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Abstract

Complex traits and diseases can be influenced by both genetics and environment. However, given
the large number of environmental stimuli and power challenges for gene-by-environment testing, it
remains acritical challenge to identify and prioritize specific disease-relevant environmental
exposures. We propose a novel framework for leveraging signals from transcriptional responsesto
environmental perturbations to identify disease-relevant perturbations that can modulate genetic risk
for complex traits and inform the functions of genetic variants associated with complex traits. We
perturbed human skeletal muscle, fat, and liver relevant cdll lines with 21 perturbations affecting
insulin resistance, glucose homeostasis, and metabolic regulation in humans and identified
thousands of environmentally responsive genes. By combining these data with GWAS from 31
distinct polygenic traits, we show that heritability of multiple traitsis enriched in regions
surrounding genes responsive to specific perturbations and, further, that environmentally responsive
genes are enriched for associations with specific diseases and phenotypes from the GWAS
catalogue. Overall, we demonstrate the advantages of |arge-scale characterization of transcriptional
changesin diversely stimulated and pathologically relevant cells to identify disease-relevant

perturbations.
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| ntroduction

Genome-wide association studies (GWAYS) have identified thousands of genetic variants
associated with complex diseases and traits'. The majority of these variantsfall into non-coding
regions of the genome and, as a result, their mechanism of action remains largely unknown?. In
recent years, researchers have gained an increasingly clear picture of which parts of the genome are
activein arange of tissues and cell types®®. Integrating such information with results from GWAS
has identified cell types, tissues, and regulatory elements relevant to specific diseases and
phenotypes and moved the field towards mechanistic understanding of GWAS hits™®. In addition,
genomic colocalization and transcri ptome-wide association studies combining results from GWAS
and expression quantitative trait loci (eQTL) studies have identified candidate causal genes and their
mechanisms of action™",

Despite these advances, a modest fraction of GWAS associated variants and eQTLsS

colocalize for any trait*>*

providing the perspective that many disease-relevant effects are
modulated by yet-to-be-discovered environmental factors. To address this challenge, multiple
studies have mapped eQTLsin vitro that are responsive to the environment™>°. For example, the
Immune Variation project identified eQTLs in human CD4+ T lymphocytes with different effects
across distinct immune states'’. These previously unknown, immune state-specific eQTLs were
enriched for autoimmune disease-associated variants, underscoring the importance of exploring
contexts beyond tissues and cell types to reveal the specificity of genetic associations. Although
there is mounting evidence that environment modulates genetic effects, GWAS and eQTL studies
rarely measure and test for genetic interactions with environment exposures. Thisis, in part, due to
the difficulty of identifying and collecting information on the most relevant environmental
exposures in GWAS cohorts and performing eQTL studiesin contexts that are relevant for the

specific trait or disease.

In this study, we extend the current understanding of inherited variation in complex traits by
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implementing anovel framework to model signals from transcriptional responses to environmental
perturbations in order to identify and prioritize disease-relevant environments that can modulate
genetic risk for complex traits and inform the functions of genetic variants and genes associated
with complex traits. Specifically, we first assessed environmental effects on gene expression levels
in three metabolic human cell lines by performing RNA-seq in muscle-, fat-, and liver-relevant cell
lines treated with 21 different environmental perturbations related to aspects of glucose and insulin
metabolism, kinase inhibitors, inflammation, fatty acid metabolism, etc. (N=234 samples). We
identified thousands of environmentally responsive genes underlying disease-associated response
pathways and characterized the specificity and sharing of these effects across perturbations and cell
lines. Next, to identify disease-relevant perturbations, we coupled our gene expression data with
GWAS summary statistics of 31 complex traits and diseases as well as associations from the GWAS
catalogue. We confirmed several well-established environmental -phenotype associations, e.g., the
role of TGF-p1 on asthma® and provided additional evidence for recent and less well-understood
associations, e.g., the role of leptin on major depressive disorder®. Last, to further illustrate how
perturbation experiments inform the functions of complex trait associated variants, we integrate our
perturbation data with genomic colocalization studies and show that the effects of these
perturbations in the relevant tissues i dentifies context-specific molecular mechanisms of GWAS hits
for diverse cardiometabolic traits.

This resource characterizes the dynamic transcriptional landscape in metabolic tissues and
provides aframework to identify and prioritize disease-relevant perturbations and disentangle the
complex gene-environment interactions that determine disease susceptibility, which is particularly

relevant for complex traits such as insulin resistance, diabetes and obesity.

Results

Transcriptome map of 21 perturbations across human skeletal muscle, fat and
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liver ceall lines

We generated a transcriptome map of multiple chemical and environmental perturbationsin
well-established human skeletal muscle, fat and liver cell lines (N=234 samples). Specifically, we
studied 21 environmental perturbations covering multiple aspects of glucose and insulin
metabolism, inflammation, fatty acid metabolism, and including both LDL-lowering and anti-
diabetic drugs (Figure 1 and Table S1). For each perturbation and cell line and matched controls, we
conducted assays in triplicate and applied differential expression analysis. We observed that the
majority of perturbations induced broad gene expression changesin at least one cell lineat FDR <
5% (Figure 1A, Table S2). Several perturbations induced broad changes across all cell lines; for
example, insulin and IGF1 altered the gene expression of 1,500-2,000 genes in each cell line. Other
perturbations had broad changes only in specific cell lines. For example, IL-6, lauroyl-l-carnitine,
and glucose had more pronounced effects in fat, muscle, and liver, respectively, impacting the
expression of 3,161, 2,051 and 2,724 genes, respectively.

Despite the broad effects for each perturbation, multiple differentially expressed (DE) genes
showed perturbation-specific effects within each cell line, highlighting a unique molecular response
to each perturbation. We observed 1,883 genesin muscle, 1,813 genesin fat, and 2,231 genesin
liver altered by only a single perturbation in their respective cell lines (Figure 1B and Table S3).
The largest proportions of perturbation-specific DE genes were found in glucose-stimulated liver
cell lines and TGF-1-stimulated fat cell lines. For these perturbations, 32.6% and 26.4% of DE
genes were not altered by any of the other 20 perturbations in the same cell line (Figure 1C). By
further stratifying across these cell lines, we identified 627, 742, and 808 genes that were both
perturbation- and cell line-specific DE genesin muscle, fat, and liver (FDR < 5%; Figure S4A and
Table S3). Glucose-stimulated liver cells also provided the largest amount of perturbation-and cell
line-specific DE genes; 9.8% of DE genes were not altered by any of the other 20 perturbationsin

any cell line or by glucose stimulation in fat or muscle.
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To identify the relationships between perturbations based on their overall transcriptional
responses, we assessed the correlation of DE genes between each pair of perturbations within the
same cdll line (Figures 1D). The correlation of the effect of some perturbations was similar across
cdl lines, e.q., the effects of insulin and IGF1 were positively correlated in all three cdll lines, i.e.,
Spearman’s p = 0.88, 0.76, and 0.71 in muscle, fat, and liver, respectively. The relationship of other
perturbations, however, was dependent on the cellular context, e.g., while the effects of glucose and
wortmannin were moderately correlated in fat (Spearman’s p = -0.63), their correlation in muscle
and liver was low (Spearman’s p =0.02 and 0.2, respectively).

To explore the shared and specific pathways altered by each perturbation, we performed
enrichment analysis of DE genes in annotated pathways from ConsensusPathDB?® (Table S3). Our
analysis highlighted multiple shared pathways across perturbations and cell lines related to PI3K-
AKT-mTOR, MAPK, adipogenesis, and TGF-§ signaling (Figure $4B). We also observed several
differences in pathway enrichments; for example, pathways related to FOXA2 and FOXA3
transcription factor networks had greater enrichment across several perturbationsin liver thanin
muscle and fat, transcriptional regulation by RUNX2 had greater enrichment in muscle thanin liver
and fat, and chromatin organization and remodeling pathways had greater enrichment in fat than in
liver and muscle. In addition, for genes affected by multiple perturbations we saw strong enrichment
pathways related to insulin signaling and resi stance.

Combined, our concurrent assessment of multiple metabolically relevant perturbations
across cdll lines highlights the relationships between complex cell-specific molecular mechanisms
and provides a genome-wide map of genes and signaling pathways with potential environmental

contributions to complex disease susceptibility.

Prioritizing complex disease-relevant environmental perturbations

To measure the relevance of diverse environmental perturbationsin complex diseases, we
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analyzed our transcriptome data together with GWAS summary statistics for 31 diseases and
complex traits broadly related to multiple cardiometabolic, psychiatric, autoimmune, and
reproductive traits, aswell as hematological measurements (Figure 2 and S5; Table S5). We
hypothesi zed that environmental perturbations impact disease through the same genes that confer
susceptibility to thetrait. To this end, for each of the 21 perturbations across the three cdll lines, we
used stratified LD score regression®** (LDSCreg) to test whether disease heritability, i.e.,
proportion of phenotypic variance determined by genotypic variance, is enriched in regions
surrounding DE genes for that perturbation and cell line, adjusting for both heritability explained by
abaseline mode of genetic architecture® and by regions surrounding genes expressed in the specific
cell line.

For 26 of the 31 traits tested, the SNP-based heritability estimate was sufficiently large to
partition reliably with LDSCreg, i.e., heritability Z-score >= 7 (Table S5). In 19 of these traits, at
least one perturbation in at least one cell line was enriched for heritability (FDR<10%; Figure 2).
Severa of the enrichments recapitulate important known biology. For example, among
cardiometabolic traits, high-density lipoprotein (HDL) and triglyceride levels were enriched for
dexamethasone (P=2.10 x 10" and P=6.53 x 10°®), a corticosteroid known to induce

a®**, and cardiovascular disease was enriched for rosiglitazone (P=6.44 x 10°%), an

dyslipidemi
antidiabetic drug shown to increase risk of cardiovascular disease®. In addition, these enrichments
were often manifested through a single specific relevant cell line. For example, waist-hip ratio
(WHR) heritability was enriched for genes whose expression is modified by perturbationsin fat,
whiletriglyceride and HDL level heritability were enriched for genes whose expression is modified
by perturbationsin the liver.

Severa notable examples were also observed for other tested traits. For psychiatric
disorders, leptin, a hormone produced and secreted by white adipose tissue that is associated with

S28,34,35

antidepressant-like action , was enriched for heritability of major depressive disorder viaits
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effect in fat cell lines (P=2.11 x 10™). In addition, adiponectin, plasma levels of which appear to be

638 \vas enriched

altered in neurological disorders with metabolic and inflammatory components®
for heritability of schizophrenia (P=5.81 x 10°%). For tested autoimmune diseases, TGF-B1, an
immune-suppressive cytokine dysregulated in the intestines of inflammatory bowel disease
patients®, was enriched for heritability of Crohn’s disease (P=1.18 x 10°%), as well as heritability of
alergy, eczema, and asthma®"*>** (P=1.08 x 10), three diseases with shared genetic origin®.
Severa perturbations were also enriched for heritability of hematological measurements; for
example, dexamethasone, a synthetic glucocorticoid known to deplete peripheral blood lymphocytes
and impact immune response™, was enriched for heritability of lymphocyte count (P=2.88 x 10°%).
Lastly, for reproductive traits, glucose was enriched for heritability of age at menarche - older age at
menarche is associated with reduced risk of glucose metabolism disorder® - while IGF1, whose

serum levels rapidly decrease after menopause™, was enriched for heritability of age at menopause

(P=2.21x 10°%).

| dentifying environmental perturbations impacting GWAS-significant loci.

Beyond the broad polygenic impact of the tested perturbations and in order to analyze a
larger number of traits, we sought to prioritize the subset of perturbations that were enriched for
impact on GWAS-significant loci in specific complex diseases. We tested for enrichment of DE
genes for cis-SNPs associated with diseases and phenotypes in the GWAS catalogue®’. As many
traits had a small number of associations, we first tested for enrichment within groups of similar
traits, as defined in the GWAS catalogue (Figure 3, Table S6).

We observed a significant enrichment for at least one perturbation and cell line across all 14
groups of complex diseases and traits tested (FDR<10%). For example, genes responsive to the
effect of rosiglitazone, an insulin sensitizer known to affect plasma lipid levels®, were enriched

within GWAS significant hits for lipid or lipoprotein measurements (OR=2.00 and P=5.98 x 10°%).
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In addition, genes responsive to the effect of retinoic acid, a metabolite of vitamin A that is
synthesized in the liver and whose signaling dysregulation contributes to hepatic disease®, were
enriched within GWAS hits for liver enzyme measurements (ORwyusae= 2.71 and Pyusge= 9.06 X 10
% ORLive=2.60 and PLive= 1.8 x 10°%). Moreover, atorvastatin and metformin, two perturbations with

054 \were both

highly correlated DE signals (Figure 1D) known to reduce cardiovascular morbidity
enriched within GWAS hits for cardiovascular measurements (ORator-Live= 1.75 and PatoRr-Liver=
1.58 x 10”% ORaTORMusdle= 2.53 and Pator-musde= 1.52 X 10°% ORuerr-Live= 1.86 and Puerr-Liver=
1.56 x 10). In line with the LDSC regression-based enrichment for Crohn’s disease, we observed
that genes responsive to TGF-p1 were enriched within GWAS significant hits for digestive system
disorders (OR = 2.7 and P= 3.96 x 10°).

More generally, we observed that GWAS hits for immune system disorders or inflammatory
measurements were enriched in genes responsive to the effect of inflammatory perturbations, e.g.,
ORmr= 1.92 and 1.77 and Pryea = 3.84 x 10® and 2.54 x 107, for immune system disorders and
inflammatory measurements respectively. Neurological disorders were also enriched for
inflammatory perturbations, though to a lesser extent (e.g., ORtnra= 1.35 and Pryra = 8.60 x 10™).
Associations with lipid or lipoprotein measurements and drug metabolism traits were enriched in
genes responsive to several perturbations vialiver, where most drug metabolism occurs™, and
associations with body measurements were enriched via muscle.

For traits with alarge number of GWAS hits, i.e,, traitswith at least 100 reported associated
loci, we tested enrichments directly (Figure S5). In 14 of the 152 complex diseases and traits tested,
we observed a significant enrichment for at |east one perturbation and cell line (FDR<10%). For
example, genes in muscle cells that were responsive to the effect of isoprenaline, a beta-adrenergic
agonist with effects on cardiac muscle®, were enriched within GWAS significant hits for
cardiovascular disease (OR=2.24 and P=2.56 x 10'%). In addition, consistent with the LDSCreg-

based enrichment of dexamethasone for HDL heritability in liver, genes responsive to
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dexamethasone in liver were enriched within GWAS significant associations for total cholesterol
levels (OR=3.08 and P=1.94 x 10). Lastly, genes responsive to IGF1 in the liver were enriched
within significant associations for birth weight (OR=3.86 and P=5.48 x 10™), consistent with prior

observations of negative correlation between IGF1 levels and birth weight®"®.

Environmental perturbations harbor causal genes and help inform their functions

A magjor challenge with GWAS datain isolation isidentifying causal disease genes. Here,
we assessed whether combining GWAS with relevant environmental perturbations helped to
identify or reinforce causal disease genes and to inform on their molecular functions. As many of
our perturbations were related to cardiometabolic traitsincluding IR, obesity, and T2D, we tested if
genes affected by our panel of perturbations harbored candidate causal genes underlying loci for
seven cardiometabolic traits. To assess this, we integrated our perturbation data with results from
genomic colocalization analyses of GWAS loci for these seven traitsand GTEx eQTLs in visceral
and subcutaneous adipose, skeletal muscle, and liver tissues®. We observed that genes with a
transcriptional response to at least one of our environmental perturbations are enriched among the
candidate causal genes, i.e., genes with high posterior colocalization probability (CLPP), for
cardiometabolic traits (Figure 4A; OR=1.40, Fisher's exact test P-value= 5.33 x 10%). We next
assessed whether DE genes for specific perturbation-cell line combinations were more likely to be
causal, compared with non-DE genes (Figure 4B). Genes responsive to isoprenaline, SP600125 (a c-
Jun N-terminal kinase inhibitor that plays an essential role in TLR mediated inflammatory
responses), and TNFa in fat had significantly higher median CLPPs (FDR<10%), compared to non-
DE genes (Wilcoxon test; Pisop= 8.7 x 10, Pspeo= 6.0 x 103, and Pryr,= 6.0 x 107).

To explore how perturbation experiments can inform the function of candidate causal genes
underlying cardiometabolic loci, we intersected the DE patternsin each cell line and perturbation

with the colocalization patternsin the matched tissue. We illustrate four such examples (Figure 4C-


https://doi.org/10.1101/2021.02.23.432608

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.23.432608; this version posted February 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 10

E): threeloci in which a single gene showed high CLPP and one locus with more complex
colocalization patterns, with five out of seven genesin the locus showing high CLPP.

Results from the colocalization analysis associated FAM13A genetic variantsin
subcutaneous fat with several traits of interest, i.e., HDL, T2D, triglycerides, WHR, and fasting
insulin (Figure 4C, locus 1). We recently described the role of FAM13A in adipocyte differentiation
and the contribution to body fat distribution®. The DE patterns of FAM13A in our perturbation
experiment (Figure 4D, locus 1) not only reinforce the role of FAM13A in adipose tissue but also
suggest an additional metabolic function in the liver not captured by the colocalization results. The
role of FAM13A in regulation of hepatic glucose and lipid metabolism was recently confirmed by
Lin et a®. Another candidate gene, PDGFC, shows an identical colocalization pattern to FAM13A
(Figure 4C, locus 2) and the perturbation data also supports itsimportance in the adipose tissue
(Figure 4D, locus 2). However, the perturbation data identifies an additional role of PDGFC in
skeletal muscle, in contrast with the role of FAM13A in the liver.

Another complementary exampleisillustrated by the colocalization for DTX1, whichis
specifically associated with WHR and subcutaneous fat (Figure 4C, locus 4), and whose expression
isregulated by insulin, IL-6, TNF-a, dexamethasone and rosiglitazone in mature human adipocytes
(Figure 4D, locus4).

Finally, genetic variantsin the FADS locus have been associated with HDL cholesteral,
triglyceride levels, fasting glucose, and T2D%* and our colocalization analysis was consistent with
these observations (Figure 4C, locus 3). However, the high amount of linkage disequilibrium, the
gene density and the pleiotropy of FADS genes have challenged the dissection of individual gene
effects. Particularly informative isthe case of FADSL, FADS?, and FADSS, for which the DE
patterns for glucose and insulin (Figure 4D, locus 3) point, among others, to a fine-tuned cell line-
and perturbation-specific regulation of the FADSlocus in the context of metabolic homeostasis

(Figure 4E).
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Together these results highlight the importance of perturbation experiments to contextualize

GWAS associations and results from genomic colocalization analyses.

Discussion

We have profiled transcriptional responses to multiple environmental perturbations to identify
disease-relevant perturbations modulating genetic risk for complex traits and to inform functionality
of causal genes. By combining gene expression data with GWAS summary statistics of complex
traits, we show that heritability of multiple complex traits is enriched in regions surrounding genes
responsive to particular sets of perturbation-cell line combinations. We confirmed several well-
established associations, e.g., the role of TGF-B1 on asthma, and provided additional evidence for
recent and less well-understood associations, e.g., the role of leptin on major depressive disorder. In
addition, beyond the broad polygenic impacts of the tested perturbations, we were able to prioritize
the subset of perturbations that are enriched for their impact on GWAS-significant loci in specific
groups of complex diseases. We observed that environmentally responsive genes are enriched for
cis-SNPs associated with a broad spectrum of diseases and phenotypes from the GWAS catalogue.
Further, by integrating gene expression data with information from genomic colocalization studies,
we showed that environmentally responsive genes are enriched for candidate causal genes for
cardiometabolic traits, and that the effects of these perturbations in the relevant tissues further
suggest context-specific molecular mechanisms of GWAS hits for cardiometabolic traits.

Our approach interrogated multiple cell lines and perturbations, but comparable applications
will be limited by the cell lines and environmental perturbations that are selected, the concentrations
of these perturbations, and the time length for which the cells have been exposed. Further, the use of
cell lines provided the opportunity for conducting well-controlled perturbation experiments;
however, it is unknown the degree to which all findings would generalize to a primary cell. For

some of the diseases we considered, the studied cell lines might not represent the cell type or tissue
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through which disease is manifested. However, because we observed that cell lines can share
transcriptional responses (Figure 1D), our study design has shown that we can identify important
perturbations without the causal cell type being examined.

In conclusion, we demonstrate the advantages of large-scal e characterization of
transcriptional changes in diversely stimulated and pathologically relevant cells to identify disease-
relevant perturbations that modulate genetic risk for complex traits. We also provide a broad
resource of the dynamic transcriptional landscape in metabolic tissues. To our knowledge, thisisthe
largest and most complete study of transcriptional effects of metabolically relevant perturbationsin
human fat, liver and skeletal muscle cell lines. In addition, we show that integrating GWAS and
eQTL results with perturbation experiments can inform the function of candidate causal genes and
prioritize genes and environmental stimuli for follow-up experiments. Combined, thiswork
demonstrates how integrating differential expression, eQTL, and GWAS data can inform genetic

and environmental components of complex disease mechanisms.

Online Methods

Cell culturing and perturbations

Experiments were conducted using human skeletal muscle®*® (HMCL-7304), fat®® (Simpson-
Golabi-Behmel syndrome - SGBS), and liver®” (HepG2) cell lines. Details on cell culturing are
provided in the Supplemental Methods. Briefly, each cell line was starved for 6 hours and then
treated for 2 hours with one the 21 perturbations shown in Table Sl in triplicate for each cell line
- perturbation combination. We selected a stimulation window of 2 hoursto allow enough time
for transcriptional changes to occur, and at the same time, to minimize potential secondary
responses that are not direct transcriptional effects of the selected perturbations, as previously

assayed for insulin in liver and skeletal muscle cells from mice®. In addition, we selected the
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concentrations of use, shown in Table S1, based on a consensus research of available literature,
particularly in the cells of interest. Last, we prepared triplicate control samples for glucose (no
glucose medium) and four sets of triplicate control samples (no stimulation) for all other

perturbations in each cell line, resulting in a sample size of 234.

RNA isolation and sequencing

After stimulation, the cells were washed with PBS and collected in PureLink RNA extraction
lysis buffer supplemented with 1% 2-mercaptoethanol, flash frozen in dry ice and stored at -
80°C. RNA extraction was performed with PureLink RNA Mini kit (Thermo). 260/280 and RIN
values were assessed prior to sequencing for sample purity and integrity. Library preparation
was performed at Novogene company. Liver samples were sequenced in HiSeq 4000 (I1lumina)

and fat and muscle were sequenced in Novaseq 6000 (I1lumina) at 150bp paired end reads.

RNA-seq quality control

For all subsequent analyses, we focused only on expressed genes, i.e., genes which have median
expression counts above 10 in at least one of the conditions (perturbation or control) within each
cel ling, i.e., 17,660, 17,140, and 16,722 genes for fat, muscle, and liver cells, respectively. Asa
measure of quality control, we looked at several RNA-Seq technical metrics (See Supplemental
Methods and Figures S1-S3), e.g., RNA integrity number, % GC content, % of uniquely mapped
reads etc. One sample (TGF-f1 in Fat) was dropped due to failing these quality control metrics.
All remaining samples had values within proper range (Figure S1). We used principal
component analysis (PCA) to identify gene expression outliers. After removing the low-quality
sample mentioned above, no outliers are present based on the first two principal components

(Figure S3).
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| dentifying major components of variability in RNA-Seq data

We identified maor components of variability in RNA-Seq data using the linear mixed models
implemented in the R package variancePartition® (Figure S2). We correct all subsequent
analyses for all variables that explain, on average, more than 1% of expression variability in
either cell ling, i.e., % GC content, % exon overlapping reads, RNA concentration, % of reads
marked as PCR duplicates, RNA 260/280 ratio, RIN, and % Uniquely mapped reads. For

analyses donein liver cells, we also correct for sequencing batch.

Differential expression analyses

We characterize transcriptional responses to each perturbation in each cell line using the negative
binomial modelsimplemented in the R package DESeq2™, adjusting for major technical
components of expression variability identified in the last section. To account for multiple testing
across cdl lines, perturbations, and genes, we use the hierarchical error control strategies
implemented in the R package TreeBH"* with cell line, genes, and treatmentsin level 1, 2, and 3,
respectively. This hierarchical procedure adjusts for all the tests performed and allows us to make
statements about differential expression at the gene, gene-perturbation, and gene-perturbation-cell-
line level. We call a gene perturbation-specific within acell line, if the geneis DE in that specific
perturbation but not in any other perturbation in that cell line (FDR<5% at each level). A geneis
assumed perturbation-and-cell-line-specific if the geneis DE in that specific perturbation but not in
any other perturbation in that or the other cell lines or that specific perturbation in the other cell

lines (FDR<5% at each level).

Correlation and hierarchical clustering of transcriptional response to perturbations

We computed correlation and performed hierarchical cluster analysis of the transcriptional

response to perturbationsin each cell line using the test statistics from the DE analyses for all
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genes that were significant (FDR<5%) in at least one perturbation and cell line. The R package
corrplot” was used to get a graphical display of the correlation matrix and hierarchical clustering

of the perturbations.

Enrichment analyses for biological pathways

We performed over-representation analysis’ using the R package clusterProfiler” and pathways
from the ConsensusPathDB database®. We adjust for multiple testing within each perturbation

and cell line using the Benjamini-Hochberg™ procedure.

LD scoreregression analysis

We downloaded the baseline model LD scores, regression weights, and allele frequencies from

https://github.com/bulik/Idsc. Annotations for each perturbation and cell line were built using the

pipeline described on the LD score regression wiki and according to 8. Specifically, for each of the
63 combinations of 21 perturbations and three cell lines, we add 100kb windows on either side of
the transcribed region of each DE gene in that combination to construct a genome annotation
corresponding to that perturbation - cell line combination. Due to its unusual genetic architecture
and LD pattern, we excluded the HLA region from all analyses. Z-scores for the significance of the
estimated total heritability for each trait were computed as h%se(h?), where h? and se(h?) are the
SNP-based heritability estimated and standard errors from LD score regression. Z-scores and p-
values for the significance of the partitioned and conditional heritability for each trait-perturbation-
cell type combination were obtained using the option --h2-cts flag. We adjust for multiple testing

within each trait and cell line using the Benjamini-Hochberg procedure.

Enrichment for diseases and traitsin the GWAS catalogue

We downloaded the entire GWAS Catalogue (v1.0.2) with added ontology annotations the file
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showing all GWAS Catalog reported trait to EFO mappings, including the parent category each trait

IS mapped to on the diagram from https.//www.ebi.ac.uk/gwas/docs/file-downloads. We assume the

MAPPED GENE, i.e., the gene mapped to the strongest SNP as reported in the GWAS catalogue, is
the GWAS gene. For the enrichment of groups of GWAS traits, i.e., EFO parent terms, we only
keep the uniqgue GWAS genes reported across all traits within each EFO parent terms. We excluded
all results annotated with "Other measurement”, "Other disease", and "Other trait" EFO parent terms
aswell as duplicated entries. For the enrichment of specific traits, we only test traits with at least
100 reported associated genes. To test for the significance of the enrichment, we used the Fisher’s
exact test. For each perturbation and cell line combination, we use an equal number of non-DE
genes matched for length and median gene expression using the R package optmatch’®. We adjust
for multiple testing across all (parent) traits, cell lines, and perturbations using the Benjamini-

Hochberg procedure.

Colocalization analysis of GWAS and eQTL effects and combination with DE
signal

We performed colocalization analysis using our custom integration of the FINEMAP’’ and
eCAVIAR methods. For each GWAS and eQTL overlap (GWAS and eQTL P < 5e-8 for at least
one SNP in each), we narrowed our summary statistics to the set of SNPs tested for association with
both the given GWAS trait and the given QTL trait, and removed all sites containing less than 10
SNPs after thisfilter. Using the full 1000 Genomes dataset from phase 3 as a reference population™,
we estimated LD between every pair of SNPs. We then ran FINEMAP independently on the GWAS
and the eQTL summary stats to obtain posterior probabilities of causality for each of the remaining
SNPs and combined these probabilities to compute a colocalization posterior probability (CLPP)
using the formula described in the eCAVIAR method. Because the canonical CLPP scoreis highly

conservative in regions with densaly profiled, high-LD SNPs, we modified the score formulato
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produce an LD-modified CLPP score (Supplemental methods).

To test whether the genes DE in at least one of our perturbations and cell lines are enriched
for candidate causal IR genesfor at least one IR-related trait and GTEX tissue we used Fisher's
exact test. Candidate causal IR genes, denoted as High P(Causal), are defined as genes with CLPP
above 40%, which corresponds to 80" CLPP percentile. To test for the significance of the difference
in median CLPP between DE and non-DE genes for each combination of perturbation and cell line
we used the two-samples Wilcoxon rank sum test. We adjust for multiple testing using the

Benjamini-Hochberg procedure.
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Figure 1. Perturbationsinduce lar ge-scale changes in gene expression in muscle, fat, and liver. (A)
Number of DE genes for each perturbation in each cell line (FDR<5%). See Table S2 for extended DE
summary statistics. (B) Proportion of DE genes that change in response to up to 10 perturbationsin each cell
line. See Tables $4 for extended results on sharing of DE genes. (C) Proportion of perturbation-specific DE
genes, i.e., genes that change in response to a single perturbation, within each cell line. (D) Correlation of DE
patterns between different perturbations within each cell line. Each square is Spearman’s correl ation between
the DE test statistic of a pair of perturbations across al genes. DE: differentially expressed; FDR: False
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Figure 3. Identifying environmental perturbationsimpacting significant GWAS loci. GWAS enrichment

results for each group of complex traits from the GWAS catalogue. Each point represents a perturbation-cell-

line combination that passes the FDR<10% cut off; color of the point indicates the cell line, and the shading

color within each panel indicates the perturbation category from Figure 1A. The y-axis represents the -

logio(P-value) of the Fisher’s exact test and the size indicates the odds ratio for enrichment of GWAS hits of

each group of traits from the GWAS catalogue. Numerical results are reported in Table S6. Results for

specific traits, rather than groups of traits, are displayed in Figure S5.
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Figure4. Environmental perturbationscan help inform functionality of causal genesunderlying
cardiometabalic traitsloci. (A) % of causal genes (High Prob(Causal)) underlying cardiometabolic traits
laci that are DE (purple) or not DE (grey) in at least one perturbation and cell line. OR/P: Odds ratio and
Fisher’s exact test P-value for enrichment of DE genes among causal genes, compared to non-DE genes. (B)
Perturbation and cell line combinations with a significant (FDR<10%) difference in median (D) CLPP
between DE and non-DE genes, according to the two-samples Wilcoxon rank sum test. (C/D) Examples of
loci for which intersecting the effects of perturbations (C) with the col ocalization results (D) helpsinform
functionality of candidate causal genes. Color indicates CLPP (C) or DE direction (D). White boxes with
crosses indicate that the gene was not tested for colocalization or DE. (E) Effect of glucose and insulin in the
expression of the three FADS genes and the effect of the expression of these genes on HDL, fasting glucose
(FGLUC), and triglycerides (TRIG), the three traits for which FADS genes colocalize. The color of the
triangles indicates either the effect of the perturbation on the gene (red=up-regulation, blue=down-regul ation)
and the effect that up- / down-regulation of the gene has on the phenotype (red = increased phenotype, blue =
decreased phenotype). DE: differential expression. CLPP: colocalization posterior probability. FDR: False

discovery rate.
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