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Abstract

Multinucleate cells occur in every biosphere and across the kingdoms of life, including in
the human body as muscle cells and bone-forming cells. Data from filamentous fungi
suggest that, even when bathed in a common cytoplasm, nuclei are capable of
autonomous behaviors, including division. How does this potential for autonomy affect
the organization of cellular processes between nuclei? Here we analyze a simplified
model of circadian rhythm, a form of cellular oscillator, in a mathematical model of the
filamentous fungus Neurospora crassa. Our results highlight the role played by
mRNA-protein phase separation to keep mRNAs close to the nuclei from which they
originate, while allowing proteins to diffuse freely between nuclei. Our modeling shows
that syncytism allows for extreme mRNA efficiency — we demonstrate assembly of a
robust oscillator with transcription levels 104-fold less than in comparable uninucleate
cells. We also show self-organized division of the labor of mRNA production, with one
nucleus in a two-nucleus syncytium producing at least twice as many mRNAs as the
other in 30% of cycles. This division can occur spontaneously, but division of labor can
also be controlled by regulating the amount of cytoplasmic volume available to each
nucleus. Taken together, our results show the intriguing richness and potential for
emergent organization among nuclei in multinucleate cells. They also highlight the role
of previously studied mechanisms of cellular organization, including nuclear space
control and localization of mRNAs through RNA-protein phase separation, in regulating
nuclear coordination.

Author summary

Circadian rhythms are among the most researched cellular processes, but limited work
has been done on how these rhythms are coordinated between nuclei in multinucleate
cells. In this work, we analyze a mathematical model for circadian oscillations in a
multinucleate cell, motivated by frequency mRNA and protein data from the
filamentous fungus Neurospora crassa. Our results illuminate the importance of
mRNA-protein phase separation, in which mRNAs are kept close to the nucleus in
which they were transcribed, while proteins can diffuse freely across the cell. We
demonstrate that this phase separation allows for a robust oscillator to be assembled
with very low mRNA counts. We also investigate how the labor of transcribing mRNAs
is divided between nuclei, both when nuclei are evenly spaced across the cell and when
they are not. Division of this labor can be regulated by controlling the amount of
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cytoplasmic volume available to each nucleus. Our results show that there is potential
for emergent organization and extreme mRNA efficiency in multinucleate cells.

Introduction 1

Syncytia, or multinucleate cells, are present throughout the human body, as muscle cells 2

and bone forming cells, as well as in embryos [1–3]. They also occur in every biosphere 3

and across the kingdoms of life, including fungi, slime molds, and water molds [4–7]. 4

Yet, despite their ubiquity in nature, we do not know how closely cellular processes 5

within syncytia, such as nuclear division, growth, or secretion of enzymes, resemble or 6

diverge from processes in uninucleate cells [8]. In particular, unlike a uninucleate cell, 7

there are many possible ways for a syncytium to divide the labor of making mRNAs 8

among its nuclei. Can syncytial nuclei coordinate the transcription of mRNAs to divide 9

labor among themselves? 10

The genetics of circadian rhythms are among the most throughly dissected of cellular 11

processes [9], and we will use them as a paradigm for how labor of producing mRNAs 12

may be divided between nuclei. The rhythms are fundamental to the life of the cell, 13

regulating timing of the cell cycle and sleep-wake cycle, while also influencing cell 14

physiology, metabolism, and behavior [10–13]. Circadian clocks can be entrained by 15

external cues such as light and temperature, but are also capable of persisting in the 16

absence of these cues [14]. Many circadian rhythms are characterized by biochemical 17

oscillations (such as fluctuations in mRNA and protein concentrations) with period 18

∼ 24 h, and circadian clocks are typically regulated by transcription-translation 19

feedback loops [14–16]. 20

The filamentous fungus Neurospora crassa alternates between growth during the day 21

and spore production at night [16,17]. Circadian timekeeping is regulated by the clock 22

gene frq (frequency) and its interactions with WCC (White Collar Complex). 23

Interlocking positive and negative feedback loops drive oscillations of the frq gene: in 24

the positive feedback loop, WCC enters the nucleus and activates frq transcription. frq 25

mRNA is then translated to FRQ protein, which promotes the accumulation of WC-1 26

and WC-2, the proteins that comprise the White Collar Complex. In the negative 27

feedback loop, FRQ promotes phosphorylation of WCC, which inactivates the complex, 28

thereby preventing it from activating frq transcription [13,18]. 29

Ordinary differential equation models have shown that the known interactions 30

between FRQ and WCC mRNAs and proteins are sufficient to drive Neurospora’s 31

circadian rhythm. Tseng et al. [18] developed a comprehensive model of the Neurospora 32

circadian clock, including every key clock component. The authors showed that their 33

model is capable of reproducing a wide variety of clock characteristics, including a 34

consistent period length, maintained in constant light conditions, and entrainment to 35

photoperiods. They then isolated the crucial components that influence the period and 36

amplitude of oscillations. Dovzhenok et al. [13] formulated a simpler model to study 37

glucose compensation of the Neurospora circadian clock, and also to investigate the 38

effect of molecular noise on the robustness of FRQ protein oscillations. 39

These models are capable of producing qualitatively correct time-varying amounts of 40

FRQ and WCC proteins. However, recent data, in which single molecule Fluorescence 41

In-Situ Hybridization (smFISH) was used to map distribution of frq mRNAs, indicate 42

that the mRNAs that drive the circadian rhythm are at far lower densities than can 43

support oscillations in the existing ODE models. Remarkably, these data show that at 44

peak transcription, there may be only 6 copies of mRNA per nucleus (Brad 45

Bartholomai, personal communication, 2019). Moreover, low abundance mRNAs are 46

likely to be strongly affected by Poisson noise; do fluctuations in mRNA density affect 47

the precision of the clock? 48

February 5, 2021 2/15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2021. ; https://doi.org/10.1101/2021.02.24.432653doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432653
http://creativecommons.org/licenses/by/4.0/


Prior modeling of Neurospora’s circadian rhythm has also omitted the syncytial 49

context, treating the fungal nuclei as a single compartment and the cytoplasm as a 50

second compartment [13, 18, 19]. The models are therefore silent on how the elements of 51

the oscillator are assembled across tens, hundreds, or possibly even thousands of nuclei. 52

Indeed, competing hypotheses can be advanced: averaging mRNA and protein 53

abundances in many nuclei may reduce the effect of fluctuations, or, if different 54

oscillators interfere, it may lead to less tightly controlled oscillations. 55

Although models directly addressing Neurospora’s circadian rhythm qualitatively 56

capture its clock components, there are too many unmeasured parameters in these 57

models to use them to make quantitative predictions. For this reason, we analyze the 58

syncytial version of a simpler rhythm, which uses a single negative feedback loop to 59

time its clock. In using this model, we limit ourselves to making only semi-quantitative 60

predictions about the real clock. Nonetheless, our model resolves the interplay of 61

Poisson noise, the need to synchronize multiple nuclei, and differential sharing of 62

mRNAs and proteins between nuclei based on their different mobilities within the 63

cytoplasm. 64

Our syncytial cell model is adapted from Wang and Peskin’s [20] single cell model 65

for the mammalian circadian rhythm, which is based on the abundance of PER 66

(PERIOD) proteins. In this model, a single negative feedback loop maintains the clock, 67

driving circadian oscillation of PER mRNA and protein levels. The circadian oscillation 68

manifests as a limit cycle, which is attained only above a critical rate of mRNA 69

transcription. Wang and Peskin [20] considered the destabilizing effect of Poisson noise 70

on this limit cycle, as well as showing how the model can be modified to incorporate 71

entrainment by light. In this work, we ask whether stable oscillations can be achieved 72

with lower mRNA costs in a syncytial organism. Along the way, our model signals the 73

existence of a potential general benefit to syncytial organization by allowing predictable 74

protein abundances to emerge from mRNAs with low and fluctuation-affected 75

transcription rates because of the pooling of proteins between nuclei. Mathematically, 76

we must go beyond existing models, which incorporate only temporally varying protein 77

and mRNA concentrations, to model the distribution of mRNAs and proteins within the 78

cell. Our model operates in a regime dominated by the effects of Poisson noise, with 79

mRNA copy numbers, matched to experiments, one or two orders of magnitude smaller 80

than those in previous models. 81

We begin by describing our mathematical model for circadian rhythms in a syncytial 82

cell. We then run stochastic simulations of our model (using the Gillespie 83

algorithm [21]) for a single nuclear compartment with transcription rates several orders 84

of magnitude below the parameter value used by Wang and Peskin [20], matching the 85

mRNA abundances seen in real fungal cells. We show that stochastic transcription can 86

maintain quasi-periodic limit cycles for transcription rates far below the deterministic 87

threshold at which Wang and Peskin [20] first see limit cycles emerging. We develop a 88

quantitative measure for evaluating the quality of model circadian limit cycles, and 89

measure this “quality factor” for a range of transcription rates. Subsequently, we turn 90

to a syncytial context, and show that protein diffusion between nuclear compartments 91

regulates circadian rhythms in a syncytium by demonstrating that limit cycles are more 92

“organized” (i.e., have a higher quality factor) in a model syncytium than in a 93

uninucleate cell with the same mRNA and protein expression levels. Finally, we 94

demonstrate that protein diffusion also has an “entrainment” effect on our model 95

syncytial cell by comparing protein oscillations in linked nuclear compartments to 96

oscillations in autonomous nuclei. 97
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1 Mathematical Model 98

How is the circadian clock coordinated between nuclei in a multinucleate cell such as 99

Neurospora? To address this question, we adapt for syncytial cells the single negative 100

feedback model formulated by Wang and Peskin [20], which was originally proposed for 101

the mammalian circadian oscillator. Our model represents a simplified form of the 102

timing machinery in real Neurospora cells since it incorporates only a negative feedback 103

loop, so our predictions will be semi-quantitative at best. Nonetheless, our model allows 104

us to incorporate the elements that are most important for this analysis: stochastic 105

fluctuations and very small mRNA copy numbers. 106

Our model syncytium is a line of length L, divided into N compartments of equal
length (in Section 2.3.2, we will consider non-uniform compartment lengths). Each
compartment (index i = 1, 2, ..., N) consists of a nucleus (n) at its center and a
surrounding cytoplasm (c), with volumes Vn and Vc, respectively. There are four state
variables, mRNA M and protein P , each present in the nucleus and cytoplasm. Only
proteins within the boundaries of a compartment (i.e., in the local cytoplasm) can be
imported into that compartment’s nucleus. Our notation is

M (i)
n = concentration of nuclear mRNA in compartment i,

M (i)
c = concentration of cytoplasmic mRNA in compartment i,

P (i)
c = concentration of cytoplasmic protein in compartment i,

P (i)
n = concentration of nuclear protein in compartment i.

Nuclear mRNAs are transcribed at maximum rate α; this transcription is inhibited by
nuclear protein. Nuclear mRNAs are also exported out of the nucleus and into their
local cytoplasm (at rate γm), where they translate protein (at rate β) and decay (at
rate δm). We assume that diffusion of cytoplasmic mRNAs is limited due to their
relatively large molecular size [22], and potentially is further reduced by specific
interactions between mRNAs and proteins that confine mRNAs within high viscosity
droplets in the cell [23]. Hence, cytoplasmic mRNAs remain in the compartment
containing the nucleus from which they originated. Within each compartment, our
ODEs for Mn and Mc are the same as in [20]:

dM
(i)
n

dt
=

α

Vn

(
K

K + P
(i)
n

)r

︸ ︷︷ ︸
transcription

− γmM (i)
n︸ ︷︷ ︸

export

, (1)

dM
(i)
c

dt
= γm

(
Vn
Vc

)
M (i)

n︸ ︷︷ ︸
export

− δmM (i)
c︸ ︷︷ ︸

decay

. (2)

For the derivation of the term for nuclear mRNA transcription, see [20]. 107

Cytoplasmic proteins are imported into their local nucleus (at rate γp), where they 108

decay (at rate δp). The ODE for cytoplasmic protein in each compartment is 109

dP
(i)
c

dt
= βM (i)

c︸ ︷︷ ︸
translation

− γpP (i)
c︸ ︷︷ ︸

import

. (3)

In contrast to nuclear mRNAs, however, cytoplasmic proteins can also move between 110

compartments via diffusion. We make the simplifying assumption that diffusion of 111

proteins is “fast” relative to the rates of protein translation and import (for details on 112
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this assumption and its implications for our model, see the Appendix). Hence, following 113

either one of these reactions, the distribution of cytoplasmic proteins in our syncytium 114

instantaneously reaches equilibrium (i.e., a uniform concentration of proteins across the 115

entire cell). This is achieved by averaging the concentration of cytoplasmic proteins 116

across all compartments, and then assigning this average concentration to each 117

compartment: 118

P (i)
c :=

1

N

N∑
i=1

P (i)
c . (4)

In our stochastic simulations, we impose that whenever the total number of proteins 119

Ptot in the cytoplasm changes (via translation or import into the nucleus), the proteins 120

are redistributed so that each compartment contains bPtot/Nc proteins, with the 121

remaining proteins (if any) randomly assigned to separate compartments. We use the 122

same equation as [20] for protein in each nucleus: 123

dP
(i)
n

dt
= γp

(
Vc
Vn

)
P (i)
c︸ ︷︷ ︸

import

− δpP (i)
n︸ ︷︷ ︸

decay

. (5)

2 Results 124

2.1 Stochastic transcription maintains limit cycles below the 125

threshold for deterministic oscillations 126

Wang and Peskin [20] showed that their deterministic model produces sustained (rather 127

than damped) oscillations only above a critical peak rate of transcription: 128

α > 4 · 55 · ν2 · KVn
β

, (6)

where, for simplicity, γm, γp, δm, δp are all set equal to ν. With the default parameter 129

values used by [20] (ν = 2π/22 h−1, Vn = 0.1 pL, β = 10 h−1, K = 200/pL), (6) 130

predicts that a limit cycle will be maintained for α > 2039 h−1. While the authors ran 131

many stochastic simulations using their default transcription rate (α = 180000 h−1), 132

they did not explore the behavior of the stochastic model when α is below the 133

deterministic threshold for a limit cycle. Using the Gillespie algorithm [21], we ran trials 134

of the Wang and Peskin [20] model (i.e., our mathematical model with N = 1 135

compartment) for values of α three and four orders of magnitude below the default rate 136

(α = 180 h−1 and α = 18 h−1, respectively). Note that both of these rates are in a 137

regime where the deterministic model displays damped oscillations. Interestingly, while 138

oscillations of protein and mRNA levels in the deterministic model rapidly decay, 139

oscillations are maintained indefinitely in the stochastic model (Fig 1). 140

Fig 1. Stochastic transcription preserves limit cycles.
Deterministic (thick blue curve) vs. stochastic (thin red curve) time course for nuclear
protein for α = 18 h−1 (A) and α = 180 h−1 (B). In (A) and (B), α values are two and
one orders of magnitude, respectively, below the critical transcription rate derived from
(6), so under the deterministic model, oscillations are damped. However, stochastic
realizations of the same model support sustained, albeit noisy, oscillations.

In Fig 2, we display time course data from a single stochastic simulation for α = 18 141

h−1, the lowest transcription rate we tested, and for α = 180000 h−1, the default 142

parameter value used by Wang and Peskin [20]. On average, we find that mRNA counts 143
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are about an order of magnitude higher for α = 180000 h−1, and that counts for α = 18 144

h−1 are much closer to experimental data from Neurospora. Remarkably, periodic 145

oscillations are still evident in the α = 18 h−1 case, even with peak mRNA counts in 146

the single digits. 147

Fig 2. mRNA oscillations are still evident even at a very low transcription
rate.
Time course of number of mRNA copies in the nucleus from individual stochastic
simulations using two extremal values of the transcription rate α.

2.2 Measuring the quality of limit cycles 148

To compare different conditions, we develop a quantitative measure of the the “quality”
of limit cycles in the stochastic circadian rhythm model. To begin, we find the power
spectrum for Pn over 1000 h of simulated time, averaged over N = 100 trials. The
power spectrum of a time series gives the power of each frequency component in the
signal, computed using Fourier analysis [24]. The peak in the power spectrum indicates
the dominant frequency of the signal; a noisy signal that does not have a limit cycle will
have a peak of zero. A reliable circadian oscillator should have a consistent period;
accordingly, we define the “quality factor” q of our oscillator to be the proportion of the
total power that is within a certain time τ of the peak period T ∗, i.e.,

q =

∫ ω+

ω−

P (ω)dω∫ ∞
0

P (ω)dω

,

where P = power, ω = frequency, and

ω− =
1

T ∗ + τ
, ω+ =

1

T ∗ − τ
.

For all subsequent measures of quality factor, we use τ = 2 h. In Fig 3, we show 149

examples of evaluating quality factor for α = 18 h−1 and α = 180000 h−1. 150

Fig 3. Power spectrum can be used to measure the periodicity of the
circadian rhythm.
We average the power spectrum for nuclear protein over 100 trials, with a low
transcription rate (A) and a high transcription rate (B). The quality factor is the
fraction of the power spectrum in the interval [ω−, ω+] (shaded areas) to the total area
under the curve. Red asterisks indicate the peak frequency. Quality factors are
q = 0.192 in (A) and q = 0.370 in (B).

We compute the quality factor for five orders of magnitude of the transcription rate 151

α, ranging from α = 18 h−1 to α = 180000 h−1. We find that quality factor increases 152

with α (see Table 1) since mRNA and protein counts are generally higher for larger 153

values of α, making oscillations of nuclear protein less susceptible to Poisson noise. So, 154

although we predict that circadian oscillations can be maintained even when 155

transcription rate is low, oscillations will be more regular in amplitude and period when 156

transcription rate is high. However, gains are modest: quality factor q increases only by 157

a factor of 2 for a 104-fold increase in α. 158
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Table 1. Maximum transcription rate α vs. quality factor q of nuclear
protein oscillations.

α (h−1) Quality factor (q)
18 0.192
180 0.227
1800 0.251
18000 0.304
180000 0.370

2.3 Limit cycle quality in a model syncytium 159

2.3.1 Uniform compartment sizes 160

We now evaluate the quality factor of nuclear protein oscillations for multiple nuclear 161

compartments (N = 2, 4, 8, and 16 compartments) of equal length (i.e., each nucleus 162

contains the same volume of surrounding cytoplasm). As before, we find the power 163

spectrum for 1000 h of simulated time, averaged over 100 trials. Since we expect quality 164

factor to be consistent across compartments, and we would like to compare with the one 165

compartment case, we evaluate the quality factor for a single compartment in each case, 166

rather than for the entire cell. We find that quality factor increases with number of 167

compartments in the syncytium (Fig 4). This is likely because the redistribution of 168

cytoplasmic proteins has an averaging effect on the model, removing some of the noise. 169

As the number of compartments increases, this averaging effect becomes more robust. 170

In fact, the quality factor with 8 or 16 nuclear compartments at the lowest transcription 171

rate is comparable to the quality factor for a single compartment at the highest 172

transcription rate. 173

Fig 4. Quality factor increases with transcription rate and number of
compartments.
Quality factor for 1, 2, 4, 8, and 16 nuclear compartments, over five orders of magnitude
of the maximum transcription rate α.

Sharing transcription-inhibiting proteins evenly between nuclear compartments of 174

uniform size results in roughly equal average transcription rates in each nucleus, leading 175

to an improvement of limit cycle quality. But how is the labor of transcribing mRNAs 176

divided between nuclei over each circadian day? To investigate, we ran a stochastic 177

simulation of our model for a model syncytium with two compartments of equal length 178

and with the minimal transcription rate α = 18 h−1, and counted the number of 179

mRNAs transcribed in each compartment over each circadian period. (We define a 180

circadian period as the time interval between troughs in nuclear protein expression.) 181

The simulation was run for 10000 h (approximately 400 periods). We find that the 182

labor of producing mRNAs often skews strongly toward a single compartment over 183

individual periods (Fig 5). In fact, in nearly 30% of periods, one nucleus produces more 184

than twice the number of mRNAs as the other. 185

Fig 5. mRNA production in a model syncytium with uniform
compartments.
(A) Number of mRNAs transcribed in each nuclear compartment for approximately 400
circadian periods for a two-nucleus syncytium with uniform compartment sizes (1:1 size
ratio). The red line represents equal numbers of mRNAs being produced by each
nucleus. (B) Histogram of the results from (A) indicates that one compartment often
dominates mRNA production over a single period.
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Asymmetries in mRNA production apparently emerge spontaneously from the 186

circadian dynamics. Controlling division of labor may confer selective benefits upon 187

fungi. The feedback strength depends on the number of proteins a nucleus encounters, 188

and thus depends on the volume of cytoplasm in that nucleus’ compartment. What 189

happens to circadian cycles when these cytoplasmic volumes are not equal (i.e., nuclear 190

compartments are not of uniform size)? We address this question in the next section. 191

2.3.2 Non-uniform compartment sizes 192

In general, nuclear compartment sizes are not exactly uniform in a syncytial cell 193

(though in some syncytial cells, cytoskeletal elements closely regulate internuclear 194

spacing [25]). Because proteins are uniformly distributed in the cytoplasm in our model, 195

the expected number of cytoplasmic proteins in compartment i at time t is 196

E[P (i)
c (t)] =

li∑N
i=1 li

Ptot(t), (7)

where li is the length of compartment i. In Neurospora, nuclear movement and 197

rearrangement constantly modify compartment sizes [26]. For simplicity, we assume 198

that compartment sizes remain constant over time: our model is designed to identify 199

trends in how labor is divided between nuclei, rather than to quantitatively model the 200

real Neurospora circadian clock. By examining Eqs (1) and (5), we can infer the effect 201

of compartment size on mRNA transcription. Since larger compartments generally 202

contain more cytoplasmic proteins than smaller ones, it follows that more proteins are 203

imported into nuclei contained within larger compartments. Thus, transcription rates 204

are inhibited more in larger compartments, meaning that mRNA levels should decrease 205

as compartment size increases. To verify this hypothesis, we ran simulations of a two 206

compartment syncytium in which the larger compartment is double the length of the 207

smaller. We find that the smaller compartment contains dramatically more mRNAs 208

than the larger, in both the nucleus and surrounding cytoplasm (Fig 6). Hence, labor of 209

transcription is unevenly divided between compartments, and nuclei in small 210

compartments carry much more of the burden of producing mRNAs. 211

Fig 6. Nuclei in smaller compartments do more labor of producing
mRNAs.
mRNA time courses for nucleus (left panel) and cytoplasm (right panel) from a
stochastic simulation of a two-nucleus syncytium in which one compartment is twice the
length of the other, for α = 180 h−1.

To further study division of labor for unequal compartment sizes, we repeated the 212

simulation from section 2.3.1, this time for a variety of two-compartment model 213

syncytia, in which the larger compartment was 1.1, 1.2, ..., 1.5 times the length of the 214

smaller compartment. As before, simulations were run for 10000 h, with transcription 215

rate α = 18 h−1. In Fig 7, we display scatter plots for the 1.1x and 1.5x cases. We focus 216

specifically on the skew in the number of transcribed mRNAs — i.e., the fraction of 217

mRNAs that are transcribed by the nucleus in the smaller compartment. Although we 218

find that mRNA product is unevenly distributed between nuclei from cycle to cycle, 219

uneven compartment sizes consistently bias mRNA production from cycle to cycle. 220

Mean mRNA production skews slightly towards the smaller compartment in the 1.1x 221

case, and dramatically towards the smaller compartment in the 1.5x case (data on mean 222

transcription fractions shown for all cases in Table 2). 223

Is limit cycle quality substantially reduced when mRNA production asymmetries are 224

induced by changing compartment sizes? To answer this question, we ran 100 225
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Fig 7. Compartment size differences skew the relative number of mRNAs
transcribed by each nucleus.
Number of mRNAs transcribed in each nuclear compartment for approximately 400
circadian periods in two different two-nucleus syncytia (panel titles indicate size ratios).
The red line represents equal numbers of mRNAs being produced by each nucleus.

Table 2. Ratio of compartment lengths l1/l2 vs. fraction of total mRNAs
transcribed in compartment 2 (the smaller compartment).

l1/l2 mean fraction transcribed in comp. 2
1.1 0.559
1.2 0.600
1.3 0.654
1.4 0.688
1.5 0.731

realizations of our stochastic model for each of the two-compartment model syncytia 226

outlined above; each realization was run for 1000 h. Since quality factor varies with 227

compartment size, we compute the quality factor for the entire cell in each case (i.e. we 228

find the quality factor for the total number of nuclear proteins) rather than for a single 229

compartment. We then compare this set of quality factors to the factor for an entire cell 230

composed of two compartments of equal length. We find that increasing variability in 231

compartment length has a very minimal effect of limit cycle quality (Fig 8). Our results 232

show that even with extreme division of labor between nuclei, a high quality oscillator 233

can be assembled. The nucleus in the larger compartment, though it produces the 234

minority of the cell’s mRNAs, contributes enough to ensure that the quality factor 235

remains consistently larger than the factor for a uninucleate cell (0.192 for the 236

parameter values assayed here). 237

Fig 8. Quality factor (across the entire cell) is close to uniform for a
variety of two-nucleus syncytia.
We varied the asymmetry of compartment sizes and measured the mean quality of the
oscillator over 1000 simulated hours, with α = 18 h−1. Quality factor varies little and
consistently exceeds the value for a uninucleate cell (0.192).

2.3.3 Limit cycle consistency in a model syncytium 238

Lastly, we wish to examine whether protein sharing supports consistency of circadian
timekeeping in a model syncytium when transcription rate is very low (α = 18 h−1).
We return to uniform compartment sizes, as in Section 2.3.1, and consider two different
scenarios: (i) eight nuclear compartments that share proteins via diffusion and (ii) eight
autonomous nuclear compartments, with each compartment containing only the mRNAs
and proteins produced by its nucleus. In both scenarios, every compartment is given the
same initial conditions, i.e.,

M (1)
n (0) = M (2)

n (0) = ... = M (8)
n (0) = µn, M (1)

c (0) = M (2)
c (0) = ... = M (8)

c (0) = µc,

P (1)
c (0) = P (2)

c (0) = ... = P (8)
c (0) = ρc, P (1)

n (0) = P (2)
n (0) = ... = P (8)

n (0) = ρn,

where µn, µc, ρc, and ρn are constants. Starting from these initial conditions, we 239

simulate five circadian “days” for the two different scenarios outlined above. In this 240

context, a “day” refers to the time period between peaks in total nuclear protein 241

expression (i.e., the total nuclear protein count for the entire cell). We are interested in 242
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evaluating the consistency in the timing of these peaks. We therefore ran 100 stochastic 243

simulations for each scenario, with the same initial conditions for every trial, and 244

recorded the time that each peak occurred for each simulation. 245

In Fig 9, we display histograms for the times that peaks occurred, where time 0 h 246

indicates the time for the first peak. Unsurprisingly, we find that the timing of peaks 247

becomes more unpredictable over time. However, since the nuclei from scenario (i) share 248

proteins, oscillations for nuclear protein in each compartment are roughly in-phase from 249

their initially synchronized states. On the other hand, in scenario (ii), nuclei have no 250

means to “communicate,” so nuclear protein oscillations drift quickly out of phase. 251

Hence, timing of peaks in total nuclear protein is considerably more unpredictable in 252

scenario (ii) than in scenario (i), as indicated by larger standard deviations for peak 253

times in scenario (ii) (Fig 9). This shows that protein diffusion can help regulate 254

circadian timekeeping in a syncytial cell, and that circadian rhythms quickly break 255

down in a syncytial cell with no communication between its nuclei. In the absence of 256

external cues such as light, circadian rhythms tend to deteriorate after several 257

days [16, 27]. However, we’ve shown that, like light, protein sharing between nuclei can 258

have an entraining (synchronizing) effect on the cell’s rhythms, helping maintain reliable 259

rhythms for a longer period of time. 260

Fig 9. Protein sharing supports a consistent circadian rhythm.
Times of peaks of total nuclear protein expression, for eight nuclear compartments that
share proteins (A) and eight autonomous nuclear compartments (B). We ran 100
simulations in each case, with α = 18 h−1. In each figure, we also indicate the standard
deviation σi of peak time for each circadian “day” (i = 1, 2, ..., 5). Expected times for
peaks (i.e., average circadian day lengths) are indicated with blue diamonds.

Discussion 261

We have formulated and simulated a mathematical model for circadian rhythms in a 262

syncytial cell, adapted from the uninucleate model of Wang and Peskin [20]. The 263

motivation for developing our model was to better understand division of labor (i.e., 264

partitioning of mRNA transcription) between nuclei in Neurospora crassa. Our results 265

indicate that, by “sharing” proteins between nuclei via molecular diffusion, nuclei 266

within a syncytial cell such as Neurospora can achieve a robust, reliable circadian 267

rhythm with minimal mRNA production. For example, we found that a model 268

syncytium with eight nuclei can achieve nuclear protein oscillations of comparable 269

“quality” to a uninucleate cell while reducing transcription rates by a factor of ten 270

thousand (see Section 2.3.1). This is because protein sharing has an averaging effect on 271

the model, removing much of the consequences of random mRNA fluctuations. While 272

our model is undoubtedly simplified, it offers a potential explanation of recent 273

experimental results, which suggest that Neurospora achieves a robust circadian rhythm 274

with very small mRNA counts (Brad Bartholomai, personal communication, 2019). 275

Many of the simulations in this paper were run below the deterministic threshold for 276

a Hopf bifurcation derived in [20] (see the inequality (6)). We selected this regime of the 277

model because we wanted to test whether oscillations could be achieved at the very low 278

transcription rates that are consistent with smFISH measurements of mRNA in 279

Neurospora crassa (Brad Bartholomai, personal communication, 2019). Remarkably, we 280

found that, even in uninucleate systems, quasi-periodic limit cycles are attained in 281

stochastic simulations when the transcription rate is two orders of magnitude lower than 282

this threshold and mRNA counts are in the single digits. However, absolute 283

quantification of proteins is very difficult in syncytial cells [28], so the actual translation 284
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rates in Neurospora may be considerably higher than the parameter value we used. A 285

high translation rate β could potentially push the system back into the regime where a 286

deterministic limit cycle exists. Regardless, it is notable that random transcription 287

events can potentially maintain limit cycles for very low transcription rates, allowing a 288

cell to achieve a robust circadian rhythm with minimal labor upon its nuclei. 289

Extreme mRNA efficiency may confer fitness advantages upon fungal cells. These 290

cells are often regarded as enzyme factories — capable of expressing vast quantities of 291

potentially useful proteins [29]. Although the energetic cost of mRNA transcription is 292

not large, the physical rearrangements needed to access a particular gene may create 293

interference when a nucleus must access multiple different regions of its genome to 294

express multiple genes [30]. Reducing transcription rates on each gene may therefore 295

allow a nucleus to transcribe a larger set of genes. In Zaslaver et al. [30], the authors 296

highlight that organisms may benefit from minimizing the rates of transcription, while 297

keeping protein abundances constant. The super-secretory abilities and rapid growth of 298

fungi may emerge from their ability to push transcription rates to extremely low rates 299

while using protein sharing to suppress stochastic fluctuations in the abundances of the 300

proteins produced. 301

In constructing our syncytial cell model, we made the simplifying assumption that 302

protein diffusion is “fast” relative to protein import and decay. Hence, we imposed that 303

protein levels are constantly uniformized between compartments. While this assumption 304

may be fairly reasonable across a small number of nuclear compartments, it breaks 305

down for a larger cell with many nuclear compartments. So, while our model predicts 306

that limit cycle quality increases with number of nuclei (Fig. 4), is there a trade-off that 307

occurs in a larger cell, as communication between nuclei becomes more limited? A 308

model that includes more accurate diffusive mechanics could help answer this question, 309

and better predict how spacing of nuclei across the cell affects the quality of circadian 310

rhythms. 311

In future, it may be valuable to adapt our syncytial model to more closely describe 312

circadian rhythms in Neurospora. FRQ mRNA and protein oscillations in Neurospora 313

are driven by interlocking positive and negative feedback loops, while our model 314

involves only a negative feedback loop. A minimal differential equation model to study 315

Neurospora circadian rhythm would likely need to include FRQ mRNA and protein, 316

White Collar mRNA and protein, and FRQ-White Collar complex (whose formation 317

inhibits frq transcription). A model including all of these elements could potentially 318

allow quantitative matching to the emerging data streams on real mRNA and protein 319

abundances [31,32]. 320

Appendix 321

High diffusivity of protein justifies treating protein 322

concentrations as uniform 323

In Section 2 we stated that, since diffusion of cytoplasmic proteins is “fast” relative to 324

the rates of protein translation and import, we can reasonably ignore diffusive 325

mechanics, and simply assume that cytoplasmic protein concentration is at all times 326

uniform across the syncytium. This assumption allows us to greatly reduce the number 327

of time steps in numerical simulations. Below is a justification for this assumption. 328

We begin by rewriting our syncytial circadian rhythm model, but with diffusion 329

between nuclear compartments included. Suppose that cytoplasmic proteins move into 330

adjacent compartments at rate ξ, with reflecting boundary conditions at each end of the 331

cell. We use the same parameter values for import, export, and decay as in [20], and set 332

them equal to each other: γm = δm = γp = δp = ν. The model equations read as follows: 333

February 5, 2021 11/15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2021. ; https://doi.org/10.1101/2021.02.24.432653doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432653
http://creativecommons.org/licenses/by/4.0/


dM
(i)
n

dt
=

α

Vn

(
K

K + P
(i)
n

)r

− νM (i)
n , i = 1, ..., N ; (8)

dM
(i)
c

dt
= ν

(
Vn
Vc

)
M (i)

n − νM (i)
c , i = 1, ..., N ; (9)

dP
(i)
c

dt
= βM (i)

c − νP (i)
c + ξ

(
P (i−1)
c − 2P (i)

c + P (i+1)
c

)
, i = 2, ..., N − 1, (10)

dP
(1)
c

dt
= βM (1)

c − νP (1)
c + ξ(P (2)

c − P (1)
c ),

dP
(N)
c

dt
= βM (N)

c − νP (N)
c + ξ(P (N−1)

c − P (N)
c );

dP
(i)
n

dt
= ν

(
Vc
Vn

)
P (i)
c − νP (i)

n , i = 1, ..., N. (11)

Let mn = VnMn, mc = VcMc, pc = VcPc, and pn = VnPn. Also, let τ = νt, α̃ = α/ν, 334

and κ = VnK. Then we have 335

dm
(i)
n

dτ
= α̃

(
κ

κ+ p
(i)
n

)r

−m(i)
n , i = 1, ..., N ; (12)

dm
(i)
c

dτ
= m(i)

n −m(i)
c , i = 1, ..., N ; (13)

dp
(i)
c

dτ
=
β

ν
m(i)

c − p(i)c +
ξ

ν

(
p(i−1)c − 2p(i)c + p(i+1)

c

)
, i = 2, ..., N − 1, (14)

dp
(1)
c

dτ
=
β

ν
m(1)

c − p(1)c +
ξ

ν
(p(2)c − p(1)c ),

dp
(N)
c

dτ
=
β

ν
m(N)

c − p(N)
c +

ξ

ν
(p(N−1)c − p(N)

c );

dp
(i)
n

dτ
= p(i)c − p(i)n , i = 1, ..., N. (15)

Now, let’s estimate the rate parameter ξ. Let D be the diffusion coefficient for
cytoplasmic protein and l be the length of each nuclear compartment. To reach an
adjacent compartment, each protein must travel a distance of l/2, on average.
From [33], the mean time T for a protein to be displaced by l/2 is

T =
1

2D

(
l

2

)2

=
l2

8D
.

It follows that the average rate of exchange of proteins between compartments is

ξ =
1

T
=

8D

l2
.

The diffusivity of a protein depends on its size and the viscosity of the cytosol through
which the protein diffuses; for example, (small) GFP proteins have a diffusion coefficient
of approximately 33 µm2/s in the cells of the filamentous fungus Aspergillus niger [34].
However, the molecular mass of FRQ protein (108 kDa) is 4 times greater than that of
GFP (27 kDA), so, assuming a globular structure, we would expect its diffusivity to be
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reduced by a factor of 41/3 [33], which gives D ≈ 21 µm2/s. Now, assuming that l = 5
µm, we obtain

ξ ≈ 6.7 s−1 ≈ 24000 h−1.

Since we use ν = 2π/22 ≈ 0.3 h−1, ε := ν/ξ is a very small dimensionless parameter. 336

Multiplying both sides of Eq (14) by ε, we obtain the following dimensionless system: 337

dm
(i)
n

dτ
= α̃

(
κ

κ+ p
(i)
n

)r

−m(i)
n , i = 1, ..., N ; (16)

dm
(i)
c

dτ
= m(i)

n −m(i)
c , i = 1, ..., N ; (17)

ε
dp

(i)
c

dτ
= ε

(
β̃m(i)

c − p(i)c

)
+
(
p(i−1)c − 2p(i)c + p(i+1)

c

)
, i = 2, ..., N − 1, (18)

ε
dp

(1)
c

dτ
= ε

(
β̃m(1)

c − p(1)c

)
+ (p(2)c − p(1)c ),

ε
dp

(N)
c

dτ
= ε

(
β̃m(N)

c − p(N)
c

)
+ (p(N−1)c − p(N)

c );

dp
(i)
n

dτ
= p(i)c − p(i)n , i = 1, ..., N, (19)

where β̃ = β/ν. Now, setting ε to 0 gives the “fast” dynamics for cytoplasmic protein:

p(i−1)c − 2p(i)c + p(i+1)
c = 0 (i = 2, ..., N − 1); p(1)c = p(2)c , p(N)

c = p(N−1)c .

Solving this system and returning to the original variables gives

P (1)
c = P (2)

c = ... = P (N)
c ,

i.e., a uniform concentration of proteins across the cytoplasm of the cell. The “slow”
dynamics for cytoplasmic protein are obtained by collecting O(ε) terms in Eq (14):

dp
(i)
c

dτ
= β̃m(i)

c − p(i)c .

In terms of the original parameters and variables,

dP
(i)
c

dt
= βM (i)

c︸ ︷︷ ︸
translation

− γpP (i)
c︸ ︷︷ ︸

import

.

This analysis supports our assumption that protein concentrations are kept continuously 338

uniform between compartments. 339
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