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ABSTRACT 

Functional connectivity (FC) has been demonstrated to be varying over time during sensory and 

cognitive processes. Quantitative examinations of such variations can significantly advance our 

understanding on large-scale functional organizations and their topological dynamics that support 

normal brain functional connectome and can be altered in individuals with brain disorders. However, 

toolboxes that integrate the complete functions for analyzing task-related brain FC, functional network 

topological properties, and their dynamics, are still lacking. The current study has developed a 

MATLAB toolbox, the Graph Theoretical Analysis of Task-Related Functional Dynamics (GAT-FD), 

which consists of four modules for sliding-window analyses, temporal mask generation, estimations of 

network properties and dynamics, and result display, respectively. All the involved functions have been 

tested and validated using fMRI data collected from human subjects when performing a block-designed 

task. The results demonstrated that the GAT-FD allows for effective and quantitative evaluations of the 

functional network properties and their dynamics during the task period. As an open-source and user-

friendly package, the GAT-FD and its detailed user manual are freely available at 

https://www.nitrc.org/projects/gat_fd and https://centers.njit.edu/cnnl/gat_fd/. 

Keywords: Task-based fMRI, Graph Theoretical Techniques, Dynamic Functional Connectivity, 

Network Analysis, GAT-FD. 
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1. Introduction 

Functional connectivity (FC), which quantifies temporal dependencies among spatially separated brain 

regions, has been highlighted as a sensitive and robust measurement in functional magnetic resonance 

imaging (fMRI) for understanding the topological organization of functional brain networks during 

sensory and cognitive processes and at resting-state (Power et al., 2010;Du et al., 2018). Typically, FC 

was evaluated in a “static” sense. Recently, accumulative evidence has suggested the temporally varying 

pattern of FC, referred to as dynamic FC, which can provide us a novel approach to depicting the non-

stationarity of functional brain communications (Horovitz et al., 2008;Bassett et al., 2011;Fornito et al., 

2012).  

Currently, sliding-window-based techniques are commonly implemented for estimating FC 

dynamics (Sakoglu et al., 2010;Hutchison et al., 2013;Rashid et al., 2014;Preti et al., 2017). Such 

approach applies an N-point moving window along the time domain to estimate the pair-wise FCs at the 

current time point based on signals of the current and previous N time points. It thus generates a series 

of consecutive FC metrics, depicting the dynamically varying FC and topological organizations of the 

functional brain network. To date, several toolkits have been proposed for sliding-window analysis, 

including GIFT (http://mialab.mrn.org/software/gift/) (Allen et al., 2014), DyNaConn 

(https://bitbucket.org/johnesquivel/dynaconn/src/master/), DyConPro 

(https://github.com/tobiamj/DyConPro) (Tobia et al., 2017), DynamicBC 

(https://www.nitrc.org/projects/dynamicbc/) (Liao et al., 2014), and CONN (https://web.conn-

toolbox.org/) (Whitfield-Gabrieli and Nieto-Castanon, 2012). Although these packages have made it 

possible to generate sliding window-based connectivity matrices, they either were designed specifically 

for resting-state FC dynamics analysis or require extra tools for calculating topological dynamics of the 
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functional brain network. Moreover, none of these existing toolboxes provide functions for 

quantification of the dynamics associated with the FC and network topology.   

In this study, we introduce an open-source and user-friendly MATLAB toolbox, the Graph 

Theoretical Analysis of Task-Related Functional Dynamics (GAT-FD), which we have developed to 

integrate the complete pipelines for estimating the task-related dynamic brain FC and quantifying the 

topological dynamics and its statistical property of the functional brain network. This toolkit and the 

user manual with detailed explanations of each functions and step-by-step instructions for 

implementations are freely available at https://www.nitrc.org/projects/gat_fd and 

https://centers.njit.edu/cnnl/gat_fd/.  

 

2. Methods 

2.1. Overview 

The GAT-FD toolbox provides a graphical user interface for characterizing the functional network 

dynamics in task-related fMRI data, based on the graph theoretical techniques. It was developed in 

MATLAB (Mathwork, Inc.) version 2019b and has been tested with MATLAB version 2018b to version 

2019b. The GAT-FD is organized into four modules (Figure 1A) for sliding-window analysis (Figure 

1B), task-specific temporal mask generation (Figure 1C), estimations of network properties (Figure 

1D), and result display (Figure 1E), respectively.  
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Figure 1. The four function modules of the GAT-FD toolbox. (A) The main user interface. (B) The sliding-

window analysis module. This module generates connectivity matrices based on specified sliding-window 

parameters. (C) The task design module. This module generates temporal inclusive mask based on task design. 

(D) The network analysis module. This module calculates the topological properties for each connectivity matrix. 

(E) Result display module. This module provides visualization of the results from all other modules. fMRI: 

functional magnetic resonance imaging. ROIs: regions-of-interest. Note: Required steps are indicated using solid 

arrows. Optional steps are indicated using dashed arrows. 

 

2.2. Inputs 

The GAT-FD toolbox works with pre-processed fMRI data. Properly pre-processed images can 

effectively minimize the falsely discovered dynamics caused by motion artifacts and undesired 

physiological fluctuations. The inputs are 4-dimonsional fMRI data in uncompressed or compressed 

NIfTI format (e.g., *.nii or *.nii.gz). All build-in atlases are in Montreal Neurological Institute (MNI) 

space. Therefore, all input data are required to be transformed from individual imaging space to MNI 

space, if the user is intended to use any of the build-in atlas. The toolbox also provides an option for the 

user to import MAT-format input files with a matrix containing the time series of each region-of-interest 

(ROI), which allows extra flexibility in temporal processing.  

 

2.3. Sliding-window analysis and FC matrix construction  
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The sliding-window approach is the most common analytical method to explore the network dynamics 

in fMRI studies (Preti et al., 2017;Gonzalez-Castillo and Bandettini, 2018). In this approach, a sliding-

window with a fixed length (called as window size) and a “moving step” (called as step size) along the 

time series are first defined. A FC matrix is constructed based on the current time point and the previous 

ones which are covered by the sliding-window. Then the sliding-window moves to next time point and 

the process repeats till the end of the task period to generate a series of FC metrices. The GAT-FD 

toolbox includes a sliding-window analysis module to extract the activation time series for selected 

ROIs, perform temporal filtering, apply sliding-window, and construct the FC matrices, as shown in 

Figure 2. Two options for ROI determination, the customized brain masks and build-in atlas, are 

available in the module. The toolbox currently provides two build-in atlas, including the automated 

anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) and Brainnetome atlas (Fan et al., 

2016). For user-loaded (customized) brain masks and atlas, the MNI space format is required to avoid 

miscalculations during extraction of blood-oxygen-level-dependent (BOLD) responses. 
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Figure 2. The user interface of sliding-window analysis module. By clicking the “Default Setting” button, users 

can reset all the parameters to default values. The user specified parameters can be saved and loaded by clicking 

the “Save/Load Settings” buttons. By clicking the “Run” button, the sliding-window analysis can be performed. 

 

Compared to static FC analysis that uses signals in the entire task duration to calculate the 

functional correlations, dynamic FC analysis uses a much smaller window size, which becomes more 

sensitive to noises in the data. Therefore, the step of temporal filtering is essential to guarantee the 

accuracy of detected dynamics of the functional brain network. The sliding-window analysis module of 

the GAT-FD toolbox includes options of high-, low-, band-pass filter, and wavelet filter to help further 

minimize the undesired noises. When applying high-, low-, or band-pass filter, the corresponding cut-off 

values (a lower-limit cut-off value is required for high-pass filter, an upper-limit cut-off value is required 

for low-pass filter, and both lower- and upper- limits cut-off values are required for band-pass filter) are 

specified as the inverse of the cut-off frequency, i.e., the unit of second, instead of Hz are implemented 
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here. Wavelet decomposition, as a frequently used tool in task-based fMRI data analysis, increases 

sensitivity in detecting signal correlation against a noisy background, especially when motion artifacts 

related spikes occur (Bullmore et al., 2004;Ginestet and Simmons, 2011). If the wavelet filtering 

function is selected, the sliding-window module will first decompose each activation time series using 

the maximal overlap discrete wavelet transform (MODWT) with a specific number of levels, and then 

transfer back with selected levels of coefficients using inverse MODWT. The number of wavelet 

decomposition levels and the selected wavelet levels need to be specified by the user. The temporal 

filtering function is optional in this module, given that input data can be already filtered during the pre-

processing steps. 

In the GAT-FD toolbox, the FC at the current time point between a pair of ROIs is represented 

by the Pearson’s correlation coefficient of the BOLD signals within the corresponding sliding-window 

in the two ROIs. Therefore, the window size and the step size are critical in detecting the desired 

temporal dynamics during the task when using sliding-window analytical method. The selections of 

these parameters depend on the task design and the repetition time (TR). Studies have suggested the 

window size to be larger than 15 TRs to get reliable estimations of between-region temporal correlations 

(Braun et al., 2015;Di et al., 2015;Rosenthal et al., 2017). In addition, the window size needs to be 

smaller than the length of one task block to provide sufficient number of measures on describing mid-

task variability (Li et al., 2018;Betzel et al., 2020). The GAT-FD toolbox also offers an option to utilize 

gaussian kernel-based sliding-window (Allen et al., 2014;Preti et al., 2017). Such approach applies a 

tapered sliding-window with a different weight for each time point involved in the window. A series of 

FC matrices is then generated for each subject with user specified sliding-window parameters. The 

sliding-window analysis module is able to process multiple input files at once, to generate one MAT-

format output file for each selected subject. 
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2.4. Temporal inclusive mask generation for block-designed tasks  

Studies have found that the pattern of pairwise FC varies between the rest and task conditions during 

fMRI (Spadone et al., 2015;Shah et al., 2016). To map the task-specific (or rest-specific) FC matrices in 

the sliding-window analysis module, the temporal inclusive mask generated from the task design module 

of the GAT-FD toolbox can be needed. To determine the temporal inclusive mask, two thresholding 

methods, estimated activation level thresholding and condition coverage percentage thresholding, are 

provided (Figure 3). Users can choose to use either or both methods to generate their study-specific 

masks by checking the box of each function. If both boxes are checked, logic AND will be implemented 

to the two masks for the final output of the temporal inclusive mask. The estimated activation level 

thresholding method is based on the estimated hemodynamic responses which are internally estimated in 

the module by convolving the task design with the hemodynamic response function in Statistical 

Parametric Mapping (SPM) toolbox (Penny et al., 2011). If the box for estimated activation level 

method is checked and the threshold is provided by the user (or by using default value), the time points 

with the estimated activation magnitude (ranged from 0 to 1, with 1 representing the maximum 

estimated response for a single stimulus) higher than the user defined threshold are included in the 

temporal inclusive mask. By checking the box of condition coverage percentage thresholding method, 

selecting the condition type (1 for task and 0 for rest), and defining the percentage threshold (X%), time 

points with at least X% of their associated sliding windows under the selected task condition (according 

to the task design) will be inclusive in the mask. The default settings for these two parameters are 0.8 

and 80, respectively. The output of this module is a temporal inclusive mask which contains the indexes 

of the task-related study-specific FC matrices. 
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Figure 3. The user interface of task design module. By clicking the “Default Setting” button, users can reset all 

the parameters to default values. After defining all the parameters, the temporal inclusive mask can be plotted in 

the bottom by clicking the “Update Design” button. When the “Task Design” plot option is checked, the task 

design is plotted in solid black line. When the “Hemodynamic Response” plot option is checked, the estimated 

hemodynamic response is plotted in dashed red line. When the “Temporal Mask” plot option is checked, the time 

points selected by the temporal inclusive mask are shown in green areas. The temporal inclusive mask file needs 

to be saved by clicking on the “Save Design Matrix” button.  

 

2.5. Characteristics of the topological dynamics of the functional brain network 

To characterize the topological dynamics of the functional brain network, the FC matrices need to be 

binarized. The network analysis module of the GAT-FD toolbox provides multiple thresholding methods 

for FC matrix binarization, including absolute thresholding, proportional thresholding, and wiring cost 

thresholding. The absolute thresholding method applies the same user specified correlation coefficient 

threshold (ranging from -1 to 1) to all connectivity matrices. The proportional thresholding method 

defines the threshold relative to the maximum correlation coefficient in a FC matrix with user specified 
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proportion, ranging from 0 to 1. The wiring cost thresholding method preserves the top connections 

(with user specified cost threshold) in the connectivity matrix. The cost of a network is defined as the 

number of existing connections divided by the number of all possible connections, which ranged from 0 

to 1, representing the top 0% to 100% connections, respectively.  

Next, the network topological properties at both global and nodal levels are calculated based on 

the constructed binary-networks within and averaged over the specified threshold range. The global 

metrics include network global efficiency, network local efficiency, network averaged degree, and 

network averaged clustering coefficient. The nodal metrics include nodal global efficiency, nodal local 

efficiency, nodal degree, nodal clustering coefficient, and betweenness centrality. The variance of each 

topological property over the selected timepoints can be calculated when the temporal inclusive mask 

file from task design module is provided. The variance is defined as, 𝑉 =
1

𝑁−1
∑ |𝐴𝑖 − 𝜇|2𝑁
𝑖=1 , where N is 

the number of timepoints, 𝐴𝑖 is the network topological property at that time points, and 𝜇 is the mean of 

the network topological property over the selected timepoints. The GAT-FD toolbox utilizes functions 

from the brain connectivity toolbox for network construction and topological features calculation 

(Rubinov and Sporns, 2010). The calculations are time consuming, therefore, parallel computing option 

in this module is supported if the MATLAB parallel toolbox is installed. The detailed configurable 

parameters are shown in Figure 4.  
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Figure 4. The user interface of network analysis module. The selected timepoints are displayed at the top right 

corner after loading the temporal mask file. If the “Use absolute value of correlation coefficient” is checked, all 

the negative correlation coefficients in the connectivity matrices are converted to positive value before 

thresholding. By clicking the “Calculate Network Properties” button, the network analysis is performed with user 

specified thresholding parameters and user selected topological measures.  

 

2.6. Result Display 

Result display module provides convenient features to visually check the calculated results from all 

previous modules, as shown in Figure 5. The constructed connectivity matrices for each sliding-window 

can be checked for any abnormal conditions. Task design can be loaded and displayed to provide a 
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visual inspection for sliding-window selection. In addition, the calculated network topological properties 

can be displayed individually or as a group, along with the estimated hemodynamic response. 

 
Figure 5. The user interface of result display module. After loading the generated connectivity matrices file and 

temporal mask file, the functional connectivity matrix can be displayed at top right conner by selecting the desired 

sliding-window step using the “Frame” slider. After loading the generated network properties file, the network 

topological properties for different subjects and different threshold values can be displayed at the bottom by 

clicking the “Update” button. 
 

3. Illustration 

3.1. Data 

Task-based fMRI data from 40 typically developing children (male/female: 22/18) were involved in the 

validation and illustration of the GAT-FD toolbox. All subjects were 11 to 16 years old, right-handed 

according to the Edinburgh Handedness Inventory (Oldfield, 1971), within or post puberty based on the 

parent version of Carskadon and Acebo’s rating scale (Carskadon and Acebo, 1993), and had full scale 
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IQ≥ 80 estimated by the Wechsler Abbreviated Scale of Intelligence II (WASI-II) (Wechsler, 2011). 

None of the subjects reported a history or current diagnoses of neurological and psychiatric disorders, 

chronic medial illnesses, or learning disabilities. None of them had been taking stimulant or non-

stimulant medications within the past 3 months prior to the study visit that might impact the brain 

activations during fMRI data acquisition. The study received institutional review board approval at the 

New Jersey Institute of Technology, Rutgers University, and Saint Peter’s University Hospital. Prior the 

study, all the participants and their parents or legal guardians provided written informed assents and 

consents, respectively. 

Each participant performed a block-design visual sustained attention task (VSAT) during the 

fMRI scan. The VSAT included 5 task blocks interleaved by 5 rest blocks, each was 30 seconds. 

Detailed descriptions of the task were provided in our previous studies (Xia et al., 2014;Wu et al., 2018). 

The fMRI data were collected using a 3-Tesla Siemens TRIO (Siemens Medical Systems, Germany) 

scanner with a whole brain gradient echo-planar sequence (voxel size = 1.5 mm × 1.5 mm × 2.0 mm, TR 

= 1000 ms, echo time = 28.8 ms, and field of view = 208 mm, slice thickness = 2.0 mm).  

 

3.2. Preprocessing 

The preprocessing steps were performed using FEAT toolbox in FMRIB's Software Library (Smith et 

al., 2004). Each raw data was first corrected for slice timing and motion artifacts, using sinc 

interpolation and rigid-body transformation, respectively. Then brain extraction was performed to 

remove non-brain tissues using the averaged fMRI data. Spatial smoothing was performed with a 5-mm 

full-width at half maximum gaussian kernel to improve the signal-to-noise ratio. The signal intensity 

was then normalized for each slice. Then, a high-pass temporal filter of 1/75 Hz was applied to remove 
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low frequency noises. Finally, linear registration was performed to the MNI template with a voxel size 

of 2 × 2 × 2 mm3. 

 The group average activation map within the study cohort was calculated and parcellated 

according to the AAL atlas (Tzourio-Mazoyer et al., 2002). Within each parcellated brain regions that 

contain at least 100 significantly activated voxels (Z ≥ 2.3 after cluster correction for multiple 

comparisons), a spherical ROI with the radius of 5mm and centered at the regional maximum of the 

activated cluster was generated in the MNI space. A total of 59 ROIs (nodes for the to be constructed 

functional brain networks) were generated and mapped back to each pre-processed fMRI data to 

construct the dynamic functional networks. 

 

3.3. The GAT-FD-based processes 

For data from each subject, wavelet-based temporal filtering was first performed on the time series of 

each ROI, using the 5-level wavelet transformation. The level 3,4, and 5, corresponding to frequency 

band of 0.015-0.124 Hz, were then used to reconstruct the time series for each ROI. This frequency band 

has been demonstrated to contain most task-related hemodynamic information (Bassett et al., 2011;Li et 

al., 2012;Xia et al., 2014). Then, the sliding-window analysis was performed with the window size of 17 

TRs and the step size of 1 TR. Such window size and step size were suggested to be able to generate 

reliable temporal correlation coefficient (the FC measure) within each sliding step and offer enough 

sliding steps that allows for estimations of variability of the FC during the task period  (Di et al., 2015;Li 

et al., 2018;Betzel et al., 2020). A total of 284 connectivity matrices were then generated for each 

subject. 

As an example of illustrating the characterization the task-related dynamics of the network 

properties, a temporal inclusive mask was generated based on the blocked design of the task. The 
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condition vector was set as “0 1 0 1 0 1 0 1 0 1”, where 0 was for a rest block and 1 for a task block. The 

duration vector for each block was set as “30 30 30 30 30 30 30 30 30 30”, with a unit of second. The 

estimated activation level threshold was set as 0.8, and the task condition coverage percentage threshold 

was set as 80%, as suggested by default. By implementing this temporal inclusive mask, a total of 79 

task-related FC matrices, which were generated in the sliding-window analysis module, were marked as 

task related. 

 In the network property analysis module, the absolute thresholding method was implemented for 

the binarization of the 284 FC matrices generated in the sliding-window analysis module. The range of 

correlation coefficient threshold was set as from 0.5 to 0.85 with a step size of 0.01. Such threshold 

range was calculated based on the cost-range of the functional network that satisfied the small-world 

network assumption (Watts and Strogatz, 1998;Sporns and Honey, 2006). Then the global and nodal 

topological properties of each of the 284 functional brain networks were calculated. In each subject, the 

variance of each topological property was calculated over the 284 time points in the overall task duration 

and over the 79 task-related timepoints based on the generated temporal mask. The group average of 

network topological properties was then calculated. In addition, variances of the network properties 

calculated over the full task duration were compared with those calculated based on the generated 

temporal mask, using paired sample t-test, with a threshold of significance at α≤ 0.05.  

4. Results and Discussion 

As an example of visualization of the generated results, the group mean of the task-related dynamics of 

the network global efficiency was shown in Figure 6. We observed increased global efficiency for 

information transferring among the 59 nodes in the functional brain network during both rest-to-task and 

task-to-rest transition periods, while a relatively steady state of this topological property in the middle of 

the task blocks. Such pattern of task-related FC dynamics has also been observed in other studies (Betti 
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et al., 2013;Cole et al., 2014;Di et al., 2015;Kwon et al., 2017). In addition, all the network topological 

properties showed significantly lower variances during the task-related period covered by the temporal 

mask, when compared to those estimated over the entire task duration (the network global efficiency 

(t=2.282, p=0.028), network local efficiency (t=2.223, p=0.032), network averaged degree (t=2.529, 

p=0.016), and network averaged clustering coefficient (t=2.235, p=0.031)). Indeed, superior topological 

stability of the functional brain network during task performance relative to that during resting state has 

also been reported by other studies  (Chen et al., 2015;Elton and Gao, 2015). 

 
Figure 6. The group average of network global efficiency in response to the experimental task, which were 

averaged over the first 4 task blocks (the solid blue line). The light blue shadowed area represents the standard 

error of the mean of the network global efficiency. The task condition is plotted using the solid black line. The 

estimated hemodynamic response over one testing block is plotted using the solid red line. The task-related 

temporal inclusive mask is shadowed in light green.  

 

On the bases of the initial pipelines provided in the current version of the GAT-FD toolbox, 

future work will focus on developing and including more alternative analytical techniques for 

characterizing the dynamics of FC and network properties.  
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5. Conclusion 

In this study, we introduced an integrative MATLAB toolbox, GAT-FD, for analyzing the task-related 

dynamics of FC and topological properties of the functional brain networks for sensory and cognitive 

processes during task-based fMRI, especially for block-designed data. All the involved functions have 

been tested and validated using data collected from human subjects during task-based fMRI. The results 

demonstrated that the GAT-FD allows for effective and quantitative evaluations of the functional 

network properties and their dynamics during the entire task or user-specified periods. The GAT-FD 

toolbox and user manual are freely available at https://www.nitrc.org/projects/gat_fd and 

https://centers.njit.edu/cnnl/gat_fd/. 
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