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Abstract

Human immune system functions over an entire lifetime, yet how and why the
immune system becomes less effective with age are not well understood. Here, we
characterize peripheral blood mononuclear cells from 172 healthy adults 21~90 years of
age using RNA-seq and the weighted gene correlation network analysis (WGCNA). These
data have revealed a meaningful of gene expression modules or representative
biomarkers for human immune system aging in Aisan and White ancestry. Among them,
several gene modules demonstrated a remarkably correlation with human immune aging
progress. Besides, further analysis on these ageing related modules show age-related
gene expression changes spike is around early-seventies. More importantly, we also
focus on how race and ethnicity affect immune aging as race-specific effects on these
gene expression changes have clinical applications for diagnosis and interpretation of
immunosenescence. Thus, the top hub genes including NUDT7, CLPB, OXNAD1 and
MLLT3 are identified from Asian and white aging related modules and further validated in
humans PBMC at different ages. Finally, the impact of age and race on immune
phenotypes we discuss may provide insights into future studies.
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Introduction

Chronological age is a major risk factor for many common diseases including heart
disease, cancer and stroke, three of the leading causes of death(He and Sharpless, 2017).
Although chronological age is the most powerful risk factor for most chronic diseases, the
underlying molecular mechanisms that lead to generalized disease susceptibility are
largely unknown. It has been shown that aging alters the components of innate and
adaptive immunity ranging from the expression of signaling molecules to the behavior of
neutrophils, monocytes, lymphocyte, NK cells, etc(Cheung et al., 2018; Nikolich-Zugich,
2018). Interestingly, after the age of 60, the most consistent and dramatic alterations in
adaptive immune system are the T cell compartment, including a decreased thymic output
of naive T cells and an increased antigen-experienced memory cells(Moskowitz et al.,
2017; Nikolich-Zugich, 2018).

Recent studies revealed that epigenetic variations and gene expression of purified
immune cells, especially CD8+ T cells, changed significantly with aging, impacting the
activity of important receptor molecules, signaling pathways, and transcription factors
(TF)(Peters et al., 2015; Moskowitz et al., 2017). Besides, since cytokines were central to
immune cell communication and effector activity, many researchers had investigated the
contribution of changes in cytokine production to the age associated changes in immune
response. Such as, T-cell proliferation and growth was induced by IL-2 but as T cells age,
they lost their capacity to produce and respond to IL-2(Whisler et al., 1996). And the
reduced IL-2 production ascribed age-related impairments in the activation of transcription
factors AP-1 and NF-AT(Whisler et al., 1996). Thus, understanding the aging-associated
immune gene expression changes is critical to explaining both the disease susceptibility
and the different clinical course of diseases in the elderly.

Interestingly, analyses of human blood samples from different race and ethnicity
uncovered significant aging-related changes in PBMC various population subsets(Noren
Hooten et al., 2018). For example, a study on peripheral blood mononuclear cell subsets
described not only the presence of benign ethnic neutropenia among African Americans
but further described a higher proportion of CD19+ cells and a lower proportion of CD3+
cells than in Whites (Tollerud et al., 1989). Moreover, the proportions of PBMCs’
subpopulation in Asian cohorts were also different. Choong and colleagues observed that
there were differences in cell counts for T, NK, and CD4+ cells as well as in the CD4/CD8
ratio among healthy Malaysians, Chinese, and Indians across the life span (18–71 years)
(Choong et al., 1995). Besides, Indians were significantly different from Malays and
Chinese. Indians had higher T cells, higher CD4 cells, higher CD4/CD8 ratio, and lower
NK cells(Choong et al., 1995). Chinese donors had lower B-cell levels than Malays and
Indians(Choong et al., 1995). Despite the importance of age and race in shaping immune
cell numbers and functions, it is not known whether Asian and White immune systems go
through similar gene expression changes throughout their lifespan, and to what extent
these aging-associated changes are shared between White and Asian.
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To study this, we collected and profiled PBMCs of healthy adults by carefully
matching the ages of Asian and White donors. Computational pipelines for WGCNA
analysis, differentially expressed genes (DEGs) and functional enrichments analyses
revealed immune system aging signatures in Asian and White. These findings uncovered
in which ways aging differentially affects the immune systems between Asian and White
populations and discovered a common genetic variant that greatly impacts normal PBMC
aging.
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Results

Profiling PBMCs of healthy adults. We recruited 19 community dwelling healthy
volunteers (10 women, 9 men) whose ages span 21–93 years old (Supplementary Table
S1): 9 young (ages 21–30: 4 men, 5 women), and 10 older subjects (74+: 5 men, 5
women) in Guangdong area from China. No significant differences were detected
between sexes in their frailty scores or age distributions. Male and female samples for
each assay were comparable in terms of age; old women were slightly older than men
(~85.2 vs. ~81.4; t-test p-value = 0.41) (Supplementary Table S1). Then, PBMCs were
profiled using RNA-seq (10 women, 9 men; Supplementary Table S7). Prior to the
construction of hierarchical clusters, 29,367 genes were selected after normalization of
raw gene counts, excluding the genes with no expression in all samples. Moreover, a total
of 153 normal healthy human subjects, whose ages span 20–90 years old and come from
different races (Figure S1, Supplementary Table S2): 65 young (ages 21–40: 24 men, 41
women), 40 middle-aged (ages 41–64: 18 men, 22 women), and 48 older subjects (65+:
20 men, 28 women) were downloaded from The 10,000 Immunomes Project (10KIP,
http://10kimmunomes.org/). Then, their PBMCs gene expression array data were
processed for further WGCNA clustering analysis.

Aging and race have influenced the transcriptomic changes over human adult
lifespan. To identify major sources of variation in transcriptomic data, we conducted
WGCNA analysis using expressed genes (n = 19,089) from the 10KIP. First, by using the
soft thresholding power (β=6) in this algorithm, the co-expression network could satisfy
the approximate scale-free topology criterion with R2 > 0.80 while maintaining a high
mean connectivity with enough information (Figure S2A). Then, we merged the modules
of eigengenes with a correlation coefficient of over 0.75 (Figure S2B), and the size of the
co-expression modules ranged from 68 to 3,891 genes (Figure1A, Supplementary Table
S3). After merging the highly correlated modules, the co-expression genes were clustered
into 22 modules with similar gene expression patterns and labeled with different colors
(Figure 1B). To further quantify co-expression similarity of entire modules, we calculated
their eigengenes adjacency on their correlation of the entire modules. Each module
showed independent validation to each other, and the progressively more saturated blue
and red colors indicated the high co-expression interconnectedness (Figure1B). Genes
within the corresponding modules indicated higher correlation than the genes between
different modules from the network heatmap plot of selected genes.

In order to figure out which factor mainly affected the variation in PBMC
transcriptomes, the correlation coefficients between modules and the trait of age, gender
and race were calculated respectively. Three of these traits were slightly correlated with
one or more modules, and the trait-module relationships with P ≤ 0.01 were further
analyzed (Figure 1C, Supplementary Table S4). Notably, among them, darkolivegreen
module were negatively correlated with age (Pearson r=0.45, p=2.02e-08; Figure 1C),
while Green module positively correlated with age (Pearson r=0.39, p=8.30e-07; Figure
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1C). Furthermore, a significant correlation was also detected between sex and race in
terms of their transcriptomic aging signatures respectively. Then, to study whether PBMC
transcriptomic changes were acquired gradually over lifespan or more rapidly at certain
ages, we detected age brackets during which abrupt changes take place, referred to as
breakpoints. Within each aging related modules, we compared transcriptomic profiles
observed at ages. Finally, these analyses revealed two periods in adult lifespan during
which rapid changes occur: (i) a timepoint in earlyforties, and (ii) a later timepoint after 70
years of age (Figure 1D, E, Supplementary Table S5).

Besides, racial/ethnic differences in PBMC aging among adult lifespan were also
important because of the profound effect on health. To identify major sources of variation
in transcriptomic data, we conducted the principal component analyses (PCA) using
expressed genes (n = 19,089) from high-quality samples (153 microarray data,
Supplementary file1 Table S15 ). The first principal component (PC1) captured 14.9% of
the variation in 153 microarray data and associated to age groups (Figure 1F,
Supplementary Table S6). We could see PC1 differences between Asian and White
samples were more significant (Figure 1G), and this also took place in Aisan and Black or
Africa American(Figure 1G). Together, these results suggested that aging and race had
both influenced the variation in PBMC transcriptomes, where it was unclear to what extent
these aging-associated changes were shared in different races, such as Asian and White.

Aging-related changes in PBMC transcriptomes in Asian and its aging-related
modules detection. To determine transcriptome profiles over PBMC of aging, 19
community dwelling healthy volunteers (10 women, 9 men) whose ages spanned 21–93
years old were collected for bulk RNA-seq at various stages. Principal component
analysis (PCA) revealed that young and old samples were divided into two parts, and
women changed more largely than men, especially in the old women (Figure 2A). To
further identify the related genes of PBMC aging, weighted gene coexpression network
analyses (WGCNA) was conducted using FPKM of 29,367genes (FPKM >1 of all
sequenced points, Figure 2B) and the trait of age and sex. Genes with the same
expression pattern were clustered into the same module to generate a cluster
dendrogram (Figure 2B). The sample dendrogram and trait heatmap were visualized to
understand the relationship between the corresponding gene expression data and
biological traits (Figure 2C). 40 modules were obtained, of which the four module (cyan,
darkturquoise, orange, brown) showed significant correlations with age, with the pearson
correlation coefficients of absolute R ≧0.70 ( P < 0.01) (Figure 2C, Supplementary File 1,
Tables S9). Further, a consensus clustering also confirmed the four main group were
clearly separated by the 19 aging samples from young to old (Figure 2D), respectively.
Similarly, the four interesting modules based on ME expression profile and 19 samples
with extract age trait from young to old were also displayed in Figure 2E. The module
eigengene E in Y-value was defined as the first principal component of a given module
and it could be considered a representative of the gene expression profiles in a module,
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as shown in figure S3 (Supplementary Table S8). These results suggested these four
gene modules were highly associated with chronological age in Asian, especially for the
brown and darkturquoise module.

Novel and known age-associated genes and pathways associated with PBMC aging
in Asian. WGCNA analysis defined that the ME was the first principal component of a
given module and could be considered as a representative of the module’s gene
expression profile. Based on ME expression profile of the four interesting modules, the
expression of cyan, darkturquoise and orange modules were downregulated, while brown
module showed the opposite results (Figure 3A). To further explore the biological
functions of the brown and darkturquoise modules, we performed GO term enrichment
analysis, as well as pathway ontology analyses by using clusterProfiler R package(Yu et
al., 2012). Top GO biological processes and KEGG pathway in each module was shown in
Figure 3B, C. For the brown module, the top two enriched terms in GO ontology were
“Cellular amino acid metabolic process” (FDR =5.74E-04) or “ Negative regulation of
neuron apoptotic process” (FDR =8.43E-04). For the KEGG pathway analysis, the top
enriched terms were “Herpes simplex virus 1 infection” (FDR = 9.19E-09) and “Valine,
leucine and isoleucine degradation” (FDR = 1.33E-03). For darkturquoise module genes,
the top enriched terms in the “GO databases were Protein-DNA complex subunit
organization” (FDR = 7.68E-07) and “ ncRNA processing” (FDR = 1.33E-06). Moreover,
genes in darkolivegreen module were found to be significantly enriched in protein export
and lysine degradation signaling pathway. The complete annotation for these two module
was provided in Supplementary File 1, Tables S10. These findings together with previous
research, which found persistent virus infections and metabolic disregulation were closely
related with immune aging(Brunner et al., 2011; Hamrick and Stranahan, 2020), implied
that the above signaling pathways virus infection and dysregulated metabolic process
played an important role in aging. To identify key genes associated with chronological age,
we performed a more detailed analysis of the brown and darkturquoise modules. First,
based on the cut-off criteria of |logFC| ≥ 1 and adj. P < 0.05, a total of 924 DEGs in the 19
Chinese PBMC transcriptomic data were found to be dysregulated in old individuals by the
limma package. Then, as shown in veen diagram Figure S4, 278 and 19 co-expression
genes were found in the brown module and darkturquoise module in 19 Chinese PBMC
DEG dataset, respectively. In total, the overlapping genes were extracted for validating
the genes of co-expression modules. Then, the PPI network among the overlapped genes
was established by using the STRING database. The hub genes selected from the PPI
network using the MCC algorithm of CytoHubba plugin were shown in (Figure 3D,E).
According to the MCC sores, the top six highest-scored genes, including probable
ATP-dependent RNA helicase (DDX27), Signal recognition particle subunit (SRP68) , E3
ubiquitin-protein ligase (RNF25), Transmembrane protein 131-like (TMEM131L),
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase 110 kDa subunit
(OGT), Early endosome antigen 1 (EEA1) , exhibiting the highest connections with other
genes were identified for further investigation (Figure 3D,E). Strikingly, the mRNA
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abundance of these hub genes were significantly associated with chronological age, as
shown in figure (Figure 3F, G). Surprisingly, according to reports in the literature, Nesrine
Maharzi, et.al demonstrated TMEM131L could regulate immature single-positive
thymocyte proliferation arrest by acting through mixed Wnt-dependent and -independent
mechanisms(Maharzi et al., 2013). Reports demonstrated O-GlcNAc transferase (OGT)
level was decreased in multiple aged tissues and reminded us that dysregulation of OGT
related O-GlcNAc formation might play an important role in the development of
age-related diseases (Fulop et al., 2008). Researcher also reported the abundance of
EEA1 proteins was altered in the brains of aged mice(Ve et al., 2020). Moreover, SRP68
has been reported its association with cellular senescence, while the
ubiquitination-related genes RNF25 is not clear in immune aging. These data support the
notion that TMEM131L, OGT, EEA1, DDX27, SRP68 and RNF25 play an important role
during PBMC aging, which may function as the novel candidate biomarkers for Chinese
individuals.

Aging-related changes in PBMC transcriptomes in White and its hub gene detection.
Similarly, to figure out the aging-related gene modules in PBMC transcriptomes in White
individuals, we performed weighted gene co-expression network analysis (WGCNA) to
reconstruct miroarray data in 113 White individuals, including 48 young (<40 years), 25
middle aged (40–65 years), and 41 normal aged (65–90 years). Then, a total of 16,376
genes from these transcriptomic data were used for this computation (Supplementary
Table S11). 20 major gene modules (brown and turquoise, each containing ≧296 genes )
were identified. Then, we plotted the heatmap of module-trait relationships to evaluate the
association between each module and the trait of age and sex. The results of the
module-trait relationships were presented in Figure 4A (Supplementary Table S12),
revealing that the brown module and turquoise module were found to have the highest
association with chronological age (brown module: r = 0.52, p = 2.45e-09; turquoise
module: r = -0.47, p = 2.05e−07). More interestingly, we found these two aging related
modules revealed there were two periods in the human lifespan during which the immune
system underwent abrupt changes: (i) a timepoint in early thirties, and (ii) a later timepoint
after 65 years of age (Figure 4B, C). To gain further insight into the potential functions of
these two co-expression modules, gene enrichment analysis was performed by the
clusterProfiler package. After screening of GO and KEGG enrichment analysis, we
observed several enriched gene sets shown in Figure 4D, E. The biological process (BP)
of brown and turquoise modules were mainly enriched in hormone transport, and
postsynaptic specialization respectively (Figure 4D, Supplementary table S13). Moreover,
on the KEGG pathway enrichment analysis, the genes of brown module was mainly
categorized into long-term depression and gap junction, while the turquoise module was
mainly enriched in phototransduction and hedgehog signaling pathway (Figure 4E). In the
following, we focused on the core genes of the brown and turquoise modules. By using
the differential expression analysis, we identified 1185 genes differentially expressed with
chronological age in White. The venn diagram for the DEG, brown and turquoise modules
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were listed as shown in Figure 4F. Similarly, the 50 overlapping genes in brown module
and 177 overlapping genes in turquoise module were then to processed to detect the hub
genes by using the STRING database, repectively. Then, the hub genes selected from the
PPI network using the MCC algorithm of CytoHubba plugin were shown in Figure 4G. In
the following, we focused on the core genes of the blue and turquoise module. The top
two hub genes (Adenylate Cyclase 4, ADCY4; Phosphatidylinositol 4,5-bisphosphate
3-kinase catalytic subunit alpha isoform, PIK3CA) in turquoise module were significantly
down-regulated in PBMCs of old adults (Figure 4H), whereas immunoglobulin superfamily
DCC subclass member 2 (NEO1) from brown module showed the opposite result in the
white cohorts (Figure 4H). From the aging atlas website
(https://bigd.big.ac.cn/aging/age_related_genes), ATP Pyrophosphate-Lyase 4 (ADCY4)
and Serine/Threonine Protein Kinase (PIK3CA) have both involved in Longevity regulating
pathway. As reported, ADCY4 catalyzes the formation of the signaling molecule cAMP in
response to G-protein signaling(Ludwig and Seuwen, 2002), and PIK3CA participates in
cellular signaling in response to various growth factors, which also involved in the
activation of AKT1 upon stimulation by receptor tyrosine kinases ligands such as EGF,
insulin, IGF1, VEGFA and PDGF(Yamaguchi et al., 2011). Besides, neogenin-1 (NEO1)
has been reported associated with the long-term HSCs (LT-HSCs) expand during
age(Gulati et al., 2019). Taken together, these data also revealed that ADCY4, PIK3CA,
and NEO1 involved in aging importantly, which might serve as the novel candidate
biomarkers in White individuals during the PBMC aging.

Shared transcriptomic signatures of aging between White and Asian. As racial/ethnic
differences in age-expectations(Menkin et al., 2017), our first aim was to test whether
PBMC aging differed across racial/ethnic groups. As the brown module from Asian and the
turquoise module from White were both negatively correlated with chronological age, we
compared these two modules to find out the common expressed genes by venn diagram.
So as shown in Figure 5A, 95 genes in Asian and White significantly overlapped, despite
thousands of race-specific gene associated with aging corresponding to 2623 and 1688
genes in Asian and White. Functional annotation of the 95 shared genes using R package
clusterprofier revealed that these genes were highly enriched in the GO biological process
of hindbrain development and coenzymeA metabolic process, as well as in the KEGG
pathway of TGF-beta signaling significantly (Figure 5B,C). To uncover potential regulators
of common transcriptomic changes in Asian and White, we identified hub genes by using
the STRING database. According to the MCC sores from CytoHubba plugin, the top
highest-scored genes, including peroxisomal coenzyme A diphosphatase (NUDT7) and
caseinolytic peptidase B protein homolog (CLPB), were selected as the hub genes (Figure
5D). Meanwhile, by using the genes between the DEG lists and co-expression modules,
the venn analysis of differentially expressed genes (DEGs) with the age-related modules
in White and Asian revealed two aging-specific gene markers (Figure 5E). And then, as
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shown in figure 5F, two overlapping genes (OXNAD1 and MLLT3) were both
downregulated in the old adults in Asian and White. Combined analysis of DEGs and
aging-related modules in Asian/White uncovered shared changes in pathway enrichment
and hub genes. These analysis further highlighted the stark differences between races
regarding aging of transcriptomic.

Validated shared genes involved in PBMC aging. After the 4 hub genes (NUDT7,
CLPB, OXNAD1, MLLT3) common shared in Asian and White, we verified the expression
levels of the hub genes among the individuals using the RNA-seq data and qPCR assay.
As shown in Figure 6A, B, all of the 4 hub genes were found to be significantly
downregulated in old individuals compared with the youth in Asian and White. Interestingly,
they were all down-regulated in women during their lifespan in both White and Asian, as
shown in Figure 6C. To further investigated whether these 4 hub genes expressed
differentially across the progressive stages of PBMC aging, we measured these four hub
genes mRNA levels (NUDT7, CLPB, OXNAD1 and MLLT3) in extracts of PBMC from 7
young adult (ages 21–30), and 5 aged health adults (ages 74+). Similarly, the mRNA
level of NUDT7, CLPB, OXNAD1 and MLLT3 were both remarkably down-regulated in the
aging individuals’ PBMC, as verified by quantitative real time RT-PCR (qRT-PCR) (Figure
6D). The data in vivo above indicates a rather close relationship between hub genes and
normal PBMC aging in Asian and White.

Methods

Human subjects. All studies were conducted following approval by the Ethics Committee
of Jinan University (Approval#:KY-2020-027 ). Following informed consent, blood samples
were obtained from 31 healthy volunteers residing in the Guangzhou, China region
recruited by the Guangzhou First People’s Hospital. For older adults 65 years and older,
recruitment criteria were selected to identify individuals who are experiencing “usual
healthy” aging and are thus representative of the average or typical normal health status
of the local population within the corresponding age groups. Selecting this type of cohort
is in keeping with the 2019 NIH Policy on Inclusion Across the Lifespan
(NOT-98-024)(Kuchel, 2019), increasing the generalizability of our studies and the
likelihood that these findings can be translated to the general population(Robertson et al.,
2009). Subjects were carefully screened in order to exclude potentially confounding
diseases and medications, as well as frailty. Individuals who reported chronic or recent
(i.e., within two weeks) infections were also excluded. Subjects were deemed ineligible if
they reported a history of diseases such as congestive heart failure, ischemic heart
disease, myocarditis, congenital abnormalities, Paget’s disease, kidney disease, diabetes
requiring insulin, chronic obstructive lung disease, emphysema, and asthma. Subjects
were also excluded if undergoing active cancer treatment, prednisone above 10 mg day,
other immunosuppressive drugs, any medications for rheumatoid arthritis other than
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NSAIDs or if they had received antibiotics in the previous 6 months. Finally, smoking
history data are not typically collected in these studies—including 19 Chinese
individuals—since smoking is a rare habit among older adults.

Ethics. The study was conducted following approval by the Ethics Committee of the first
affiliated Hospital of Jinan University (Approval#:KY-2020-027). All study participants
provided written informed consent at baseline using institutional review board approved
forms. Individual-level human transcriptomic data (RNA-seq) are shared in the Sequence
Read Archive (SRA) database (SRA: PRJNA703752). Our study complies with Tier 1
characteristics for “ Biospecimen reporting for improved study quality ” (BRISQ)
guidelines.

RNA-seq library generation and processing. Total RNA was isolated from PBMCs
using the TRIzol (Invitrogen, United States) following manufacturer’s protocols. During
RNA isolation, DNase I treatment was additionally performed using the RNase-free
DNase set (Qiagen). RNA quality was checked using an Agilent 2100 Bioanalyzer
instrument, together with the 2100 Expert software and Bioanalyzer RNA 6000 pico assay
(Agilent Technologies). RNA quality was reported as a score from 1 to 10, samples falling
below threshold of 8.0 being omitted from the study. cDNA libraries were prepared using
either the TruSeq Stranded Total RNA LT Sample Prep Kit with Ribo-Zero Gold (Illumina)
or KAPA Stranded mRNA-Seq Library Prep kit (KAPA Biosytems) according to the
manufacturer’s instructions using 100 ng or 500 ng of total RNA. Final libraries were
analyzed on a Bioanalyzer DNA 1000 chip (Agilent Technologies). Paired-end sequencing
(2 × 100 bp) of stranded total RNA libraries was carried out in either Illumina NextSeq500
using v2 sequencing reagents or the HiSeq2500 using SBS v3 sequencing reagents.
Quality control (QC) of the raw sequencing data was performed using the FASTQC tool,
which computes read quality using summary of per-base quality defined using the
probability of an incorrect base call. According to our quality criteria, reads with more than
30% of their nucleotides with a Phred score under 30 are removed, whereas samples with
more than 20% of such low-quality reads are dropped from analyses. Benchmarking is
also applied on RNA-seq data using the same benchmark parameters as ATAC-seq,
which resulted in 304 benchmark genes, none of the RNA-seq samples were dropped due
to poor quality. Reads from samples that pass the quality criteria were quality-trimmed and
filtered using trimmomatic. High-quality reads were then used to estimate transcript
abundance using RSEM51. Finally, to minimize the interference of non-messenger RNA in
our data, estimate read counts were renormalized to include only protein-coding genes.
Supplementary TableS7 summarizes the FKPM values of PBMC from 19 Chinese
individuals.

Microarray data obtaining. the microarray-based expression from 10 KIP provided by Lu
et al.(Zalocusky et al., 2018) , was downloaded from the 10,000 immunomes project
(10KIP, http://10kimmunomes.org/). This dataset contained quantile normalized
genome-wide expression profiles of 153 adult human PBMC samples from all ages,
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including samples from 65 young (ages 21–40: 24 men, 41 women), 40 middle-aged
(ages 41–64: 18 men, 22 women), and 48 older subjects (65+: 20 men, 28 women) and
containing three races including 19 Asian, 113 White and 21 Black or Africa American.

Identification of Key Co-expression Modules Using WGCNA

Co-expression networks facilitate methods on network-based gene screening that can be
used to identify candidate biomarkers and therapeutic targets. In our study, the gene
expression data profiles of microarray data and RNA-seq profile were constructed to gene
co-expression networks using the WGCNA package in R respectively. WGCNA was used
to explore the modules of highly correlated genes among samples for relating modules to
external sample traits(Langfelder and Horvath, 2008). To build a scale-free network,
optimum soft powers β were selected using the function pickSoftThreshold. Next, the
adjacency matrix was created by the following formula: aij = |Sij|β (aij: adjacency matrix
between gene i and gene j, Sij: similarity matrix which is done by Pearson correlation of all
gene pairs, β: softpower value), and was transformed into a topological overlap matrix
(TOM) as well as the corresponding dissimilarity (1-TOM). Afterwards, a hierarchical
clustering dendrogram of the 1-TOM matrix was constructed to classify the similar gene
expressions into different gene co-expression modules. To further identify functional
modules in a co-expression network, the module-trait associations between modules, and
clinical trait information were calculated according to the previous study(Hu et al., 2018).
Therefore, modules with high correlation coefficient were considered candidates relevant
to clinical traits, and were selected for subsequent analysis. A more detailed description of
the WGCNAmethod was reported in our previous study(Hu et al., 2018).

Differential Expression Analysis and Interaction With the Modules of Interest

The R package limma (linear models for microarray data) provides an integrated solution
for differential expression analyses on RNA-Sequencing and microarray data(Ritchie et al.,
2015). In order to find the differentially expressed genes (DEGs) between Asian and White,
limma was applied in the Asian RNA-seq and White dataset, respectively, to screen out
DEGs. The p-value was adjusted by the Benjamini–Hochberg method to control for the
false discovery Rate (FDR)(Benjamini and Hochberg, 1995). Genes with the cut-off
criteria of |logFC| ≥ 0.50 and adj. P < 0.05 were regarded as DEGs. The DEGs of the
Asian and White dataset were visualized as a volcano plot by using the R package
ggplot2 (Wickham H, 2016). Subsequently, the overlapping genes between DEGs and
co-expression genes that were extracted from the co-expression network were used to
identify potential prognostic genes, which were presented as a Venn diagram using the R
package VennDiagram(Chen and Boutros, 2011).

Functional Annotation for the Modules of Interest

For genes in each module, Gene Ontology (GO) and KEGG pathway enrichment analysis
were conducted to analyze the biological functions of modules. Significantly enriched GO
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terms and pathways in genes in a module comparing to the background were defined by
hypergeometric test and with a threshold of false discovery rate (FDR) less than 0.05. The
clusterProfiler package offers a gene classification method, namely groupGO, to classify
genes based on their projection at a specific level of the GO corpus, and provides
functions, enrichGO and enrichKEGG, to calculate enrichment test for GO terms and
KEGG pathways based on hypergeometric distribution(Yu et al., 2012). Thus, we input the
interesting modules into the clusterProfiler by comparing them to the annotated gene sets
libraries, with a cut-off criterion of adjusted p < 0.05. GO annotation that contains the three
sub-ontologies—biological process (BP), cellular component (CC), and molecular function
(MF)—can identify the biological properties of genes and gene sets for all organisms (Yu
et al., 2012).

Construction of PPI and Screening of Hub Genes

In our study, we used the STRING (Search Tool for the Retrieval of Interacting Genes)
online tool, which is designed for predicting protein–protein interactions (PPI), to construct
a PPI network of selected genes(Szklarczyk et al., 2019). Using the STRING database,
genes with a score ≥ 0.4 were chosen to build a network model visualized by Cytoscape
(v3.7.2)(Shannon et al., 2003). In a co-expression network, Maximal Clique Centrality
(MCC) algorithm was reported to be the most effective method of finding hub nodes(Chin
et al., 2014). The MCC of each node was calculated by CytoHubba, a plugin in
Cytoscape(Chin et al., 2014). In this study, the genes with the top 10 MCC values were
considered as hub genes.

Verification of the Hub Genes

In order to confirm the reliability of the hub genes, we verified the expression patterns of
the hub genes from healthy individuals including 7 young (ages: 23-30) and 5 old (ages:
≧74). The expression level of each hub gene between young and old individuals was
plotted as a violin graph. Total RNA from PBMCs was extracted by TRIzol (Invitrogen,
United States). Synthesis of cDNA was performed by using 2 μg of total RNA with
PrimeScriptTM Reverse Transcriptase (Takara) according to the manufacturer’s
instructions. Specific primers used for qPCR were listed in the supplementary table S14.
The gel image was acquired in the Gel Doc 1000 system and analyzed using the Quantity
One software (Bio-Rad Laboratories, Hercules, CA, United States). ACTB was chosen as
the endogenous control and cycle dependence was carried out to ensure that the PCR
products fell within the linear range. Quantitative real-time PCR was performed using the
SYBR® Premix Ex Taq Kit (Takara) in a 7900 Real Time PCR System (Applied
Biosystems, United States) for at least three independent experiments. The relative
quantification expression of each gene was normalized to ACTB, and calculated using the
2-ΔΔΔCT method.
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Statistical Analysis

All experiments were performed for at least three independent times, and the data were
expressed as the mean ± standard deviation (SD). All statistical analysis was performed
using GraphPad Prism 6 Software (GraphPad Software, San Diego, CA, United States).
Comparison between two groups was conducted by using Student’s t-test. P-values less
than 0.05 were considered as statistically significant.

Discussion

Age-associated changes in gene expression levels point towards altered activity in
defined age-related molecular pathways that may play vital roles in the mechanisms of
increased susceptibility to ageing diseases. In contrast to earlier studies of human
age-related molecular differences(van den Akker et al., 2014; Peters et al., 2015), we
detected 177 adult individuals from all ages among Asian, White and Africa and American
ancestry. In our study, a total of four significant gene modules with the same expression
trends were identified using integrated bioinformatic analysis in Asian and White
populations. As suggested in functional annotation analysis by the clusterProfiler package,
these module genes were mainly enriched in amino acid metabolic and differentiation,
which are basic processes in ageing mechanisms including dysregulation of herpes
simplex virus 1 infection, Valine, leucine and isoleucine degradation, long-term depression,
gap junction, and hedgehog signaling pathway. Furthermore, according to MCC scores
from the CytoHubba plugin in Cytoscape, the top chronological age related genes were
screened out (namely TMEM131L, OGT, EEA1, DDX27, SRP68 and RNF25 in Asian;
ADCY4, PIK3CA and NEO1 in White). According to reports in the literature, all of these
genes are more or less closely associated with aging. Consistent with these reports, the
expression of these genes were also found be significantly regulated among young and
old individuals in our study, supporting these genes plays a causal role in human PBMC
ageing. More importantly, the breakpoint analyses uncovered that although aging related
transcriptomic changes accumulate gradually throughout adult life, there are two periods
in the human lifespan during which the immune system undergoes abrupt changes. The
two breakpoints (30 and 65-70 years old ) were similar among races during the whole
lifespan. The differences in the timing of age-related changes can be helpful in clinical
decisions regarding when to start interventions/therapies.

Despite well-characterized race differences in immune responses, disease
susceptibility, and lifespan, it is unclear whether aging differentially affects peripheral
blood cells of European and Asian ancestry. To fill this gap, we generated RNA-seq data
in PBMCs from 19 age-matched Chinese healthy adults in Guangdong area and
downloaded microarray data of 153 individuals’ PBMCs from 10 KIP
(http://10kimmunomes.org/) including European, Asian and the other ancestry groups (19
Asian, 113 White and 21 Black or Africa American). Weighted gene correlation network
analysis (WGCNA) is an integrated bioinformatic analysis, which could provide a
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comprehensive characterization of the transcriptomic changes for disease’s functional
interpretation and led to new insights into the molecular aspects of clinical-pathological
factors(Langfelder and Horvath, 2008). So by using this integrated bioinformatic analysis,
we discovered a genomic signature of aging that is shared between race including (1) 95
age-associated genes in 132 individuals of European and Asian ancestry, (2) four hub
genes (NUDT7, CLPB, OXNAD1 and MLLT3) all decreased in old ages. According to
reports in the literature about these four hub genes, NUDT7, acts as a coenzyme A (CoA)
diphosphatase, which mediates the cleavage of CoA. NUDT7 functions as a
house-keeping enzyme by eliminating potentially toxic nucleotide metabolites, such as
oxidized CoA from β-oxidation in the peroxisome, as well as nucleotide diphosphate
derivatives, including NAD+, NADH, and ADP-ribose(Song et al., 2018). Furthermore
downregulation of NUDT7 in mice accelerated senescence(Cho et al., 2003), and
suppressed expression level was observed in the liver of starved mice(Bauer et al., 2004).
Interestingly, OXNAD1 also known as oxidoreductase NAD-binding domain-containing
protein, has been reported differentially expressed with chronological age(Peters et al.,
2015). And according to the uniprot anotation for CLPB, it may function as a regulatory
ATPase and be related to secretion/protein trafficking process, involves in
mitochondrial-mediated antiviral innate immunity, and activates RIG-I-mediated signal
transduction and production of IFNB1 and proinflammatory cytokine IL6(Yoshinaka et al.,
2019). Moreover, the hub gene of MLLT3 is a component of the superelongation complex
and co-operates with DOT1L, which di/trimethylates H3K79 to promote
transcription(Steger et al., 2008; Li et al., 2014). Recently, Vincenzo Calvanese, et.al,
found MLLT3 could govern human haematopoietic stem-cell self-renewal and
engraftment(Calvanese et al., 2019). From above, NUDT7 and OXNAD1 both have an
important role in cellular metabolism and aging, which was consistent with our finding of
PBMC aging analysis, while the role of CLPB and MLLT3 in immune aging or senecence
is unclear. Thus, by using co-expression networks, we identified new genes that are likely
important in PBMC aging in European and Asian ancestry, opening new avenues of
enquiry for future studies.

Changes in bulk PBMCs in different races were shown using aging-specific
regulatory modules and hub genes by WGCNA analysis. Although this approach was
effective in annotating the aging signatures, it is prone to biases in the differences of data
quality and formats. Future studies are needed to describe these race differences at
single-cell resolution and in sorted cells and to establish their functional implications.
Moreover, future studies are needed to study important molecules identified here (NUDT7,
CLPB, OXNAD1 and MLLT3) as aging specific biomarkers of immune system aging.
Besides, we had much smaller sample sizes for both PBMCs in European, Asian and the
other ancestry groups, we used a nominal P-value threshold (p<0.05) in these specific
sub-analyses. Larger sample sizes will ultimately be needed to fully understand the
transferability of the aging-transcriptome signatures. Taken together, these findings
indicate that aging plays a critical role in human immune system aging and should be
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taken into consideration while searching for molecular targets and time frames for
interventions/therapies to target aging and age-related diseases.

Reference

Bauer, M., Hamm, A.C., Bonaus, M., Jacob, A., Jaekel, J., Schorle, H., et al. (2004). Starvation
response in mouse liver shows strong correlation with life-span-prolonging processes.
Physiol Genomics 17(2), 230-244. doi: 10.1152/physiolgenomics.00203.2003.

Benjamini, Y., and Hochberg, Y. (1995). Controlling The False Discovery Rate - A Practical And
Powerful Approach To Multiple Testing. J. Royal Statist. Soc., Series B 57, 289-300.
doi: 10.2307/2346101.

Brunner, S., Herndler-Brandstetter, D., Weinberger, B., and Grubeck-Loebenstein, B. (2011).
Persistent viral infections and immune aging. Ageing Res Rev 10(3), 362-369. doi:
10.1016/j.arr.2010.08.003.

Calvanese, V., Nguyen, A.T., Bolan, T.J., Vavilina, A., Su, T., Lee, L.K., et al. (2019). MLLT3
governs human haematopoietic stem-cell self-renewal and engraftment. Nature
576(7786), 281-286. doi: 10.1038/s41586-019-1790-2.

Chen, H., and Boutros, P.C. (2011). VennDiagram: a package for the generation of
highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12, 35. doi:
10.1186/1471-2105-12-35.

Cheung, P., Vallania, F., Warsinske, H.C., Donato, M., Schaffert, S., Chang, S.E., et al. (2018).
Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations
with Aging. Cell 173(6), 1385-1397 e1314. doi: 10.1016/j.cell.2018.03.079.

Chin, C.H., Chen, S.H., Wu, H.H., Ho, C.W., Ko, M.T., and Lin, C.Y. (2014). cytoHubba:
identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8
Suppl 4, S11. doi: 10.1186/1752-0509-8-S4-S11.

Cho, Y.M., Bae, S.H., Choi, B.K., Cho, S.Y., Song, C.W., Yoo, J.K., et al. (2003). Differential
expression of the liver proteome in senescence accelerated mice. Proteomics 3(10),
1883-1894. doi: 10.1002/pmic.200300562.

Choong, M.L., Ton, S.H., and Cheong, S.K. (1995). Influence of race, age and sex on the
lymphocyte subsets in peripheral blood of healthy Malaysian adults. Ann Clin Biochem
32 ( Pt 6), 532-539. doi: 10.1177/000456329503200603.

Fulop, N., Feng, W., Xing, D., He, K., Not, L.G., Brocks, C.A., et al. (2008). Aging leads to
increased levels of protein O-linked N-acetylglucosamine in heart, aorta, brain and
skeletal muscle in Brown-Norway rats. Biogerontology 9(3), 139. doi:
10.1007/s10522-007-9123-5.

Gulati, G.S., Zukowska, M., Noh, J.J., Zhang, A., Wesche, D.J., Sinha, R., et al. (2019).
Neogenin-1 distinguishes between myeloid-biased and balanced Hoxb5 (+) mouse
long-term hematopoietic stem cells. Proc Natl Acad Sci U S A 116(50), 25115-25125.
doi: 10.1073/pnas.1911024116.

Hamrick, M.W., and Stranahan, A.M. (2020). Metabolic regulation of aging and age-related
disease. Ageing Res Rev 64, 101175. doi: 10.1016/j.arr.2020.101175.

He, S., and Sharpless, N.E. (2017). Senescence in Health and Disease. Cell 169(6),
1000-1011. doi: 10.1016/j.cell.2017.05.015.

Hu, Y., Pan, J., Xin, Y., Mi, X., Wang, J., Gao, Q., et al. (2018). Gene Expression Analysis

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 22, 2021. ; https://doi.org/10.1101/2021.02.22.432179doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432179


Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal
Cortex. Front Aging Neurosci 10, 259. doi: 10.3389/fnagi.2018.00259.

Kuchel, G.A. (2019). Inclusion of Older Adults in Research: Ensuring Relevance, Feasibility,
and Rigor. J Am Geriatr Soc 67(2), 203-204. doi: 10.1111/jgs.15802.

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation
network analysis. BMC Bioinformatics 9, 559. doi: 10.1186/1471-2105-9-559.

Li, Y., Wen, H., Xi, Y., Tanaka, K., Wang, H., Peng, D., et al. (2014). AF9 YEATS domain links
histone acetylation to DOT1L-mediated H3K79 methylation. Cell 159(3), 558-571. doi:
10.1016/j.cell.2014.09.049.

Ludwig, M.G., and Seuwen, K. (2002). Characterization of the human adenylyl cyclase gene
family: cDNA, gene structure, and tissue distribution of the nine isoforms. J Recept
Signal Transduct Res 22(1-4), 79-110. doi: 10.1081/rrs-120014589.

Maharzi, N., Parietti, V., Nelson, E., Denti, S., Robledo-Sarmiento, M., Setterblad, N., et al.
(2013). Identification of TMEM131L as a novel regulator of thymocyte proliferation in
humans. J Immunol 190(12), 6187-6197. doi: 10.4049/jimmunol.1300400.

Menkin, J.A., Guan, S.A., Araiza, D., Reyes, C.E., Trejo, L., Choi, S.E., et al. (2017).
Racial/Ethnic Differences in Expectations Regarding Aging Among Older Adults.
Gerontologist 57(suppl_2), S138-S148. doi: 10.1093/geront/gnx078.

Moskowitz, D.M., Zhang, D.W., Hu, B., Le Saux, S., Yanes, R.E., Ye, Z., et al. (2017).
Epigenomics of human CD8 T cell differentiation and aging. Sci Immunol 2(8). doi:
10.1126/sciimmunol.aag0192.

Nikolich-Zugich, J. (2018). The twilight of immunity: emerging concepts in aging of the immune
system. Nat Immunol 19(1), 10-19. doi: 10.1038/s41590-017-0006-x.

Noren Hooten, N., Longo, D., and Evans, M. (2018). "Age-and Race-Related Changes in
Subpopulations of Peripheral Blood Lymphocytes in Humans."), 1-30.

Peters, M.J., Joehanes, R., Pilling, L.C., Schurmann, C., Conneely, K.N., Powell, J., et al.
(2015). The transcriptional landscape of age in human peripheral blood. Nat Commun
6, 8570. doi: 10.1038/ncomms9570.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015). limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res 43(7), e47. doi: 10.1093/nar/gkv007.

Robertson, D. & Williams, G. H. (2009). Clinical and Translational Science: Principles of
Human Research. (Academic Press, 2009).

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al. (2003).
Cytoscape: a software environment for integrated models of biomolecular interaction
networks. Genome Res 13(11), 2498-2504. doi: 10.1101/gr.1239303.

Song, J., Baek, I.J., Chun, C.H., and Jin, E.J. (2018). Dysregulation of the NUDT7-PGAM1
axis is responsible for chondrocyte death during osteoarthritis pathogenesis. Nat
Commun 9(1), 3427. doi: 10.1038/s41467-018-05787-0.

Steger, D.J., Lefterova, M.I., Ying, L., Stonestrom, A.J., Schupp, M., Zhuo, D., et al. (2008).
DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene
transcription in mammalian cells. Mol Cell Biol 28(8), 2825-2839. doi:
10.1128/MCB.02076-07.

Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. (2019).

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 22, 2021. ; https://doi.org/10.1101/2021.02.22.432179doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432179


STRING v11: protein-protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets. Nucleic Acids
Res 47(D1), D607-D613. doi: 10.1093/nar/gky1131.

Tollerud, D.J., Clark, J.W., Brown, L.M., Neuland, C.Y., Pankiw-Trost, L.K., Blattner, W.A., et al.
(1989). The influence of age, race, and gender on peripheral blood mononuclear-cell
subsets in healthy nonsmokers. J Clin Immunol 9(3), 214-222. doi:
10.1007/BF00916817.

van den Akker, E.B., Passtoors, W.M., Jansen, R., van Zwet, E.W., Goeman, J.J., Hulsman, M.,
et al. (2014). Meta-analysis on blood transcriptomic studies identifies consistently
coexpressed protein-protein interaction modules as robust markers of human aging.
Aging Cell 13(2), 216-225. doi: 10.1111/acel.12160.

Van, P., Jiang, W., Gottardo, R., and Finak, G. (2018). ggCyto: next generation open-source
visualization software for cytometry. Bioinformatics 34(22), 3951-3953. doi:
10.1093/bioinformatics/bty441.

Ve, H., Cabana, V.C., Gouspillou, G., and Lussier, M.P. (2020). Quantitative Immunoblotting
Analyses Reveal that the Abundance of Actin, Tubulin, Synaptophysin and EEA1
Proteins is Altered in the Brains of Aged Mice. Neuroscience 442, 100-113. doi:
10.1016/j.neuroscience.2020.06.044.

Whisler, R.L., Beiqing, L., and Chen, M. (1996). Age-related decreases in IL-2 production by
human T cells are associated with impaired activation of nuclear transcriptional factors
AP-1 and NF-AT. Cell Immunol 169(2), 185-195. doi: 10.1006/cimm.1996.0109.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

Yamaguchi, H., Yoshida, S., Muroi, E., Yoshida, N., Kawamura, M., Kouchi, Z., et al. (2011).
Phosphoinositide 3-kinase signaling pathway mediated by p110alpha regulates
invadopodia formation. J Cell Biol 193(7), 1275-1288. doi: 10.1083/jcb.201009126.

Yoshinaka, T., Kosako, H., Yoshizumi, T., Furukawa, R., Hirano, Y., Kuge, O., et al. (2019).
Structural Basis of Mitochondrial Scaffolds by Prohibitin Complexes: Insight into a
Role of the Coiled-Coil Region. iScience 19, 1065-1078. doi:
10.1016/j.isci.2019.08.056.

Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS 16(5), 284-287. doi:
10.1089/omi.2011.0118.

Zalocusky, K.A., Kan, M.J., Hu, Z., Dunn, P., Thomson, E., Wiser, J., et al. (2018). The 10,000
Immunomes Project: Building a Resource for Human Immunology. Cell Rep 25(2),
513-522 e513. doi: 10.1016/j.celrep.2018.09.021.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 22, 2021. ; https://doi.org/10.1101/2021.02.22.432179doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432179


Data Availability Statement

All data relevant is contained within the article. The sequence data presented in the study
has been deposited at the Sequence Read Archive (SRA) database, which is hosted by
the NCBI, under accession number (SRA: PRJNA703752).

Ethics Statement

The studies involving human participants were reviewed and approved by the local ethics
committee of the First Affiliated Hospital of Jinan University. The patients/participants
provided their written informed consent to participate in this study.

Author Contributions

The concept of the study was planned by GC and YH. Experiments were conducted,
analyzed, and interpreted by YH, LM, YX, and WL. Sample preparation for mRNA, and
sequencing were done by YX, JX and WL. YH drafted the manuscript. GC edited the
manuscript and provided advice. All authors contributed to the article and approved the
submitted version.

Funding

This work was supported by grants from the National Key Research and Development
Program of China (No. 2018YFC2002003) and the China Post-doctoral Science
Foundation (No.55350399).

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial
or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We would like to thank all donors as well as the Guangzhou First People’s Hospital for
provision of the samples. We thank the Beijing Novogene Biotechnology Co., Ltd. for
assistance with RNA-sequencing as well as Lipeng Mao and Jian Xiang for excellent
technical assistance.

Figure legend

Figure 1. Age and race have influenced the transcriptome changes over human adult
lifespan. (A) Cluster dendrogram. Each color represents one specific co-expression
module. In the colored rows below the dendrogram, the two colored rows represent the
original modules and merged modules; (B) Eigengene adjacency heatmap of different
modules; (C) Heatmap of the correlation between trait (age and sex) and module
eigengenes. Each column corresponds to a module eigengene, and each row
corresponds to a trait. Each cell contains the corresponding correlation. The table is
color-coded by correlation according to the color legend. P-value < 0.05 represents
statistical significance;(D-E) The characteristic gene expression changes during PBMC
aging. The left-hand Y-axis represents the eigengene expression of each module, and the

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 22, 2021. ; https://doi.org/10.1101/2021.02.22.432179doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.22.432179


right-hand Y-axis represnts the trend line for each individuals; (F-G) Principal component1
scores (PC1) were calculated for each individual from RNA-seq (left) principal component
analyses (PCA) results. PC1 scores from RNA-seq data were differentially expressed
among different races.

Figure 2. The characteristic gene expression of PBMC aging in Asian. (A) principal
component analyses (PCA) for 19 Chinese PBMC RNA-seq data. Young and old
individuals were largely separated according to the principal component1 scores (PC1).
(B) Cluster dendrogram. Each color represents one specific co-expression module. In the
colored rows below the dendrogram, the two colored rows represent the original modules
and merged modules; (C) Supervised hierarchical cluster of each row correspond to a
module eigengene (n = 40), column to a trait. Each cell contained the corresponding
correlation. High correlations was colored in orange, low correlation in blue. (D)
Hierarchical cluster analysis of four interested modules, based on the module-trait’s
correlation and p value (absolute r > 0.5, P < 10–2), three modules (cyan, darkturquoise,
orange, brown) showed relatively lower expression in young adults and high expression in
the aged population. Conversely, the brown modules showed the opposite result. Each
circle represented an individual. (E) The histograms described the eigengene expression
of the four age-related module from young to old.

Figure 3. Novel and known age-associated genes and pathways associated with PBMC
aging in Asian. (A) The transcriptomic expression of age related modules changed
siginificantly among young and old individuals. Based on ME expression profile of the four
interesting modules, the expression of cyan, darkturquoise and orange modules were
downregulated, while brown module showed the opposite results. (B-C) GO functional
annotation and KEGG pathway enrichment analysis for the brown and darkturquoise
modules.(B) Top 10 enriched biological process; (C) Top 10 enriched kegg pathway. The
color represents the adjusted p-values. (D-E) Hub gene detection for the brown and
darkturquoise modules. PPI network of the brown and darkturquoise modules based on
the STRING database. And each node represents a protein-coding gene and the size of
each node is mapped to its degree. (F, G)The verification of the hub genes. The top of
three genes in brown and darkturquoise modules were selected and its mRNA abundance
of these hub genes were detected in young and old individuals.

Figure 4. Aging-related changes in PBMC transcriptomes in White and its hub gene
detection. (A) Module-trait relationships. Each row corresponds to a color module and
column corresponds to a clinical trait (age and sex). Each cell contains the corresponding
correlation and P-value. (B) The histograms described the eigengene expression of the
four age-related module (brown and turquoise) from young to old. (C) Eigengene
expression of the age-related modules (brown and turquoise). The transcriptomic
expression of age related modules changed siginificantly among young and old
individuals. (D-E) Gene Ontology (GO) and KEGG enrichment analysis for the genes in
the brown and turquoise modules. The top 10 of the GO enriched biological process and
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enriched kegg pathway were shown. The color represents the adjusted p-values. The
color represents the adjusted p-values, and the size of the bars represents the gene
number. (F)The venn diagram of genes among DEG lists and co-expression module. In
total, 50 and 177 overlapping genes were listed in the intersection of DEG lists and two
co-expression modules. (G) Hub genes detection for the brown and turquoise modules. (H)
The verification of the hub genes. The top of genes in brown and turquoise modules were
selected and its mRNA abundance of these hub genes were detected in young and old
individuals.

Figure 5. Shared transcriptomic signatures of aging between White and Asian. (A)The
venn diagram of genes among turquoise module in White and brown module in Asian.
Despite thousands of race-specific gene associated with aging corresponding to 2623 and
1688 genes in Asian and White, 95 genes in Asian and White significantly overlapped.
(B-C) GO and KEGG enrichment analysis for the 95 common shared genes. (D) PPI
network for the 95 genes. (E) The veen analysis of differentially expressed genes (DEGs)
with the age-related modules in White and Asian revealed two aging-specific gene
markers. (F) The two overlapping genes (OXNAD1 and MLLT3) were both downregulated,
as shown in the volcano analysis for the DEG genes in Asian and White dataset.

Figure 6. Validation of expression levels of the four common hub genes involved in PBMC
aging(A, B) Gene expression value of the hub genes among young and old samples in
Asian and White. Student’s t-test was used for statistical analysis. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001. (C) Gene expression value of hub genes among samples of
man and woman during their lifespan. (D) Quantification of the four hub genes was
confirmed and presented by the qPCR assay. The P-value was calculated by the student’s
t-test.
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