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Abstract

Human behaviour follows a 24-hour rhythm and is known to be governed by the
individual chronotypes. Due to the widespread use of technology in our daily lives, it is
possible to record the activities of individuals through their different digital traces. In
the present study we utilise a large mobile phone communication dataset containing
time stamps of calls and text messages to study the circadian rhythms of anonymous
users in a European country. After removing the effect of the synchronization of
East-West sun progression with the calling activity, we used two closely related
approaches to heuristically compute the chronotypes of the individuals in the dataset,
to identify them as morning persons or “larks” and evening persons or “owls”. Using
the computed chronotyes we showed how the chronotype is largely dependent on age
with younger cohorts being more likely to be owls than older cohorts. Moreover, our
analysis showed how on average females have distinctly different chronotypes from
males. Younger females are more larkish than males while older females are more owlish.
Finally, we also studied the period of low calling activity for each of the users which is
considered as a marker of their sleep period during the night. We found that while
“extreme larks” tend to sleep more than “extreme owls” on the weekends, we do not
observe much variation between them on weekdays. In addition, we have observed that
women tend to sleep even less than males on weekdays while there is not much
difference between them on the weekends.

1 Introduction 1

Human beings are known to be diurnal in nature that is characterized by a period of 2

activity during the day and a period of inactivity during night. These rhythmic 3

activities are entrained to the light-dark cycles of the solar clock that occurs due to the 4

earth’s rotation around the sun. This rhythmicity is also affected by the social 5

constraints of living in a society, for example going to work on time, while being 6

generally aligned according to the solar clock. The discovery of artificial light has had a 7

considerable impact on the daily activities of human beings, thus eventually affecting 8

their sleeping patterns. However, the physiological activities and behaviour of humans 9

are well known to follow a circadian rhythm that reflects their individual chronotypes. 10
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The chronotype of an individual arises from her natural tendency to align her 11

rhythmic activities according to the solar cycle along with the social constraints of the 12

society. Individuals having early chronotypes rise early in the morning and sleep early 13

as well. They are well known in the literature as “larks”. On the other hand, late 14

chronotypes wake up late as well as sleep late and are befittingly known as “owls”. The 15

rest of the population falls within this spectrum from larks to owls, identified by their 16

individual chronotypes. Identification of chronotypes is an important issue, because an 17

individual’s productivity could depend on the synchrony between her inherent 18

chronotype and her daily work-life timings. We might expect a lark to be more 19

productive during the morning and an owl to be more productive during the evening. 20

Workplaces mostly have schedules that are biased towards early chronotypes and not for 21

the late ones. This can cause sleep deprivation and poor eating habits in the latter 22

which can further lead to health complications [1–4]. 23

Traditionally, studies concerning identification of chronotypes have been done using 24

the Munich ChronoType Questionare (MCTQ) [4–6]. This questionnaire, the first of its 25

kind, consists of unique questions and iconic supporting drawings regarding an 26

individual’s sleep-wake cycle. Survey studies with this type of questionnaire have shown 27

that generally the chronotype of an individual changes gradually with age [7]. 28

Individuals are found to behave like larks in adolescent stages of their lives and 29

gradually tend to become owls through their teenage years reaching a maximum around 30

20 years of age. After 20, they have been observed to gradually change back to being 31

larks [8]. Additionally, gender differences of chronotypes have also been studied in 32

ref. [9] using the Morningness-Eveningness Questionire (MEQ) [10] in which they 33

concluded the existence of different synchronization patterns for men and women. 34

While these survey studies are excellent tools to understand human behaviour, they 35

have their limitations in the form of sample sizes, memory of the participants, and what 36

is socially and societally expected, etc. 37

With the advent of the digital age and its rapid development over the years, humans 38

have been increasingly becoming dependent on technology for their daily needs. This 39

has led to them leaving traces of their activity online in the digital world, which in turn 40

can give us considerable insight into their daily activities. Data from mobile phone 41

communication records containing call time stamps and GPS locations along with 42

duration of the voice calls and text messages sent by anonymized users portray periods 43

of activity and inactivity by individuals and consequently are useful for studying their 44

chronotypes. Additionally, data analysis studies harnessing the data from the mobile 45

phone call detail records of a very large number of users presents a very good picture of 46

the dynamics of human behaviour living in a society [11–16]. Access to these kinds of 47

large population datasets enables us to study the social networks formed by humans 48

and relationships formed by them in the networks [17–20]. It can also be used to study 49

migration patterns [21] of the individuals and more recently, it has been used to study 50

the behaviour of people during the COVID -19 pandemic as well [22]. 51

Since mobile phone communication datasets clearly display the circadian rhythms of 52

human activity by looking at the frequency of calls made by an individual during a 24 53

hour cycle [23], one can broadly determine when an individual is active or inactive. 54

Studies show that the calling activity of individual users on average follow a bimodal 55

distribution where users are active twice during the day with the two peaks in the 56

frequency of calls occurring in the morning and in the evening, respectively. Thus, one 57

can identify the chronotype of an individual by inspecting these rhythmic cycles of 58

calling activity. For example, studies by Aledavood and co-authors [24,25] used data 59

from smartphones of volunteers to identify larks and owls as well as their social 60

networks. They also observed that the personal networks maintained by owls are larger 61

than those maintained by larks. 62
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In our current study, we have used the call detail records of a large population-level 63

dataset to observe the morning and evening calling activities of the users living in a 64

European country during the years 2007, 2008 and 2009. Our aim is to construct a 65

chronotype directly from these activities collected during the entire 24-hour cycle of all 66

seven days of the week instead of only looking at mid-sleep times only on weekends. We 67

observe that they show a bimodal distribution of calling activity that is dependent on 68

the East - West progression of the sun. We have tried to eliminate this effect from the 69

data and have introduced a new approach for the identification of chronotypes of the 70

users by applying factor analysis approaches. First, we carried out a principal 71

component analysis on the data and showed that the first principal component can be 72

interpreted as a chronotype. Furthermore, we used computed values of the chronotype 73

to demarcate between extreme larks, larks, third birds, owls and extreme owls in the 74

population. 75

Next, we performed an exploratory factor analysis to find if there exist any 76

underlying constructs or factors in our data that govern the behaviour of the 77

individuals. Our study indicates that they behave differently in the morning compared 78

to the evening. We also performed an exploratory bifactor analysis on the dataset which 79

we used to compute a single latent factor that is interpreted to be an individual’s 80

chronotype. This chronotype is a direct manifestation of all the morning and the 81

evening activities of the users on all days of the week and we have shown the variation of 82

the newly computed chronotype with age, along with their gender differences among the 83

individuals. We have observed that the individuals in the younger age cohorts behave as 84

owls whereas older age cohorts tend to behave as larks for both men and women which 85

agrees with previous results found from survey studies [26]. However, men are found to 86

be more owlish than females when they are young and vice-versa when they become 87

older. In addition, through this dataset, one can identify a period of low calling activity, 88

which corresponds to the total sleep duration of an individual in the sleep-wake cycle 89

discussed previously [27]. We have shown that the variation in the duration of sleep is 90

different for weekdays and weekends and is affected by the chronotype for both genders. 91

2 Materials and methods 92

Individual mobile phone Call Details Records 93

The dataset used in this study comprises the Call Details Records (CDRs) from 94

individuals living in a southern European country, which had mobile phone subscription 95

with a specific service provider. It results from the merging of 3 separate subsets 96

(January-December 2007, January-December 2008, and January-December 2009), 97

altogether covering a three year period. The data-sets were anonymised before being 98

handed over by the service provider, such that the true identity of the individual is 99

unknown and each individual is described by a unique identifier (id-number). The 100

CDRs lists all the outgoing calls made by each individual during a three year period, 101

and each entry includes, the id-numbers associated with the caller and the callee, the 102

time and date when the communication event happened, as well as the type of 103

communication event (call or text message) [28]. The data-set includes also 104

user-contract data-sets with some demographic information (age, gender, and registered 105

postal code) of the individuals who were subscribers of the service provider in at least 106

one of the three periods. Over the three year period, different individuals start a new 107

subscription and/or terminate the contract with the service provider, but of the order of 108

six hundred thousand individuals remained loyal to the service provider (i.e. their 109

contract started before January 1st 2007 and was still active on December 31st, 2009). 110

From this set of loyal subscribers whose demographic information was available (some 111
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user have missing entries or they contain typos), we chose 11178 individuals, who made 112

at least 100 hundred calls/text messages each year and with a total number of calls/sms 113

not exceeding 5000 calls (to exclude possible calls centers or subscription sellers). 114

Geographical grouping based on individual’s location 115

Using the information of the postal code available in the user-contract files, we split 116

individuals into 5 groups, each one falling inside a longitudinal band enclosing their 117

geographical location. However, as a signed non-disclosure agreement (NDA) prohibit 118

us to disclose the country where the service provider offered, the actual values 119

delimiting each selected geographical longitudinal band are masked. From here on, the 120

longitudinal values will be reported from a reference point located near the easternmost 121

part of the country, which will work as the zero reference. Thus, five latitudinal bands 122

LI -LV of widths 2.5◦, 3.05◦, 2.75◦, 2.2◦ and 2.8◦ are defined, separated by exclusion 123

bands of width 0.2 degrees, and with the first band LI (the reference point) the 124

easternmost, and the subsequent bands located to the west progressively until the last 125

longitudinal band LV lies in the westernmost part of the region (13.3◦-wide). Table 1 126

lists the number of individuals in each longitudinal band, as well, gender and age 127

distribution information of the population on each band. 128

Table 1. Demographic information of the population
Longitudinal Band

Feature LI LII LIII LIV LV

Limits [0◦,−2.3◦] [−2.5◦,−5.35◦] [−5.55◦,−8.1◦] [−8.3◦,−10.3◦] [−10.5◦,−13.1◦]
Width 2.5◦ 3.05◦ 2.75◦ 2.2◦ 2.8◦

Individuals 2031 2589 2386 2816 1356
Females 1108 1479 1338 1564 795
Males 923 1110 1048 1252 561

Young (18-35) 637 891 854 928 443
Mid-age (35-60) 1017 1272 1177 1425 700
Old (60-78) 377 426 355 463 213

The reason for this longitudinal splitting is to take into account of the dependence of 129

the human chronotype on the East-West progression of the Sun, as has been shown in 130

earlier studies [27,29]. In Fig 1 plots, for each of the five longitudinal bands LI -LV , the 131

calling activity of the analyzed individuals during weekday nights (Mondays to 132

Thursdays) aggregated over the 3 year period. There, a clear shift between the calling 133

activity distribution of each region can be seen, with the easternmost band LI starting 134

and ending its calling activity around 45 minutes earlier than the westernmost band LV . 135

3 Mid-sleep time and sleep duration 136

In order to determine individual’s daily periods of non-activity, we analyze separately 137

the number of events (calls/text message) that each individual made on different days of 138

the week for over the 3-year period. As we are interested in determining the mid-sleep 139

time, we determine the calling activity taking place on each night of the week, such that 140

we split it in seven 24-hour periods each one starting at 4:00pm (e.g. 4:00 pm Monday, 141

and ending at 3:59pm on the next day i.e. Tuesday). From here on, we refer to these 142

periods as “nights”, with, for example, Saturday’s night meaning the time period 143

between Saturday 4:00pm and Sunday 3:59pm. In addition, the first four nights of the 144

week (Monday to Thursdays) are also aggregated into a 24-hour long period named 145

“weekday night”, which is a standard way to refer to in chronotype studies to workdays. 146
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Fig 1. Aggregated individual calling activity for weekdays in 5
geographical regions. For each the 5 longitudinal bands LI -LV , the calling activity
of the analyzed individuals for all 24-hour over-the-night periods during weekdays
(Mondays to Thursdays) aggregated over the 3 year period. The activity in the
easternmost band LI (red line) is noticeably shifted towards early hours compared to
the activity in the westernmost band LV (magenta line). The bands limits are as
follows: LI : [0◦,−2.3◦], LII : [−2.5◦,−5.35◦], LIII : [−5.55◦,−8.1◦],
LIV : [−8.3◦, 10.3◦], and , LV : [−10.5◦,−13.1◦].

Using these definitions, we aggregated the weekly calling activity of each individual 147

over the 3-year period on the corresponding period of the week (Weekday, Friday, 148

Saturday and Sunday nights). In Fig. 2, we show the aggregated calling activity of one 149

individual for the four night periods studied. 150
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Fig 2. Aggregated calling activity of one individual for 4 different
overnight periods. The calling activity as a function of the time of the day (red
lines), for four different overnight periods: Weekdays (top-left), Fridays (top-right),
Saturdays (bottom left) and Sundays (bottom-right). Blue lines are smoothed Gaussian
curves. For this individual, the minimum of activity typically occurs around 5:00 am.

The bimodal distribution shown in Fig. 2 for one individual is present in almost all 151

the individuals’ profiles, and the consistent bimodality shown in the average calling 152

activity of the population at 5 different longitudinal bands (see Fig. 1) is a reflection of 153

this generality. In Fig. 3 we plot the calling activity patterns of a sample of users in one 154

of the 5 latitudinal regions (arranged in an actigram-like representation) to show that 155

the bimodality of the daily overnight calling activity is consistent. This bimodal pattern 156

will be used to approximate each individual’s calling activity by a Gaussian Mixture 157

Model (GMM) [30], which has recently been used to describe human activity from 158

CDRs [23,31]. 159
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Fig 3. Actigram of individual calling activity during weekdays. An example
of an actigram showing the calling activity for weekdays’ overnight periods of 1560
individuals chosen from the longitudinal band LIV (similar patterns exist for the other
bands). Each individual calling activity correspond to a horizontal line in the actigram,
and each individual activity is scaled into the interval [0, 1] such that the most active
periods are represented by light regions and periods without activity by dark regions.
To show that individuals’ period of low activity (chronotypes) are not homogeneous, we
ordered the presented individual activity profiles according to time shift between each
profile and the mean over the population’s activity profiles (i.e., using the time shift
that maximizes the cross-correlation between the individual profile and the mean). In
this representation, “larks” or morning people) appeared in the bottom section of the
actigram, with their activity profile clearly shifted towards early hours, whereas “owls”
or evening people (top section of the plot) are clearly shift towards late hours.

A GMM with two modes (Gaussians) used as an approximation of the calling 160

activity is given by: 161

F (t) =
a0

σM
√

2π
e

1

2σ2
E

(t−tE)2

+
a0

σM
√

2π
e

1

2σ2
M

(t−tM )2

, (1)

where tE and σE are the mean and the standard deviation of the Gaussian located 162

in the evening (left) and tM and σM the corresponding values for the one located in the 163

morning (right) of the following day. 164

The means tE , tM and the standard deviations σE , σM given by the approximations 165

can be used to describe the relevant quantities of each individual activity pattern, 166

namely the sleeping duration TLCA and the mid-sleep time Tmid. Assuming that the 167

period of sleeping is bounded by the period when the calling activity falls to a minimum, 168

we can approximate the sleeping duration or the period of low calling activity TLCA of 169

the day of the week d by the width of the area between the activity modes, that is, 170

T d
LCA = (tM − σM ) + (24− (tE + σE)). (2)

Similarly, the mid-sleep time T d
mid of the day of the week d is taken as the midpoint 171

between the calling activity modes, thus 172

T d
mid = (tM − σM + tE + σE)/2− 12. (3)

. 173
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Fig 4. Principal component analysis (PCA) on the four mid-sleep times
T d
mid. (A) On the left a summary of the first principal component (PC1) obtained from

PCA computed on the four sets of T d
mid for all users in five different longitudinal bands

of the country. On the right, we have shown a summary of the first principal component
(PC1reg or p chronotype) obtained after applying PCA to the residuals obtained from a
regression analysis of T d

mid using the latitude and longitude as independent variables.
The green, orange, red, blue and magenta bars represent the westernmost, western,
middle, eastern and the easternmost parts of the country, respectively. The black
horizontal lines in the middle represent the median of the distribution. The box plot
includes all the values within the range of the 25th and 75th percentile and the end of
the whiskers represent the maximum and the minimum scores excluding outliers. (B)
The first two principal components (PC1reg and PC2reg) of the PCA on regressed

values of the chronotypes in vector ~Tmid. The distribution of the PC1reg or p
chronotype is slightly skewed (skewness = 0.12), and leptokurtic (kurtosis = 3.09).
Therefore, one can divide the individuals into five groups using the mean and standard
deviation of the distribution called extreme larks, larks, third birds, owls and extreme
owls according to their chronotype and are represented in the figure by the colours
violet, blue, green, yellow and red, from left to right, respectively.
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Fig 5. Venn diagram to show changes in larkish and owlish behaviour. The
joint distribution of the larks and owls obtained from classification of the chronotypes
obtained by computing a PCA on Tmid values for weekends and for weekdays separately
and presented in the form of a Venn diagram. We observe that 7.1% of the population
who are larks remain the same be it weekdays or weekends and similarly for 7.4% of the
population that are owls. A very few percentage of the population (0.1% for larks and
0.3% for owls) changes their behaviour drastically to the opposite kind depending on
whether it is a weekend or weekday. We also observe that 8% for larks and 7.6% for
owls on weekdays; and 7.4% for larks and 8% for owls on weekends convert to third
birds in the population.

3.1 Morningness-Eveningness classification 174

The means tE and tM , and the standard deviations σE and σM calculated using Eqn. 1 175

are not always well defined because of the randomness of individuals’ calling activities. 176

Therefore, after filtering out the outliers in the dataset we consider a total of 11178 177

individuals for our analysis with 2031, 2589, 2386, 2816 and 1356 in longitudinal bands 178

LI , LII , LIII , LIV and LV , respectively. The definitions of the weekly overnight 179

periods (Weekday-, Friday-, Saturday-, and Sunday-night) have associated same number 180

of mid-sleep times T d
mid, which can be determined for each individual from the calling 181

activity. These four mid-sleep times can be used to assess the tendency of an individual 182

to have early (morningness person) or late (eveningness person) schedules. 183

In general, the mid-sleep times of any individual depends on the day of the week, 184

such that the mid-sleep times on weekdays occur usually earlier than on weekends. 185

However, when comparing between individuals, one can expect that the set of mid-sleep 186

times from a morning person, occurs in general earlier than those of an evening person, 187

thus we can use this expected difference for chronotype classification. The correlations 188

between TWeekday
mid and TFriday

mid , TSaturday
mid and TSunday

mid are 0.65, 0.54 and 0.67, 189

respectively, which corroborates that in general individuals having early schedules on 190

weekdays have also early schedules on weekends. 191

In spite of the differences found between the different chronotypes that each 192

individual has for different days of the week, the individual has a consistent type 193

(morningness or eveningness) relative to other individuals in the population. Comparing 194

the chronotypes between individuals, those having earlier schedules on weekdays have 195

also earlier schedules on weekends, and similarly for those having later schedules. We 196

use this consistent order between daily chronotypes between individuals to assess their 197

morningness-eveningness. The four possible mid-sleep times (on Weekdays, Fridays, 198
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Saturdays and Sundays)are assigned to a 4-dimensional vector 199

~Tmid = {TWeekday
mid , TFriday

mid , TSaturday
mid , TSunday

mid },

and this vector will be used to assess the chronotype. 200

Next we apply Principle Component Analysis (PCA) in the space of vectors ~Tmid of 201

the population to get a better representation of the chronotype vectors. The loadings of 202

the T d
mid on the first principal component (PC1) has been provided in the SI. We have 203

plotted a summary of the negative of the PC1 (see S1 Table) in a box-plot on the left 204

in Fig. 4A for the populations in the five longitudinal bands to exhibit the East-West 205

progression of the mean values. A positive PC1 can be interpreted as an individual 206

having a later mid-sleep time and a negative value can be interpreted for her to have an 207

earlier mid-sleep time. These values can thus be used to understand the 208

morningness-eveningness of an individual in the population. We observe in Fig. 4A, 209

that the mean of the PC1 decreases from LV to LI , which would imply that there are 210

more larks in the Eastern part of the country than in the Western part, which, however, 211

could be misleading [27]. In order to remove this possible artefact, we have computed a 212

multiple linear regression model of T d
mid values with latitude and longitude of the users 213

as independent variables. The coefficients of the latitude and longitude computed from 214

the model along with their p values has been summarized in S2 Table. We observe that 215

the longitude is most significant for all T d
mid while there is very small dependence on 216

latitude. Therefore, we considered the residuals computed from the regression model 217

and have again applied a PCA on them. On the right of Fig. 4A, we have shown a 218

summary of the new first principal component (PC1reg) for the vector ~Tmid in a 219

box-plot which shows that the effect of East-West progression has been removed. 220

Once the set chronotype vector (PC1reg or p chronotype) has been transformed 221

under the PCA, we observe that the resulting distribution of its values has a small 222

skewness of 0.12 and is very slightly leptokurtic with a kurtosis value of 3.09, in 223

comparison with the Gaussian distribution having skewness 0 and kurtosis 3. Since the 224

distribution is positively skewed, we expect there to be slightly more owls than larks 225

present in the population. The individuals can be divided into five clusters, inline with 226

the standard classification in the literature of the morningness-eveningness into five 227

groups (definitely morning-type, moderately morning, neither-type, moderately 228

evening-type, and definitely evening-type) [9]. In Fig. 4B we have divided the users into 229

these clusters using the means (m) and standard deviation (σ) of the distribution of 230

PC1reg. Hence, the individuals divided by the values: 231

m− 3σ,m− 2σ,m− σ,m+ σ,m+ 2σ,m+ 3σ, are accordingly named as extreme larks 232

(violet), larks (blue), third birds (green), owls (yellow) and extreme owls (red), and 233

comprise 2.22%, 13.05%, 69.04%, 12.84%, and 2.85% of the population, respectively. 234

Furthermore, we have computed a PCA on the Tmid values for the weekdays and 235

weekends separately to observe changes in the behavioural traits of larks and owls. The 236

first principal component obtained from PCA on mid-sleep times on weekdays 237

(PC1Weekday
reg ) accounts for 83.7% of the variance in the data and the one obtained from 238

PCA on mid-sleep times on weekends (PC1Weekend
reg ) account for 81.8% of the variance 239

in the data. The distribution of the PC1s obtained are more leptokurtic and more 240

skewed than the distribution of the p chronotype. PC1Weekday
reg and PC1Weekend

reg are 241

observed to have a kurtosis of {3.26, 3.25} and skewness of {0.18, 0.16}, respectively. 242

One can then classify the five different groups of people (extreme larks, larks, third birds, 243

owls, extreme owls) using the same method described in previous paragraph. In Fig. 5 244

we show a Venn diagram that depicts the joint distribution of the PC1 distributions 245

considering only the larks and the owls. Here we observe that approximately 7.1% of 246

larks and 7.4% of owls of the total population show the same behavioural traits on both 247

weekdays and weekends. Around and 8% and 7.4% of larks on weekdays and weekends 248

January 29, 2021 9/21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2021. ; https://doi.org/10.1101/2021.02.24.432651doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432651
http://creativecommons.org/licenses/by/4.0/


respectively change to third birds. Similarly 7.6% and 8% of owls on weekdays and 249

weekends, respectively, convert to third birds. A very small percentage of the 250

population, 0.1% of the larks and 0.3% of the owls, on weekdays and weekends change 251

to opposite behaviour, i.e. larkish become owlish or owlish become larkish. 252

4 Model for morningness-eveningness assessment 253

using factor analysis 254

In general, the individual mid-sleep times are different on different days of the week, 255

with the earliest mid-sleep time occurring in weekdays and the latest on Saturdays 256

(around one hour difference on average). When comparing mid-sleep times between 257

individuals, there we observe the following. The relative order between individuals is, in 258

general, the same regardless of the period of the week analysed, such that individuals 259

belonging to the group with earlier chronotypes on weekdays (relative to the whole 260

population), also belong to the groups with earlier chronotypes on weekends. 261

Fig 6. Factor analysis of the chronotype of an individual using CDRs: (A)
An Exploratory Factor Analysis (EFA) of the peak locations of the morning activity
(MA) and evening activity (EA) on the seven days of the week shows the emergence of
two underlying latent factors (Morning behaviour and Evening behaviour of an
individual) that governs the outcome of MA and EA, separately. The correlation
between the two latent factor is computed to be η = 0.31. (B) A higher order model
(Bifactor model) is used to find an underlying general g factor that can be used to
understand the chronotype of an individual. F1∗ and F2∗ are the “group” factors that
affect the MAs and EAs, separately. The loadings of the factors on the observables for
both the figures have been specified in two separate tables (S3 Table and S4 Table) in
the SI. Any cross-loadings with values below 0.3 have been ignored.

In this section, we have attempted to compute a chronotype score using factor 262

analysis for all the users in the population that can reflect the morningness or 263

eveningness of an individual. The first maximum in the activity shown in Fig. 1, 264

considering the night centered approach, represents an average peak in the evening 265

activity (EA) of a user on a particular day of the week and the second peak represents 266

the morning activity (MA). These pairs of observables for each day have been computed 267

from the data for each individual and is denoted by MAd and EAd where d stands for 268

Weekdays, Fridays, Saturdays and Sundays, respectively. Generally, the MAs of 269

individuals are mostly constrained due to social obligations, like going to work on time. 270
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In the evening, they are more relaxed and can follow their own individual chronotypes. 271

Therefore, we hypothesize that the morning and evening behaviour of an individual are 272

different from each other and these can be used to obtain their chronotype. We have 273

considered an Exploratory Factor Analysis (EFA) [32,33] on the sets of observables for 274

{MAd} and {EAd} as shown in Fig. 6A to explore an underlying latent variable that 275

affects an individual’s morning and evening activities. 276

We first assess the factorability of the data by carrying out the following tests. The 277

Kaiser-Meyer-Olkin test for factor adequacy in the model gives a score of 0.74 [34]. In 278

addition we use the Bartlett’s test for sphericity [35] to check any redundancy between 279

the observables that are summarized with fewer number of the latent variables and it 280

was gives a χ2 = 32344.32 and p < 0.0001. Both tests indicate a favourable use of EFA 281

in the model. The EFA using oblimin rotation was conducted using “psych” 282

package’s [36] maximum likelihood method to extract the factors. All items have high 283

communality value around 1.0 indicating that the two factor structure in the model is 284

able to explain a large part of the variances in the observables. This agrees with our 285

aforementioned hypothesis and accordingly we have observed that all the MAs are 286

loaded on one factor (Morning behaviour) and all the EAs are loaded on another factor 287

(Evening Behaviour) as depicted in Fig. 6A. The correlation between the two factors is 288

η = 0.31. This model has a unidimensionality score of 0.59 which further supports our 289

claim that the individuals behave differently in the morning from that in the evening. 290

The individual factor loadings on the observables are summarised in S3 Table in the SI. 291

The cross-loadings of the factors have not been shown in this figure since their values 292

are less than 0.3. The EFA is a technique used to identify conceivable underlying 293

constructs within the observables and is distinct from PCA that is used to reduce the 294

dimensions in the data. The model fit indices for the EFA, namely, comparative fit 295

index (CFI), Tucker-Lewis Index (TLI), and the root mean square error of 296

approximation (RMSEA), have been computed to be 0.91, 0.80, and 0.14, respectively. 297

While the values of CFI and TLI indicate a good fit of the data in our model, we get a 298

high value for the RMSEA. 299

Next, we have carried out an exploratory bifactor analysis (EBA) [38] on the model 300

to determine scores for a single construct like the chronotype of an individual that 301

would reflect the morningness or eveningness of the person even when the data is 302

multidimensional. The bifactor models are useful in representing hierarchical latent 303

structures in the data as the first-order factors [39]. It computes the factor scores for a 304

general factor g, which loads directly onto all the observables in the model and also 305

produces group factors that distinguish between the groups formed among the 306

observables. We have used “omega” function from the package “psych”, which does a 307

factor analysis followed by an oblique rotation and extracts the general factor using 308

Schmid-Leiman transformation [40,41]. The tests of reliability in our model ωt and ωh 309

are computed to be 0.84 and 0.39, respectively. Here ωt accounts for the total variance 310

in the data due to the general factor g and the group factors together, whereas ωh 311

accounts for the proportion of variance in the data due to the general factor only. In 312

Fig. 6B we show that the all the observables or items are loaded on the general factor 313

(g), which represents the chronotype of an individual. The factors represented by F1∗ 314

and F2∗ are group factors or nuisance dimensions—factors that measure responses of 315

the observables that are not considered by the g factor. The loadings of all the factors 316

in this analysis have been summarized in S4 Table in SI. 317

The mean factor scores obtained for the morningness behaviour, eveningness 318

behaviour, and the g chronotype from the models discussed above are found to behave 319

in a way similar to the principal component in the left of Fig. 4A when plotted as a 320

function of the longitudinal bands from West to East. As discussed previously in the 321

case of PCA we have computed a multiple linear regression model of the observables 322
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Fig 7. The mean of the factor scores and first principal component
computed from PCA for different age and gender cohorts: The variation of the
average factor scores of the (A) morning behaviour, (B) evening behaviour and (C) the
general g chronotype along with (D) the first principal component (PC1reg) from the
PCA renamed as p chronotype is plotted as a function of age and gender. Each point is
calculated separately with the shaded regions in all the three plots representing the
bootstrap 95% confidence intervals. The curve in red is for females and blue for males.

with the latitude and longitude of the users as independent variables (details in S5 323

Table of SI) to remove the geographical dependence in the data. We have considered the 324

residuals computed from the regression model for all the items in our analysis. We have 325

applied EFA and EBA on the residuals and the corresponding plots are shown in S6 Fig 326

in SI. 327

4.1 Age and gender dependence of the chronotype 328

The factor scores obtained from our models can be interpreted as an indicator of a 329

user’s chronotype. Individuals having negative scores are considered to be larkish or 330

morning-type and those having positive scores to be owlish or evening-type. The higher 331

the value of the scores, the more extreme larkish or extreme owlish behaviour of an 332

individual is expected to be. Fig. 7 shows the average factor scores of (A) Morning 333

Behaviour - MB, (B) Evening Behaviour - EB and (C) the g chronotype as a function of 334

the users’ age and gender. The factor scores for g chronotype in Fig. 7C for both the 335

genders are found to be decreasing with age indicating that younger individuals (from 336

18 to 35 years old) are more owlish in nature. Furthermore, it is also observed that 337

males in the younger age cohorts tend to have higher factor scores than women 338

indicating that they are more owlish than females. However, after 35 there is a crossover 339

and the females are observed to be more owlish in nature than males. For the mid age 340

cohorts (between 35 to 60 years old), we observe a peak in the factor scores. Finally, 341

older age cohorts (above 60 years) are found to behave like larks with women still 342
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having later chronotypes than men. The age and gender dependence of the p 343

chronotype computed using PCA discussed in a previous section has also been shown in 344

Fig. 7D. The variation of p chronotype is observed to be qualitatively similar to the one 345

observed with g chronotype. We have also observed a high correlation between the two 346

chronotypes and it is found to be 0.76. 347

Fig 8. Period of low calling activity of users of different chronotypes:
(A)The period of low calling activity T d

LCA is the width of the area between the activity
modes, calculated according to Eqn. 2 for d different days of the week. The average of
T d
LCA on weekends TLCA −Weekend and weekdays TLCA −Weekday is plotted as a

function of the general g chronotype in orange and magenta, respectively. (B)
TLCA-Weekend and (C) TLCA −Weekday are plotted as a function of the chronotype
for both genders. For each chronotype, TLCA −Weekend and TLCA −Weekday has
been calculated separately with the shaded regions in all three plots representing the
bootstrap 95% confidence intervals. The red plot is for females and blue for males in
both (B) and (C).

4.2 Dependence of the period of low calling activity on the 348

chronotype 349

The period of low calling activity TLCA, which can be interpreted as a representation of 350

an individual’s sleep duration during the night time, has been calculated using Eqn. 2. 351

Furthermore, we have calculated the average sleep duration on weekend 352

(TLCA −Weekend) and weekdays (TLCA −Weekday) separately and Fig. 8A shows 353

their variation as a function of the g chronotype. We find that the users sleep more on 354

the weekends than on weekdays and this result is consistent with the previous 355

findings [42]. Moreover, larks are observed to sleep more than owls on weekends. This is 356

because both larks and owls tend to align themselves according to their own chronotype 357

as there are no social constraints governing their schedules. Since the larks tend to 358

follow the solar clock they tend to sleep more than owls. On weekdays, extreme owls 359

have the same sleep duration as the larks which implies that they are not able to keep 360

up with the social constraints like work schedules and end up oversleeping. Fig. 8B 361

shows the sleep duration on weekends as function of the chronotype and the gender. We 362

do not observe any significant differences between the two genders on the weekends. 363

However, in Fig. 8C we find that owlish males sleep more on weekdays than owlish 364

females. The average age of the females in this regime falls in the age cohort of 40 to 60 365

year old. This could be a reason for the less sleep duration as they are more active than 366

males around this age due to reasons already discussed in the previous section. 367
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5 Discussion 368

In this study, we have utilized mobile phone communication data of a population in a 369

European country to study chronotypes of the service users. We have shown that the 370

chronotype of an individual can be broadly identified through two related yet distinct 371

statistical approaches. In our first approach, we have used PCA to heuristically 372

calculate a composite score for the different chronotypes using the mid-sleep times on 373

weekdays along with the weekends as well. The first principal component from this 374

analysis is composed of all the mid-sleep times with all positive loadings. We observed a 375

slightly leptokurtic distribution with a small skewness for the computed values. Using 376

the mean and the standard deviation of the distribution, we divided the users into the 377

following five different clusters - third birds, the users in the centre (69.0%), larks 378

(13.1%), owls (12.8%), extreme larks (2.2%), and extreme owls (2.9%). Moreover, if one 379

were to do the PCA for weekdays and weekends separately, the joint distribution 380

obtained from the two first principal components indicate changes in the behavioural 381

traits of the individuals. While some of the larks and owls behave the same on weekends 382

and weekdays, some have also been observed to change to the third birds category. We 383

also observed very small percentages of larks to convert to owls and vice versa. 384

Using a second approach, i.e. the EFA, which assumed chronotype to be a latent 385

trait, we also found that the morning activities and evening activities of the users are 386

governed by two separate factors, namely the morning behaviour and the evening 387

behaviour. The morning behaviour of the users is usually more constrained due to the 388

society following a strict schedule for offices, schools, etc. and most chronotypes try to 389

align themselves accordingly. However, this is not the case in their evening behaviour 390

since the individuals are more flexible with their evening schedules. Therefore, we see a 391

more pronounced change in the morning behaviour than in the evenings as depicted in 392

Fig. 7A and B. Furthermore, it is seen that older cohorts usually do not follow a strict 393

schedule since they are mostly retired from work and consequently tend to follow their 394

inherent chronotypes. In contrast, the younger cohorts need to follow a stricter social 395

timetable and thus exhibit a vastly different behaviour than the older cohorts. 396

Traditionally, the chronotypes have been calculated using the mid-sleep time of the 397

individuals on weekends only since they are assumed to follow their inherent 398

chronotypes freely during these days of the week [43]. However, in our study we have 399

shown that the g chronotype computed using an EBA is also an appropriate method to 400

study the morningness and eveningness of an individual. It is a higher order version of 401

the EFA that is able to compute a general factor g that is directly related to all the 402

observables in the data. Hence, this general factor renamed as g chronotype from EBA 403

is able to capture all the effects of the activities of an individual on all days of the week. 404

We found that the younger cohorts tend to have later chronotypes, which gradually 405

change to earlier chronotype with increasing age, similar to the results of the earlier 406

survey study [43]. However, the variation in the chronotype reduces considerably for age 407

groups above 40. In addition, we have observed a small peak for mid-age cohorts that 408

could be a direct influence of the lifestyle led by most of the individuals in this age 409

group. Most of them have to connect with both their children (young age cohorts) and 410

parents (old age cohorts) who usually live in separate accommodations. Thus, the peak 411

can be assumed to be a direct manifestation of their calling activity needed to maintain 412

their social interactions with both the age groups. The individuals in the older age 413

cohorts (60 years and above) are most likely not adhering to regular work schedules and 414

so, they tend to follow their inherent chronotype, which is more aligned with their 415

biological and the solar clock. This could be a reason for them to follow a more larkish 416

behaviour. These changes can also be attributed to other factors like hormonal changes 417

during an individual’s life span that affects their sleeping patterns [8]. Additionally, 418

women above the age of 40 are found to show more owlish chronotype when compared 419
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to men. This trait may be a direct cause of societal responsibilities that are usually 420

assumed to be taken predominantly by women e.g. child care etc [44]. 421

Furthermore, we have observed similar behaviour for both the g chronotype and the 422

p chronotype computed from EBA and PCA, respectively, as depicted in Fig 7D. 423

Chronotype m computed from an EFA on mid-sleep times for all days is found to show 424

the same variation as g chronotype (see S7 Fig in SI). Using the g chronotype we are 425

able to demonstrate that the chronotypes identified by directly taking into account and 426

combining several observables of human activity, instead of a derived quantity like the 427

mid-sleep time, can also be used to distinguish between the morningness and the 428

eveningness of individuals. Moreover, our results agree with the previous findings using 429

traditional methods like the MCTQ and MEQ questionnaires [8, 29,45–48]. Using a 430

period of the users’ low calling activity as markers of their sleep duration [27] we find 431

that on average all chronotypes sleep more on weekends than on weekdays [42] and in 432

both cases larks are generally found to sleep more than owls. On weekends, larks go to 433

sleep earlier than owls and so they have a longer sleeping period. The shorter sleeping 434

periods observed for owls may be a cause for sleep deprivation occurring among them, 435

which can further lead to health issues [1–3]. However, on the weekdays we observe that 436

extreme owls have sleep duration similar to extreme larks suggesting that on weekdays 437

the former may have difficulties in observing work schedules. 438

Finally, we conclude that our results obtained by combining data from mobile phone 439

communication of individuals during a 24 hour day-night cycle, one can form a detailed 440

understanding of their chronotypes. These kinds of studies using mobile phone service 441

subcribers’ CDRs, demographic, and location information gives a novel and time-wise 442

longitudinal perspective to the circadian rhythms of individuals. Our data-driven 443

approach adds and complements the questionnaire based studies and findings in them, 444

as it avoids possible shortcomings in terms of sample size and dependence on the 445

memory of the participants. In the recent past, the rapid adoption of newer modes 446

digital communication and different smart devices have largely supplemented the usage 447

of mobile phones. Therefore, the approach of combining digital data from multiple 448

channels of communication to assess the chronotype of an individual as a reflective or a 449

latent trait would be extremely worthwhile and timely in fields such as mobile health 450

and medicine [49,50]. 451
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and Barabási A. L. Structure and tie strengths in mobile communication
networks. PNAS. 104 (18), 7332-7336 (2007)

15. Bhattacharya K. and Kaski K. Social physics: uncovering human behaviour from
communication. Advances in Physics: X. 4:1, 1527723 (2018)

16. Miritello G., Moro E., Lara R., Mart́ınez-López R., Belchamber J., Roberts S. G.
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chronotypes identified from mobile phone data. EPJ Data Science. 7, 46 (2018)
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Supporting information

S1 Table. Principal component analysis of the mid-sleep times. We have
performed a principal component analysis on the mid-sleep times of the vector
~Tmid = {TWeekday

mid , TFriday
mid , TSaturday

mid , TSunday
mid as discussed in the main text. The

loadings of the T d
mid has been summarized in a table. Since all the loadings have

negative values we use -PC1 as a convention to study the chronotypes from ~Tmid. The
reversal of sign does not affect the results in the case of PCA because the principal axis
is rotated arbitrarily to get the best fit of the data. Moreover, we have found that the
correlation between the PC1 and g chronotype (discussed in details in later sections)
have a negative value of −0.73. Thus we have reversed the sign for non regressed values
of T d

mid to maintain the same conventions for all chronotypes.

TWeekday
mid TFriday

mid TSaturday
mid TSunday

mid

PC1 -0.47 -0.50 -0.54 -0.50

S2 Table. Regression of the mid-sleep times. To remove the effect of the
East-West sun progression, we performed a regression on the T d

mid values for all d days
with latitude and longitude as independent variables. The values of the intercept,
coefficients of latitude and longitude have been enumerated in this table along with
their p values.

Intercept p value Longitude p value Latitude p value

TWeekday
mid 35.45 < 0.0001 -0.12 < 0.0001 0.02 0.005

TFriday
mid 38.14 < 0.0001 -0.14 < 0.0001 -0.01 0.114

TSaturday
mid 38.43 < 0.0001 -0.16 < 0.0001 0.0 0.786

TSunday
mid 35.64 < 0.0001 -0.11 < 0.0001 0.04 0.0004

S3 Table. Exploratory factor analysis. An exploratory factor analysis performed
on the morning and evening activities of the dataset reveals that there are two
underlying constructs or latent factors in the data. They are characterized by morning
behaviour and evening behaviour of the individuals and the loadings of these factors on
the observables i.e. the calling activities of the individuals have been summarised in this
table. The boxes coloured in blue shows the high values of the MB on morning
activities only and EB on evening activities clearly illustrating the two distinct factors
arising from factor analysis.

S4 Table. Exploratory bifactor analysis. We perform a bifactor analysis to
compute g chronotype described in the main text. The loadings of all the factors, g
chronotype, F1* and F2*, factors have been summarised in this table. The general
factor g loads directly onto all the calling activities of the individuals, thus computing a
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Morning Behaviour (MB) Evening Behaviour (EB)

MAWork 0.90 -0.02
MAFri 0.51 0.17
MASat 0.45 0.16
MASun 0.81 -0.03
EAWeek 0.03 0.84
EAFri -0.03 0.84
EASat 0.01 0.57
EASun -0.04 0.49

g chronotype F1* F2*

MAWeek 0.49 0.74
MAFri 0.37 0.42
MASat 0.34 0.38
MASun 0.43 0.68
EAWeek 0.49 0.70
EAFri 0.45 0.70
EASat 0.33 0.48
EASun 0.25 0.40

score that is used to identify their chronotypes. F1* and F2* are group factors that load
separately onto the morning and the evening activities.

S5 Table. Regression of the calling activities. We again carry out a regression
on the morning ({MAd}) and evening activities ({EAd}) of the individuals for all d
days of the week to remove the geographical effect using longitude and latitude as
independent variables. In this table we have summarised the results obtained from
computing the regression along with the p values.

Intercept p value Longitude p value Latitude p value

MAWeek 59.53 < 0.0001 -0.06 < 0.0001 0.08 < 0.0001
MAFri 61.00 < 0.0001 -0.10 < 0.0001 0.05 < 0.0001
MASat 60.37 < 0.0001 -0.13 < 0.0001 0.07 < 0.0001
MASun 59.22 < 0.0001 -0.05 < 0.0001 0.08 < 0.0001
EAWeek 17.36 < 0.0001 -0.10 < 0.0001 -0.15 < 0.0001
EAFri 18.02 < 0.0001 -0.11 < 0.0001 -0.16 < 0.0001
EASat 17.87 < 0.0001 -0.08 < 0.0001 -0.14 < 0.0001
EASun 17.08 < 0.0001 -0.05 < 0.0001 -0.13 < 0.0001

S6 Fig. Factor scores of the residuals computed after regression. After
carrying out the regression on MAs and EAs we perform an exploratory analysis and
bifactor analysis on the residuals obtained. We show the variation of the factor scores of
the morning and evening behaviour, the general g chronotype and m chronotype (see S7
Fig) for the 5 regions (longitudinal bands). This plot is computed after an EFA and
EBA was done on the residuals to show that we have removed the effect of the
East-West progression in the data. Figure shows a summary of the factor scores in the
form of a box-plot that includes all the values within the range of the 25th and 75th

percentile and the end of the whiskers represent the maximum and the minimum scores
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excluding outliers. The horizontal lines inside the boxes represent the median of the
scores in each region.

S7 Fig. The m chronotype and its variation with age and gender. Finally,
we have considered all the T d

mid values for all d days of the week. This model has a
unidimensionality score is 0.97 which implies that there is only one underlying factor.
An EFA carried out on this model also shows that there is one latent factor that can be
used as indicator of the chronotype (m chronotype) of an individual as shown in this
Figure. The two chronotypes: g and m have a strong correlation (0.78) and both can
used to determine the morningness or eveningness of a user. The colour blue has been
used males and red for females.
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