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ABSTRACT 1 

Islet-enriched transcription factors (TFs) exert broad control over cellular processes in 2 

pancreatic α and β cells and changes in their expression are associated with developmental 3 

state and diabetes. However, the implications of heterogeneity in TF expression across islet cell 4 

populations are not well understood. To define this TF heterogeneity and its consequences for 5 

cellular function, we profiled >40,000 cells from normal human islets by scRNA-seq and 6 

stratified α and β cells based on combinatorial TF expression. Subpopulations of islet cells co-7 

expressing ARX/MAFB (α cells) and MAFA/MAFB (β cells) exhibited greater expression of key 8 

genes related to glucose sensing and hormone secretion relative to subpopulations expressing 9 

only one or neither TF. Moreover, all subpopulations were identified in native pancreatic tissue 10 

from multiple donors. By Patch-seq, MAFA/MAFB co-expressing β cells showed enhanced 11 

electrophysiological activity. Thus, these results indicate combinatorial TF expression in islet α 12 

and β cells predicts highly functional, mature subpopulations.  13 
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INTRODUCTION 14 

Pancreatic islets are cell clusters dispersed throughout the pancreas, composed primarily of 15 

endocrine cells that coordinate glucose homeostasis. Islet β cells secrete insulin which acts to 16 

lower blood glucose and α cells secrete glucagon which acts to raise blood glucose. In addition 17 

to α and β cells, cooperative interaction of less prevalent endocrine cells (δ, γ, and ε) and non-18 

endocrine cell populations in the islet microenvironment, including endothelial cells, 19 

macrophages, pericytes (stellate cells), nerve fibers, and immune cells, provide additional 20 

signals to modulate islet function1. Islet α and β cells are characterized by the precise 21 

expression of transcriptional and signaling machinery that allows sensing and integration of 22 

glucose, nutrient, and neurohormonal signals and proportional response with regulated 23 

hormone secretion. Importantly, pancreatic islet dysfunction through impaired insulin and/or 24 

glucagon secretion is a hallmark of most forms of diabetes2–5. Thus, identifying key factors and 25 

molecular pathways governing α and β cell identity and function is crucial to understanding, 26 

treating, and preventing diabetes.  27 

One set of important molecules governing α and β cell identity and function are islet-enriched 28 

transcription factors (TFs) that have been shown to have important roles in both islet 29 

development as well as in the maintenance of the islet cell phenotype, particularly in mouse and 30 

islet-like cells derived from human stem cells6–9. Importantly, several islet-enriched TFs have 31 

species differences between human and mouse, highlighting the need to closely investigate 32 

transcription factors in human systems10,11. For example, members of the Maf transcription 33 

factor family show differences in cell type distribution and timing of expression12,13. Such TFs 34 

interact in complexes and networks to exert broad control over cellular processes, making them 35 

foundational regulators of cell states. In fact, in addition to their coordinated role in islet cell 36 

development, loss or misexpression of key TFs has been highlighted in numerous forms of 37 

diabetes14–17. 38 
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Importantly, with advances in scientific methodologies, it has been increasingly recognized that 39 

islet cells are heterogeneous. This is particularly apparent in β cells, where recent work has 40 

highlighted human β cell heterogeneity in function18, cell surface protein expression19,20, and 41 

transcriptomic profile21,22. In contrast, heterogeneity within human α cells has been much less 42 

studied. Given the central role for islet-enriched TFs in regulating cell states, potential 43 

heterogeneity in these TFs may represent distinct cellular states with broad implications for 44 

human islet biology and diabetes. 45 

RNA sequencing (RNA-seq) has been an essential technology to broadly characterize islet 46 

gene expression in an unbiased manner. Hallmark gene transcripts and gene pathways have 47 

been analyzed both at the whole islet level23,24 and in a cell type-specific manner using 48 

fluorescence-activated cell sorting (FACS) with either cell surface markers on live cells or 49 

intracellular proteins in fixed and permeabilized cells to obtain purified α and β subpopulations25–50 

27. However, these approaches provide limited ability to assess heterogeneity within a given cell 51 

type. To address this, single cell RNA-seq (scRNA-seq) is an exciting and evolving technology 52 

that can be used to understand cell type heterogeneity and has begun to be applied to human 53 

islets18,28–32. While the magnitude of high-resolution data from these studies is exciting, there are 54 

also important technical challenges inherent to the small scale of input material33,34, highlighting 55 

the importance of a robust comparison between bulk and scRNA-seq. Further, it remains 56 

unclear how α and β cells identified by protein-based methods (e.g., FACS) compare to cells 57 

characterized by the clustering approach applied in scRNA-seq that arranges cells by 58 

transcriptional similarity. 59 

To investigate how heterogeneity of islet-enriched TFs in human islets relates to islet function, 60 

we focused on three transcription factors, namely ARX, MAFB, and MAFA. ARX and MAFB are 61 

enriched in islet α cells, as are MAFA and MAFB in β cells, and all three play important roles in 62 

islet cell development and disease as suggested by existing bulk RNA-seq datasets10,17,26,27. 63 
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Since our goal was to understand single cell heterogeneity, we translated findings from a bulk 64 

context to a single cell context by systematically analyzing the same islet preparation by both 65 

approaches to establish congruency between bulk and scRNA-seq methods. Finally, we 66 

generated a scRNA-seq dataset of over 40,000 islet cells from adult donors, which includes 67 

endocrine, immune, and endothelial cell populations, that is accessible through a user-friendly 68 

web portal. This dataset provided sufficient cell numbers to classify α and β cells into subgroups 69 

based on combinatorial ARX/MAFB and MAFA/MAFB expression, respectively, and allowed us 70 

to identify key correlates to α and β cell function. We further validated the existence of these cell 71 

populations within human pancreatic tissue in situ and linked MAFA/MAFB transcriptional 72 

heterogeneity of human β cells to their electrophysiological properties. 73 

74 
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RESULTS 75 

Transcriptional and immunohistochemical profiling of human α and β cells suggests a 76 

role for key transcription factors ARX, MAFA, and MAFB in islet cell development and 77 

disease 78 

Both in vivo and in vitro studies have helped identify TFs with cell-specific expression patterns in 79 

islets. In α cells, Aristaless Related Homeobox (ARX) factor is essential for α cell differentiation 80 

and function, a finding which has been confirmed in human α cells8,35–37. Indeed, ARX 81 

transcripts are heavily enriched in α cells (Figures 1A-B and S1A-B)12,38,39. Of note, α cells from 82 

donors with type 1 diabetes (T1D) show decreased ARX expression compared to α cells from 83 

nondiabetic donors (ND) (Figure 1C), indicating that this factor may contribute to impaired 84 

glucagon secretion observed in T1D17,18,40.  85 

MAFA is a bona fide β cell factor exerting direct control over both insulin expression as well as 86 

key components of glucose-stimulated insulin secretion, and it is expressed relatively late in β 87 

cell development, making it a commonly used marker of fully mature β cells41–43. MAFA is 88 

thought to play a broadly similar role in adult mouse and human β cells, and existing RNA-seq 89 

datasets underscore its β cell specificity (Figures 1A-B and S1A-B). MAFA is clearly present in 90 

adult β cells but its expression actually does not peak until several years after birth, as 91 

illustrated by previous histological studies12 and transcriptomic profiles of β cells from fetal 92 

versus adult donors (Figure 1D)26. These data temporally correlate increased MAFA levels with 93 

the acquisition of increased glucose sensitivity44–46, suggesting that MAFA plays a role in β cell 94 

maturation and function. 95 

In contrast to ARX and MAFA, MAFB is expressed by both α and β cells (Figures 1A-B and 96 

S1A-B) and shows significant species differences: it is retained in human β cells during 97 

adulthood, while in rodents it becomes restricted to α cells in the early postnatal period11. Of 98 
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note, the MAF factors are thought to be capable of forming both homo- and heterodimers47, 99 

providing an opportunity for synergy between MAFA and MAFB in β cells. In α cells, MAFB is 100 

known to directly bind to the GCG promoter to regulate glucagon expression32, rendering it an 101 

important regulator of α cell function. Like ARX, MAFB is reduced in α cells from donors with 102 

T1D (Figure 1C). 103 

The unique and dynamic expression patterns of ARX, MAFA, and MAFB demonstrated by bulk 104 

RNA-seq (Figures 1A-1D and S1A-B) suggest that these TFs are linked to key aspects of α 105 

and β cell function. However, our analysis of their special distribution in adult human pancreatic 106 

tissue revealed that not all α or β cells in a given islet express them (Figures 1E and S1C-D). 107 

Thus, to further understand the role of these TFs, we sought to determine the cell-to-cell 108 

variability that cannot be discerned from a pooled cell population profiled by bulk RNA-seq. 109 

Given the known importance of TFs in regulating cellular processes, we hypothesized that TF 110 

heterogeneity at the single cell level could define α or β cell subtypes with different functional 111 

properties. 112 

Gene expression profiles obtained by scRNA-seq are largely concordant with those 113 

obtained by bulk RNA-seq 114 

To translate gene expression findings from a FACS-sorted bulk context to a single cell context, 115 

we systematically analyzed FACS-purified α and β cells from a healthy 39-year-old donor by the 116 

two approaches in parallel (Figures 2A, S2A; Table S1). Performing all analyses on the same 117 

donor allowed us to avoid donor-to-donor variability. Approximately 10,000 cells for each cell 118 

type were pooled to generate bulk RNA-seq libraries (“FACS-Bulk-α” and “FACS-Bulk-β”) while 119 

≥10,000 α cells and β cells went to scRNA-seq to capture 6,371 and 1,190 single cells after 120 

quality control (“FACS-SC-α” and “FACS-SC-β”), respectively. We compared expression of all 121 

genes between bulk RNA-seq vs. pooled single cells (pseudo-bulk) from scRNA-seq and as 122 

expected, found that expression tended to be higher in the bulk compared to single cell 123 
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samples. To broadly understand gene expression differences between the two approaches, we 124 

compared genes detected above 1 log2TPM (transcript per million) for both (Figures 2B, 2C). 125 

Of the genes in the FACS-SC-α or FACS-SC-β groups, approximately 97% were also in FACS-126 

Bulk-α or FACS-Bulk-β, respectively. In contrast, just 8.5% of genes in FACS-Bulk-α and 6.5% 127 

of genes in FACS-Bulk-β were also in the respective single cell dataset.  128 

To characterize molecular pathways captured by scRNA-seq and determine what additional 129 

information may be captured uniquely in bulk RNA-seq, we analyzed ontologies from the genes 130 

that were common between bulk and single cell samples (green in Figure 2B and pink in 131 

Figure 2C) as well as the 2,000 most highly expressed genes uniquely captured by bulk RNA-132 

seq (yellow box in Figure 1B and orange box in Figure 1C). Visualization of these ontologies in 133 

an enrichment map highlighted that the common genes covered a broad and comprehensive 134 

range of biological processes (Figures 2D-E). The additional processes represented by highly 135 

expressed genes unique to bulk RNA-seq were, by contrast, less enriched (Figures 2F-2G). 136 

Indeed, visualization of the top 30 most significantly enriched processes highlighted a higher 137 

degree of enrichment in the shared common and bulk group (Figures S2B-C). Biological 138 

processes associated with hormone secretory function, such as regulation of insulin secretion or 139 

ER to Golgi vesicle-mediated transport, were represented in all data sets (Figure S2D-E). 140 

As bulk RNA-seq and scRNA-seq involve different chemistries that may bias direct comparisons 141 

of gene expression levels, we next assessed relative differences by looking at differential 142 

expression between α and β cells profiled by each approach (Bulk-α vs. Bulk-β compared to 143 

pooled data from SC-α vs. SC-β). Genes differentially expressed in both datasets were highly 144 

correlated (r=0.91, p<2.2e-16) and showed the expected enrichment of β cell-specific genes 145 

(e.g., INS, IAPP) as well as α cell-specific genes (GCG, TM4SF4) (Figure 2H). Importantly, 146 

there were very few differentially expressed genes that were regulated in opposite directions 147 

(top left and bottom right quadrants in Figure 2H), suggesting that trends in gene expression 148 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 24, 2021. ; https://doi.org/10.1101/2021.02.23.432522doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.23.432522


Shrestha, Saunders, Walker et al.  (9) 

are consistent between the two methods. Taken together, these data indicate that although bulk 149 

RNA-seq captures a greater breadth of genes, scRNA-seq analysis captures a similarly broad 150 

and comprehensive set of pathways and processes that are specific to α and β cell biology. 151 

Gene expression profiles of α and β cells identified by unsupervised clustering are 152 

consistent with profiles of α and β cells resolved by cell surface markers 153 

We next asked whether unsupervised clustering (identification of cells post-sequencing) yielded 154 

similar gene expression profiles to those cells identified and obtained by sorting with previously 155 

characterized cell surface markers17,48,49. Dispersed islet cells from two healthy donors were 156 

profiled by scRNA-seq after either purification into α and β cell populations by FACS (“FACS-157 

SC-α” and “FACS-SC-β”) or directly from hand-picked whole islets dispersed without any 158 

additional purification (“WI-SC-α” and “WI-SC-β”; Figure 2A; Table S1). A total of 27,614 cells 159 

across the four groups passed quality control (see Methods). Cells from dispersed whole islets 160 

(Figure S3A), FACS-α (Figure S3B), and FACS-β (Figure S3C) were analyzed by graph-161 

based unsupervised clustering applying Louvain algorithm50,51 and visualized using Uniform 162 

Manifold Approximation and Projection (UMAP)52 and α and β cells were annotated with 163 

markers (Table S2) overlayed to unsupervised clusters. Total gene capture was similar across 164 

all four cell populations analyzed (median 2,068 genes per cell; Figure S3D). Principal 165 

Component Analysis (PCA) of all four samples indicated that overall variance is governed by 166 

cell type differences rather than the approach used to stratify α and β cells (cell sorting vs. 167 

unsupervised clustering) (Figure 3A; individual donors shown in Figure S4A). This was also 168 

apparent by looking at single cell expression level of the genes with greatest influence on 169 

principal component 1 (Figure 3B; individual donors shown in Figure S4B). These genes 170 

included both known α and β cell markers (e.g., GCG, SLC7A2, GC, INS, PCSK1) as well 171 

markers that have been previously identified but not extensively studied in islets (e.g., RGS4, 172 

FXYD3, FAP, MEG3, HADH, SAMD11). 173 
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Gene expression profiles of FACS-α and FACS-β samples showed strong linear correlation 174 

(Pearson’s correlation, r=0.99, p<2.2e-16) with WI-α and WI-β samples, respectively (Figure 175 

3C-D; individual donors shown in Figure S5A-B). Of note, α and β cell-enriched genes, 176 

including transcription factors, and stress markers were all expressed, on average, at similar 177 

levels between WI and FACS samples in both islet preparations studied. To appreciate cell 178 

heterogeneity, we visualized canonical α and β cell markers (Figure 3E; individual donors 179 

shown in Figure S5C) which highlighted that both approaches demonstrated similar variability 180 

within these key genes. Finally, we visualized key islet-enriched transcription factors in a dot 181 

plot by the number of cells expressing the factor and the average normalized expression level, 182 

and we found consistent results between the two methods (Figure 3F). Thus, these results 183 

indicate that the cell sorting step does not alter the transcriptional profile of the FACS-purified α 184 

and β cells. They further suggest that post hoc identification of cell types by unsupervised 185 

clustering based on transcriptional profile is consistent to the well characterized approaches of 186 

cellular identification using antibodies to cell surface proteins by FACS. Thus, both approaches 187 

are likely identifying the same cell populations and would allow investigation of TF 188 

heterogeneity.  189 

scRNA-seq reveals heterogenous transcription factor expression in α and β cells 190 

One major advantage of scRNA-seq is its ability to dissect heterogeneous cell composition 191 

within and across cell types. However, because some subpopulations are relatively rare, robust 192 

datasets are required to sufficiently characterize these populations. In this study, we obtained 193 

44,953 high-quality single cell transcriptomes of hand-picked islets from n=5 healthy donors with 194 

robust dynamic insulin and glucagon secretion profiles characterized by perifusion to ensure 195 

healthy and functional cells were being assessed (Table S1 and Figure S6A). Graph-based 196 

unsupervised clustering50 reliably detected major endocrine cell types (α, β, δ) and also acinar, 197 

ductal, stellate, endothelial, and immune cells (Figure 4A). Clusters were annotated to identify 198 
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cell types, including rare populations such as γ and ε, using markers listed in Table S2 and 199 

identified cell types were represented in each donor (Figure S6B). Cell populations were 200 

confirmed by the specific expression of additional known identity markers (Figure 4B). Within 201 

cell types, the expected clustering by individual donor (Figure S6C) is apparent. To facilitate the 202 

exploration of this robust single cell dataset, we created an online application that allows one to 203 

browse single cell gene expression by both the cell type and donor (Figure S6D). 204 

To investigate the cell-specific signatures of human α and β cells, we analyzed expression 205 

patterns of canonical islet-enriched TFs. PAX6, RFX6, NEUROD1, and NKX2-2 were expressed 206 

in all endocrine cell types, whereas PDX1, NKX6-1, and MAFA were enriched in β cells, IRX2 207 

was specifically expressed in α cells, and ARX was expressed in α, γ, and ε cells, consistent 208 

with previous single cell studies28,29,50 (Figure 4C). PAX6, NEUROD1 and MAFB were among 209 

the most prevalent endocrine factors, expressed in >75% of both α and β cells (Figure 4C). Of 210 

particular interest, MAFB – known in humans to be expressed in both α and β cells – is also 211 

enriched in the immune cell population, which had been overlooked in previous studies due to 212 

low abundance of immune cells in isolated islets. Interestingly, we noticed that each of these 213 

key TFs had a bimodal distribution, meaning there was a clear subpopulation of cells without 214 

detectable expression of each factor (Figure 4D), consistent with our observations for MAFA, 215 

MAFB and ARX in pancreas tissue (Figure 1E). Given the crucial role islet-enriched TFs play in 216 

islet cell identity and function, particularly when acting in TF regulatory networks, we thus 217 

hypothesized that combinations of key TFs would identify important islet cell subtypes. 218 

Heterogeneity of ARX and MAFB expression in α cells by scRNA-seq predicts expression 219 

of key α cell functional genes 220 

Since both ARX and MAFB are downregulated in α cells from donors with T1D17, we tested the 221 

hypothesis that these factors cooperatively regulate α cell function. We first confirmed 222 

heterogeneous ARX and MAFB expression in α cells from all five donors (Figure 5A). Of 24,248 223 
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total α cells, we identified populations of α cells without ARX or MAFB expression (“None;” 224 

10%), populations expressing only ARX or only MAFB (4% and 48%, respectively), and a 225 

population co-expressing both ARX and MAFB (“Both;” 38%) that were relatively stable across 226 

all five donors (Figure 5B). For these four populations, we investigated expression of other islet-227 

enriched TFs, α cell-enriched genes, and genes related to ion flux, glucose metabolism, vesicle 228 

trafficking, exocytosis and cell stress (Figures 5C and S7). Interestingly, we observed that 229 

numerous α cell-enriched TFs (RFX6, PAX6, NEUROD1, ISL1, IRX2) and genes related to 230 

nutrient sensing or glucagon secretion (ACLY, PKM, GSTA4, GPX3, G6PC2, KCTD12, 231 

KCNK16, KCNJ6, ABCC8) were elevated in α cells co-expressing MAFB and ARX compared to 232 

the other populations, while genes related to cell stress (DDIT, ATF4) were highest in the 233 

“None” group, suggesting that presence of both factors may support increased metabolic activity 234 

and glucagon secretory capacity. To confirm these findings, we analyzed three additional 235 

scRNA-seq datasets of human islets that utilized different single cell technologies18,28,29 and 236 

found the results to be consistent (Figure S8A). 237 

We next asked whether ARX/MAFB heterogeneity existed at the protein level given the known 238 

differences that exist between transcript and protein expression53. To assess this, we performed 239 

immunohistochemical analysis of ARX and MAFB on pancreatic tissue sections from 240 

nondiabetic donors (Figures 5D and S8B). Cells were classified by automated algorithm for 241 

“low” or “high” ARX and MAFB expression, setting an intensity threshold that remained 242 

consistent across all islets from a given tissue. By this measure, all four combinations of 243 

ARX/MAFB-expressing α cells were detected in each donor evaluated: ARXlo MAFBlo (41%), 244 

ARXhi MAFBlo (19%) ARXlo MAFBhi (9%) and ARXhi MAFBhi (30%) (Figure 5E). Taken together, 245 

our results indicate the presence of α-cell subpopulations classified according to unique and 246 

conjunctional expression of ARX and MAFB and suggest that combined expression of these two 247 

markers likely identifies highly functional and mature α cells. 248 
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β cells co-expressing MAFA and MAFB exhibit characteristics of enhanced secretory 249 

function 250 

Given the ability of MAFA and MAFB to heterodimerize47 and the unique expression changes 251 

during β cell maturation10,12,26, we hypothesized that MAFA and MAFB co-expression represents 252 

a unique subpopulation of human β cells. To test this, we resolved 11,034 β cells into 253 

subgroups that expressed only MAFA or only MAFB (4% and 52%, respectively), β cells that co-254 

expressed both MAFA and MAFB (“Both;” 22%), and β cells with undetected expression of 255 

MAFA and MAFB (“None;” 21%) (Figure 6A-B). We assessed these groups for the same set of 256 

key cellular identity and functional genes described above for α cells, and we saw a general 257 

trend of increased expression of key functional genes with dual MAFA and MAFB expression 258 

(Figures 6C and S9). Specifically, numerous genes related to cell identity (PDX1, PAX6, 259 

NEUROD1, ISL1, PCSK1, IAPP), glucose metabolism (ACLY, G6PC2, GPX3), ion channels 260 

(ABCC8, KCNJ6), and exocytosis (VAMP2, SYT7, PCLO, TSPAN7, RGS9, FAM159B, BMP5) 261 

were all increased in MAFA and MAFB co-expressing cells compared to other subgroups. In 262 

contrast, stress genes (HSPA5, HERPUD1, DDIT3, ATF4) were either significantly reduced in 263 

the co-expression group or significantly elevated in the “None” group. These expression 264 

patterns indicate that presence of both factors may be crucial for increased metabolic activity 265 

and insulin secretion. Analysis of three independent single cell studies of human islets utilizing 266 

other platforms18,28,29 confirmed these results (Figure S10A). The presence of β cell 267 

MAFA/MAFB heterogeneity at the protein level (MAFAlo MAFBlo, 46%; MAFAhi MAFBlo, 8%; 268 

MAFAlo MAFBhi, 29%; MAFAhi MAFBhi, 16%) was validated by immunohistology in pancreatic 269 

sections, where cells representative of all four populations were identified in each of multiple 270 

non-diabetic donors (Figures 6D-E and S10B). 271 

To determine whether the β cell subpopulation co-expressing MAFA and MAFB, enriched for 272 

numerous genes related to metabolism and hormone secretion, had functionally relevant 273 
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consequences compared to other β cells, we utilized human Patch-seq data from Camunas et 274 

al.18. Transcriptomes from 194 β cells within this dataset (Figure 7A) showed high similarity with 275 

our larger dataset of 11,034 β cells (Figures 6C and S10A). In addition to producing an mRNA 276 

profile, the Patch-seq approach captures an electrophysiological profile of each cell, generating 277 

linked data on cell size, exocytosis, and ion channel currents. In agreement with transcriptome 278 

data, β cells that co-expressed both MAFA and MAFB showed increased electrophysiologic 279 

activity across several parameters including early exocytosis, early and late Ca2+ current, and 280 

late Ca2+ conductance when compared to cells that expressed MAFA only, MAFB only, or 281 

neither factor (Figure 7B). Of note, MAFA/MAFB co-expressing β cells are comparable in size 282 

to those expressing only one or neither factor, suggesting that neither the transcriptomic data 283 

nor the elevated electrophysiologic activity can be attributed to larger cells expressing more 284 

genes (Figure 7B). Thus, these data provide strong support that heterogeneous populations of 285 

β cells on the basis of combinatorial MAFA/MAFB expression exist and that co-expression of 286 

both factors marks β cells with elevated function.  287 
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DISCUSSION 288 

By transcriptional profiling and assessment of protein expression at the single cell level, we 289 

found that several key islet-enriched TFs important for α and β cell maturity and function had a 290 

heterogenous expression pattern within normal human islet cells. To unravel the functional 291 

consequences of this heterogeneity in TF expression, we systematically analyzed the same islet 292 

preparation by bulk and scRNA-seq approaches and established congruency between the two 293 

methods. Capitalizing on our large scRNA-seq dataset, we stratified α and β cells based on 294 

differential or combined expression of key TFs (ARX/MAFB in α cells; MAFA/MAFB in β cells) 295 

that are known to act cooperatively. We found that co-expression of these TF combinatorial 296 

pairs predicted greater expression of genes related to glucose metabolism, ion flux, and 297 

hormone secretion, including both known α and β cell functional markers and those not 298 

extensively studied in islets. Importantly, we identified subpopulations with TF heterogeneity at 299 

the protein level by spatial analysis of normal human tissue and demonstrated, using Patch-seq, 300 

greater electrophysiological activity in MAFA and MAFB co-expressing β cells. These results 301 

suggest that combinatorial expression of key islet TFs defines highly functional and mature α 302 

and β cells. 303 

Bulk RNA-seq and scRNA-seq have provided immense knowledge of the human islet 304 

transcriptional landscape, but each technology has strengths and drawbacks. Despite the 305 

prevalence of both approaches, this study is, to our knowledge, the first to report direct 306 

comparisons of bulk RNA-seq on FACS-purified human α and β cells and scRNA-seq on FACS-307 

purified or dispersed cells from the same islet preparation. We highlight that while sensitivity to 308 

low expression genes is reduced in scRNA-seq, the detected genes cover a broad range of 309 

biological pathways that allow reconstructing gene ontology enrichment maps obtained from 310 

bulk RNA-seq (Figure 2D-E). Further, α and β cells show very similar expression profiles 311 

regardless of cell type identification method, with neither clustering via transcriptional similarity 312 
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nor presence of characterized cell surface proteins showing an apparent bias. This indicates 313 

that enrichment methods using cell-surface markers are an appropriate method to investigate 314 

subpopulation of islet cell types.  315 

Lower gene expression in scRNA-seq compared to bulk was an expected finding given that bulk 316 

RNA-seq generates reads from nearly the entire length of a gene, while the 10x platform, used 317 

in this study, does so only from the 3’ end. Single cell technologies that capture full length 318 

transcripts (e.g., Smart-Seq2) may fare better in direct comparison of gene expression levels, 319 

though this hasn’t been investigated in islets54. Indeed, the smaller working range and lower 320 

signal-to-noise ratio is reflected in our scRNA-seq data. Despite this, transcripts above a TPM=1 321 

threshold in both datasets converged linearly and were involved in a broad range of similar 322 

biological processes, emphasizing the high fidelity of both methods to assess islet cell biology 323 

(Figure 2B-G). To mitigate the differential scale, we also compared the relative transcript 324 

abundance in the form of α versus β cell enrichment (Figure 2H). Again, scRNA-seq was not as 325 

sensitive to changes across all transcripts but those that were detected exhibited very high 326 

correlation.  327 

Though it is widely appreciated that numerous TFs act in protein complexes to regulate cellular 328 

identity and function, the significance of their heterogenous expression for maintaining identity 329 

and function has not been explored. Building on the strength of scRNA-seq to resolve cell 330 

heterogeneity, we explored numerous islet-enriched TFs and found bimodal distribution patterns 331 

that suggest the presence of unique combinatorial profiles. In this manuscript, we investigated 332 

expression patterns of three TFs with known changes in islet cell development and diabetes: α 333 

cell-specific ARX, β cell-specific MAFA, and MAFB, which is expressed in both α and β cells 334 

and has a unique expression profile compared to rodent islets. Interestingly, other islet-enriched 335 

TFs were consistently elevated in ARX/MAFB co-expressing α cells and MAFA/MAFB co-336 

expressing β cells, supporting the concept of islet-enriched TFs acting in self-regulating 337 
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networks, and making it likely that combinatorial profiles of other TFs also reveal interesting 338 

populations with functional consequences. Larger datasets and network-based approaches 339 

considering additional TF combinations should be used to examine more complex expression 340 

patterns and how these patterns change in T1D and T2D islet cells. 341 

Our data suggest that ARX/MAFB co-expressing α cells and MAFA/MAFB co-expressing β cells 342 

have elevated expression of functional genes compared to cells that express only one or neither 343 

factor. Nonetheless, elevated expression for certain genes in single TF-expressing populations 344 

(e.g., MDH2 and KCNMA1 in MAFB-expressing β cells) may provide insight on how these 345 

individual TFs act in each cell type. Indeed, a comparison of our data to molecular studies of 346 

these TFs in mice or human stem cells reveals numerous similarities. For example, our data 347 

demonstrates that MAFA/MAFB co-expressing β cells are distinct from populations that express 348 

only a single TF which suggests that although these factors are related, they have distinct 349 

targets and roles within the β cell. This is consistent with a recent report showing that in mice, 350 

MAFB does not compensate for MAFA loss12. Further, our data highlights MAFB as playing a 351 

key role in defining both β and α cell identity, in line with a recent report where MAFB deletion in 352 

human embryonic stem cells disrupted the differentiation process for both β and α cells55. Thus, 353 

our approach highlights how transcription factor profiles at the single cell level can be used to 354 

predict transcriptional and functional consequences of genetic manipulation, highlighting an 355 

immense power for large scRNA-seq datasets. 356 

While there were not sufficient cells for robust statistical comparison of all subsets, it is 357 

interesting to note that the electrophysiological profile of the cells expressing neither MAFA nor 358 

MAFB was similar to those cells expressing only one of the factors, thus suggesting a specific 359 

benefit to having combined expression of both factors in adult human β cells that is not apparent 360 

with only one of the TFs. These findings have several implications given the unique timing of 361 

MAFA and MAFB expression in the human β cell and differ slightly from our transcriptional data 362 
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that suggested more of a progressive increase with double negative group showing the lowest 363 

expression, followed by single TF groups, and co-expressing cells having highest expression of 364 

genes related to hormone secretory function. Future investigation with larger functional datasets 365 

will be needed to further delineate these interesting findings as well as directly evaluate the role 366 

of MAFA, MAFB, and other enriched transcription factors in human islet cell hormone secretion.  367 

One contribution to bimodal distribution of low-abundance transcripts like TFs is gene dropout, 368 

where a gene is detected only in a subset of cells due to low mRNA quantity. However, greater 369 

expression of functional genes in one subpopulation (often dual positive cells) suggests that 370 

dropout is not simply a stochastic event and could instead reflect cell activity or a biological 371 

process such as transcriptional bursting56. Further, we analyzed three additional scRNA-seq 372 

datasets of human islets generated by various single cell technologies18,28,29, and all showed 373 

trends consistent with the current study. Finally, taking advantage of the unique Patch-seq 374 

approach from our previous study, we were able to validate increased cellular function reflected 375 

by electrophysiological parameters (Figure 7). Together, these data indicate that our 376 

observations are not technical in nature and instead represent important aspects of human islet 377 

biology.  378 

Given the potential inconsistencies between transcript and protein-level expression in human 379 

islets53, we pursued identification of heterogeneous TF protein expression in human pancreatic 380 

tissue. Though there were discrepancies in subpopulation distribution estimated by transcript 381 

versus by immunodetection, the presence of all TF combinations in tissue suggests this 382 

heterogeneity is not limited to one experimental approach. Differences may also arise from post-383 

transcriptional control of protein levels that would not be apparent at the transcript level. Novel, 384 

single cell multi-omic techniques will be required to define the precise correlation between TF 385 

mRNA and protein abundance, and these techniques may also help define how the described 386 

heterogeneity relates to other forms of β cell heterogeneity that have been previously described 387 
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or hypothesized18–22. Heterogeneity within α cell populations has been less studied but our data 388 

indicate it may have an unappreciated role within the islet as well. 389 

There are limitations to the current study that suggest opportunities for future work. First, the 390 

dispersion of islet cells required for scRNA-seq disrupts the microenvironment, which is known 391 

to be crucial for coordinated islet function57,58. How the α and β cell subpopulations defined in 392 

this study, function in the islet context is presently unknown – while having all highly functional 393 

cells would seem beneficial, some data has suggested that both mature and immature cells are 394 

required within an islet for optimal function59. Importantly, the nature of scRNA-seq means we 395 

cannot discern whether the heterogeneity described here is stable or a snapshot of a dynamic 396 

cell state. 397 

In sum, we highlight the utility of a large, scRNA-seq dataset by uncovering previously 398 

unappreciated heterogeneity in combined key islet-enriched TF expression and demonstrate 399 

that it has implications for β cell function. Ultimately, defining the key characteristics of highly 400 

functional α and β cells will allow not only a greater understanding of pathways governing 401 

coordinated hormone secretion but also engineering of cells closely resembling native α or β 402 

cell function for cell replacement therapy to treat diabetes. 403 

404 
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MATERIALS AND METHODS 405 

Human pancreatic islet samples 406 

Human islet preparations (n=5; see Table S1 for donor information) were obtained through 407 

partnerships with the Integrated Islet Distribution Program (IIDP, RRID:SCR_014387; 408 

http://iidp.coh.org/), Alberta Diabetes Institute (ADI) IsletCore (RRID:SCR_018566; 409 

https://www.epicore.ualberta.ca/IsletCore/), and the Human Pancreas Analysis Program (HPAP, 410 

RRID:SCR_016202; https://hpap.pmacs.upenn.edu/) of the Human Islet Research Network. 411 

Assessment of human islet function was performed by islet macroperifusion assay on the day of 412 

arrival, as previously described 60. Islets were cultured in CMRL 1066 media (5.5 mM glucose, 413 

10% FBS, 1% Penicillin/Streptomycin, 2 mM L-glutamine) in 5% CO2 at 37oC for <24 hours prior 414 

to beginning studies. The Vanderbilt University Institutional Review Board does not consider 415 

deidentified human pancreatic specimens to qualify as human subject research.  416 

This study used data from the Organ Procurement and Transplantation Network (OPTN) that 417 

was in part compiled from the Data Hub accessible to IIDP-affiliated investigators through IIDP 418 

portal (https://iidp.coh.org/secure/isletavail). The OPTN data system includes data on all donors, 419 

wait-listed candidates, and transplant recipients in the US, submitted by the members of the 420 

OPTN. The Health Resources and Services Administration (HRSA), U.S. Department of Health 421 

and Human Services provides oversight to the activities of the OPTN contractor. The data 422 

reported here have been supplied by UNOS as the contractor for the Organ Procurement and 423 

Transplantation Network (OPTN). The interpretation and reporting of these data are the 424 

responsibility of the author(s) and in no way should be seen as an official policy of or 425 

interpretation by the OPTN or the U.S. Government.  426 
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Cell preparation  427 

Handpicked pancreatic islets were dispersed by manual pipetting using 0.025% HyClone trypsin 428 

(Cytiva/GE Healthcare #SH30042.01) and subsequently quenched with RPMI media containing 429 

20% FBS (Millipore #TMS-013-B). Cells were washed in the same media twice followed by one 430 

wash with 0.04% BSA (Thermo Scientific # AM2616) in 1X PBS without calcium and 431 

magnesium (Corning Cellgro #21-040-CV). Washed cells were immediately counted in a Trypan 432 

blue stain-based Cell Countess II Automated Cell Counter (Thermo Scientific #AMQAX1000). 433 

Viability obtained from the cell preparations ranged from 70-85%. Cells were resuspended in 434 

0.04% BSA/1X PBS at a density of 630-1,200 cells/μl in preparation for single cell RNA 435 

sequencing. 436 

Purification of α and β cell by FACS 437 

Human islets from preparations #1 and 2 (Table S1) were dispersed and sorted for α and β 438 

cells following protocol described previously17,49,61. Briefly, 0.025% trypsin was used to disperse 439 

islet cells by manual pipetting and subsequently quenched with RPMI containing 10% FBS. 440 

Previously characterized primary and secondary antibodies25,27,62 are listed in Table S3 and 441 

gating strategy is shown in Figure S2A. Collected α and β cells for scRNA-seq were washed in 442 

1X PBS with 0.04% BSA and immediately loaded into the 10x Chromium Controller at 1,200 443 

cells/μl based on FACS counts, with single cell libraries prepared as described below. In 444 

parallel, 10,000 α and β cells from islet preparation #2 were stored in RNA extraction buffer to 445 

be processed for bulk RNA-seq as described below. 446 

Bulk RNA library preparation and sequencing 447 

RNA was extracted from sorted α and β cells using the Invitrogen RNAqueous-Micro Total RNA 448 

Isolation kit (Thermo Fisher #AM1931). TURBO DNA-free (Ambion) was used to treat any trace 449 

DNA contamination. RNA was quantified by Qubit Fluorometer 2.0 and RNA integrity was 450 

confirmed (RIN >7) by 2100 Bioanalyzer (Agilent). RNA was amplified using NuGen Ovation 451 
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RNA amplification kit and sheared to an average size of 200 bp, then libraries were prepared 452 

using the NEBNext DNA library prep kit (New England Biolabs). Final libraries were sequenced 453 

on a Novaseq platform (Illumina), using paired-end reads (50 bp) targeting 50 million reads per 454 

sample. Raw reads were aligned to human reference genome hg38 using STAR v2.663. Strand 455 

NGS 3.4 commercial software was used to import aligned files (.bam) and subsequently check 456 

alignment quality, filter reads based on read quality, quantify transcripts, and normalize counts 457 

to transcript per million (TPM). Only genes with expression log2 (TPM) > 1 were considered for 458 

the analysis in Figures 2B-H and S2B-E. Gene Ontology (GO) analyses were performed using 459 

enrichDAVID function of R package ClusterProfiler64 3.14.3 (Figures 2D-G, S2B-C) or DAVID 460 

v6.8 web service65 (available https://david.ncifcrf.gov) (Figure S2D-E). Differential expression 461 

analysis between α and β cells was defined as fold change ≥±1, calculated based on p-value 462 

estimated by z-score calculations (cutoff 0.05) as determined by Benjamini Hochberg false 463 

discovery rate (FDR) correction of 0.0566.  464 

 For original/source data used in Figures 1A and 1C, bulk RNA-seq of sorted human islet α is 465 

available under NCBI GEO accession numbers GSE106148 (Brissova et al. 2018)17, bulk RNA-466 

seq of sorted human islet β cells is available under GSE116559 (Saunders et al. 2019)27. For 467 

original/source data used in Figure 1B, 1D, S1A, S1B, bulk RNA-seq data is available under 468 

GSE57973 (Arda et al. 2016)10, and GSE67543 (Blodgett et al. 2015)26 utilizing publicly 469 

available Reads Per Kilobase Per Million (RPKM) and Transcripts Per Million (TPM) normalized 470 

counts from NCBI GEO respectively. 471 

Single cell library preparation and sequencing 472 

Sorted or dispersed islet cell samples were loaded in triplicate (approximately 10,000 473 

cells/replicate) on 10x Chromium chips (PN# 1000009) to ensure consistent results. Gel Bead in 474 

Emulsion (GEM) generation and barcoding were performed on the 10x Chromium Controller 475 

according to the manufacturer’s instructions (10x Genomics Single Cell 3’ Library and Gel bead 476 
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Kit v2 #220104). Immediately after GEMs were generated, samples were transferred to a 0.2ml 477 

TempAssure PCR 8-tube strip (USA Scientific #14024700), capped, and placed into a 478 

thermocycler (Bio-Rad T100™ Thermal Cycler) for reverse transcription. After incubation, the 479 

GEMs were broken, and pooled cDNA proceeded to cleanup using Silane magnetic beads (10x 480 

Genomics #2000048) to remove leftover reagents. cDNA was then amplified through 10 cycles 481 

of PCR and cleaned using SPRIselect beads (Beckman Coulter # B23318). Resulting cDNA 482 

(average 45 ng/replicate) was checked for quality by Qubit dsDNA HS Assay Kit (Thermo Fisher 483 

Scientific #Q32854) and Agilent Bioanalyzer High Sensitivity Kit (Agilent #5067-4626). Final 484 

libraries were constructed according to manufacturer’s instruction and underwent 14 cycles of 485 

PCR amplification after sample index addition, yielding ~953ng and average library size of 486 

486bp. Final libraries were sequenced with a Novaseq sequencer (Illumina) using paired-end 487 

reads (100 bp) to average depth of ~146,000 reads per cell. 488 

scRNA-seq alignment, preprocessing, and quality control 489 

Alignment to reference transcriptome (GRCh38-1.2; gene annotation provided by 10x 490 

Genomics) and unique molecular identifier (UMI)-based gene expression quantification was 491 

obtained following the Cell Ranger analysis pipeline (v2.1). The “Aggr” function was used to 492 

aggregate transcript counts and normalize read depth across 5 islet preparations and their 493 

technical replicates, producing one single gene-cell (feature-barcode) matrix. In Figure 3, the 494 

“Aggr” function was applied to 2 islet preparations, including the samples that were FACS-495 

sorted. Further data preprocessing and clustering was performed using Seurat version 3.150. 496 

Cells with 200-4,000 detected genes and <10% mitochondrial gene expression were retained, 497 

and only genes expressed in ≥3 cells were considered for further analysis. Gene expression 498 

was normalized for each cell by library size and log-transformed using a size factor of 10,000 499 

molecules per cell. For feature selection, 2,000 highly variable genes were selected using 500 

function “FindVariableFeatures.” The data was further centered and scaled to zero mean and 501 
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unit variance implemented in the “ScaleData” function using parameter “vars.to.regress” to 502 

regress out mitochondrial gene expression. Cells co-expressing the insulin (INS) and glucagon 503 

(GCG) genes above log expression of 6.5 and 5 respectively, as well as cells expressing INS or 504 

GCG in addition to any other cell type gene marker, were removed as doublets (see Table S2 505 

for cell type markers used). Transcript counts from lysed cells (ambient mRNA/background 506 

RNA) were estimated and genes identified from empty droplets (droplets without cells) using 507 

DropletUtils package67. Using the raw gene-barcode matrix (Cell Ranger v3.1), UMI threshold of 508 

100 and below were considered ambient transcripts. About ~200 genes were identified as 509 

ambient genes and their expression level was noted to remove from the original gene barcode 510 

matrix in order to account for transcript stemming from lysed cells. The principal component 511 

analysis (PCA) was performed using previously determined 2,000 high variable genes as input. 512 

An elbow plot, which ranks the principal components (PCs) based on percent variance per PC, 513 

was considered to determine the number of PCs to use for downstream graph-based clustering. 514 

“FindNeighbors” and “FindClusters” functions were used with 20 PCs as input for cluster 515 

generation and resolution at 0.6. Finally, UMAP dimension reduction was used for cluster 516 

visualization.  517 

Immunohistochemical analysis 518 

Lightly paraformaldehyde (PFA)-fixed human pancreatic tissue cryosections from n=3 donors 519 

(age range 20-55 years) were prepared for immunohistochemistry and stained as described 520 

previously17,27,61. Primary and secondary antibodies and their dilutions are listed in Table S3; 521 

donor information is supplied in Table S4. Images were acquired at 20X with 2X digital zoom 522 

using a FV3000 confocal laser scanning microscope (Olympus) and processed using HALO 523 

software (Indica Labs) with a cytonuclear algorithm (HighPlex FL v3.2.1) to set an intensity 524 

threshold (“hi/lo”) for each marker.  525 
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Analysis of previously published scRNA-seq datasets 526 

Raw gene count matrices were extracted from existing single cell RNA-seq datasets18,28,29 and 527 

further analyzed using the R package Seurat version 3.1 as described above. 528 

Single cell electrophysiology and gene expression  529 

Patch-seq was performed as described previously in Camunas et al.18. 530 

Statistical Information 531 

Specific statistical tests used for each dataset are described in the figure legends and text 532 

where appropriate. Pearson’s correlation (Figures 2B-C and 3C-D) was performed using the 533 

‘ggpubr’ package (available http://rpkgs.datanovia.com/ggpubr/). Gene clustering analysis 534 

(Figure 2D-G) was performed using the “enrichDAVID” function of the R package clusterProfiler 535 

3.14.364. All other statistical analyses were performed using GraphPad Prism software.  536 
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Figure 1. Bulk RNA-sequencing and immunohistochemistry data highlight unique 564 

expression patterns of transcription factors ARX, MAFA, and MAFB in human α and β 565 

cells. (A–D) Normalized expression values (A, C-D) and fold change (B) of ARX, MAFA, and 566 

MAFB in previously published bulk RNA-sequencing (RNA-seq) datasets from α cells (green) 567 

and β cells (blue). Data in A is from Brissova et al. 201817 and Saunders et al. 201927 (n=5 568 

donors); additional datasets Arda et al. 201610 (n=5 donors) and Blodgett et al. 201526 (n=7 569 

donors) are included in panel B. See also Figure S1A-B. (C) Expression of ARX and MAFB is 570 

decreased (ARX fold change: -2.7; MAFB: -3.4) in α cells from donors with type 1 diabetes 571 

(T1D) compared to nondiabetic (ND) donors17. (D) Expression of MAFA is increased (fold 572 

change: 7.1) in adult β cells compared to fetal β cells, while MAFB is decreased (fold change: -573 

2.0)26. All bar graphs show mean + SEM; symbols represent individual donors (panels A, C-D) 574 

or average value per dataset (B). Asterisks indicate significant (adjusted p-value <0.05) fold 575 

change of α vs. β in panels A and B, T1D vs. ND in C, and adult vs. fetal in D. (E) 576 

Immunohistochemical staining of pancreatic sections from a nondiabetic adult (55 years, Table 577 

S4), showing specificity of ARX, MAFA, and MAFB (red) in α cells (GCG; green) and β cells 578 

(CPEP; blue). Arrowheads indicate cells negative (white) or positive (purple) for transcription 579 

factors; scale bar, 50 μm. See also Figure S1C-D.  580 
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Figure 2. Similarities and differences in gene capture between single cell and bulk RNA-581 

seq. (A) Schematic showing the comparison of sorted human α and β cells profiled by bulk 582 

(FACS-Bulk) and single cell (FACS-SC) RNA-sequencing (n=1, 39y donor; data in Figures 2 583 

and S2), as well as single α and β cells identified by cell surface markers (FACS-SC) compared 584 

to those from dispersed whole islets (WI-SC) identified by unsupervised clustering. (n=2, 14y 585 

and 39y donors; data in Figures 3 and S3-S5).  (B–C) Average expression (TPM) was taken 586 

across 7,269 α cells and 2,511 β cells from scRNA-seq and compared with TPM normalized 587 

expression of bulk RNA-seq (10,000 cells/each) of corresponding populations. Only genes 588 

above log2TPM=1 in both populations were considered to assess gene detection; r is Pearson’s 589 

coefficient and p is significance from t-test statistic. (D–G) Gene ontology analysis was 590 

performed on genes common between scRNA-seq and bulk RNA-seq (D, α cells; E, β cells), as 591 

well as on the 2,000 most highly expressed genes unique to bulk RNA-seq (F, α cells; G, β 592 

cells) using “enrichDAVID” function of the R package clusterProfiler 3.14.364. Colored labels 593 

show data input and correspond to shaded regions of panels B-C. (H) Comparison of individual 594 

genes differentially expressed between α and β cells, with log2 fold change from scRNA-seq 595 

plotted on y-axis and bulk RNA-seq on x-axis.  596 
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Figure 3. Gene expression of α and β cells by scRNA-seq is similar between cells 597 

identified with cell surface markers and those identified by unsupervised clustering. (A) 598 

Principal component analysis (PCA) shows clustering of sorted α and β cells identified by cell 599 

surface marker expression (FACS-SC) and those derived from dispersed whole islets and 600 

identified by unsupervised clustering (WI-SC). See also Figure 2A. (B) Heatmap depicts 601 

expression of those genes contributing to variability in PCA. (C–D) Comparison of average log 602 

expression of genes across cells identified by unsupervised clustering or cell surface markers 603 

for α (C) and β cells (D). Genes highlighted are α cell-enriched (yellow), β cell-enriched (blue), 604 

or selected markers of cell stress (grey). (E) Heatmap showing variable expression of known α 605 

and β cell-enriched markers within and between each sample. (F) Relative expression of 606 

transcription factors across samples; dot size indicates the percentage of cells with detectable 607 

transcripts and color indicates gene’s mean expression z-score.  608 
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Figure 4. Transcription factor expression in human pancreatic islets by scRNA-seq. (A) 609 

UMAP visualization of 44,953 pancreatic islet cells from n=5 islet preparations, identified by 610 

unsupervised clustering; cell populations include β (24%), α (54%), δ (2.5%), ε (0.08%), acinar 611 

(3.3%), ductal (4.7%), endothelial (2.2%), stellate (7.7%), and immune cells (0.5%). Cell clusters 612 

were annotated using known gene markers (Table S2). γ and ε cells could not be resolved from 613 

the δ cell cluster; thus, these populations were manually selected using the “CellSelector” 614 

function to identify cells positive for PPY and GHRL, respectively. Libraries were sequenced at 615 

~80,000 reads/cell yielding a median of 2,365 genes per cell. (B) Dot plot showing relative 616 

expression of cell type markers to validate cell type annotation post-unsupervised clustering. (C) 617 

Dot plot showing relative expression of transcription factors across all cell types. In panels B-C, 618 

dot size indicates the percentage of cells with detectable transcripts; color indicates gene’s 619 

mean expression z-score. (D) Natural log expression level of common transcription factors 620 

expressed in α and β cells.  621 
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Figure 5. Heterogeneity of ARX and MAFB expression in α cells by scRNA-seq correlates 622 

with expression of key functional genes. (A) UMAP visualization of 24,248 α cells (n=5 623 

donors) pseudocolored to show, from left to right, expression of ARX (blue); MAFB (red); and 624 

both ARX and MAFB with 0.5 color threshold scale. (B) Scatterplot on the left is depicting four 625 

distinct α cell populations based on ARX and MAFB expression: those expressing neither factor 626 

(10%), those expressing only ARX (4%) or only MAFB (48%), and those co-expressing ARX 627 

and MAFB (38%). Chart on the right shows cell populations by donor, with the outermost circle 628 

reflecting totals. (C) Dot plot showing the relative expression of selected genes related to α cell 629 

identity, ion flux, glucose metabolism, vesicle trafficking, exocytotic machinery, and cellular 630 

stress of the four α cell populations in panel B. Dot size indicates the percentage of α cells with 631 

detectable transcripts; color indicates the gene’s mean expression z-score. See Figure S8 for 632 

comparison to other single cell studies. (D) Immunohistochemical staining of ARX (blue) and 633 

MAFB (red) in glucagon (GCG)-expressing α cells (green) of a nondiabetic adult (55 years, 634 

Table S4). Numbered arrowheads indicate the presence of 4 α populations: 1, ARXlo MAFBlo; 2, 635 

ARXhi MAFBlo; 3, ARXlo MAFBhi; 4, ARXhi MAFBhi. (E) Quantification of α cell populations shown 636 

in panel D (n= 2,369 α cells). Outermost circle represents composite count and inner circles 637 

represent α cells from each of n=3 donors (see also Figure S7B).  638 
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Figure 6. Heterogeneity of MAFA and MAFB expression in β cells by single cell RNA-seq 639 

correlates with expression of key genes involved in β cell function. (A) UMAP visualization 640 

of 11,034 β cells (n=5 donors), pseudocolored to show, from left to right, expression of MAFA 641 

(red); MAFB (blue); and both MAFA and MAFB with 0.5 color threshold scale. (B) Scatterplot on 642 

the left depicts four distinct β cell populations based on MAFA and MAFB expression: those 643 

expressing neither factor (22%), those expressing only MAFA (4%) or only MAFB (52%), and 644 

those co-expressing MAFA and MAFB (22%). Chart on the right shows cell populations by 645 

donor, with the outermost circle reflecting totals. (C) Dot plot showing the relative expression of 646 

selected genes related to β cell identity, ion flux, glucose metabolism, vesicle trafficking, 647 

exocytotic machinery, and cellular stress of the four β cell populations in panel B. Dot size 648 

indicates the percentage of β cells with detectable transcripts; color indicates the gene’s mean 649 

expression z-score. See Figure S10 for comparison to other single cell studies. (D) 650 

Immunohistochemical staining of MAFA (red) and MAFB (blue) in C-peptide (CPEP)-expressing 651 

β cells (green) of a nondiabetic adult (55 years, Table S4). Numbered arrowheads indicate the 652 

presence of 4 populations: 1, MAFAlo MAFBlo; 2, MAFAhi MAFBlo; 3, MAFAlo MAFBhi; 4, MAFAhi 653 

MAFBhi. (E) Quantification of β cell populations shown in D (n= 2,566 β cells). Outermost circle 654 

represents composite count and inner circles represent β cells from each of n=3 donors (see 655 

also Figure S8B).  656 
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Figure 7. Beta cells co-expressing MAFA and MAFB have enhanced electrophysiolgic 657 

activity compared to β cells expressing one or neither factor. (A) Dot plot showing the 658 

relative expression of selected genes in β cells expressing neither MAFA nor MAFB, those 659 

expressing only MAFA or only MAFB, and those co-expressing MAFA and MAFB, based on 660 

data from Camunas et al. 202018. Dot size indicates the percentage of cells with detectable 661 

transcripts; color indicates gene’s mean expression z-score. (B) Electrophysiological function in 662 

MAFA- and MAFB-expressing β cell subpopulations. Significantly higher Ca2+ currents and 663 

exocytosis are observed for β cells expressing both MAFA and MAFB with similar cell size 664 

across all subpopulations. Mann-Whitney test adjusted for multiple hypothesis testing with 665 

Benjamini-Hochberg (BH) procedure; *, p < 0.05; **, p < 0.01. 666 
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