348 

oscillations may be a general mechanism underlying emotional responses to negative outcomes 349 

in prefrontal and limbic regions. 350 

 351 

Conclusion 352 

Here we demonstrate that neural oscillations in the human OFC encode behaviorally relevant 353 

reward information, with anatomically interspersed and functionally distinct networks in OFC 354 

encoding positive (gains) and negative (losses) outcomes indexed by power modulations in the 355 

theta and beta bands, respectively. These network-specific power modulations were accompanied 356 
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by OFC-wide oscillatory coherence in the theta band and reward and the beta band in loss, 357 

providing a potential mechanism for establishment of rapid and reversible functional 358 

connectivity at behaviorally relevant time points. Thus, reward engages separate OFC rhythms 359 

associated with the establishment of distinct brain networks for adaptive decision-making 360 

behavior. 361 

 362 

Materials and Methods 363 

Subjects. Data was collected from 10 (4 female) adult subjects with intractable epilepsy who 364 

were implanted with chronic subdural grid and/or strip electrodes as part of a pre-operative 365 

procedure to localize the epileptogenic focus. We paid careful attention to the patient’s 366 

neurological condition and only tested when the patient was fully alert and cooperative. The 367 

surgeons determined electrode placement and treatment based solely on the clinical needs of 368 

each patient. Data were recorded at four hospitals: the University of California, San Francisco 369 

(UCSF) Hospital (n=2), the Stanford School of Medicine (n=2), the University of California, 370 

Irvine Medical Center (UCI) (n=5) and at Albany Medical College (n=1). Due to IRB 371 

limitations, subjects were not paid for their participation in the study but were encouraged to 372 

make as many points as possible. As part of the clinical observation procedure, patients were off 373 

anti-epileptic medication during these experiments. Healthy participants (n=10) with no prior 374 

history of neurological disease were recruited from UC Berkeley’s undergraduate population and 375 

played an identical version of the gambling task. All subjects gave written informed consent to 376 

participate in the study in accordance with the University of California, Berkeley Institutional 377 

Review Board. 378 
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 379 

Behavioral task. We probed risk-reward tradeoffs using a simple gambling task in which 380 

subjects chose between a sure payoff and a gamble for potential higher winnings. Trials started 381 

with a fixation cross (t=0), followed by the game presentation screen (t=750ms). At that time, 382 

patients were given up to 2s to choose between a fixed prize (safe bet, $10) and a higher payoff 383 

gamble (e.g. $30; Figure 1). Gamble prizes varied between $10 and $30, in $5 increments. If the 384 

patient did not choose within the allotted time limit, a timeout occurred and no reward was 385 

awarded for that round. Timeouts were infrequent (9.98% of all trials) and were excluded from 386 

analysis. Gamble win probability varied round by round; at the time of game presentation, 387 

subjects are shown a number between 0-10. At the time of outcome (t=550ms post-choice), a 388 

second number (also 0-10) is revealed, and the subject wins the prize if the second number is 389 

greater than the first one. Only integers were presented, and ties were not allowed; therefore, a 390 

shown ‘2’ had a win probability of 80%. The delay between buttonpress and gamble outcome 391 

presentation (550ms) was fixed, and activity for both epochs is temporally aligned. Therefore, 392 

offer value, risk and chosen value vary parametrically on a round-by-round basis, and patients 393 

had full knowledge of the (fair) task structure from the beginning of the game. Both numbers 394 

were randomly generated using a uniform distribution. The gamble outcome (win/loss) was 395 

revealed regardless of subject choice, allowing us to calculate experiential and counterfactual 396 

prediction errors (see Behavioral analysis, below). A new round started 1s after outcome reveal. 397 

Patients played a total of 200 rounds (plus practice rounds), and a full experimental run typically 398 

lasted 12-15min. Location of safe bet and gamble options (left/right) was randomized across 399 

trials. Patients completed a training session prior to the game in which they played at least 10 400 

rounds under the experimenter’s supervision until they felt confident they understood the task, at 401 
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which point they started the game. This gambling task minimized other cognitive demands 402 

(working memory, learning, etc.) on our participants.  403 

 404 

ECoG Recording. ECoG was recorded and stored with behavioral data. Data collection was 405 

carried out using Tucker-Davis Technologies (Albany, Stanford and UCSF) or Nihon-Kohden (at 406 

UCI) systems. Data processing was identical across all sites: channels were amplified x10000, 407 

analog filtered (0.01-1000 Hz) with >2kHz digitization rate, re-referenced to a common average 408 

off-line, high-pass filtered at 1.0 Hz with a symmetrical (phase true) finite impulse response 409 

(FIR) filter (~35 dB/octave roll-off). Channels with low signal-to-noise ratio (SNR) were 410 

identified and deleted (i.e. 60 Hz line interference, electromagnetic equipment noise, amplifier 411 

saturation, poor contact with cortical surface). Out of 210 OFC electrodes, 192 were artifact-free 412 

and included in subsequent analyses. Additionally, all channels were visually inspected by a 413 

neurologist to exclude epochs of aberrant or noisy activity (typically <1% of datapoints). A 414 

photodiode recorded screen updates in the behavioral task, recorded in the electrophysiological 415 

system as an analog input and used to synchronize behavioral and electrophysiological data. Data 416 

analysis was carried out in MATLAB and R using custom scripts.  417 

 418 

Electrophysiological analysis. ECoG recordings were downsampled to 1KHz. Channels were 419 

visually examined and those with low quality recordings due to bad electrode-brain contact were 420 

excluded from analysis. In our patient sample, no epileptic electrodes were located in OFC. 421 

Recordings were visually examined by a neurologist (RTK), and any trials containing aberrant 422 

epileptiform activity were excluded from subsequent analysis. Electrodes were then re-423 

referenced using a within-grid/strip common average reference (CAR). Time-frequency 424 
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decomposition was carried out using a multitaper approach. Briefly, whole-recording 425 

spectrograms were created for each electrode using log-spaced frequencies between 1 and 30Hz. 426 

Spectrograms were then subset by selecting windows of interest around outcome events, as 427 

indicated by the behavioral timestamps, and baseline-subtraction was carried out for each 428 

frequency of interest. For the trials in figure 1C and D, power was calculated by averaging for 429 

theta (4-8Hz) and beta (12-30Hz) across log-spaced frequency bins (4 and 11 frequency bins, 430 

respectively). 431 

 432 

Behavioral Analysis. We classified outcomes as win/loss/safe bets, depending on the patient 433 

choice and gamble outcome. Gains and losses refer to gamble trials; safe bet trials refer to trials 434 

in which the patient decided not to gamble, regardless of subsequent gamble outcome. To 435 

examine the relationship between power modulation and win/loss events, we used a linear 436 

regression approach. For each frequency and time of interest, we regressed the power estimate 437 

against outcome (win/loss). The resulting R2 was then presented as a time-frequency event-438 

related computational profile (ERCP; figures 1A-B) representing the association between power 439 

modulation and the regressor of interest. 440 

 441 

Coherence analyses. Cross-electrode coherence was calculated using the Fieldtrip toolbox [51]. 442 

For each within-patient pairwise electrode combination, time-frequency decomposition was 443 

carried out using a Hanning window for frequencies between 1 and 30Hz. Coherence analysis 444 

was carried out using the ft_connectivityanalysis function, separately for loss, win and safe bet 445 

trials for each electrode pair and frequency band. To account for inter-subject variability, we 446 

compared the coherence values between loss (Fig. 4A) and win (Fig. 4B) events and safe bet 447 
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events by using a mixed-effect model that includes subject and electrode identity as random 448 

effects. We used the mixed model to analyze the relationship between coherence and trial type 449 

(win/loss) for all frequency-time combinations in the time immediately preceding and 450 

subsequent to outcome reveal, and captured the statistical significance results as time-frequency 451 

contours. 452 

 453 

Because of the limitations associated with coherence analyses (i.e. they must be carried out in a 454 

within-patient basis, and involve pairs of electrodes which limits its power in patients with lower 455 

number of electrodes), limiting coherence analyses to pairs of encoding electrodes would have 456 

resulted in a small number of pairs, and limited statistical power. Thus, we instead chose to 457 

examine coherence across all electrode pairs for each patient. 458 

 459 

Anatomical reconstructions. For each patient, we collected a pre-operative anatomical MRI 460 

(T1) image and a post-implantation CT scan. The CT scan allows identification of individual 461 

electrodes but offers poor anatomical resolution, making it difficult to determine their anatomical 462 

location. Therefore, the CT scan was realigned to the pre-operative MRI scan. Briefly, both the 463 

MRI and CT images were aligned to a common coordinate system and fused with each other 464 

using a rigid body transformation. Following CT-MR co-registration, we compensated for brain 465 

shift, an inward sinking and shrinking of brain tissue caused by the implantation surgery. A hull 466 

of the patient brain was generated using the Freesurfer analysis suite, and each grid and strip was 467 

realigned independently onto the hull of the patient’s brain. This step often avoided localization 468 

errors of several millimeters. Subsequently, each patient’s brain and the corresponding electrode 469 

locations were normalized to a template using a volume-based normalization technique, and 470 
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snapped to the cortical surface [52]. Finally, the electrode coordinates are cross-referenced with 471 

labeled anatomical atlases (JuBrain and AAL atlases) to obtain the gross anatomical location of 472 

the electrodes, verified by visual confirmation of electrode location based on surgical notes. Only 473 

electrodes confirmed to be in OFC (n=192) were included in the analysis. For display purposes, 474 

electrodes are displayed over a traced reconstruction of the ventral surface showing putative 475 

Brodmann areas. For analysis of anatomical location of encoding electrodes (Fig. 3), we defined 476 

beta-loss and theta-gain encoding electrodes as those that showed a significant association as 477 

indicated by a permutation test. Briefly, to leverage the time profile of the signals without 478 

imposing restrictions on activation timing, an aggregate statistic was calculated as the sum of F-479 

stats for the longest stretch of consecutive windows showing a significant association between 480 

power and win or loss (linear regression p<0.05). The aggregate F-stat was subject to a 481 

permutation test by shuffling the behavioral labels (n=1,000 permutations). We then took the 482 

proportion of permuted fits with a sum-of-F-stat higher than that in the original dataset as the 483 

permutation p-value, which was further corrected using a Bonferroni correction (across n=192 484 

electrodes). Electrodes with a corrected permutation p-value <0.05 were considered active. 485 

 486 
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Figures 493 

Fig. 1. Experimental approach. (A) Anatomical reconstruction showing placement of ECoG 494 

electrodes (n=192) in OFC across all patients (n=10). Each color corresponds to a patient. 495 

Brodmann areas are indicated as A10/A11/A12/A13/A14. (B) Subjects (n=10) chose between a 496 

sure prize and a risky gamble with varying probabilities for potential higher winnings. Trials 497 

resulted in a win if a second number was higher than the first. Gamble outcome was shown 498 

regardless of choice. (C) Subjects’ choices were significantly affected by likelihood of winning 499 

the gamble (p<0.001, random effects logit analysis), and were comparable to choices of healthy 500 

controls (grey line; all p>0.2). (D) Power modulation associated with gamble outcome reveal 501 

across OFC sites. Plot indicates z-scored power modulation across frequencies (1-30Hz), relative 502 

to the patient choice to gamble or not (t=0). Gamble outcome reveal was at 550ms post-choice. 503 

 504 

Fig. 2. Distinct frequency band encoding of wins and losses.  (A) and (B) Average event-related 505 

computational profile across all electrodes (n=192), indicating the strength of association (% 506 

explained variance, %EV) between loss (A)/win (B) outcomes and LFP power across frequency 507 

bands. Loss events are associated with beta power modulation, whereas win events are 508 

associated with delta/theta modulation. (C) Average beta power for loss/no loss trials from an 509 

example electrode encoding losses, separated by gamble outcome: loss (blue) or other outcomes 510 

(red). (D) as (C), but showing theta activity in a win encoding electrode for wins (blue) or other 511 

outcomes (red). (E) Average strength of association (% EV) between theta/beta band activity and 512 

gains (left) and losses (red). 513 

 514 

Fig. 3 Overlapping gain and loss processing networks. (A) and (B): electrode positions 515 
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projected on the orbital surface of a template brain. Electrodes are color-coded according to their 516 

reward-encoding characteristics: beta-band modulation in loss events (blue), theta-band 517 

modulation in win events (red), both (magenta) or no encoding (white). (C) Anatomical pattern 518 

of win and loss encoding. Scatterplot: X (medio-lateral) and Y (fronto-posterior) coordinates of 519 

all recorded electrodes, defined as distance from the z-projection of the anterior commissure 520 

(AC), on a single hemisphere.  Color coding as in (A-B). Ellipses indicate 95% confidence 521 

interval across X and Y coordinates; centroids for loss and wins ellipses, indicated by the black-522 

outlines, are overlapping. 523 

 524 

Fig. 4. Oscillatory coherence organizes network of active/inactive cortical sites. (A) Cartoon 525 

depicting the power/coherence modulation results. Losses are associated with beta (12-30Hz) 526 

power increases in a number of cortical sites (blue dots), which engage in beta coherence with 527 

other encoding/non-encoding sites (blue lines). (B) As (A), but for gain encoding. The results are 528 

quantitatively similar to gain encoding, but the set of encoding cortical sites is different, and 529 

power/coherence modulation is in the theta (4-8Hz) frequency band. (C) Average difference in 530 

coherence between loss and safebet trials across all pairs of electrodes. The white vertical dotted 531 

line at t=0 indicates gamble outcome reveal. Contour lines indicate statistical significance 532 

(p<0.05, p<0.01, p<0.001, etc.) as established by a mixed-model analysis. (D) As (C), but for 533 

gain vs safebet trials. (E) Overall differences in coherence for gains (left) and losses (right) in the 534 

theta and beta frequency bands, showing a dissociable theta-gains and beta-losses association.  535 

536 
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