Doering et al. Hypoxia

1	Nuclear Hormone Receptor NHR-49 controls a HIF-1-independent hypoxia adaptation pathway
2	in Caenorhabditis elegans
3	
4	Kelsie R. S. Doering ¹⁻³ , Xuanjin Cheng ²⁻⁴ , Luke Milburn ⁵ , Ramesh Ratnappan ⁶ , Arjumand
5	Ghazi ^{6,7} , Dana L. Miller ⁵ , and Stefan Taubert ^{1-4*}
6	
7	¹ Graduate Program in Medical Genetics, The University of British Columbia, Vancouver,
8	British Columbia, Canada, ² Centre for Molecular Medicine and Therapeutics, The University of British
9	Columbia, Vancouver, British Columbia, Canada, ³ British Columbia Children's Hospital Research
10	Institute, Vancouver, British Columbia, Canada, ⁴ Department of Medical Genetics, The University of
11	British Columbia, Vancouver, British Columbia, Canada, ⁵ Department of Biochemistry, University of
12	Washington, Seattle, Washington, USA, ⁶ Department of Pediatrics, University of Pittsburgh School of
13	Medicine, ⁷ Departments of Developmental Biology and Cell Biology and Physiology, University of
14	Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
15	
16	Keywords: hypoxia, autophagy, detoxification, HIF-1, NHR-49, HPK-1
17	
18	Running title: HIF-independent hypoxia response
19	
20	*Corresponding author: Stefan Taubert, 2002-950 W 28th Avenue, Vancouver, BC, Canada,
21	V5Z 4H4, Tel: 604-875-3860, E-mail: taubert@cmmt.ubc.ca
22	

Doering et al. Hypoxia

23 Abstract

24	The response to insufficient oxygen (hypoxia) is orchestrated by the conserved Hypoxia-
25	Inducible Factor (HIF). However, HIF-independent hypoxia response pathways exist that act in parallel
26	to HIF to mediate the physiological hypoxia response. Here, we describe a HIF-independent hypoxia
27	response pathway controlled by Caenorhabditis elegans Nuclear Hormone Receptor NHR-49, an
28	orthologue of mammalian Peroxisome Proliferator-Activated Receptor alpha (PPAR α). We show that
29	nhr-49 is required for worm survival in hypoxia and is synthetic lethal with hif-1 in this context,
30	demonstrating that these factors act independently. RNA-seq analysis shows that in hypoxia nhr-49
31	regulates a set of genes that are <i>hif-1</i> -independent, including autophagy genes that promote hypoxia
32	survival. We further show that Nuclear Hormone Receptor <i>nhr-67</i> is a negative regulator and
33	Homeodomain-interacting Protein Kinase <i>hpk-1</i> is a positive regulator of the NHR-49 pathway.
34	Together, our experiments define a new, essential hypoxia response pathway that acts in parallel to the
35	well-known HIF-mediated hypoxia response.

Doering et al. Hypoxia

37 Introduction

38 Organisms are continuously exposed to endogenous and exogenous stresses, from suboptimal 39 temperatures to foreign substances. Thus, an organism's ability to mount specific stress responses, 40 including protecting healthy cells from harm or inducing apoptosis when damage to a cell cannot be 41 overcome, is critical for survival. Hypoxia is a stress that occurs when cellular oxygen levels are too 42 low for normal physiological functions. It occurs naturally in cells and tissues during development, as 43 well as in many diseases (P. Lee et al., 2020; Powell-Coffman, 2010). For example, due to 44 hyperproliferation, inadequate vascularization, and loss of matrix attachment, cancer cells grow in 45 hostile microenvironments featuring hypoxia. Certain cancers thus hijack the hypoxia response to allow 46 growth and metastasis in these harsh conditions (Rankin & Giaccia, 2016; Schito & Semenza, 2016; T. 47 Zhang et al., 2019), and tumor hypoxia correlates with poor clinical outcome (Keith & Simon, 2007). 48 Most prominently, mutations in the tumor suppressor von Hippel Lindau (VHL), which inhibits the 49 transcription factor hypoxia-inducible factor (HIF), occur in kidney cancers, and the resulting 50 accumulation of HIF drives tumor growth (Kaelin, 2008; M. Li & Kim, 2011). In line with a pivotal 51 role of HIF in these cancers are studies showing promising effects of HIF inhibitors in preclinical 52 (Albadari et al., 2019; W. Chen et al., 2016; Cho et al., 2016) and clinical studies (Fallah & Rini, 53 2019). However, a better understanding of the transcriptional hypoxia adaptation pathway is needed to 54 pinpoint new drug targets and to gain a deeper insight into how cells, tissues, and organisms cope with hypoxia. 55

The pathways that regulate the response to hypoxia are evolutionarily conserved from the nematode worm *Caenorhabditis elegans* to humans. As in mammals, a key pathway in *C. elegans* involves the transcription factor HIF-1, which is critical for the cellular responses to, and the defense against hypoxia (Choudhry & Harris, 2018; Jiang et al., 2001). To survive hypoxia, animals activate the EGL-Nine homolog (EGLN)–VHL-HIF pathway (*egl-9–vhl-1–hif-1* in *C. elegans*). In normoxic conditions (21% O₂), HIF-1 is degraded and thus inactive. This occurs when EGL-9 adds a hydroxyl

Doering et al. Hypoxia

	Doering et al. Hypoxia
62	group onto a proline residue within HIF-1. The hydroxylated proline promotes binding of the E3
63	ubiquitin ligase VHL-1, leading to poly-ubiquitination and proteasomal degradation of HIF-1.
64	However, in hypoxic conditions, EGL-9 is rendered inactive; hence, HIF-1 is stabilized and activates a
65	hypoxia adaptation gene expression program (Epstein et al., 2001; Powell-Coffman, 2010).
66	Although the responses controlled by the HIF-1 master regulator are most studied, evidence for
67	parallel transcriptional programs in hypoxia exists, from C. elegans to mammalian organisms. For
68	example, the transcription factor B lymphocyte-induced maturation protein 1 (BLMP-1) has a hif-1-
69	independent hypoxia regulatory role in C. elegans (Padmanabha et al., 2015), as does the conserved
70	nuclear hormone receptor (NHR) estrogen-related receptor (dERR) in Drosophila melanogaster (Y. Li
71	et al., 2013), and the cargo receptor Sequestosome 1 (SQSTM1/p62) in mammals (Pursiheimo et al.,
72	2009). Thus, despite the evolutionarily conserved and important role of the HIF family, robust and
73	effective hypoxia adaptation requires an intricate network of factors that act in concert. Compared to
74	HIF, there is far less known about the mechanisms by which these pathways contribute to the hypoxia
75	response.
76	C. elegans NHR-49 is a transcription factor orthologous to mammalian hepatocyte nuclear
77	factor 4 (HNF4) and peroxisome proliferator-activated receptor α (PPAR α) (K. Lee et al., 2016).
78	Similar to these NHRs, it controls lipid metabolism by activating genes involved in fatty acid
79	desaturation and mitochondrial β-oxidation (Pathare et al., 2012; Marc R. Van Gilst et al., 2005). By
80	maintaining lipid homeostasis, NHR-49 is able to extend lifespan, a phenotype often associated with
81	stress resistance (Burkewitz et al., 2015; Ratnappan et al., 2014). In addition to regulating lipid
82	metabolism, NHR-49 also regulates putative xenobiotic detoxification genes in a dietary restriction-like
83	state and during starvation (Chamoli et al., 2014; Goh et al., 2018), is required for resistance to
84	oxidative stress (Goh et al., 2018), and activates innate immune response programs upon infection of C .
85	elegans with Staphylococcus aureus (Wani et al., 2020), Pseudomonas aeruginosa (Naim et al., 2020),

86 and *Enterococcus faecalis* (Dasgupta et al., 2020). Moreover, a recent report showed that *nhr-49* is

Doering et al. Hypoxia

87	required to increase expression of the Catechol-O-Methyl-Transferase comt-5 downstream of the
88	Hypoxia Inhibited Receptor tyrosine kinase hir-1, which mediates extracellular matrix remodelling in
89	hypoxia (Vozdek et al., 2018). However, the role of <i>nhr-49</i> in hypoxia and how it intersects with <i>hif-1</i>
90	have not been explored.
91	The detoxification gene flavin mono-oxygenase 2 (fmo-2) is induced in many of the
92	aforementioned stresses in an nhr-49-dependent manner (Dasgupta et al., 2020; Goh et al., 2018; Wani
93	et al., 2020). Interestingly, fmo-2 is also a hif-1-dependent hypoxia response gene (Leiser et al., 2015;
94	Shen et al., 2005), but its dependence on <i>nhr-49</i> in hypoxia is not known. We hypothesized that <i>nhr-49</i>
95	may play a role in the worm hypoxia response, in part by regulating <i>fmo-2</i> expression. Here, we show
96	that <i>nhr-49</i> is not only required to induce <i>fmo-2</i> , but controls a broad transcriptional response to
97	hypoxia, including the induction of autophagy genes that are also required for survival in hypoxia. Our
98	epistasis experiments indicate that <i>nhr-49</i> is functionally required independently of <i>hif-1</i> in hypoxia.
99	Finally, we identify the protein kinase homeodomain interacting protein kinase 1 (<i>hpk-1</i>) as an
100	upstream activator and the transcription factor nhr-67 as a repressor of the nhr-49 hypoxia response
101	pathway. Together, our data define NHR-49 as a core player in a novel hypoxia response pathway that
102	acts independently of hif-1.

Doering et al. Hypoxia

104 **Results**

105 *nhr-49* is required to induce the expression of *fmo-2* in hypoxia

- 106 C. elegans fmo-2 is induced by oxidative stress, starvation, and pathogen infection in an nhr-49-107 dependent fashion (Dasgupta et al., 2020; Goh et al., 2018; Wani et al., 2020). fmo-2 expression is also 108 induced in a *hif-1*-dependent manner during hypoxia (0.1% O₂; Leiser et al., 2015; Shen et al., 2005). 109 To test whether *nhr-49* regulates *fmo-2* expression in hypoxia, we quantified *fmo-2* mRNA levels in 110 normoxia (21% O_2) and hypoxia (0.5% O_2) by quantitative Reverse Transcription PCR (qRT-PCR) in 111 wild-type and mutant worms. The *nr2041* allele deletes portions of both the DNA binding domain and the ligand binding domain of nhr-49 and is a predicted molecular null allele (Liu et al., 1999), and the 112 113 *ia4* allele deletes exons 2-4 of *hif-1* and is also a predicted null allele (Jiang et al., 2001). In wild-type 114 worms, *fmo-2* transcript levels increased approximately 40-fold in hypoxia, but this induction was 115 blocked in both *nhr-49(nr2041)* and *hif-1(ia4)* mutant worms (Figure 1A). Experiments using a 116 transgenic strain expressing a transcriptional *Pfmo-2::gfp* reporter (Goh et al., 2018) corroborated these 117 observations in vivo. In normoxia, this reporter is weakly expressed in some neurons and in the intestine of transgenic animals, but expression was significantly elevated in the intestine of transgenic 118 119 worms in hypoxia (Figure 1B-C). High pharyngeal expression made it difficult to quantify neuronal 120 Pfmo-2::gfp in hypoxia. Consistent with our qRT-PCR data, loss of nhr-49 abrogated the increase in 121 intestinal upregulation of *Pfmo-2::gfp* worms following hypoxia exposure. We conclude that *nhr-49* is 122 required to induce *fmo-2* in hypoxia.
- 123

nhr-49 is required throughout the *C. elegans* life cycle to promote hypoxia resistance independently of *hif-1*

126 Wild-type embryos can survive a 24 h exposure to environments with as little as 0.5% O₂,

- 127 dependent on the presence of *hif-1* (Jiang et al., 2001; Nystul & Roth, 2004). We wanted to determine
- 128 if *nhr-49*, like *hif-1*, is functionally required for worm survival during hypoxia. We first assessed the

129	ability of worm embryos to survive for 24 hours in 0.5% O ₂ and then recover to the L4 or later stage
130	when placed back in normoxia for 65 hours. We found that 86% of wild-type worm embryos reached at
131	least the L4 stage, while only 25% of <i>nhr-49</i> and <i>hif-1</i> null mutant worms reached at least the L4 stage
132	by that time (Figure 2A). This shows that, like <i>hif-1</i> , <i>nhr-49</i> is required for embryo survival in hypoxia.
133	Next, we asked whether <i>nhr-49</i> acts in the <i>hif-1</i> hypoxia response pathway or in a separate,
134	parallel response pathway. To address this question, we generated a <i>nhr-49(nr2041);hif-1(ia4)</i> double
135	null mutant. We observed that less than 2% of <i>nhr-49;hif-1</i> double null mutants reached at least the L4
136	stage following hypoxia exposure (Figure 2A). This suggests that <i>nhr-49</i> and <i>hif-1</i> act in separate,
137	genetically independent hypoxia response pathways.
138	To determine if <i>nhr-49</i> and <i>hif-1</i> are required for larval development in hypoxia, we exposed
139	newly hatched, first stage (L1) larvae to hypoxia for 48 hours. Following this treatment, 95% of wild-
140	type worms reached at least the L4 stage (Figure 2B). In contrast, only 19% of <i>nhr-49</i> and only 20% of
141	hif-1 mutant worms, respectively, reached at least the L4 stage, and no nhr-49;hif-1 double null mutant
142	worms survived and developed to L4 (Figure 2B). Together, these results show that <i>nhr-49</i> is required
143	for worm adaptation to hypoxia independently of <i>hif-1</i> both during embryogenesis and post-
144	embryonically.
145	In normal conditions, <i>nhr-49</i> null worms have a shortened lifespan (Marc R. Van Gilst et al.,
146	2005). This raised the concern that the defects observed in hypoxia may be an indirect consequence of
147	NHR-49's normal developmental roles. To test whether the effects observed above were due to a
148	specific requirement for <i>nhr-49</i> in the hypoxia response, we studied worm development in normoxia.
149	We found that loss of <i>nhr-49</i> had no effect on worm survival from embryo to at least the L4 stage at
150	21% O2 (Supplementary Figure 1A, Supplementary Table 1). Additionally, at 21% O2, nhr-49 null
151	mutants did not significantly develop slower than wildtype worms (Supplementary Figure 1B,

152 Supplementary Table 2). Together, these data show that although *nhr-49* null mutants display mild

Doering et al. Hypoxia

developmental defects in normoxia, the phenotypes observed are due to the requirement for *nhr-49*

- 154 specifically during hypoxia.
- 155

156 *nhr-49* is dispensable for survival in hydrogen sulfide

157 To assess whether *nhr-49* is involved other responses requiring *hif-1*, we next asked if it was 158 required for adaptation to hydrogen sulfide (H_2S). H_2S is produced endogenously and is an important 159 signalling molecule in animals, including in C. elegans (L. Li et al., 2011). However, exposure to high 160 levels of hydrogen sulfide can be lethal. As in the hypoxia response, *hif-1* is a master regulator of the 161 transcriptional response to exogenous hydrogen sulfide, and *hif-1* is required for worm survival to 162 50ppm H₂S. In (Budde & Roth, 2010; Miller et al., 2011)contrast, we found that *nhr-49* null mutants 163 survive exposure to 50 ppm H₂S as well as wild-type controls (Figure 2C). This suggests that the 164 requirement for *nhr-49* is stress specific, and that *nhr-49* does not participate in all *hif-1*-dependent 165 stress responses. This is consistent with previous observations that the *hif-1*-dependent changes in gene 166 expression in H₂S are quite different than those seen in hypoxia (Miller et al., 2011). Additionally, the 167 ability of *nhr-49* mutants to readily adapt to H₂S provides further evidence that the mild developmental 168 defects of *nhr-49* null mutants do not render the animal sensitive to all stresses. Instead, our data 169 indicate that *nhr-49*'s requirement for hypoxia survival is due to a specific function for this regulator in 170 this particular stress condition.

171

172 The *nhr-49*-dependent transcriptional response to hypoxia includes *hif-1*-independent genes

To delineate the genes and biological processes regulated by NHR-49 in hypoxia, we analyzed whole-animal transcriptomes of wild-type, *nhr-49*, and *hif-1* worms before and after exposure to hypoxia using RNA-sequencing (RNA-seq; Figure 3A, B, Supplementary Figure 2A). We found that hypoxia significantly upregulated 718 genes and downregulated 339 genes more than two-fold in wildtype worms, including the known hypoxia-inducible genes *egl-9*, *phy-2*, *nhr-57*, and F22B5.4 (Bishop

178	et al., 2004; Shen et al., 2005), validating our approach. 315 of the upregulated and 177 of the
179	downregulated genes were dependent on nhr-49. Of these nhr-49 regulated genes, 83 of the
180	upregulated and 51 of the downregulated genes were hif-1-independent (Figure 3A, B). In line with our
181	above data, fmo-2 was induced in an nhr-49-dependent manner (Figure 3C). However, although our
182	qRT-PCR data (Figure 1A) show that <i>fmo-2</i> induction is dependent on <i>hif-1</i> , our RNA-seq analysis
183	excluded <i>fmo-2</i> from the <i>hif-1</i> -dependent set because it retained more than two-fold induction in
184	hypoxia vs. normoxia (Supplementary Figure 2B). This suggests that although <i>fmo-2</i> induction is
185	somewhat dependent on hif-1, it requires nhr-49. Thus, although many hypoxia responsive genes are
186	controlled by both transcription factors, a subset is <i>nhr-49</i> -dependent but <i>hif-1</i> -independent.
187	We next performed functional enrichment analysis to identify the biological pathways and
188	processes regulated in hypoxia, and specifically those dependent on <i>nhr-49</i> . In wild-type worms,
189	pathways such as detoxification, response to heavy metal stress, and autophagy were induced
190	(Supplementary Figure 2C), whereas processes such as amino acid transport and metabolism were
191	downregulated (Supplementary Figure 2D). In the set of 83 genes that exclusively require nhr-49 but
192	not hif-1 for induction in hypoxia (Figure 3C, Supplementary Table 3), autophagy and detoxification
193	were significantly enriched (Figure 3D), suggesting a requirement for <i>nhr-49</i> to regulate these
194	particular processes in hypoxia. Interestingly, a separate set of detoxification genes was dependent only
195	on hif-1 (Supplementary Figure 2E, F, Supplementary Table 4), and a third set of detoxification genes
196	were independent of both <i>nhr-49</i> and <i>hif-1</i> (Supplementary Figure 2G, H, Supplementary Table 5).
197	This suggests that there may be an additional transcription factor(s) regulating this process in hypoxia.
198	Our RNA-seq data revealed that the acyl-CoA synthetase gene acs-2 is induced in response to
199	hypoxia in an nhr-49-dependent manner (Figure 3C, Supplementary Table 3). ACS-2 acts in the first
200	step of mitochondrial fatty acid β -oxidation, and is strongly induced by NHR-49 during starvation and
201	following exposure to E. faecalis (Dasgupta et al., 2020; Marc R. Van Gilst et al., 2005). To validate
202	our RNA-seq data, we quantified <i>acs-2</i> expression via qRT-PCR. Following hypoxia exposure, <i>acs-2</i>

203	transcript levels increased approximately seven-fold, and this induction was blocked in the <i>nhr-49</i> null
204	mutant, but not the hif-1 null mutant (Supplementary Figure 3A). We used a transgenic strain
205	expressing a transcriptional Pacs-2::gfp reporter to study this regulation in vivo (Burkewitz et al.,
206	2015). This reporter showed moderate GFP expression in the body of animals under normoxia, but
207	expression increased substantially in the intestine following exposure to hypoxia (Supplementary
208	Figure 3B, C). Consistent with our RNA-seq and qRT-PCR data, loss of <i>nhr-49</i> blocked transcriptional
209	activation via the acs-2 promoter, as GFP was weaker in the intestines of these worms following
210	hypoxia exposure (Supplementary Figure 3B, C). Collectively, these data show that <i>nhr-49</i> is
211	specifically required and that <i>hif-1</i> is dispensable for induction of <i>acs-2</i> in hypoxia.
212	
213	Autophagy genes are critical downstream targets of <i>nhr-49</i> in hypoxia
214	Next, we wanted to determine which of <i>nhr-49</i> 's downstream transcriptional targets are
215	functionally important for worm survival in hypoxia. We first assessed the ability of <i>fmo-2(ok2147)</i>
216	and acs-2(ok2457) embryos to survive hypoxia, as both genes are strongly induced during hypoxia in
217	an nhr-49-dependent manner. Individually, loss of either fmo-2 (60%) or acs-2 (65%) did not
218	significantly decrease embryo viability compared to wild-type (79%) (Figure 3E). However,
219	simultaneous loss of both fmo-2 and acs-2 resulted in a significant decrease in survival after hypoxia
220	(47%). None of the mutant animals showed embryo viability defects in normoxia, indicating that the
221	phenotypes observed were specifically due to the requirement of these genes in hypoxia survival
222	(Supplementary Figure 4A, Supplementary Table 1). These data suggest that <i>fmo-2</i> and <i>acs-2</i> each
223	contribute only modestly to worm survival to hypoxia, and are likely not the main factors contributing
224	to nhr-49's importance in survival to this stress. This resembles previous observations that mutations
225	that disrupt individual hif-1-responsive genes show only minor defects in hypoxia survival (Shen et al.,
226	2005).

227	Our RNA-seq analysis revealed autophagy as a major biological process modulated by <i>nhr-49</i> .
228	Notably, C. elegans show sensitivity to anoxia when the autophagy pathway is disrupted (Samokhvalov
229	et al., 2008), and autophagy is upregulated in anoxia (Chapin et al., 2015). However, the responses to
230	anoxia and hypoxia are mediated by different regulatory pathways (Nystul & Roth, 2004), and it thus
231	was not a priori clear whether autophagy is also required for hypoxia resistance. To determine if
232	upregulation of autophagy by <i>nhr-49</i> is required for worm survival in hypoxia, we depleted several
233	autophagy genes using feeding RNA interference (RNAi) in the wild-type and nhr-49 null mutant
234	backgrounds and assessed the ability of these embryos to survive hypoxia. RNAi mediated knockdown
235	of the autophagy genes atg-10 (28%), atg-7 (41%), bec-1 (27%), and epg-3 (38%) caused significant
236	sensitivity to hypoxia in the wild-type background compared to the empty vector (EV) control RNAi
237	treatment (79%; Figure 3F). Importantly, the sensitivity of worms did not change when these genes
238	were knocked down in the <i>nhr-49</i> null background (32%, 25%, 13%, 13%, respectively), suggesting
239	that these genes act in the same pathway as nhr-49. Depletion of these genes by RNAi alone did not
240	cause impaired development from embryo to L4 in normoxia, indicating the phenotypes observed were
241	specifically due to the requirement of these genes in hypoxia survival (Supplementary Figure 4B,
242	Supplementary Table 1). Together, these data show that autophagy is a functionally important <i>nhr-49</i>
243	regulated process required for worm survival in hypoxia.

244

245 NHR-49 expression in multiple tissues is sufficient to promote hypoxia survival

To test if *nhr-49* activation is sufficient to promote survival of worms in hypoxia, we studied the *nhr-49(et13)* gain-of-function strain, which is sufficient to induce *fmo-2* (Goh et al., 2018; K. Lee et al., 2016). After 24 hours of exposure to hypoxia, approximately 86% of wild-type eggs develop to at least L4 stage (Figure 2A), but after 48 hours of hypoxia exposure, only approximately 44% of wildtype eggs develop to at least L4 stage (Figure 4A). In contrast, 75% of *nhr-49(et13)* gain-of-function

Doering et al. Hypoxia

eggs develop to at least L4 stage after 48 hours of hypoxia exposure, indicating that NHR-49 activation

is sufficient to improve the population survival of worms in hypoxia.

253 NHR-49 is expressed in multiple tissues, including the intestine, neurons, muscle, and 254 hypodermis (Ratnappan et al., 2014). Neuronal NHR-49 is sufficient to extend life span in some 255 contexts and regulates genes in distal tissues (Burkewitz et al., 2015), but where the protein acts to 256 regulate the response to hypoxia is unknown. To study this, we induced expression of an NHR-49::GFP 257 translational fusion protein in the *nhr-49(nr2041)* mutant background using tissue-specific promoters 258 (Naim et al., 2020). Comparing the NHR-49::GFP rescue strains to their non-GFP siblings, we found 259 that expressing *nhr-49* in the intestine, neurons, hypodermis, or from its endogenous promoter was 260 sufficient to restore population survival to wild-type levels (Figure 4B). This suggests that NHR-49 can 261 act in multiple somatic tissues to regulate the organismal hypoxia response.

262 To determine if NHR-49 activity alone is sufficient to induce expression of hypoxia response 263 genes, we assessed the ability of the nhr-49(et13) gain-of-function strain to induce some of the nhr-49-264 dependent hypoxia response genes from our RNA-seq analysis in the absence of stress (Figure 4C). In 265 line with previous findings (Goh et al., 2018; K. Lee et al., 2016), nhr-49 was sufficient to induce fmo-266 2 and acs-2 expression on its own. However, other hypoxia inducible nhr-49 regulated genes involved 267 in autophagy and detoxification (Supplementary Table 3) were not induced in the nhr-49(et13) gain-of-268 function mutant. It is possible that nhr-49 regulates autophagy indirectly in a manner independent of 269 transcription, or that this et13 mutation, which has combined gain and loss of function properties (K. 270 Lee et al., 2016), cannot induce these tested autophagy genes. It is also possible that, to induce these 271 genes, NHR-49 acts in concert with another hypoxia-responsive transcription factor, which is not 272 activated in the nhr-49(et13) mutant. Together, this shows that NHR-49 is sufficient to extend survival 273 of worms in hypoxia in various tissues, but the gain-of-function strain is only able to induce certain 274 response genes without the presence of stress.

Doering et al. Hypoxia

276 The nuclear hormone receptor NHR-67 negatively regulates the *nhr-49* hypoxia response

277 Cellular stress response pathways are intricate networks involving a multitude of proteins. 278 Activation or repression of downstream response genes thus often requires signaling via additional 279 factors such as kinases and transcription factors. To identify additional factors acting in the nhr-49 280 regulated hypoxia response pathway, we studied proteins that have been reported to physically interact 281 with NHR-49 (Reece-Hoyes et al., 2013). One such interaction partner is the nuclear hormone receptor 282 NHR-67, the sole C. elegans ortholog of the D. melanogaster tailless and vertebrate NR2E1 genes 283 (Gissendanner et al., 2004). NHR-67 is important in neural and uterine development (Fernandes & 284 Sternberg, 2007; Verghese et al., 2011), but a role for this NHR in stress responses has not yet been 285 described. Our RNA-seq data showed that *nhr-67* mRNA expression is modestly increased during 286 hypoxia in wild-type worms, and much more substantially induced in the *nhr-49* null background 287 (Figure 5A), suggesting a possible regulatory interaction between these two NHRs during hypoxia. To 288 explore this interaction further, we used feeding RNAi to knock down nhr-67 in normoxia and hypoxia, 289 and observed how this affected the expression of the *Pfmo-2::gfp* and *Pacs-2::gfp* transcriptional 290 reporters. Compared to EV(RNAi), knockdown of nhr-67 significantly induced both reporters even in 291 the absence of stress, suggesting a repressive role for *nhr*-67 on these genes (Figure 5B-E). In hypoxia, 292 nhr-67(RNAi) resulted in even higher expression of these reporters. In both normoxia and hypoxia, 293 increased expression of the reporters was dependent on nhr-49, as loss of nhr-49 abrogated the GFP 294 induction (Figure 5B-E). The nhr-49(et13) gain-of-function mutation is sufficient to induce expression 295 of the Pfmo-2::gfp reporter in non-stressed conditions (Goh et al., 2018), although it does not alter nhr-296 67 expression under normoxic conditions (Supplementary Figure 5A). Knockdown of nhr-67 further 297 increased the expression of the *Pfmo-2::gfp* reporter in the *nhr-49(et13)* background in both normoxia 298 and hypoxia (Supplementary Figure 5B, C). Together, these data suggest that *nhr*-67 negatively 299 regulates the expression of the hypoxia response genes fmo-2 and acs-2 in both normoxic and hypoxic 300 conditions, and that this regulation is dependent on *nhr-49*.

301	As a negative regulator of <i>nhr-49</i> -dependent hypoxia response genes, it is possible that <i>nhr-67</i>
302	acts upstream of <i>nhr-49</i> or directly on the promoter of <i>acs-2</i> and <i>fmo-2</i> . To determine how <i>nhr-67</i>
303	regulates this response, we used feeding RNAi to knock down nhr-67 and observed expression of the
304	Pnhr-49::nhr-49::gfp translational reporter (which encodes GFP tagged to a full length NHR-49
305	transgene under control of its endogenous promoter from extra-chromosomal arrays, henceforth
306	referred to as NHR-49::GFP; Ratnappan et al., 2014). The NHR-49::GFP protein is expressed most
307	highly in the intestine, and also shows expression in neurons, muscle, and the hypodermis (Ratnappan
308	et al., 2014). Whole worm NHR-49::GFP expression was increased in both normoxia and hypoxia
309	following knockdown of <i>nhr-67</i> , with the highest increase observed in the intestine (Figure 5F, G).
310	This suggests that <i>nhr-67</i> negatively regulates NHR-49, but in hypoxia, an increase in NHR-49 protein
311	levels may in turn repress nhr-67, suggesting a negative feedback loop. The effects seen on fmo-2 and
312	acs-2 expression are likely a consequence of NHR-67's effect on NHR-49.
313	Loss of function mutations in <i>nhr</i> -67 cause early L1 lethality or arrest (Fernandes & Sternberg,
314	2007), so we used feeding RNAi to study nhr-67's functional requirements in hypoxia. We assessed the
315	ability of nhr-67(RNAi) embryos to survive hypoxia and recover, as described above. Resembling nhr-
316	49(RNAi) worms (46% survival), only 49% of nhr-67 knockdown embryos survived to at least L4 stage
317	compared to the EV(RNAi) worms (73%; Supplementary Figure 5D). Although RNAi knockdown of
318	nhr-67 and nhr-49 causes developmental delays, the majority of nhr-67(RNAi) and nhr-49(RNAi)
319	worms were able to reach at least L4 stage in normoxia (91% and 90%, respectively), resembling
320	EU/DN(4) means (1000/, Sugalamentary Eiguna 5E, Sugalamentary Table 1). Thus, although why 67
	EV(RNAi) worms (100%; Supplementary Figure 5E, Supplementary Table 1). Thus, although nhr-67
321	appears to perform a negative regulatory role on the hypoxia pathway, it, too, is functionally required
321 322	
	appears to perform a negative regulatory role on the hypoxia pathway, it, too, is functionally required

Doering et al. Hypoxia

325 The kinase *hpk-1* positively regulates *nhr-49*-dependent hypoxia response genes and is required

326 for survival in hypoxia

327 To identify additional factors acting in the *nhr-49*-dependent hypoxia response pathway, we 328 studied eight kinases that we found to potentially act in the *nhr-49*-dependent oxidative stress response 329 (Doering & Taubert, manuscript in preparation). We depleted each kinase using feeding RNAi to 330 determine if any treatment prevented *Pfmo-2::gfp* induction in hypoxia in the worm intestine. As 331 expected, nhr-49 RNAi diminished this intestinal fluorescence compared to the EV(RNAi) (Figure 6A, 332 B). Of the eight kinases tested, RNAi knockdown of the nuclear serine/threonine kinase homeodomain 333 interacting protein kinase 1 (*hpk-1*) significantly decreased intestinal *Pfmo-2::gfp* expression following 334 hypoxia exposure (Figure 6A, B), phenocopying nhr-49 knockdown. Knockdown of hpk-1 also 335 significantly reduced intestinal expression of the *Pacs-2::gfp* reporter in hypoxia (Figure 6C, D) and 336 reduced expression of *Pfmo-2::gfp* in the *nhr-49(et13)* background (Supplementary Figure 6A, B). We 337 corroborated these data using qRT-PCR in wild-type worms and a hpk-1(pk1393) mutant. The pk1393 338 allele deletes the majority of the kinase domain of *hpk-1* and is a predicted molecular null allele (Raich 339 et al., 2003). In hypoxia, the expression of both acs-2 and fmo-2 was significantly reduced by loss of 340 hpk-1, phenocopying loss of nhr-49 (Figure 6E). Together, these data suggest that, like nhr-49, hpk-1 is 341 required for upregulation of *fmo-2* and *acs-2* in response to hypoxia.

342 To determine if *hpk-1* is functionally required for worm survival in hypoxia, we assessed the 343 ability of hpk-1 mutant embryos to survive hypoxia. Similar to nhr-49 mutant worms, only 45% of 344 hpk-1 mutant embryos developed to L4 (wild-type worms 92%; Figure 6F). We used epistasis analysis 345 to test the hypothesis that *hpk-1* acts in the *nhr-49* pathway to coordinate a transcriptional response to 346 hypoxia. We observed that the nhr-49; hpk-1 double null mutant showed similar survival (26%) to each 347 of the single null mutants, suggesting that these two genes act in the same hypoxia response pathway 348 (Figure 6F). In contrast, the *hif-1;hpk-1* double null mutant was significantly impaired (<2%) compared 349 to each of the single null mutants alone, consistent with the view that these two genes act in separate

350	response pathways (Figure 6G). Each mutant showed normal development from embryo to L4 in
351	normoxia, indicating that the phenotypes observed were specifically due to the requirement of these
352	genes in hypoxia survival (Supplementary Figure 6C, D, Supplementary Table 1). Taken together,
353	these experiments show that <i>hpk-1</i> is required for embryo survival in hypoxia, consistent with it
354	playing a role as an activator of the <i>nhr-49</i> -dependent response pathway.
355	
356	NHR-49 is regulated post-transcriptionally in hypoxia in an <i>hpk-1</i> -dependent fashion
357	To test our hypothesis that HPK-1 activates NHR-49 in hypoxia, we examined whether NHR-
358	49 is induced by hypoxia and whether <i>hpk-1</i> is involved in this regulation. NHR-49 and HPK-1 protein
359	levels are increased in response to tert-butyl hydroperoxide and/or heat shock, respectively, but mRNA
360	levels remain unchanged (Das et al., 2017; Goh et al., 2018). Similarly, we observed that <i>nhr-49</i> and
361	hpk-1 mRNA levels were not increased upon exposure to hypoxia (Figure 7A). Consistent with this, a
362	transcriptional reporter of the hpk-1 promoter fused to GFP (Das et al., 2017) was not induced
363	following hypoxia exposure (Supplementary Figure 7A, B). These data show that transcription of
364	neither <i>nhr-49</i> nor <i>hpk-1</i> are induced in hypoxia.
365	We considered the possibility that NHR-49 may be regulated post-transcriptionally. To assess
366	NHR-49 protein levels, we used the translational NHR-49::GFP reporter to measure the expression of
367	the fusion protein in response to hypoxia. Indeed, the whole worm NHR-49::GFP signal was modestly,
368	but significantly induced upon exposure to hypoxia (Figure 7B, C). Interestingly, while <i>hpk-1</i> null
369	mutation had no effect on NHR-49::GFP levels in normoxia, it abrogated the induction of the NHR-
370	49::GFP signal by hypoxia (Figure 7B, C). This suggests that NHR-49 is regulated post-translationally
371	in response to hypoxia, and that <i>hpk-1</i> may be involved in this regulation. Taken together, these data
372	show that <i>hpk-1</i> is a functionally important upstream positive regulator of the <i>nhr-49</i> -dependent
373	hypoxia response.
374	

Doering et al. Hypoxia

375 Discussion

376 Animals, tissues, and cells must be able to rapidly, flexibly, and reversibly adapt to a plethora of 377 stresses. Past studies have identified many stress response factors, often termed master regulators. 378 However, more recent studies indicate that stress response regulation requires the intricate interactions 379 of multiple factors as part of networks that provide regulatory redundancy and flexibility. NHR-49 is a 380 transcription factor that promotes longevity and development by regulating lipid metabolism and 381 various stress responses (Chamoli et al., 2014; Dasgupta et al., 2020; Goh et al., 2018; Naim et al., 382 2020; Wani et al., 2020). Our data show that nhr-49 coordinates a new aspect of the transcriptional 383 response to hypoxia. This pathway operates in parallel to, and independent of, the canonical *hif-1* 384 hypoxia response pathway. Besides *nhr-49*, it contains *nhr-67* and *hpk-1*. The former acts during 385 normoxia to repress NHR-49; however, during hypoxia, an increase in NHR-49 protein levels in turn 386 represses *nhr*-67 levels, forming a feedback loop that may serve to reinforce NHR-49 activity. In 387 contrast to *nhr-67*, the upstream kinase HPK-1 positively regulates the NHR-49 hypoxia response, as it 388 is required to activate the NHR-49 regulated hypoxia response genes fmo-2 and acs-2 and to survive 389 hypoxia. Downstream, NHR-49 induces autophagy genes, which are essential to promote hypoxia 390 survival. Collectively, our experiments delineate a *hif-1*-independent hypoxia response pathway that 391 contains distinct upstream and downstream components and is just as essential for hypoxia survival as 392 is the *hif-1* pathway (Figure 8).

393

394 NHR-49 controls a novel hypoxia response pathway that is parallel to canonical HIF signaling

395 *nhr-49* is required to induce *fmo-2* in various stresses and infection models (Chamoli et al.,

396 2014; Dasgupta et al., 2020; Goh et al., 2018; Naim et al., 2020; Wani et al., 2020). Similarly, HIF-1

397 regulates *fmo-2* in several *C. elegans* longevity paradigms (Leiser et al., 2015), and *fmo-2* is induced in

398 hypoxia, specifically 0.1% O₂ exposure, in a *hif-1*-dependent manner (Leiser et al., 2015; Shen et al.,

399 2005). This raised the possibility that *hif-1* also promoted *fmo-2* expression in hypoxia (0.5% O₂) in L4

Doering	et	al.	Hyp	oxia

400	or older worms, and, more generally, that <i>nhr-49</i> might act through <i>hif-1</i> in the hypoxia response.
401	However, several lines of evidence support a model whereby HIF-1 and NHR-49 are core components
402	of parallel, independent signaling networks (Figure 8). First, hif-1 and nhr-49 interact genetically in
403	hypoxia survival experiments, suggesting they work in separate genetic pathways (Figure 2A, B).
404	Second, our transcriptome analysis identified sets of genes that are regulated exclusively by HIF-1 or
405	NHR-49 (Figure 3A, B). Third, the kinase <i>hpk-1</i> , identified in a screen for new factors acting with
406	NHR-49 in <i>fmo-2</i> induction, also shows synthetic genetic interaction with <i>hif-1</i> , but not with <i>nhr-49</i>
407	(Figure 6F, G). Collectively these data show that <i>nhr-49</i> is a core part of a hypoxia response pathway
408	that is independent of <i>hif-1</i> signalling. In support of our study, a recent publication (Vozdek et al.,
409	2018) showed that <i>nhr-49</i> is required to induce the <i>hif-1</i> -independent hypoxia response gene <i>comt-5</i>
410	both in 0.5% O ₂ and in a strain mutant for the kinase <i>hir-1</i> . In hypoxia, HIR-1 coordinates remodeling
411	of the extracellular matrix independently of HIF-1 (Vozdek et al., 2018). Thus, although our RNA-seq
412	results did not identify comt-5 as a target of NHR-49 in hypoxia, this study supports the idea of a hif-1-
413	independent hypoxia response pathway involving nhr-49.
414	
415	Homeodomain interacting protein kinases in hypoxia
416	Our efforts to map additional components of the NHR-49 hypoxia response pathway, especially
417	factors acting in concert with NHR-49, revealed hpk-1 (Figure 8). Homeodomain interacting protein
418	kinases (HIPKs) are a family of nuclear serine/threonine kinase that can phosphorylate transcription
419	factors (Rinaldo et al., 2007, 2008). The worm's only HIPK orthologue, hpk-1, regulates development
420	and the response to DNA damage, heat shock, and dietary restriction (Berber et al., 2013, 2016; Das et
421	al., 2017; Rinaldo et al., 2007). Here, we show that <i>hpk-1</i> is an upstream regulator of the <i>nhr-49</i> -
422	dependent hypoxia response pathway. Our data indicate that HPK-1 promotes the accumulation of
172	NHP 40 protain in hypoxic leading to induction of NHP 40 dependent hypoxic response gapes

- 423 NHR-49 protein in hypoxia, leading to induction of NHR-49-dependent hypoxia response genes.
- 424 Interestingly, mammalian HIPK2 is degraded during periods of low oxygen via association with the E3

425	ubiquitin ligase SIAH2 (Calzado et al., 2009). This degradation of HIPK2 is necessary, as the protein
426	normally represses the expression of HIF-1 α by binding at its promoter in cell culture (Nardinocchi et
427	al., 2009). In contrast, HIPK2 is induced in and required to protect cardiomyocytes from
428	hypoxia/reoxygenation induced injury (Dang et al., 2020). This is consistent with our data and suggests
429	that protecting cells from hypoxic injury may be a conserved role of HIPKs. Future experiments may
430	reveal how HPK-1 is regulating NHR-49, perhaps examining direct phosphorylation and activation of
431	the NHR-49 protein by HIPK-1.

432

433 **Paradoxical regulation of the β-oxidation gene** *acs-2* by hypoxia

434 Mitochondria consume cellular oxygen to produce energy and thus must adapt to limited 435 oxygen availability. In particular, mitochondrial β -oxidation, the consumption of oxygen to catabolize 436 fatty acids for energy production, is repressed in hypoxia in favour of anaerobic respiration. For 437 example, the heart and skeletal muscle of mice and rats show decreased expression of key β-oxidation 438 enzymes in acute hypoxia (Kennedy et al., 2001; Morash et al., 2013). In C. elegans, the acyl-CoA 439 synthetase *acs-2* is part of the mitochondrial β -oxidation pathway, where it functions in the first step to 440 activate fatty acids. NHR-49 activates acs-2 expression during starvation, when β -oxidation is induced 441 (M. R. Van Gilst et al., 2005). Considering this, acs-2 expression would be expected to be 442 downregulated in hypoxia due to reduced β -oxidation. Paradoxically, however, we found that *acs-2* is 443 strongly induced in hypoxia and that this regulation depends on *nhr-49* (Figure 3C, Supplementary 444 Figure 3A-C). Examination of other fatty acid β -oxidation enzymes in our RNA-seq data showed that 445 acs-2 is the only enzyme induced. This suggests that, during hypoxia, ACS-2 is not feeding its product 446 fatty acyl-CoA into the β-oxidation cycle, but perhaps produces fatty acyl-CoA for anabolic functions 447 needed for survival to or recovery from low oxygen, such as phospholipid or triglyceride synthesis 448 (reviewed in Tang et al., 2018). Similar functions have been observed in human macrophages, which, 449 during hypoxia, decrease β -oxidation but increase triglyceride synthesis (Boström et al., 2006).

In line with the repression of β -oxidation in hypoxia (Boström et al., 2006; Kennedy et al.,

450

451	2001; Morash et al., 2013), there is evidence supporting a HIF-dependent down-regulation of the
452	mammalian NHR-49 homolog PPAR α , which promotes β -oxidation (Atherton et al., 2008). For
453	example, in human hepatocytes and in mouse liver sections, HIF-2 α accumulation in hypoxia directly
454	suppresses PPARa expression (J. Chen et al., 2019). Additionally, HIF-1a suppresses PPARa protein
455	and mRNA levels during hypoxia in intestinal epithelial cells, and the PPARA promoter contains a
456	HIF-1a DNA binding consensus motif, suggesting direct control of <i>PPARA</i> by HIF transcription
457	factors (Narravula & Colgan, 2001).
458	Some evidence suggests alternative actions of PPARa. Knockdown of PPARa attenuates the
459	ability of Phd1 (the homolog of C. elegans egl-9) knockout myofibers to successfully tolerate hypoxia
460	(Aragonés et al., 2008), suggesting that PPAR α is an important regulator of the hypoxia response
461	downstream of Phd1. Along these lines, PPARa protein levels increase in the muscle of Phd1 knockout
462	mice (Aragonés et al., 2008) and following hypoxic exposure in mouse hearts (Morash et al., 2013).
463	Similarly, we show that NHR-49 protein levels increase in response to hypoxia (Figure 7B, C), and that
464	NHR-49 is a vital regulator of a <i>hif-1</i> -independent hypoxia response. Together, these data suggest that,
465	similar to evidence from studies in mammalian systems, NHR-49 levels are increased and required in
466	hypoxia, and may be regulating <i>acs</i> -2 for functions other than fatty acid β -oxidation.
467	
468	NHR-49 promotes autophagy activation to achieve hypoxia survival
469	Damaged cellular components can be cleared via autophagy, a key process regulated by nhr-49
470	in hypoxia (Figure 3D, F). In mammals, PPARα activates autophagy in response to various stresses,
471	including in neurons to clear A β in Alzheimer's disease (Luo et al., 2020), and in the liver during
472	inflammation (Jiao et al., 2014) and starvation (J. M. Lee et al., 2014). Proper regulation of autophagy
473	is also a requirement in hypoxic conditions. Knockdown or genetic mutation of various C. elegans
474	autophagy genes showed that they are required for worm survival when worms experience anoxia and
	20

Doering et al. Hypoxia

475	elevated temperatures combined (Samokhvalov et al., 2008). Similarly, Zhang et al. found that
476	mitochondrial autophagy (mitophagy) is induced by hypoxia in mouse embryo fibroblasts. This process
477	requires expression of BNIP3 (Bcl-2/E1B 19 kDa-interacting protein 3), an autophagy inducer, which
478	is induced in a HIF-1-dependent manner (H. Zhang et al., 2008). In agreement with this, our RNA-seq
479	data showed a 3.8-fold induction of the C. elegans BNIP3 homolog dct-1 in hypoxia; however, this
480	induction was dependent on neither nhr-49 nor hif-1. The above study also found that the autophagy
481	genes Beclin-1 and Atg5 are induced and required for cell survival in hypoxia (H. Zhang et al., 2008).
482	Here, we show that the C. elegans ortholog of Beclin-1, bec-1, and the worm atg-7 and atg-10 genes,
483	which are involved in the completion of the autophagosome along with <i>atg-5/Atg5</i> , are required for
484	worm embryo survival to hypoxia in an nhr-49-dependent manner (Figure 3F). Interestingly, hpk-1
485	regulates autophagy in response to dietary restriction, as it is necessary to induce autophagosome
486	formation and autophagy gene expression (Das et al., 2017). hpk-1 may thus aid nhr-49 in the
487	regulation of autophagy during hypoxia as well.

488

489 Cell non-autonomous functions of NHR-49 in hypoxia

490 Cell non-autonomous regulation occurs in many pathways in C. elegans. For example, HIF-1 491 acts in neurons to induce *fmo-2* expression in the intestine to promote longevity (Leiser et al., 2015). 492 NHR-49 is expressed in the intestine, neurons, muscle, and hypodermis (Ratnappan et al., 2014). Re-493 expression of *nhr*-49 in any one of these tissues is sufficient to enhance worm survival upon infection 494 with the pathogens S. aureus (Wani et al., 2020) and to promote longevity in germline-less animals 495 (Naim et al., 2020), but NHR-49 acts only in neurons to promote survival to P. aeruginosa (Naim et al., 496 2020). We thus aimed to identify the key tissue wherein NHR-49 promotes hypoxia survival. 497 Surprisingly, we found that *nhr-49* expression in any of the intestine, neurons, or hypodermis is 498 sufficient for whole animal survival to hypoxia (Figure 4B), suggesting that NHR-49 can act in a cell

Doering et al. Hypoxia

- 499 non-autonomous fashion to execute its effects. Possibly, a signaling molecule whose synthesis is
- 500 promoted by NHR-49 activity in any tissue promotes organismal hypoxia adaptation.
- 501 In sum, we show here that NHR-49 regulates a novel hypoxia response pathway that is
- 502 independent of HIF-1 and controls an important transcriptional response for worm survival to hypoxia.
- 503 If the mammalian NHR-49 homologs PPARα and HNF4 play similar roles in the cellular response to
- 504 hypoxia, our discovery could lead to the identification and development of new targets for drugs and
- 505 therapies for diseases exhibiting hypoxic conditions.

Doering et al. Hypoxia

507 Materials and Methods

508 Nematode strains and growth conditions

509	We cultured <i>C. elegans</i> strains using standard techniques on nematode growth media (NGM)
510	plates. To avoid background effects, each mutant was crossed into our lab N2 strain; original mutants
511	were backcrossed to N2 at least six times. E. coli OP50 was the food source in all experiments except
512	for RNAi experiments, where we used E. coli HT115. All experiments were carried out at 20°C. Worm
513	strains used in this study are listed in Supplementary Table 6. For synchronized worm growths, we
514	isolated embryos by standard sodium hypochlorite treatment. Isolated embryos were allowed to hatch
515	overnight on unseeded NGM plates until the population reached a synchronized halted development at
516	L1 stage via short-term fasting (12-24 hr). Synchronized L1 stage larvae were then transferred to OP50
517	seeded plates and grown to the desired stage.
518	
519	Feeding RNA interference
520	RNAi was performed on NGM plates supplemented with 25 μ g/ml carbenicillin (BioBasic
521	CDJ469), 1 mM IPTG (Santa Cruz CAS 367-93-1), and 12.5 µg/ml tetracycline (BioBasic TB0504
522	(NGM-RNAi plates), and seeded with appropriate HT115 RNAi bacteria. The RNAi clones were from
523	the Ahringer library (Source BioScience) and were sequenced prior to use.
524	
525	RNA isolation and qRT-PCR analysis
526	Synchronized L1 worms were allowed to grow on OP50 plates for 48 hr to L4 stage, then either
527	kept in 21% O_2 or transferred to 0.5% O_2 for 3 hr. RNA isolation was performed as previously
528	described (Goh et al., 2014). 2 μ g total RNA was used to generate cDNA with Superscript II reverse
529	transcriptase (Invitrogen 18064-014), random primers (Invitrogen 48190-011), dNTPs (Fermentas
530	R0186), and RNAseOUT (Invitrogen 10777-019). Quantitative PCR was performed in 10 μ l reactions

Doering et al. Hypoxia

531	using Fast SYBR Master Mix (Life Technologies 4385612), 1:10 diluted cDNA, and 5 μ M primer, and
532	an analyzed with an Applied Biosystems StepOnePlus machine. We analyzed the data with the $\Delta\Delta Ct$
533	method. For each sample, we calculated normalization factors by averaging the (sample
534	expression)/(average reference expression) ratios of three normalization genes, <i>act-1</i> , <i>tba-1</i> , and <i>ubc-2</i> .
535	The reference sample was <i>EV(RNAi)</i> , wild-type, or 21% O ₂ , as appropriate. We used one-way ANOVA
536	to calculate statistical significance of gene expression changes and corrected for multiple comparisons
537	using the Tukey method. Primers were tested on serial cDNA dilutions and analyzed for PCR
538	efficiency prior to use. All data originate from three or more independent biological repeats, and each
539	PCR reaction was conducted in technical triplicate. Sequences of qRT-PCR primers are listed in
540	Supplementary Table 7.
541	
542	Analysis of fluorescent reporter lines via DIC and fluorescence microscopy
•	
543	To analyze fluorescence in reporter lines, egg lays were performed on NGM plates seeded with
543	To analyze fluorescence in reporter lines, egg lays were performed on NGM plates seeded with
543 544	To analyze fluorescence in reporter lines, egg lays were performed on NGM plates seeded with OP50 or RNAi plates seeded with the appropriate HT115 RNAi culture. Worms were allowed to grow
543 544 545	To analyze fluorescence in reporter lines, egg lays were performed on NGM plates seeded with OP50 or RNAi plates seeded with the appropriate HT115 RNAi culture. Worms were allowed to grow to adulthood. Plates were then kept in 21% O ₂ or transferred to 0.5% O ₂ for 4 hr and allowed to recover
543 544 545 546	To analyze fluorescence in reporter lines, egg lays were performed on NGM plates seeded with OP50 or RNAi plates seeded with the appropriate HT115 RNAi culture. Worms were allowed to grow to adulthood. Plates were then kept in 21% O ₂ or transferred to 0.5% O ₂ for 4 hr and allowed to recover for 1 hr in normoxia before imaging. Worms were collected into M9 buffer containing 0.06%
543 544 545 546 547	To analyze fluorescence in reporter lines, egg lays were performed on NGM plates seeded with OP50 or RNAi plates seeded with the appropriate HT115 RNAi culture. Worms were allowed to grow to adulthood. Plates were then kept in 21% O ₂ or transferred to 0.5% O ₂ for 4 hr and allowed to recover for 1 hr in normoxia before imaging. Worms were collected into M9 buffer containing 0.06% levamisole (Sigma L9756) for immobilization on 2% (w/v) agarose pads for microscopy. We captured
543 544 545 546 547 548	To analyze fluorescence in reporter lines, egg lays were performed on NGM plates seeded with OP50 or RNAi plates seeded with the appropriate HT115 RNAi culture. Worms were allowed to grow to adulthood. Plates were then kept in 21% O ₂ or transferred to 0.5% O ₂ for 4 hr and allowed to recover for 1 hr in normoxia before imaging. Worms were collected into M9 buffer containing 0.06% levamisole (Sigma L9756) for immobilization on 2% (w/v) agarose pads for microscopy. We captured images on a CoolSnap HQ camera (Photometrics) attached to a Zeiss Axioplan 2 compound
543 544 545 546 547 548 549	To analyze fluorescence in reporter lines, egg lays were performed on NGM plates seeded with OP50 or RNAi plates seeded with the appropriate HT115 RNAi culture. Worms were allowed to grow to adulthood. Plates were then kept in 21% O ₂ or transferred to 0.5% O ₂ for 4 hr and allowed to recover for 1 hr in normoxia before imaging. Worms were collected into M9 buffer containing 0.06% levamisole (Sigma L9756) for immobilization on 2% (w/v) agarose pads for microscopy. We captured images on a CoolSnap HQ camera (Photometrics) attached to a Zeiss Axioplan 2 compound microscope, followed by MetaMorph Imaging Software with Autoquant 3D digital deconvolution. All
 543 544 545 546 547 548 549 550 	To analyze fluorescence in reporter lines, egg lays were performed on NGM plates seeded with OP50 or RNAi plates seeded with the appropriate HT115 RNAi culture. Worms were allowed to grow to adulthood. Plates were then kept in 21% O ₂ or transferred to 0.5% O ₂ for 4 hr and allowed to recover for 1 hr in normoxia before imaging. Worms were collected into M9 buffer containing 0.06% levamisole (Sigma L9756) for immobilization on 2% (w/v) agarose pads for microscopy. We captured images on a CoolSnap HQ camera (Photometrics) attached to a Zeiss Axioplan 2 compound microscope, followed by MetaMorph Imaging Software with Autoquant 3D digital deconvolution. All images for the same experiment were captured at the same exposure time. Images were analyzed using
 543 544 545 546 547 548 549 550 551 	To analyze fluorescence in reporter lines, egg lays were performed on NGM plates seeded with OP50 or RNAi plates seeded with the appropriate HT115 RNAi culture. Worms were allowed to grow to adulthood. Plates were then kept in 21% O ₂ or transferred to 0.5% O ₂ for 4 hr and allowed to recover for 1 hr in normoxia before imaging. Worms were collected into M9 buffer containing 0.06% levamisole (Sigma L9756) for immobilization on 2% (w/v) agarose pads for microscopy. We captured images on a CoolSnap HQ camera (Photometrics) attached to a Zeiss Axioplan 2 compound microscope, followed by MetaMorph Imaging Software with Autoquant 3D digital deconvolution. All images for the same experiment were captured at the same exposure time. Images were analyzed using ImageJ software (https://imagej.nih.gov/ij/download.html), with fluorescence calculated by taking the

555 whole worm fluorescence was measured. For each experiment, at least three independent trials were 556 performed with a minimum of 30 worms per condition.

557

558 NHR-49 transgenic strains

559 To construct the *Pnhr-49::nhr-49::gfp* containing plasmid, a 6.6 kb genomic fragment of the

560 *nhr-49* gene (including a 4.4 kb coding region covering all *nhr-49* transcripts and a 2.2 kb promoter

region) was cloned into the GFP expression vector pPD95.77 (Addgene #1495), as reported previously

562 (Ratnappan et al., 2014). For generating tissue-specific constructs, the *nhr-49* promoter was replaced

563 with tissue-specific promoters using *Sbf*I and *Sal*I restriction enzymes to create plasmids for expressing

564 NHR-49 in the muscle (*Pmyo-3::nhr-49::gfp*), intestine (*Pgly-19::nhr-49::gfp*), hypodermis (*Pcol-*

565 *12::nhr-49::gfp*), and neurons (*Prgef-1::nhr-49::gfp*). 100 ng/µl of each plasmid was injected, along

566 with pharyngeal muscle-specific *Pmyo-2::mCherry* as a co-injection marker (25 ng/µl) into the *nhr*-

567 49(nr2041) mutant strain using standard methods (Mello & Fire, 1995). Strains were maintained by

568 picking animals that were positive for both GFP and mCherry.

569

570 Hypoxia sensitivity assays

571 Hypoxic conditions were maintained using continuous flow chambers, as previously described

572 (Fawcett et al., 2012). Compressed gas tanks (5000 ppm O_2 balanced with N_2) were certified as

573 standard to within 2% of indicated concentration from Praxair Canada (Delta, BC). Oxygen flow was

574 regulated using Aalborg rotameters (Aalborg Instruments and Controls, Inc., Orangeburg, NY, USA).

575 Hypoxic chambers (and room air controls) were maintained in a 20°C incubator for the duration of the 576 experiments.

577 For embryo survival assays, gravid first-day adult worms (picked as L4 the previous day) were 578 allowed to lay eggs for 1-4 hr on plates seeded with 15 uL OP50 or appropriate HT115 RNAi bacteria 579 the previous day. Adults were removed, and eggs were exposed to 0.5% O₂ for 24 hr or 48 hr. Animals

580	were scored for developmental success (reached at least L4 stage) after being placed back into room air
581	for 65 hr (following 24 hr exposure) or 42 hr (following 48 hr exposure). For RNAi survival assays,
582	worms were grown for one generation from egg to adult on the appropriate HT115 RNAi bacteria
583	before their progeny was used for the egg lay.
584	For larval development assays, gravid adult worms (picked as L4 the previous day) were
585	allowed to lay eggs for 2 hr and kept at 20°C for 13-17 hr to allow hatching (egg lays for nhr-
586	49(nr2041) strains with embryonic developmental delays were performed 2 hr earlier to ensure
587	synchronization with wild-type worms). Freshly hatched L1 worms were transferred to plates seeded
588	with 15 μ L OP50 the previous day, and exposed to 0.5% O ₂ for 48 hr. Animals were placed back into
589	room air and immediately scored for stage.
590	For all normoxia (21% O ₂) comparison experiments, methods were as described above except
591	plates were kept in room air for the duration (instead of being exposed to $0.5\% O_2$).
592	
593	Hydrogen sulfide sensitivity assay
594	Construction of H ₂ S chambers was as previously described (Fawcett et al., 2012; Miller &
595	Roth, 2007). In short, 5000 ppm H_2S (balanced with N_2) was diluted with room air to a final
596	concentration of 50 ppm and monitored with a custom H ₂ S detector, as described (Miller & Roth,
597	2007). Compressed gas mixtures were obtained from Airgas (Seattle, WA) and certified as standard to
598	within 2% of the indicated concentration. Survival assays were performed with 20 L4 animals picked
599	onto OP50 seeded plates. Plates were exposed to 50 ppm H_2S for 24 hr in a 20°C incubator, then
600	returned to room air to score viability. Animals were scored 30 min after removal from H ₂ S, and plates
601	with dead animals were re-examined after several hours to ensure animals had not reanimated.
602	
603	RNA sequencing

604	Synchronized L1 wild-type, <i>nhr-49(nr2041)</i> , and <i>hif-1(ia4)</i> worms were allowed to grow on
605	OP50 plates to L4 stage, then either kept in 21% O2 or transferred to 0.5% O2 for 3 hr. RNA was
606	isolated from whole worms as described above. RNA integrity and quality were ascertained on a
607	BioAnalzyer. Construction of strand-specific mRNA sequencing libraries and sequencing (75bp PET)
608	on an Illumina HiSeq 2500 machine was done at the Sequencing Services facility of the Genome
609	Sciences Centre, BC Cancer Agency, Vancouver BC, Canada
610	(https://www.bcgsc.ca/services/sequencing-services). The raw FASTQ reads obtained from the facility
611	were trimmed using Trimmomatic version 0.36 (Bolger et al., 2014) with parameters LEADING:3
612	TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. Next, the trimmed reads were aligned to the
613	NCBI reference genome WBcel235 WS277
614	(https://www.ncbi.nlm.nih.gov/assembly/GCF_000002985.6/) using Salmon version 0.9.1 (Patro et al.,
615	2017) with parameters -1 A -p 8gcBias. Then, transcript-level read counts were imported into R and
616	summed into gene-level read counts using tximport (Soneson et al., 2015). Genes not expressed at a
617	level greater than 1 count per million (CPM) reads in at least three of the samples were excluded from
618	further analysis. The gene-level read counts were normalized using the trimmed mean of M-values
619	(TMM) in edgeR (Robinson et al., 2010) to adjust samples for differences in library size. Differential
620	expression analysis was performed using the quasi-likelihood F-test with the generalized linear model
621	(GLM) approach in edgeR (Robinson et al., 2010). Differentially expressed genes (DEGs) were defined
622	as those with at least two-fold difference between two individual groups at a false discovery rate
623	(FDR) < 0.05. RNA-seq data have been deposited at NCBI Gene Expression Omnibus
624	(https://www.ncbi.nlm.nih.gov/geo/) under the record GSE166788.
625	Functional enrichment analysis and visualization were performed using the Overrepresentation
626	Analysis (ORA) module with the default parameters in easyGSEA in the eVITTA suite
627	(https://tau.cmmt.ubc.ca/eVITTA/; Cheng X., Yan J., et al., in preparation). easyVizR in the eVITTA
628	suite was used to visualize the overlaps and disjoints in the DEGs (input December 14, 2020).
629	27

Doering et al. Hypoxia

630 Acknowledgements

- 631 We thank the Taubert, Miller, and Ghazi labs for comments on the manuscript. Some strains
- 632 were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40
- 633 OD010440). Grant support was from The Canadian Institutes of Health Research (CIHR; PJT-153199
- to ST), the Natural Sciences and Engineering Research Council of Canada (NSERC; RGPIN-2018-
- 635 05133 to ST), the Cancer Research Society (CRS; to ST), and the National Institutes of Health (NIH;
- 636 R01AG051659 to AG, R01AG044378 to DM). KRSD was supported by NSERC CGS-M, NSERC
- 637 CGS-D, and BCCHR scholarships, and ST by a Canada Research Chair.
- 638

639 Competing interests

- 640 The authors do not declare any competing interests.
- 641

Doering et al. Hypoxia

642 **References**

- Albadari, N., Deng, S., & Li, W. (2019). The transcriptional factors HIF-1 and HIF-2 and their novel
- 644 inhibitors in cancer therapy. *Expert Opinion on Drug Discovery*, *14*(7), 667–682.

645 https://doi.org/10.1080/17460441.2019.1613370

- 646 Aragonés, J., Schneider, M., Van Geyte, K., Fraisl, P., Dresselaers, T., Mazzone, M., Dirkx, R.,
- 647 Zacchigna, S., Lemieux, H., Jeoung, N. H., Lambrechts, D., Bishop, T., Lafuste, P., Diez-Juan,
- A., Harten, S. K., Van Noten, P., De Bock, K., Willam, C., Tjwa, M., ... Carmeliet, P. (2008).
- 649 Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming
- basal metabolism. *Nature Genetics*, 40(2), 170–180. https://doi.org/10.1038/ng.2007.62
- Atherton, H. J., Jones, O. A. H., Malik, S., Miska, E. A., & Griffin, J. L. (2008). A comparative
- 652 metabolomic study of NHR-49 in *Caenorhabditis elegans* and PPAR- α in the mouse. *FEBS*

653 *Letters*, 582(12), 1661–1666. https://doi.org/10.1016/j.febslet.2008.04.020

- Berber, S., Llamosas, E., Thaivalappil, P., Boag, P. R., Crossley, M., & Nicholas, H. R. (2013).
- 655 Homeodomain interacting protein kinase (HPK-1) is required in the soma for robust germline
- 656 proliferation in *C. elegans*: HPK-1 Promotes Germline Proliferation. *Developmental Dynamics*,
- 657 242(11), 1250–1261. https://doi.org/10.1002/dvdy.24023
- Berber, S., Wood, M., Llamosas, E., Thaivalappil, P., Lee, K., Liao, B. M., Chew, Y. L., Rhodes, A.,

659 Yucel, D., Crossley, M., & Nicholas, H. R. (2016). Homeodomain-Interacting Protein Kinase

- 660 (HPK-1) regulates stress responses and ageing in C. elegans. *Scientific Reports*, *6*(1), 19582.
- 661 https://doi.org/10.1038/srep19582
- 662 Bishop, T., Lau, K. W., Epstein, A. C. R., Kim, S. K., Jiang, M., O'Rourke, D., Pugh, C. W., Gleadle,
- J. M., Taylor, M. S., Hodgkin, J., & Ratcliffe, P. J. (2004). Genetic analysis of pathways
- regulated by the von Hippel-Lindau tumor suppressor in Caenorhabditis elegans. *PLoS Biology*,
- 665 2(10), e289. https://doi.org/10.1371/journal.pbio.0020289

Doering et al. Hypoxia

- 666 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina
- 667 sequence data. *Bioinformatics*, *30*(15), 2114–2120.
- 668 https://doi.org/10.1093/bioinformatics/btu170
- 669 Boström, P., Magnusson, B., Svensson, P.-A., Wiklund, O., Borén, J., Carlsson, L. M. S., Ståhlman,
- 670 M., Olofsson, S.-O., & Hultén, L. M. (2006). Hypoxia Converts Human Macrophages Into
- 671 Triglyceride-Loaded Foam Cells. *Arteriosclerosis, Thrombosis, and Vascular Biology*, 26(8),
- 672 1871–1876. https://doi.org/10.1161/01.ATV.0000229665.78997.0b
- Brenner, S. (1974). The genetics of Caenorhabditis elegans. *Genetics*, 77(1), 71–94.
- Budde, M. W., & Roth, M. B. (2010). Hydrogen sulfide increases hypoxia-inducible factor-1 activity
- 675 independently of von Hippel-Lindau tumor suppressor-1 in C. elegans. *Molecular Biology of*

676 *the Cell*, 21(1), 212–217. https://doi.org/10.1091/mbc.e09-03-0199

- Burkewitz, K., Morantte, I., Weir, H. J. M., Yeo, R., Zhang, Y., Huynh, F. K., Ilkayeva, O. R.,
- 678 Hirschey, M. D., Grant, A. R., & Mair, W. B. (2015). Neuronal CRTC-1 governs systemic
- 679 mitochondrial metabolism and lifespan via a catecholamine signal. *Cell*, *160*(5), 842–855.
- 680 https://doi.org/10.1016/j.cell.2015.02.004
- 681 Calzado, M. A., de la Vega, L., Möller, A., Bowtell, D. D. L., & Schmitz, M. L. (2009). An inducible
- autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. *Nature Cell Biology*, 11(1), 85–91. https://doi.org/10.1038/ncb1816
- Chamoli, M., Singh, A., Malik, Y., & Mukhopadhyay, A. (2014). A novel kinase regulates dietary
 restriction-mediated longevity in Caenorhabditis elegans. *Aging Cell*, 13(4), 641–655.
- 686 https://doi.org/10.1111/acel.12218
- Chapin, H. C., Okada, M., Merz, A. J., & Miller, D. L. (2015). Tissue-specific autophagy responses to
 aging and stress in C. elegans. *Aging*, 7(6), 419–434. https://doi.org/10.18632/aging.100765
- 689 Chen, J., Chen, J., Fu, H., Li, Y., Wang, L., Luo, S., & Lu, H. (2019). Hypoxia exacerbates
- 690 nonalcoholic fatty liver disease via the HIF-2α/PPARα pathway. *American Journal of*

Doering et al. Hypoxia

- 691 *Physiology-Endocrinology and Metabolism*, 317(4), E710–E722.
- 692 https://doi.org/10.1152/ajpendo.00052.2019
- 693 Chen, W., Hill, H., Christie, A., Kim, M. S., Holloman, E., Pavia-Jimenez, A., Homayoun, F., Ma, Y.,
- 694 Patel, N., Yell, P., Hao, G., Yousuf, Q., Joyce, A., Pedrosa, I., Geiger, H., Zhang, H., Chang, J.,
- 695 Gardner, K. H., Bruick, R. K., ... Brugarolas, J. (2016). Targeting renal cell carcinoma with a
- 696 HIF-2 antagonist. *Nature*, *539*(7627), 112–117. https://doi.org/10.1038/nature19796
- 697 Cho, H., Du, X., Rizzi, J. P., Liberzon, E., Chakraborty, A. A., Gao, W., Carvo, I., Signoretti, S.,
- Bruick, R. K., Josey, J. A., Wallace, E. M., & Kaelin, W. G. (2016). On-target efficacy of a
- HIF-2α antagonist in preclinical kidney cancer models. *Nature*, *539*(7627), 107–111.
- 700 https://doi.org/10.1038/nature19795
- 701 Choudhry, H., & Harris, A. L. (2018). Advances in Hypoxia-Inducible Factor Biology. *Cell*

702 *Metabolism*, 27(2), 281–298. https://doi.org/10.1016/j.cmet.2017.10.005

- Dang, X., Zhang, R., Peng, Z., Qin, Y., Sun, J., Niu, Z., & Pei, H. (2020). HIPK2 overexpression
- relieves hypoxia/reoxygenation-induced apoptosis and oxidative damage of cardiomyocytes
 through enhancement of the Nrf2/ARE signaling pathway. *Chemico-Biological Interactions*,
- 706 *316*, 108922. https://doi.org/10.1016/j.cbi.2019.108922
- 707 Das, R., Melo, J. A., Thondamal, M., Morton, E. A., Cornwell, A. B., Crick, B., Kim, J. H., Swartz, E.

708 W., Lamitina, T., Douglas, P. M., & Samuelson, A. V. (2017). The homeodomain-interacting

- 709 protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory
- control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis

711 elegans. *PLOS Genetics*, *13*(10), e1007038. https://doi.org/10.1371/journal.pgen.1007038

- 712 Dasgupta, M., Shashikanth, M., Gupta, A., Sandhu, A., De, A., Javed, S., & Singh, V. (2020). NHR-49
- 713 Transcription Factor Regulates Immunometabolic Response and Survival of Caenorhabditis
- elegans during Enterococcus faecalis Infection. *Infection and Immunity*, 88(8).
- 715 https://doi.org/10.1128/IAI.00130-20

- 716 Epstein, A. C., Gleadle, J. M., McNeill, L. A., Hewitson, K. S., O'Rourke, J., Mole, D. R., Mukherji,
- 717 M., Metzen, E., Wilson, M. I., Dhanda, A., Tian, Y. M., Masson, N., Hamilton, D. L., Jaakkola,
- P., Barstead, R., Hodgkin, J., Maxwell, P. H., Pugh, C. W., Schofield, C. J., & Ratcliffe, P. J.
- 719 (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that
- regulate HIF by prolyl hydroxylation. *Cell*, *107*(1), 43–54. https://doi.org/10.1016/s0092-
- 721 8674(01)00507-4
- Fallah, J., & Rini, B. I. (2019). HIF Inhibitors: Status of Current Clinical Development. *Current* Oncology Reports, 21(1), 6. https://doi.org/10.1007/s11912-019-0752-z
- Fawcett, E. M., Horsman, J. W., & Miller, D. L. (2012). Creating defined gaseous environments to
- study the effects of hypoxia on C. elegans. *Journal of Visualized Experiments: JoVE*, 65, e4088.
 https://doi.org/10.3791/4088
- Fernandes, J. S., & Sternberg, P. W. (2007). The tailless Ortholog nhr-67 Regulates Patterning of Gene
 Expression and Morphogenesis in the C. elegans Vulva. *PLoS Genetics*, *3*(4), e69.
- 729 https://doi.org/10.1371/journal.pgen.0030069
- 730 Gissendanner, C. R., Crossgrove, K., Kraus, K. A., Maina, C. V., & Sluder, A. E. (2004). Expression
- and function of conserved nuclear receptor genes in Caenorhabditis elegans. *Developmental*
- 732 *Biology*, *266*(2), 399–416. https://doi.org/10.1016/j.ydbio.2003.10.014
- 733 Goh, G. Y. S., Martelli, K. L., Parhar, K. S., Kwong, A. W. L., Wong, M. A., Mah, A., Hou, N. S., &
- Taubert, S. (2014). The conserved Mediator subunit MDT-15 is required for oxidative stress
 responses in *Caenorhabditis elegans*. *Aging Cell*, *13*(1), 70–79.
- 736 https://doi.org/10.1111/acel.12154
- 737 Goh, G. Y. S., Winter, J. J., Bhanshali, F., Doering, K. R. S., Lai, R., Lee, K., Veal, E. A., & Taubert,
- 738 S. (2018). NHR-49/HNF4 integrates regulation of fatty acid metabolism with a protective
- transcriptional response to oxidative stress and fasting. *Aging Cell*, *17*(3), e12743.
- 740 https://doi.org/10.1111/acel.12743

- Jiang, H., Guo, R., & Powell-Coffman, J. A. (2001). The Caenorhabditis elegans hif-1 gene encodes a
- 742 bHLH-PAS protein that is required for adaptation to hypoxia. *Proceedings of the National*
- 743 *Academy of Sciences of the United States of America*, 98(14), 7916–7921.
- 744 https://doi.org/10.1073/pnas.141234698
- 745 Jiao, M., Ren, F., Zhou, L., Zhang, X., Zhang, L., Wen, T., Wei, L., Wang, X., Shi, H., Bai, L., Zhang,
- 746 X., Zheng, S., Zhang, J., Chen, Y., Han, Y., Zhao, C., & Duan, Z. (2014). Peroxisome
- 747 proliferator-activated receptor α activation attenuates the inflammatory response to protect the
- 148 liver from acute failure by promoting the autophagy pathway. *Cell Death & Disease*, *5*, e1397.
- 749 https://doi.org/10.1038/cddis.2014.361
- 750 Kaelin, W. G. (2008). The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer.
- 751 *Nature Reviews. Cancer*, 8(11), 865–873. https://doi.org/10.1038/nrc2502
- Keith, B., & Simon, M. C. (2007). Hypoxia-inducible factors, stem cells, and cancer. *Cell*, *129*(3),
 465–472. https://doi.org/10.1016/j.cell.2007.04.019
- 754 Kennedy, S. L., Stanley, W. C., Panchal, A. R., & Mazzeo, R. S. (2001). Alterations in enzymes
- involved in fat metabolism after acute and chronic altitude exposure. *Journal of Applied Physiology (Bethesda, Md.: 1985)*, *90*(1), 17–22. https://doi.org/10.1152/jappl.2001.90.1.17
- 757 Lee, J. M., Wagner, M., Xiao, R., Kim, K. H., Feng, D., Lazar, M. A., & Moore, D. D. (2014).
- 758 Nutrient-sensing nuclear receptors coordinate autophagy. *Nature*, *516*(7529), 112–115.
- 759 https://doi.org/10.1038/nature13961
- Lee, K., Goh, G. Y. S., Wong, M. A., Klassen, T. L., & Taubert, S. (2016). Gain-of-Function Alleles in
- Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct. *PloS One*, *11*(9), e0162708. https://doi.org/10.1371/journal.pone.0162708
- 763 Lee, P., Chandel, N. S., & Simon, M. C. (2020). Cellular adaptation to hypoxia through hypoxia
- 764 inducible factors and beyond. *Nature Reviews. Molecular Cell Biology*, 21(5), 268–283.
- 765 https://doi.org/10.1038/s41580-020-0227-y

- 766 Leiser, S. F., Miller, H., Rossner, R., Fletcher, M., Leonard, A., Primitivo, M., Rintala, N., Ramos, F.
- J., Miller, D. L., & Kaeberlein, M. (2015). Cell nonautonomous activation of flavin-containing
 monooxygenase promotes longevity and health span. *Science (New York, N.Y.)*, *350*(6266),

769 1375–1378. https://doi.org/10.1126/science.aac9257

Li, L., Rose, P., & Moore, P. K. (2011). Hydrogen sulfide and cell signaling. *Annual Review of Pharmacology and Toxicology*, *51*, 169–187. https://doi.org/10.1146/annurev-pharmtox 010510-100505

Li, M., & Kim, W. Y. (2011). Two sides to every story: The HIF-dependent and HIF-independent

functions of pVHL. *Journal of Cellular and Molecular Medicine*, *15*(2), 187–195.

- 775 https://doi.org/10.1111/j.1582-4934.2010.01238.x
- Li, Y., Padmanabha, D., Gentile, L. B., Dumur, C. I., Beckstead, R. B., & Baker, K. D. (2013). HIF and non-HIF-regulated hypoxic responses require the estrogen-related receptor in Drosophila
 melanogaster. *PLoS Genetics*, 9(1), e1003230. https://doi.org/10.1371/journal.pgen.1003230
- Liu, L. X., Spoerke, J. M., Mulligan, E. L., Chen, J., Reardon, B., Westlund, B., Sun, L., Abel, K.,
- 780 Armstrong, B., Hardiman, G., King, J., McCague, L., Basson, M., Clover, R., & Johnson, C. D.
- 781 (1999). High-throughput isolation of Caenorhabditis elegans deletion mutants. *Genome*
- 782 *Research*, 9(9), 859–867. https://doi.org/10.1101/gr.9.9.859
- 783 Luo, R., Su, L.-Y., Li, G., Yang, J., Liu, Q., Yang, L.-X., Zhang, D.-F., Zhou, H., Xu, M., Fan, Y., Li,
- J., & Yao, Y.-G. (2020). Activation of PPARA-mediated autophagy reduces Alzheimer disease-
- 785 like pathology and cognitive decline in a murine model. *Autophagy*, *16*(1), 52–69.
- 786 https://doi.org/10.1080/15548627.2019.1596488
- 787 Mello, C., & Fire, A. (1995). DNA transformation. *Methods in Cell Biology*, 48, 451–482.
- 788 Miller, D. L., Budde, M. W., & Roth, M. B. (2011). HIF-1 and SKN-1 coordinate the transcriptional
- response to hydrogen sulfide in Caenorhabditis elegans. *PloS One*, *6*(9), e25476.
- 790 https://doi.org/10.1371/journal.pone.0025476

- 791 Miller, D. L., & Roth, M. B. (2007). Hydrogen sulfide increases thermotolerance and lifespan in
- Caenorhabditis elegans. *Proceedings of the National Academy of Sciences of the United States* of America, 104(51), 20618–20622. https://doi.org/10.1073/pnas.0710191104
- in hypoxic heart and skeletal muscle. *American Journal of Physiology. Regulatory, Integrative*

Morash, A. J., Kotwica, A. O., & Murray, A. J. (2013). Tissue-specific changes in fatty acid oxidation

- 796 *and Comparative Physiology*, *305*(5), R534-541. https://doi.org/10.1152/ajpregu.00510.2012
- Naim, N., Amrit, F. R., Ratnappan, R., DelBuono, N., Loose, J. A., & Ghazi, A. (2020). *NHR-49 Acts in Distinct Tissues to Promote Longevity versus Innate Immunity* [Preprint]. Molecular Biology.
- 799 https://doi.org/10.1101/2020.09.11.290452

794

- 800 Nardinocchi, L., Puca, R., Guidolin, D., Belloni, A. S., Bossi, G., Michiels, C., Sacchi, A., Onisto, M.,
- & D'Orazi, G. (2009). Transcriptional regulation of hypoxia-inducible factor 1alpha by HIPK2
- suggests a novel mechanism to restrain tumor growth. *Biochimica Et Biophysica Acta*, 1793(2),
- 803 368–377. https://doi.org/10.1016/j.bbamcr.2008.10.013
- Narravula, S., & Colgan, S. P. (2001). Hypoxia-Inducible Factor 1-Mediated Inhibition of Peroxisome
 Proliferator-Activated Receptor α Expression During Hypoxia. *The Journal of Immunology*,
- 806 *166*(12), 7543–7548. https://doi.org/10.4049/jimmunol.166.12.7543
- Nystul, T. G., & Roth, M. B. (2004). Carbon monoxide-induced suspended animation protects against
 hypoxic damage in Caenorhabditis elegans. *Proceedings of the National Academy of Sciences of the United States of America*, 101(24), 9133–9136. https://doi.org/10.1073/pnas.0403312101

Padmanabha, D., Padilla, P. A., You, Y.-J., & Baker, K. D. (2015). A HIF-independent mediator of

- 811 transcriptional responses to oxygen deprivation in Caenorhabditis elegans. *Genetics*, 199(3),
- 812 739–748. https://doi.org/10.1534/genetics.114.173989
- 813 Pathare, P. P., Lin, A., Bornfeldt, K. E., Taubert, S., & Van Gilst, M. R. (2012). Coordinate regulation
- of lipid metabolism by novel nuclear receptor partnerships. *PLoS Genetics*, *8*(4), e1002645.
- 815 https://doi.org/10.1371/journal.pgen.1002645

- 816 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon: Fast and bias-aware
- guantification of transcript expression using dual-phase inference. *Nature Methods*, 14(4), 417.
- 818 https://doi.org/10.1038/nmeth.4197
- 819 Powell-Coffman, J. A. (2010). Hypoxia signaling and resistance in C. elegans. Trends in
- 820 *Endocrinology and Metabolism: TEM, 21(7), 435–440.*
- 821 https://doi.org/10.1016/j.tem.2010.02.006
- Pursiheimo, J.-P., Rantanen, K., Heikkinen, P. T., Johansen, T., & Jaakkola, P. M. (2009). Hypoxiaactivated autophagy accelerates degradation of SQSTM1/p62. *Oncogene*, *28*(3), 334–344.
- 824 https://doi.org/10.1038/onc.2008.392
- 825 Raich, W. B., Moorman, C., Lacefield, C. O., Lehrer, J., Bartsch, D., Plasterk, R. H. A., Kandel, E. R.,
- & Hobert, O. (2003). Characterization of Caenorhabditis elegans homologs of the Down
 syndrome candidate gene DYRK1A. *Genetics*, *163*(2), 571–580.
- Rankin, E. B., & Giaccia, A. J. (2016). Hypoxic control of metastasis. *Science (New York, N.Y.)*,
 352(6282), 175–180. https://doi.org/10.1126/science.aaf4405
- 830 Ratnappan, R., Amrit, F. R. G., Chen, S.-W., Gill, H., Holden, K., Ward, J., Yamamoto, K. R., Olsen,
- 831 C. P., & Ghazi, A. (2014). Germline signals deploy NHR-49 to modulate fatty-acid β-oxidation
- and desaturation in somatic tissues of C. elegans. *PLoS Genetics*, *10*(12), e1004829.
- 833 https://doi.org/10.1371/journal.pgen.1004829
- 834 Reece-Hoyes, J. S., Pons, C., Diallo, A., Mori, A., Shrestha, S., Kadreppa, S., Nelson, J., DiPrima, S.,
- 835 Dricot, A., Lajoie, B. R., Ribeiro, P. S. M., Weirauch, M. T., Hill, D. E., Hughes, T. R., Myers,
- 836 C. L., & Walhout, A. J. M. (2013). Extensive Rewiring and Complex Evolutionary Dynamics in
- a C. elegans Multiparameter Transcription Factor Network. *Molecular Cell*, *51*(1), 116–127.
- 838 https://doi.org/10.1016/j.molcel.2013.05.018

Doering et al. Hypoxia

- 839 Rinaldo, C., Prodosmo, A., Siepi, F., & Soddu, S. (2007). HIPK2: A multitalented partner for
- 840 transcription factors in DNA damage response and development. *Biochemistry and Cell Biology*
- 841 = *Biochimie Et Biologie Cellulaire*, 85(4), 411–418. https://doi.org/10.1139/O07-071
- 842 Rinaldo, C., Siepi, F., Prodosmo, A., & Soddu, S. (2008). HIPKs: Jack of all trades in basic nuclear
- 843 activities. *Biochimica Et Biophysica Acta*, 1783(11), 2124–2129.
- 844 https://doi.org/10.1016/j.bbamcr.2008.06.006
- 845 Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A Bioconductor package for
- 846 differential expression analysis of digital gene expression data. *Bioinformatics*, 26(1), 139–140.
- 847 https://doi.org/10.1093/bioinformatics/btp616
- Samokhvalov, V., Scott, B. A., & Crowder, C. M. (2008). Autophagy protects against hypoxic injury in *C. elegans. Autophagy*, 4(8), 1034–1041. https://doi.org/10.4161/auto.6994
- 850 Schito, L., & Semenza, G. L. (2016). Hypoxia-Inducible Factors: Master Regulators of Cancer
- 851 Progression. *Trends in Cancer*, 2(12), 758–770. https://doi.org/10.1016/j.trecan.2016.10.016
- 852 Shen, C., Nettleton, D., Jiang, M., Kim, S. K., & Powell-Coffman, J. A. (2005). Roles of the HIF-1
- 853 hypoxia-inducible factor during hypoxia response in Caenorhabditis elegans. *The Journal of*

854 *Biological Chemistry*, 280(21), 20580–20588. https://doi.org/10.1074/jbc.M501894200

855 Soneson, C., Love, M. I., & Robinson, M. D. (2015). Differential analyses for RNA-seq: Transcript-

level estimates improve gene-level inferences. *F1000Research*, 4.

- 857 https://doi.org/10.12688/f1000research.7563.2
- Tang, Y., Zhou, J., Hooi, S. C., Jiang, Y.-M., & Lu, G.-D. (2018). Fatty acid activation in
- carcinogenesis and cancer development: Essential roles of long-chain acyl-CoA synthetases.
 Oncology Letters, *16*(2), 1390–1396. https://doi.org/10.3892/ol.2018.8843
- 861 Van Gilst, M. R., Hadjivassiliou, H., & Yamamoto, K. R. (2005). From The Cover: A Caenorhabditis
- 862 elegans nutrient response system partially dependent on nuclear receptor NHR-49. *Proceedings*

Doering et al. Hypoxia

- 863 *of the National Academy of Sciences*, *102*(38), 13496–13501.
- 864 https://doi.org/10.1073/pnas.0506234102
- 865 Van Gilst, Marc R., Hadjivassiliou, H., Jolly, A., & Yamamoto, K. R. (2005). Nuclear hormone
- 866 receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. *PLoS*
- 867 *Biology*, *3*(2), e53. https://doi.org/10.1371/journal.pbio.0030053
- 868 Verghese, E., Schocken, J., Jacob, S., Wimer, A. M., Royce, R., Nesmith, J. E., Baer, G. M., Clever, S.,
- 869 McCain, E., Lakowski, B., & Wightman, B. (2011). The tailless ortholog nhr-67 functions in
- the development of the C. elegans ventral uterus. *Developmental Biology*, *356*(2), *516–528*.
- 871 https://doi.org/10.1016/j.ydbio.2011.06.007
- 872 Vozdek, R., Long, Y., & Ma, D. K. (2018). The receptor tyrosine kinase HIR-1 coordinates HIF-
- 873 independent responses to hypoxia and extracellular matrix injury. *Science Signaling*, *11*(550).
 874 https://doi.org/10.1126/scisignal.aat0138
- 875 Wani, K. A., Goswamy, D., Taubert, S., Ratnappan, R., Ghazi, A., & Irazoqui, J. E. (2020). NHR-
- 876 *49/PPAR-α and HLH-30/TFEB promote* C. elegans *host defense via a flavin-containing*
- 877 monooxygenase [Preprint]. Microbiology. https://doi.org/10.1101/2020.09.03.282087
- 878 Zhang, H., Bosch-Marce, M., Shimoda, L. A., Tan, Y. S., Baek, J. H., Wesley, J. B., Gonzalez, F. J., &
- 879 Semenza, G. L. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic
- response to hypoxia. *The Journal of Biological Chemistry*, 283(16), 10892–10903.
- 881 https://doi.org/10.1074/jbc.M800102200
- Zhang, J., Bakheet, R., Parhar, R. S., Huang, C.-H., Hussain, M. M., Pan, X., Siddiqui, S. S., &
- 883 Hashmi, S. (2011). Regulation of Fat Storage and Reproduction by Krüppel-Like Transcription
- 884 Factor KLF3 and Fat-Associated Genes in Caenorhabditis elegans. Journal of Molecular
- 885 *Biology*, *411*(3), 537–553. https://doi.org/10.1016/j.jmb.2011.06.011

Doering et al. Hypoxia

- 886 Zhang, T., Suo, C., Zheng, C., & Zhang, H. (2019). Hypoxia and Metabolism in Metastasis. Advances
- 887 *in Experimental Medicine and Biology*, 1136, 87–95. https://doi.org/10.1007/978-3-030-12734-
- 888 3_6

889

890

Doering et al. Hypoxia

891 Figure Legends

892 Figure 1. *nhr-49* regulates *fmo-2* induction following exposure to hypoxia.

- (A) The graph indicates fold changes of mRNA levels (relative to unexposed wild-type) in L4
- wild-type, nhr-49(nr2041), and hif-1(ia4) worms exposed to room air (21% O₂) or 0.5% O₂ for 3 hr (n
- 895 = 5). *,** p < 0.05, 0.01 (ordinary one-way ANOVA corrected for multiple comparisons using the
- Tukey method). (B) Representative micrographs show *Pfmo-2::gfp* and *Pfmo-2::gfp;nhr-49(nr2041)*
- adult worms in room air or following 4 hr exposure to 0.5% O₂ and 1 hr recovery in 21% O₂. (C) The
- graph shows the quantification of intestinal GFP levels in *Pfmo-2::gfp* and *Pfmo-2::gfp;nhr-*
- 899 49(nr2041) worms following 4 hr exposure to 0.5% O₂ and 1 hr recovery in 21% O₂ (three repeats
- totalling >30 individual worms per genotype). **,**** p <0.01, 0.0001 (ordinary one-way ANOVA
- 901 corrected for multiple comparisons using the Tukey method). WT = wild-type.
- 902

Figure 2. *nhr-49* and *hif-1* act in separate hypoxia response pathways at two stages of the
worm life cycle.

905 (A) The graph shows average population survival of wild-type, nhr-49(nr2041), hif-1(ia4), and 906 nhr-49(nr2041); hif-1(ia4) worm embryos exposed for 24 hr to 0.5% O₂ and then allowed to recover at 907 21% O₂ for 65 hr, counted as ability to reach at least the L4 stage (five repeats totalling >100 individual 908 worms per genotype). **** p<0.0001 vs. wild-type worms, \perp p<0.05 vs. *nhr-49(nr2041);hif-1(ia4)* 909 (ordinary one-way ANOVA corrected for multiple comparisons using the Tukey method). (B) The 910 graph shows average developmental success of wild-type, *nhr-49(nr2041)*, *hif-1(ia4)*, and *nhr-*911 49(nr2041); hif-1(ia4) larval worms following 48 hr exposure to 0.5% O₂ from L1 stage (four repeats 912 totalling >60 individual worms per genotype). ***, **** p<0.001, 0.0001 percent L4 or older vs. wild-913 type worms (ordinary one-way ANOVA corrected for multiple comparisons using the Tukey method). 914 (C) The graph shows average population survival of wild-type, nhr-49(nr2041), and hif-1(ia4) L4 915 worms following 24 hr exposure to 50 ppm hydrogen sulfide (three repeats totalling 60 individual

Doering et al. Hypoxia

916	worms per strain).	**** p<0.0001	vs. wild-type worms	(ordinary one-w	ay ANOVA corrected for
-----	--------------------	---------------	---------------------	-----------------	------------------------

917 multiple comparisons using the Tukey method). n.s. = not significant, WT = wild-type.

918

919 Figure 3. RNA-seq reveals an *nhr-49*-dependent transcriptional program in hypoxia.

920 (A, B) Venn diagrams show the overlap of sets of hypoxia $(0.5\% O_2; vs. normoxia 21\% O_2)$ 921 regulated genes identified in differential expression analysis comparing wild-type, *nhr-49(nr2041)*, and 922 *hif-1(ia4)* worms. Numbers indicate the number of significantly differentially expressed genes that are 923 upregulated (A) and downregulated (B) at least two-fold. (C) Heatmap of the expression levels of the 924 83 genes which are significantly induced over two-fold in 21% O_2 vs. 0.5% O_2 in wild-type and *hif*-925 1(ia4) worms, but not in nhr-49(nr2041), i.e. nhr-49-dependent hypoxia response genes. Genes along 926 the y-axis are colored in each repeat based on their z-scores of the log2-transformed Counts Per Million 927 (CPM) plus 1. Notable genes are highlighted. (D) Network view of the enriched functional categories 928 among the 83 genes, which are significantly induced over two-fold in 21% O₂ vs. 0.5% O₂ in wild-type 929 and hif-1(ia4) worms, but not in nhr-49(nr2041). Edges represent significant gene overlap as defined 930 by a Jaccard Coefficient larger than or equal to 25%. The dot size reflects the number of genes in each 931 functional category; colour intensity reflects statistical significance (-log10 p-value). (E) The graph 932 shows the average population survival of wild-type, nhr-49(nr2041), fmo-2(ok2147), acs-2(ok2457), 933 and fmo-2(ok2147);acs-2(ok2457) worm embryos following 24 hr exposure to 0.5% O₂, then allowed 934 to recover at 21% O₂ for 65 hr, and counted as ability to reach at least L4 stage (five or more repeats 935 totalling >100 individual worms per strain). **** p<0.0001 vs. wild-type worms. Comparison of single 936 mutants to fmo-2(ok2147);acs-2(ok2457) not significant (ordinary one-way ANOVA corrected for 937 multiple comparisons using the Tukey method). (F) The graph shows the average population survival 938 of second generation wild-type and nhr-49(nr2041) worm embryos fed EV, nhr-49, atg-10, atg-7, bec-939 1, or epg-3 RNAi, followed by 24 hr exposure to 0.5% O₂ and recovery at 21% O₂ for 65 hr, and 940 counted as ability to reach at least L4 stage (three or more repeats totalling >100 individual worms per

41

Doering et al. Hypoxia

strain). *, **, ***, **** p<0.05, 0.01, 0.001, 0.0001 vs. followed by worms fed *EV(RNAi)* (ordinary
one-way ANOVA corrected for multiple comparisons using the Tukey method). n.s. = not significant,
WT = wild-type.

944

Figure 4. *nhr-49* is sufficient to promote survival in hypoxia and induce some hypoxia response genes.

947 (A) The graph shows the average population survival of wild-type, nhr-49(nr2041), and nhr-948 49(et13) worm embryos following 48 hr exposure to 0.5% O₂, then allowed to recover at 21% O₂ for 949 42 hr, and counted as ability to reach at least L4 stage (five repeats totalling >100 individual worms per 950 strain). * p<0.05 vs. wild-type worms, $\perp \perp \perp p < 0.001$ vs. *nhr-49(et13)* worms (ordinary one-way 951 ANOVA corrected for multiple comparisons using the Tukey method). (B) The graph shows average 952 population survival of *nhr-49* tissue specific rescue worm embryos following 24 hr exposure to 0.5% 953 O₂, then allowed to recover at 21% O₂ for 65 hr, and counted as ability to reach at least L4 stage. Pglp-954 19::nhr-49::gfp for intestine, Pcol-12::nhr-49::gfp for hypodermis, Prgef-1::nhr-49::gfp for neurons, 955 and *Pnhr-49::nhr-49::gfp* for endogenous (four or more repeats totalling >50 individual worms per 956 strain). * p<0.05 vs. matching non-GFP siblings. (C) The graph shows fold changes of mRNA levels 957 (relative to wild-type) in L4 *nhr-49(et13)* worms (n = 3). *,*** p < 0.05, 0.001 vs. wild-type worms 958 (ordinary one-way ANOVA corrected for multiple comparisons using the Tukey method). WT = wild-959 type.

960

961 Figure 5. *nhr-67* is a negative regulator of the *nhr-49*-dependent hypoxia response 962 pathway.

963 (A) The graph shows average transcript levels in counts per million (CPM) of *nhr-67* mRNA in 964 L4 wild-type, *nhr-49(nr2041)*, and *hif-1(ia4)* worms exposed to 0.5% O₂ for 3 hr or kept at 21% O₂ (n 965 = 3). ** p <0.01 (ordinary one-way ANOVA corrected for multiple comparisons using the Tukey

Doering et al. Hypoxia

966	method). (B-E) Represe	entative microgr	aphs and quar	ntification of int	estinal GFP le	vels in <i>Pfmo-2::gfp</i>
-----	------------------------	------------------	---------------	--------------------	----------------	----------------------------

967 and *Pfmo-2::gfp;nhr-49(nr2041)* (B, C) and *Pacs-2::gfp* and *Pacs-2::gfp;nhr-49(nr2041)* (D, E) adult

- 968 worms fed EV RNAi or *nhr-67* RNAi following 4 hr exposure to 0.5% O₂ and 1 hr recovery in 21% O₂
- 969 (three repeats totalling >30 individual worms per strain). *,***,**** p <0.05, 0.001, 0.0001 (ordinary
- 970 one-way ANOVA corrected for multiple comparisons using the Tukey method). (F) Representative
- 971 micrographs show *Pnhr-49::nhr-49::gfp* adult worms fed EV, *nhr-49*, or *nhr-67* RNAi following 4 hr
- 972 exposure to 0.5% O₂ and 1 hr recovery in 21% O₂. (G) The graph shows quantification of whole worm
- 973 GFP levels in *Pnhr-49::nhr-49::gfp* worms fed EV, *nhr-49*, or *nhr-67* RNAi following 4 hr exposure to
- 974 0.5% O₂ and 1 hr recovery in 21% O₂ (three or more repeats totalling >30 individual worms per strain).
- 975 **** p <0.0001 (ordinary one-way ANOVA corrected for multiple comparisons using the Tukey
- 976 method). n.s. = not significant, WT = wild-type.
- 977

978 Figure 6. *hpk-1* is a positive regulator within the *nhr-49*-dependent hypoxia response
979 pathway.

(A-D) Representative micrographs and quantification of intestinal GFP levels in *Pfmo-2::gfp*(A, B) and *Pacs-2::gfp* (C, D) adult worms fed *EV*, *nhr-49*, *hif-1*, or *hpk-1* RNAi following 4 hr

982 exposure to 0.5% O_2 and 1 hr recovery in 21% O_2 (3 or more repeats totalling >30 individual worms

983 per strain). **,***,**** p <0.01, 0.001, 0.0001 vs. EV(RNAi) (ordinary one-way ANOVA corrected for

984 multiple comparisons using the Tukey method). (E) The graph shows fold changes of mRNA levels in

985 L4 wild-type, *nhr-49(nr2041)*, and *hpk-1(pk1393)* worms exposed to 0.5% O_2 for 3 hr (n = 4). **, *** p

- 986 < 0.01, 0.001 (ordinary one-way ANOVA corrected for multiple comparisons using the Tukey
- 987 method). (F) The graph shows average population survival of wild-type, *nhr-49(nr2041)*, *hpk-*

988 *1(pk1393)*, and *nhr-49(nr2041);hpk-1(pk1393)* worm embryos following 24 hr exposure to 0.5% O₂,

- then allowed to recover at 21% O₂ for 65 hr, and counted as ability to reach at least L4 stage (4 repeats
- totalling >100 individual worms per strain). ***,**** p<0.001, 0.0001 vs. wild-type worms.

```
Doering et al. Hypoxia
```

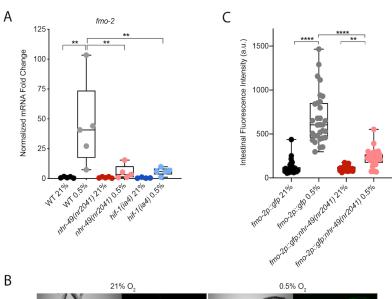
991	Comparison of single mutants to nhr-49(nr2041);hpk-1(pk1393) not significant (ordinary one-way
992	ANOVA corrected for multiple comparisons using the Tukey method). (G) The graph shows average
993	population survival of wild-type, hif-1(ia4), hpk-1(pk1393), and hif-1(ia4); hpk-1(pk1393) worm
994	embryos following 24 hr exposure to 0.5% O_2 , then allowed to recover at 21% O_2 for 65 hr, and
995	counted as ability to reach at least L4 stage (four repeats totalling >100 individual worms per strain).
996	**** p<0.0001 vs. wild-type worms, $\perp \perp \perp$ p<0.001 vs. <i>hif-1(ia4);hpk-1(pk1393)</i> (ordinary one-way
997	ANOVA corrected for multiple comparisons using the Tukey method). n.s. = not significant, WT =
998	wild-type.

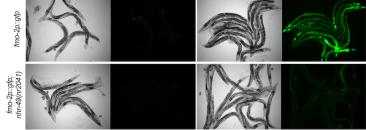
999

Figure 7. NHR-49 is induced in hypoxia in an *hpk-1*-dependent fashion.

001 (A) The graph shows the average fold changes of mRNA levels (relative to unexposed wild-002 type wild-type) in L4 wild-type worms exposed to 0.5% O_2 for 3 hr (n = 4; ordinary one-way ANOVA 003 corrected for multiple comparisons using the Tukey method). (B) Representative micrographs show 004 Pnhr-49::nhr-49::gfp and Pnhr-49::nhr-49::gfp;hpk-1(pk1393) adult worms following 4 hr exposure 005 to 0.5% O₂ and 1 hr recovery in 21% O₂. (C) The graph shows the quantification of whole worm GFP 006 levels in *Pnhr-49::nhr-49::gfp* and *Pnhr-49::nhr-49::gfp;hpk-1(pk1393)* worms following 4 hr 007 exposure to 0.5% O₂ and 1 hr recovery in 21% O₂ (three repeats totalling >30 individual worms per 008 strain). **** p <0.0001 (ordinary one-way ANOVA corrected for multiple comparisons using the 009 Tukey method). n.s. = not significant, WT = wild-type. 010 011 Figure 8. Model of the new NHR-49 hypoxia response pathway and its interaction with 012 HIF-1 signaling. 013 The proposed model of how NHR-49 regulates a new, *hif-1*-independent hypoxia response. 014 During normoxia, the transcription factor NHR-67 negatively regulates NHR-49. However, during

1015 hypoxia, NHR-49 represses *nhr-67*, and the kinase HPK-1 positively regulates NHR-49. This allows


Doering et al. Hypoxia


- 1016 NHR-49 to activate its downstream hypoxia response target genes, including *fmo-2*, *acs-2*, and
- 1017 autophagy genes, whose induction is required for worm survival to hypoxia. (Figure created with
- 1018 Biorender.com, Toronto, ON, Canada).

019

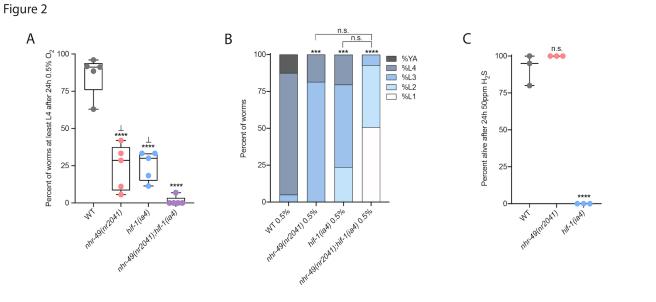
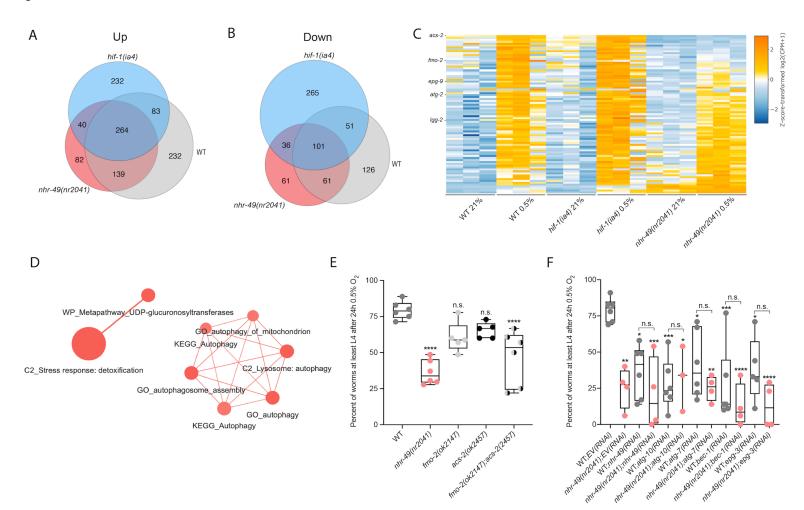
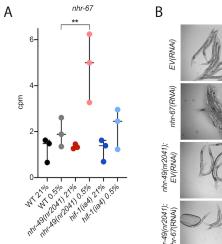
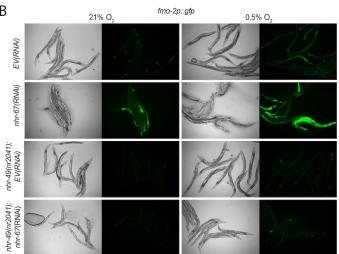

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432575; this version posted February 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

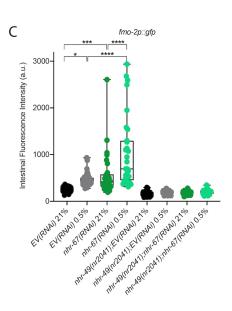
Figure 1



bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432575; this version posted February 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.


bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432575; this version posted February 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.


Figure 3



bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432575; this version posted February 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 5

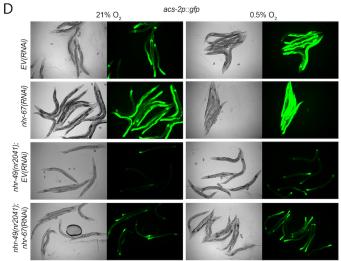
acs-2p∷gfp ****

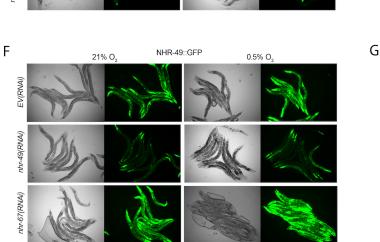
•

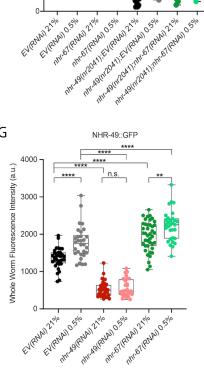
E

Intestinal Fluorescence Intensity (a.u.)

4000-


3000


2000-


1000-

EVIRNANDSO North Ruff 200

EVIRMAN 2700 0

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432575; this version posted February 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

atorna

Figure 4

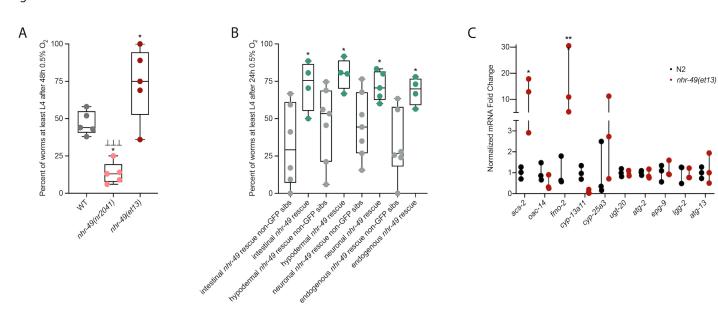
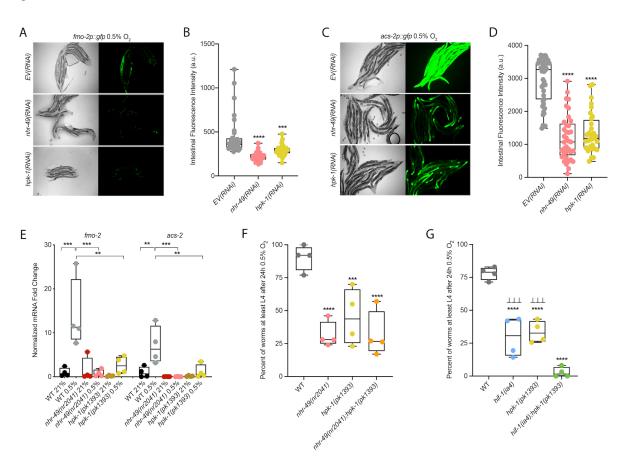



Figure 6

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432575; this version posted February 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

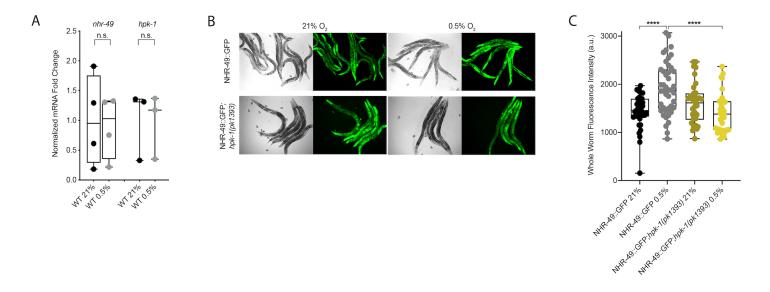
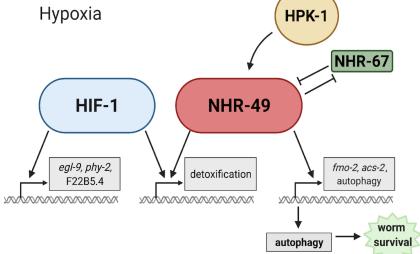



Figure 8 (Which was not ed

Doering et al. Hypoxia

Supplementary Figures

1021Supplementary Figure 1. nhr-49 and hif-1 mutants do not display developmental defects1022in normoxia.

023	(A) The graph shows the average developmental success of wild-type, <i>nhr-49(nr2041)</i> , <i>hif-</i>
024	1(ia4), and nhr-49(nr2041); hif-1(ia4) worm embryos kept in 21% O ₂ for 65 hr, and counted as ability
025	to reach at least L4 stage (three repeats totalling >100 individual worms per strain). All comparisons
026	not significant (ordinary one-way ANOVA corrected for multiple comparisons using the Tukey
027	method). (B) The graph shows the average developmental success of wild-type, <i>nhr-49(nr2041)</i> , <i>hif-</i>
028	1(ia4), and nhr-49(nr2041); hif-1(ia4) larval worms kept in 21% O ₂ for 48 hr from L1 stage (four
029	repeats totalling >60 individual worms per strain). All comparisons not significant (ordinary one-way
030	ANOVA corrected for multiple comparisons using the Tukey method). WT = wild-type.
031	
032	Supplementary Figure 2. RNA-seq reveals discrete hypoxia responsive transcriptional
033	programs.
034	(A) The figure shows a Multi-Dimensional Scaling (MDS) plot of the distances between gene
1034 1035	(A) The figure shows a Multi-Dimensional Scaling (MDS) plot of the distances between gene expression profiles. Distances on the MDS plot correspond to the root-mean-square average of the
035	expression profiles. Distances on the MDS plot correspond to the root-mean-square average of the
1035 1036	expression profiles. Distances on the MDS plot correspond to the root-mean-square average of the largest 200 log2-fold-changes between each pair of samples. (B) The graph shows average transcript
1035 1036 1037	expression profiles. Distances on the MDS plot correspond to the root-mean-square average of the largest 200 log2-fold-changes between each pair of samples. (B) The graph shows average transcript levels in counts per million (CPM) of <i>fmo-2</i> mRNA in L4 wild-type, <i>nhr-49(nr2041)</i> , and <i>hif-1(ia4)</i>
1035 1036 1037 1038	expression profiles. Distances on the MDS plot correspond to the root-mean-square average of the largest 200 log2-fold-changes between each pair of samples. (B) The graph shows average transcript levels in counts per million (CPM) of <i>fino-2</i> mRNA in L4 wild-type, <i>nhr-49(nr2041)</i> , and <i>hif-1(ia4)</i> worms exposed to 0.5% O ₂ for 3 hr or kept at 21% O ₂ (n = 3). ** p <0.01 (ordinary one-way ANOVA
 1035 1036 1037 1038 1039 	expression profiles. Distances on the MDS plot correspond to the root-mean-square average of the largest 200 log2-fold-changes between each pair of samples. (B) The graph shows average transcript levels in counts per million (CPM) of <i>fmo-2</i> mRNA in L4 wild-type, <i>nhr-49(nr2041)</i> , and <i>hif-1(ia4)</i> worms exposed to 0.5% O ₂ for 3 hr or kept at 21% O ₂ (n = 3). ** p <0.01 (ordinary one-way ANOVA corrected for multiple comparisons using the Tukey method). (C , D) Enriched WormCat (Category 2)
 1035 1036 1037 1038 1039 1040 	expression profiles. Distances on the MDS plot correspond to the root-mean-square average of the largest 200 log2-fold-changes between each pair of samples. (B) The graph shows average transcript levels in counts per million (CPM) of <i>fmo-2</i> mRNA in L4 wild-type, <i>nhr-49(nr2041)</i> , and <i>hif-1(ia4)</i> worms exposed to 0.5% O ₂ for 3 hr or kept at 21% O ₂ (n = 3). ** p <0.01 (ordinary one-way ANOVA corrected for multiple comparisons using the Tukey method). (C , D) Enriched WormCat (Category 2) categories among genes that are significantly up-regulated over two-fold (C) or down-regulated over
 1035 1036 1037 1038 1039 1040 1041 	expression profiles. Distances on the MDS plot correspond to the root-mean-square average of the largest 200 log2-fold-changes between each pair of samples. (B) The graph shows average transcript levels in counts per million (CPM) of <i>fmo-2</i> mRNA in L4 wild-type, <i>nhr-49(nr2041)</i> , and <i>hif-1(ia4)</i> worms exposed to 0.5% O ₂ for 3 hr or kept at 21% O ₂ (n = 3). ** p <0.01 (ordinary one-way ANOVA corrected for multiple comparisons using the Tukey method). (C , D) Enriched WormCat (Category 2) categories among genes that are significantly up-regulated over two-fold (C) or down-regulated over two-fold (D) in wild-type worms in 21% O ₂ vs. 0.5% O ₂ are plotted by -log10 p-value. (E , G)

Doering et al. Hypoxia

045	O ₂ vs. 0.5% O ₂ in wild-type, <i>hif-1(ia4)</i> , and <i>nhr-49(nr2041)</i> worms. Genes along the y-axis are colored
046	in each repeat based on their z-scores of the log2-transformed Counts Per Million (CPM) plus 1. (F, H)
047	Network views of the enriched functional categories among the 139 genes which are significantly
048	induced over two-fold in 21% O ₂ vs. 0.5% O ₂ in wild-type and <i>nhr-49(nr2041)</i> worms, but not in <i>hif-</i>
049	1(ia4) (F), and the 264 genes which are significantly induced over two-fold in 21% O ₂ vs. 0.5% O ₂ in
050	wild-type, hif-1(ia4), and nhr-49(nr2041) worms (H). Edge represents significant gene overlap as
051	defined by a Jaccard Coefficient larger than or equal to 25%. Dot size reflects number of genes in each
052	functional category; colour intensity reflects statistical significance (-log10 p-value). WT = wild-type.
053	
054	Supplementary Figure 3. <i>nhr-49</i> regulates <i>acs-2</i> induction following exposure to hypoxia.
055	(A) The graph shows average fold changes of mRNA levels (relative to unexposed wild-type) in
056	L4 wild-type, <i>nhr-49(nr2041)</i> , and <i>hif-1(ia4)</i> worms exposed to 0.5% O_2 for 3 hr (n = 3). *,** p < 0.05,
057	0.01 (ordinary one-way ANOVA corrected for multiple comparisons using the Tukey method). (B)
058	Representative micrographs show Pacs-2::gfp and Pacs-2::gfp;nhr-49(nr2041) adult worms following
059	4 hr exposure to 0.5% O ₂ and 1 hr recovery in 21% O ₂ . (C) The graph shows the quantification of
060	intestinal GFP levels in Pacs-2::gfp and Pacs-2::gfp;nhr-49(nr2041) worms following 4 hr exposure to
061	0.5% O_2 and 1 hr recovery in 21% O_2 (three repeats totalling >30 individual worms per strain). **** p
062	<0.0001 (ordinary one-way ANOVA corrected for multiple comparisons using the Tukey method). n.s.
063	= not significant, WT = wild-type.
064	
065	Supplementary Figure 4. Mutants of downstream transcriptional targets of <i>nhr-49</i> in
066	hypoxia do not display functional defects in normoxia.
067	(A) The graph shows the average population survival of wild-type, <i>nhr-49(nr2041)</i> , <i>fmo-</i>
068	2(ok2147), acs-2(ok2457), and fmo-2(ok2147); acs-2(ok2457) worm embryos kept in 21% O ₂ for 65 hr,

and counted as ability to reach at least L4 stage (three repeats totalling >100 individual worms per

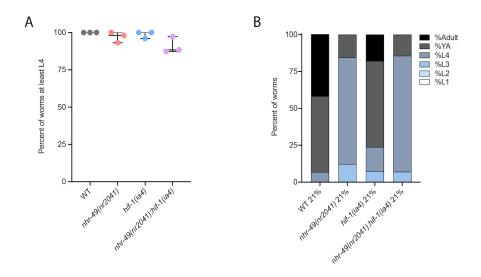
Doering et al. Hypoxia

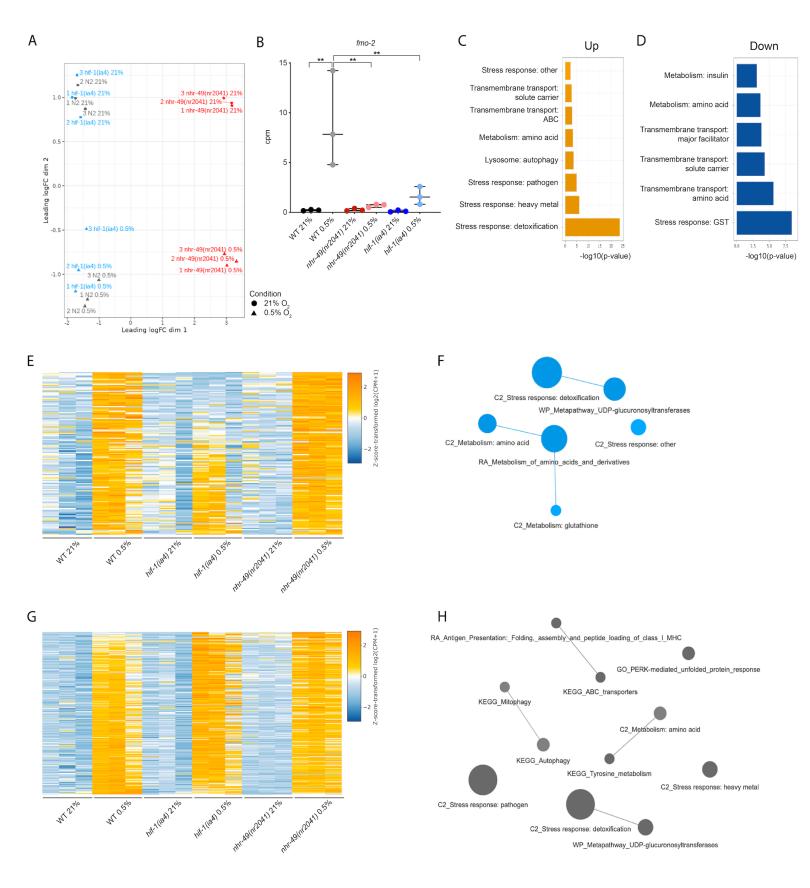
070	strain). All comparisons not significant (ordinary one-way ANOVA corrected for multiple comparisons
071	using the Tukey method). (B) The graph shows the average population survival of second generation
072	wild-type and <i>nhr-49(nr2041)</i> worm embryos fed EV, <i>nhr-49</i> , <i>atg-10</i> , <i>atg-7</i> , <i>bec-1</i> , or <i>epg-3</i> RNAi
073	kept in 21% O ₂ for 65 hr, and counted as ability to reach at least L4 stage (three repeats totalling >100
074	individual worms per strain). All comparisons not significant (ordinary one-way ANOVA corrected for
075	multiple comparisons using the Tukey method). WT = wild-type.
076	
077	Supplementary Figure 5. <i>nhr-67</i> is functionally required for survival in hypoxia.
078	(A) The graph shows average fold changes of mRNA levels (relative to wild-type) in L4 wild-
079	type and <i>nhr-49(et13)</i> worms ($n = 3$; ordinary one-way ANOVA corrected for multiple comparisons
080	using the Tukey method). (B-C) Representative micrographs (B) and quantification (C) of intestinal
081	GFP levels in <i>Pfmo-2::gfp;nhr-49(et13)</i> adult worms fed EV or <i>nhr-67</i> RNAi kept in 21% O ₂ (three
082	repeats totalling >30 individual worms per strain). ** p <0.01 (ordinary one-way ANOVA corrected
083	for multiple comparisons using the Tukey method). (D) The graph shows average population survival
084	of second generation wild-type worm embryos fed EV, nhr-49, or nhr-67 RNAi following 24 hr
085	exposure to 0.5% O ₂ , then allowed to recover at 21% O ₂ for 65 hr, and counted as ability to reach at
086	least L4 stage (four repeats totalling >100 individual worms per strain). *, ** p<0.05,0.01 vs.
087	EV(RNAi) worms (ordinary one-way ANOVA corrected for multiple comparisons using the Tukey
088	method). (E) The graph shows the average population survival of second generation wild-type worm
089	embryos fed EV, <i>nhr-49</i> , or <i>nhr-67</i> RNAi kept in 21% O ₂ for 65 hr, and counted as ability to reach at
090	least L4 stage (four repeats totalling >100 individual worms per strain). All comparisons not significant
091	(ordinary one-way ANOVA corrected for multiple comparisons using the Tukey method). n.s. = not
092	significant, WT = wild-type.
000	

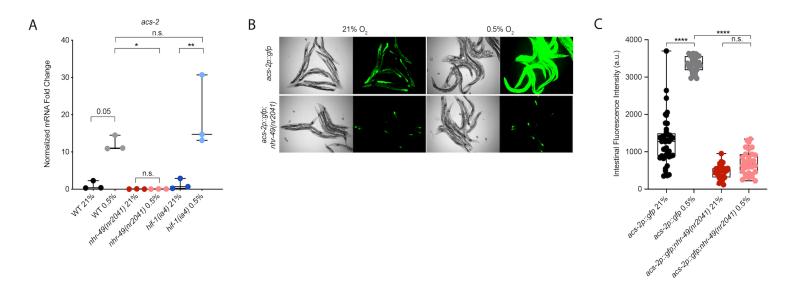
093

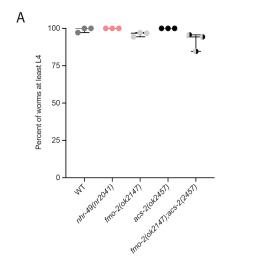
1094 Supplementary Figure 6. *hpk-1* mutants do not display functional defects in normoxia.

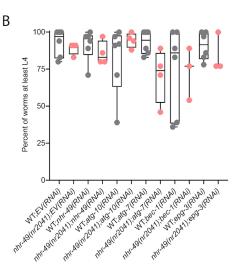
48

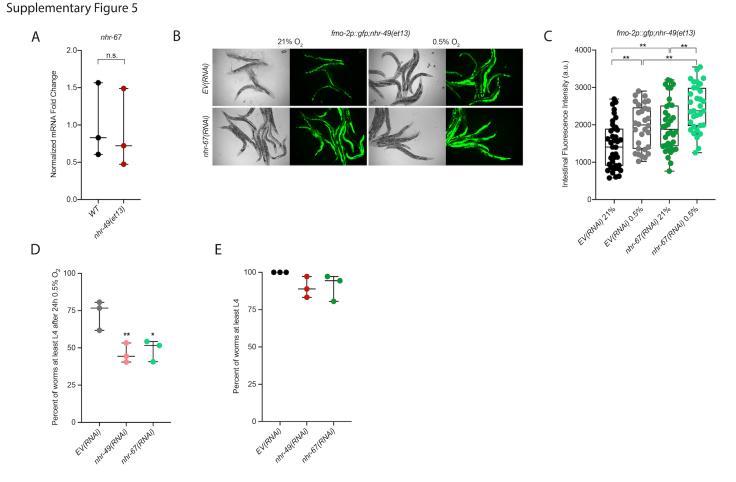

```
Doering et al. Hypoxia
```

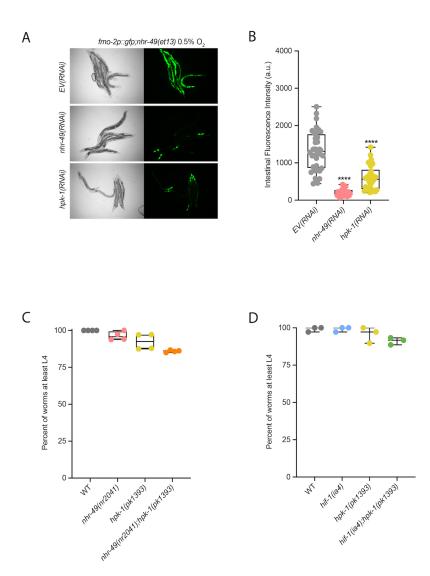

1095	(A, B) Representative micrographs (A) and quantification (B) of intestinal GFP levels in <i>Pfmo</i> -
096	2::gfp;nhr-49(et13) adult worms fed EV, nhr-49, hif-1, or hpk-1 RNAi kept in 21% O ₂ (three or more
097	repeats totalling >30 individual worms per strain). **** p <0.0001 vs. EV(RNAi) (ordinary one-way
098	ANOVA corrected for multiple comparisons using the Tukey method). (C) The graph shows average
099	population survival of wild-type, nhr-49(nr2041), hpk-1(pk1393), and nhr-49(nr2041); hpk-1(pk1393)
100	worm embryos kept in 21% O2 for 65 hr, and counted as ability to reach at least L4 stage (four repeats
101	totalling >100 individual worms per strain). All comparisons not significant (ordinary one-way
102	ANOVA corrected for multiple comparisons using the Tukey method). (D) The graph shows average
103	population survival of wild-type, hif-1(ia4), hpk-1(pk1393), and hif-1(ia4); hpk-1(pk1393) worm
104	embryos kept in 21% O ₂ for 65 hr, and counted as ability to reach at least L4 stage (four repeats
105	totalling >60 individual worms per strain). All comparisons not significant (ordinary one-way ANOVA
106	corrected for multiple comparisons using the Tukey method). n.s. = not significant, WT = wild-type.
107	
108	Supplementary Figure 7. <i>hpk-1</i> is post-transcriptionally regulated in hypoxia.
109	(A) Representative micrographs show <i>Phpk-1::gfp</i> adult worms in 21% O ₂ or following 4 hr
110	exposure to 0.5% O ₂ and 1 hr recovery in 21% O ₂ . (B) Quantification of whole worm GFP levels in

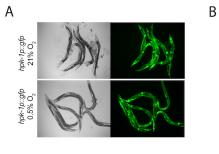

1111 *Phpk-1::gfp* worms following 4 hr exposure to 0.5% O₂ and 1 hr recovery in 21% O₂ or kept at 21% O₂

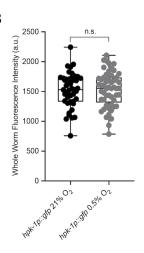

(four repeats totalling >30 individual worms per strain; ordinary one-way ANOVA corrected for


- 113 multiple comparisons using the Tukey method). n.s. = not significant.
- 1114









bioRxiv preprint doi: https://doi.org/10.1101/2021.02.24.432575; this version posted February 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Doering et al. Hypoxia

1115 Supplementary Tables

116 Supplementary Table 1. Statistical comparison of each genotype's ability to reach at least L4

following 24 hr exposure to 0.5% O₂ as embryo and then allowed to recover at 21% O₂ for 65 hr,

compared to worm embryos kept in 21% O₂ for 65 hr.

0.5% O ₂ Figure	21% O ₂ Figure	Genotype	p-value
Figure 2A	Supplementary Figure 1A	WT	0.4943
Figure 2A	Supplementary Figure 1A	nhr-49(nr2041)	<0.0001****
Figure 2A	Supplementary Figure 1A	hif-1(ia4)	<0.0001****
Figure 2A	Supplementary Figure 1A	nhr-49(nr2041);hif-1(ia4)	<0.0001****
Figure 3D	Supplementary Figure 4A	WT	0.1403
Figure 3D	Supplementary Figure 4A	nhr-49(nr2041)	<0.0001****
Figure 3D	Supplementary Figure 4A	fmo-2(ok2147)	0.0005***
Figure 3D	Supplementary Figure 4A	acs-2(ok2457)	0.0008***
Figure 3D	Supplementary Figure 4A	fmo-2(ok2147);acs-2(ok2157)	<0.0001****
Figure 3E	Supplementary Figure 4B	WT;EV(RNAi)	0.9995
Figure 3E	Supplementary Figure 4B	nhr-49(nr2041);EV(RNAi)	0.0003***
Figure 3E	Supplementary Figure 4B	WT;nhr-49(RNAi)	0.0001***
Figure 3E	Supplementary Figure 4B	nhr-49(nr2041);nhr-49(RNAi)	0.0002***
Figure 3E	Supplementary Figure 4B	WT;atg-10(RNAi)	0.0001***
Figure 3E	Supplementary Figure 4B	nhr-49(nr2041);atg-10(RNAi)	0.0021**
Figure 3E	Supplementary Figure 4B	WT;atg-7(RNAi)	0.0003***
Figure 3E	Supplementary Figure 4B	nhr-49(nr2041);atg-7(RNAi)	0.0534
Figure 3E	Supplementary Figure 4B	WT;bec-1(RNAi)	0.0015**
Figure 3E	Supplementary Figure 4B	<i>nhr-49(nr2041);bec-1(RNAi)</i>	0.0033**

Doering et al. Hypoxia

Supplementary Figure 4B	WT; <i>epg-3(RNAi)</i>	0.0006***
Supplementary Figure 4B	nhr-49(nr2041);epg-3(RNAi)	0.0001***
Supplementary Figure 5E	EV(RNAi)	0.0072**
Supplementary Figure 5E	nhr-49(RNAi)	0.0001***
Supplementary Figure 5E	nhr-67(RNAi)	0.0002***
Supplementary Figure 6C	WT	0.9119
Supplementary Figure 6C	nhr-49(nr2041)	<0.0001****
Supplementary Figure 6C	hpk-1(pk1393)	<0.0001****
Supplementary Figure 6C	nhr-49(nr2041);hpk-1(pk1393)	<0.0001****
Supplementary Figure 6D	WT	0.0223*
Supplementary Figure 6D	hif-1(ia4)	<0.0001****
Supplementary Figure 6D	hpk-1(pk1393)	<0.0001****
Supplementary Figure 6D	hif-1(ia4);hpk-1(pk1393)	<0.0001****
	Supplementary Figure 4BSupplementary Figure 5ESupplementary Figure 5ESupplementary Figure 5ESupplementary Figure 6CSupplementary Figure 6DSupplementary Figure 6DSupplementary Figure 6D	Supplementary Figure 4Bnhr-49(nr2041);epg-3(RNAi)Supplementary Figure 5EEV(RNAi)Supplementary Figure 5Enhr-49(RNAi)Supplementary Figure 5Enhr-67(RNAi)Supplementary Figure 6CWTSupplementary Figure 6Cnhr-49(nr2041)Supplementary Figure 6Cnhr-49(nr2041)Supplementary Figure 6Cnhr-49(nr2041)Supplementary Figure 6Cnhr-49(nr2041);hpk-1(pk1393)Supplementary Figure 6Dnhr-49(nr2041);hpk-1(pk1393)Supplementary Figure 6Dhif-1(ia4)Supplementary Figure 6Dhpk-1(pk1393)

All p-values are derived using ordinary one-way ANOVA corrected for multiple comparisons using the

120 Tukey method.
$$p<0.05$$
, $p<0.01$, $p<0.01$, $p<0.001$, and $p<0.001$. WT = wild-type.

121

122 Supplementary Table 2. Statistical comparison of each genotype's ability to reach at least L4

stage from L1 stage following 48 hr exposure to 0.5% O₂ as embryos, compared to worms kept in

1124 **21% O₂ for 48 hr.**

0.5% O ₂ Figure	21% O ₂ Figure	Genotype	p-value
Figure 2B	Supplementary Figure 1B	WT	>0.9999
Figure 2B	Supplementary Figure 1B	nhr-49(nr2041)	0.0028**
Figure 2B	Supplementary Figure 1B	hif-1(ia4)	0.0021**
Figure 2B	Supplementary Figure 1B	nhr-49(nr2041);hif-1(ia4)	<0.0001****

Doering et al. Hypoxia

- All p-values are derived using ordinary one-way ANOVA corrected for multiple comparisons using the
- 126 Tukey method. **p<0.01 and ****p<0.0001. WT = wild-type.
- 127
- 128 Supplementary Table 3. List of the 83 genes upregulated more than two-fold in 21% O₂ vs. 0.5%
- 129 **O**₂ in wild-type and *hif-1(ia4)* worms, but not in *nhr-49(nr2041)* worms, i.e. *nhr-49*-dependent,
- 130 *hif-1*-independent genes.

ABHD-5.1	C42D4.1	CYP-37B1*	FAAH-2	MNK-1	R10D12.6	TBC-14
ACS-2	C49G7.12	CYP-43A1*	FBXA-98	NHL-3	SIAH-1	UGT-2*
AKT-2	C49G7.7	EEED8.2	FBXA-99	NHR-131	SRH-2	UGT-20*
ATG-2	C50F7.5	EPG-9	FMO-2	NHR-238	SRR-6	UGT-51*
B0228.6	CBP-3	F13E9.15	GBA-2	NHR-65	SRT-39	VEM-1
B0403.3	CUP-16	F16B12.4	ICL-1	NHR-88	SRW-86	W09G12.7
C01B4.7	CYP-13A11*	F16C3.2	K09D9.1	NUMR-2	SYX-2	Y19D10A.4
C06E4.6	CYP-13A5*	F20B6.7	K09E9.1	OAC-14	T04H1.2	Y38C1AA.6
C18B12.4	CYP-13A6*	F22F7.4	LGC-1	OAC-6	T16G1.4	Y43F8C.3
C25F9.11	CYP-25A3*	F35E8.2	LGG-2	PALS-14	T21B4.21	Y77E11A.2
C33A11.2	CYP-34A9*	F43G6.8	M01A8.1	R03H10.6	T22C8.6	ZIP-5
C33A12.3	CYP-35A1*	F59C6.16	MFB-1	R09D1.12	T24E12.5	

- 131 * genes involved in detoxification response
- 132
- 133 Supplementary Table 4. List of 139 genes upregulated more than two-fold in 21% O₂ vs. 0.5% O₂
- in wild-type and *nhr-49(nr2041)* worms, but not in *hif-1(ia4)* worms, i.e. *hif-1*-dependent, *nhr-49-*
- independent genes.

ACS-12	C52E2.5	F07C3.9	FBXA-50	MMAA-1	SQRD-1	UGT-5*
B0507.6	C56E6.2	F13H8.11	FMO-4	NAS-28	SRD-35	UGT-50*
BATH-36	CBP-2	F16H6.10	FRM-10	NHR-161	SRH-283	W07A12.4
C06G3.6	CEEH-1	F17C11.11	GBH-2	NHR-173	SRX-12	Y102A11A.9
C08B6.2	CHIL-13	F22B3.7	GCL-1	NHR-195	SRX-125	Y105C5B.25
C10C5.5	CLEC-144	F22B5.4	GLB-1	NHR-210	SRX-21	Y116A8C.25
C14B9.3	CLEC-222	F25E5.4	GLB-15	NHR-42	T04A11.1	Y17G7B.8
C15B12.8	CLEC-223	F29C6.1	HGO-1	NHR-59	T07G12.5	Y32B12C.1
C18H9.5	COMT-4	F35E12.9	K04C1.3	NLG-1	T20D4.3	Y40H7A.11
C25F9.5	CYP-13A3*	F37H8.2	K05C4.9	OAC-31	T24A6.7	Y43F8B.13

Doering et al. Hypoxia

C31H5.5	CYP-14A2*	F42C5.4	K08B4.7	OAC-54	T28F3.5	Y43F8B.15
C32D5.12	D1054.18	F42G2.2	K11D12.13	OAC-7	T28H10.1	Y43F8B.23
C32E8.9	DDO-1	F45D11.14	K11G9.1	PCK-1	T28H10.3	Y47H10A.5
C33D9.6	DEL-5	F47H4.2	KMO-1	PCP-2	TBC-6	Y4C6B.4
C34D1.4	DH11.2	F53C3.4	LINC-72	PGP-7	TPRA-1	Y53G8B.2
C34D10.2	E02C12.10	F56D2.5	M01H9.2	PHY-2	TPS-2	Y57A10A.14
C37C3.10	ECH-9	F57B9.1	M03A1.3	R05G6.10	TWK-31	Y5H2B.1
C44C1.6	EFK-1	FBXA-188	MADF-10	R07E4.1	UGT-17*	ZK228.4
C44E12.1	EGL-9	FBXA-25	MATH-27	R08D7.7	UGT-24*	ZK550.6
C49C3.15	ETHE-1	FBXA-26	MCE-1	SKR-5	UGT-4*	

* genes involved in detoxification response

137

138 Supplementary Table 5. List of 264 genes upregulated more than two-fold in 21% O₂ vs. 0.5% O₂

139	via RNA-seq in wild-type, <i>nhr-49(nr2041)</i> , and <i>hif-1(ia4)</i> .
-----	---

AAKG-4	CATP-3	F21D12.3	FBXA-82	M01H9.3	SLC-17.4	UGT-19*
ARRD-11	CDR-2	F22H10.2	FBXA-91	M163.1	SLC-36.5	UGT-33*
ARRD-24	CHIL-18	F25B3.5	FBXA-92	M60.7	SODH-1	UGT-54*
ARRD-8	CKR-2	F26F12.3	FBXL-1	MAI-1	SQST-1	W04C9.8
B0205.13	CNC-2	F27D9.2	FIPR-22	MTL-1	SRD-27	W05H9.1
B0205.14	CNC-4	F28H1.1	FIPR-24	NEP-26	SRH-48	Y15E3A.5
B0310.3	CNG-1	F28H6.8	FIPR-26	NHR-103	SRI-36	Y34F4.4
B0462.5	COEL-1	F33H12.7	FKH-7	NHR-107	SRI-39	Y34F4.7
BEST-5	COMT-5	F34H10.3	FTN-1	NHR-115	SRM-3	Y37A1B.5
BIGR-1	CYP-13A8*	F37A8.5	GEM-4	NHR-126	SRP-8	Y38H6C.9
C02F5.12	CYP-14A1*	F40F12.9	GLO-3	NHR-132	STO-1	Y39A3A.4
C04A11.5	CYP-14A4*	F41E6.5	GPA-1	NHR-18	STR-31	Y42G9A.1
C04C11.25	CYP-14A5	F43C1.7	H28G03.1	NHR-211	SWT-1	Y43F8B.14
C06B3.6	CYP-32B1*	F43C11.7	HAF-7	NHR-212	T05H4.15	Y43F8B.9
C06B3.7	CYP-33C7	F43H9.4	HIL-1	NHR-226	T08A9.13	Y44A6C.1
C06E1.11	CYP-33C8*	F45D3.4	HPD-1	NHR-228	T09F5.12	Y45F10D.6
C08E8.4	D1086.5	F45E1.5	HRG-1	NHR-230	T10C6.15	Y46G5A.36
C08F11.13	DAAO-1	F46A8.13	HRG-2	NHR-57	T10G3.1	Y47G6A.5
C10C5.2	DC2.5	F47B10.9	HSP-12.3	NHR-79	T10H9.8	Y47H10A.3
C11G10.1	DCT-1	F47B8.3	HSP-70	NHR-90	T12A7.6	Y54G11A.7
C18A11.1	DCT-7	F47B8.4	IRG-2	NHR-99	T12D8.5	Y54G2A.11
C23H4.2	DCT-8	F53A9.7	IST-1	NIPI-3	T16G1.5	Y54G2A.36
C23H4.6	DOD-3	F53B2.8	K01C8.1	NNT-1	T19C4.5	Y54G2A.52
C24B5.4	E03H4.8	F53C3.6	K01F9.2	PALS-34	T20D4.7	Y56A3A.33

Doering et al. Hypoxia

						0 11
C25F9.12	E04F6.6	F54B8.4	K02D7.1	PALS-6	T24C4.4	Y58A7A.3
C28G1.6	EGAP1.1	F55C12.19	K05B2.4	PARG-2	T27F6.8	Y58A7A.4
C29F7.2	F08G12.5	F56C4.4	K06A9.2	PCS-1	T28B8.1	Y58A7A.5
C31H2.4	F09F7.6	F56D6.8	K06G5.3	PEK-1	T28F4.4	Y6E2A.4
C33D9.13	F10E9.12	F57B9.3	K08D8.12	PGP-3	T28F4.5	Y6G8.2
C35A5.6	F13C5.1	F58G6.9	K08D9.4	PGP-9	TLI-1	Y71G12B.2
C36B1.6	F13D11.3	F59B10.4	K09C8.7	PITR-5	TOS-1	ZC239.14
C37A5.3	F14F9.2	F59E11.7	K10G4.3	PTR-22	TSP-1	ZC395.5
C44H9.5	F14F9.3	FBXA-105	K10G6.9	R06B9.5	TTR-23	ZC443.3
C46C2.2	F14F9.4	FBXA-163	K12H6.6	R06C1.6	TTR-37	ZC443.4
C49G7.10	F15A8.6	FBXA-189	KGB-2	R08F11.4	TTS-1	ZIG-7
C54F6.18	F15E6.3	FBXA-24	KREG-1	R102.1	UBC-8	ZK836.3
C54G10.1	F17C11.13	FBXA-66	LINC-37	R186.1	UGT-13*	
CAH-4	F18G5.6	FBXA-80	M01B2.13	SCL-2	UGT-18*	

* genes involved in detoxification response

141

142 Supplementary Table 6. Worm strains used in this study.

Strain	Genotype	Reference
N2	Wild-type	(Brenner, 1974)
STE68	nhr-49(nr2041) I	(Marc R. Van Gilst et al.,
		2005)
VE40	<i>eavEx20[Pfmo-2::gfp</i> + <i>rol-6(su1006)]</i>	(Goh et al., 2018)
STE129	<i>nhr-49(nr2041) I; eavEx20[Pfmo-2::gfp</i> + <i>rol-6(su1006)]</i>	This study
ZG31	hif-1(ia4) V	(Jiang et al., 2001)
STE130	nhr-49(nr2041) I; hif-1(ia4) V	This study
VC1668	fmo-2(ok2147) IV	(Leiser et al., 2015)
RB1899	acs-2(ok2457) V	(J. Zhang et al., 2011)
STE131	fmo-2(ok2147) IV; acs-2(ok2457) V	This study
STE110	nhr-49Iet13) I	(K. Lee et al., 2016)

Doering	et i	al.	Нуро	xia
---------	------	-----	------	-----

AGP33a	nhr-49(nr2041)I;glmEx5 [Pnhr-49::nhr-49::gfp + Pmyo-	(Naim et al., 2020)
	2::mCherry]	
AGP65	nhr-49(nr2041)I; glmEx9 [Pgly-19::nhr-49::gfp + Pmyo-	(Naim et al., 2020)
	2::mCherry]	
AGP53	<i>nhr-49(nr2041)I; glmEx11 [Pcol-12::nhr-49::gfp + Pmyo-</i>	(Naim et al., 2020)
	2::mCherry]	
AGP51	<i>nhr-49(nr2041)I; glmEx13 [Prgef-1::nhr-49::gfp + Pmyo-</i>	(Naim et al., 2020)
	2::mCherry]	
WBM170	wbmEx57 [Pacs-2::gfp + rol-6(su1006)]	(Burkewitz et al., 2015)
WBM169	nhr-49(nr2041) I; wbmEx57 [Pacs-2::gfp + rol-6(su1006)]	(Burkewitz et al., 2015)
AGP25f	glmEx5 (Pnhr-49::nhr-49::gfp + Pmyo-2::mCherry)	(Ratnappan et al., 2014)
EK273	hpk-1(pk1393) X	(Raich et al., 2003)
STE132	nhr-49(nr2041) I; hpk-1(pk1393) X	This study
STE133	hif-1(ia4) V; hpk-1(pk1393) X	This study
STE117	nhr-49(et13) I; eavEx20[Pfmo-2::gfp + rol-6(su1006)]	(Goh et al., 2018)
AVS394	artEx12 [Phpk-1::gfp + rol-6(su1006)]	(Das et al., 2017)

143

Supplementary Table 7. List of qRT-PCR primer sequences used in this study.

Gene	Forward primer (5'-3')	Reverse Primer (5'-3')
fmo-2	GGAACAAGCGTGTTGCTGT	GCCATAGAGAAGACCATGTCG
acs-2	AGTGAGACTTGACAGTTCCG	CTTGTAAGAGAGGAATGGCTC
nhr-49	TCCGAGTTCATTCTCGACG	GGATGAATTGCCAATGGAGC
hpk-1	TGTCAAAGTGAAGCCGCTGG	CGGCGCCAGTTCGTGTAGTA
nhr-67	GAGGATGATGCGACGAGTAG	TGGTCTTGAAGAGGAAGGGGA

Doering et al. Hypoxia

act-1	GCTGGACGTGATCTTACTGATTACC	GTAGCAGAGCTTCTCCTTGATGTC
tba-1	GTACACTCCACTGATCTCTGCTGACAAG	CTCTGTACAAGAGGCAAACAGCCATG
ubc-2	AGGGAGGTGTCTTCTTCCTCAC	CGGA TTTGGA TCACAGAGCAGC

145