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quenching; CEF, cyclic electron flow around PSI; RCA, Rubisco activase; ABA, abscisic 31 

acid; PG, plastoglobuli; HSP, heat shock protein; HSF, heat shock transcription factor. 32 

 33 

Abstract  34 

C4 plants frequently experience damaging high light (HL) and high temperature (HT) 35 

conditions in native environments, which reduce growth and yield. However, the 36 

mechanisms underlying these stress responses in C4 plants have been under-explored, 37 

especially the coordination between mesophyll (M) and bundle sheath (BS) cells. We 38 

investigated how the C4 model plant Setaria viridis responded to a four-hour HL or HT 39 

treatment at the photosynthetic, transcriptomic, and ultrastructural levels. Although we 40 

observed a comparable reduction of photosynthetic efficiency in HL- or HT-treated leaves, 41 

detailed analysis of multi-level responses revealed important differences in key pathways 42 

and M/BS specificity responding to HL and HT. We provide a systematic analysis of HL 43 

and HT responses in S. viridis, reveal different acclimation strategies to these two 44 

stresses in C4 plants, discover unique light/temperature responses in C4 plants in 45 

comparison to C3 plants, and identify potential targets to improve abiotic stress tolerance 46 

in C4 crops. 47 

 48 

Introduction 49 

Several of the world’s most economically important staple crops utilize C4 photosynthesis, 50 

including Zea mays and Sorghum bicolor. C4 photosynthesis concentrates CO2 around 51 

Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) by employing biochemical 52 

reactions within mesophyll (M) and bundle sheath (BS) cells1,2. The high local 53 

concentration of CO2 near Rubisco favors carbon fixation over photorespiration, which is 54 

initiated by the oxygenase activity of Rubisco1,3. C4 photosynthesis is hypothesized to 55 

have been selected by low CO2, high light (HL), and high temperature (HT) conditions4,5. 56 

C4 plants typically exhibit higher photosynthetic and water-use efficiencies than their C3 57 

counterparts under HL or HT6. However, C4 crops experience more frequent damaging 58 

HL or HT stresses in their natural environments than C3 crops, with reduced C4 crop yield 59 

regularly occurring in warmer regions7. As mean global temperatures continue to 60 
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increase, maize yields are estimated to decrease between 4 and 12% for each 61 

temperature increase in degree Celsius7. Photosynthesis in maize leaves is inhibited at 62 

leaf temperature above 38oC. Recent data from 408 sorghum cultivars shows that 63 

breeding efforts over the last few decades have developed high-yielding sorghum 64 

cultivars with considerable variability in heat resilience and even the most heat tolerant 65 

sorghum cultivars did not offer much resilience to warming temperatures, with a 66 

temperature threshold of 33°C, beyond which sorghum yields start to decline8. Under 67 

natural conditions, especially at the tops of canopies, direct sunlight can be very intense 68 

and thus oversaturate the photosynthetic mechanism in C4 plants. Sorghum leaves had 69 

reduced stomatal conductance and net CO2 assimilation rates after 4 h exposure to HL 70 

mimicking nature sunlight9. To improve C4 crop yields, it is crucial to holistically approach 71 

how C4 plants respond to HL or HT, two of the most influential environmental factors that 72 

can compromise C4 photosynthesis.   73 

 74 

HL responses have been studied extensively in C3 plants10–15. To cope with reactive 75 

oxygen species (ROS) production and photooxidative stress resulting from HL, C3 plants 76 

have evolved many protective mechanisms which act on different timescales10,14. Non-77 

photochemical quenching (NPQ), especially its predominant component, energy-78 

dependent quenching (qE), acts within seconds to dissipate excess light energy as 79 

heat10,16. The formation of qE depends on the thylakoid lumen pH, the photosystem II 80 

(PSII) polypeptide PsbS, and the accumulation of the xanthophyll pigment zeaxanthin17–81 
19. In C3 plants, under HL, violaxanthin is converted to the intermediate pigment 82 

antheraxanthin which is then converted to zeaxanthin by the enzyme violaxanthin de-83 

epoxidase20. Accumulation of zeaxanthin is also necessary for induction of a slower-84 

relaxing component of NPQ, zeaxanthin-dependent quenching (qZ)21. State transitions, 85 

which restructure the light harvesting complexes (LHCs) around PSII and PSI, occur on 86 

the order of minutes10,16. When photoprotective processes are insufficient, HL can result 87 

in photoinhibition (qI), which takes hours to recover10. Following HL exposure, expansion 88 

of the thylakoid lumen, swelling of the grana margin, and de-stacking of the thylakoid 89 

grana facilitate PSII repair by promoting accessibility and repair of PSII machinery15,22–24. 90 
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HL stress also results in dynamic transcriptional regulation of photosynthetic genes and 91 

induces the abscisic acid (ABA) pathway in Arabidopsis11.  92 

 93 

HT is known to affect many cellular processes in C3 plants, including various aspects of 94 

photosynthesis25–29. C3 plants under HT have shown decreases in photosynthetic rates, 95 

inactivation of Rubisco, reduction of plastoquinone (PQ), and increase in cyclic electron 96 

flow (CEF) around photosystem I (PSI)30. Arabidopsis leaves treated with HT of 40oC has 97 

swollen M chloroplasts and increased plastoglobuli (PG) formation31. PG are thylakoid-98 

associated plastid lipoprotein particles whose size, shape, and counts respond to abiotic 99 

stresses32. Additionally, HT induces the expression of heat shock transcription factors 100 

(HSFs), many of which have been implicated in transcriptional responses to numerous 101 

abiotic stresses, including HL and HT33. The induced HSFs increase the expression of 102 

heat shock proteins (HSPs), which are chaperone proteins involved in proper protein 103 

folding in response to HT and other abiotic stresses34.  104 

 105 

Unlike C3 plants, studies on how C4 plants respond to HL or HT are largely limited, 106 

especially the underlying coordination between M and BS cells and the multi-level effects 107 

of HL and HT on photosynthesis, transcriptomes, and ultrastructure of C4 plants. A recent 108 

study examined the effects of HL stress in the C4 grass Setaria viridis over four days, with 109 

sampling points for photosynthetic parameters, sugar quantification, and transcriptome 110 

analyses every 24 hours35. They reported relatively minor transcriptional changes but a 111 

large accumulation of sugars without repression of photosynthesis in HL-treated 112 

samples35. These results suggest that prolonged HL-treated leaves undergo adaptive 113 

acclimation and transcriptional homeostasis in a few days. However, the short-term 114 

transcriptional responses of C4 plants to HL remain largely unknown. In sorghum leaves, 115 

HL induced the avoidance response in M chloroplasts and the swelling of BS chloroplasts 116 

(by cross section light microscope images), but the underlying mechanisms are unclear9. 117 

Research about how C4 photosynthesis responds to HT is mainly limited to biochemical 118 

and gas exchange analyses which suggest that HT results in Rubisco activation36, affects 119 

the activities of C4 carbon fixation enzymes37, decreases the BS conductance while 120 

increases CO2 leakiness38,39. Two transcriptome analyses in maize under HT have been 121 
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reported40,41, but thorough analysis of C4 transcriptome with multi-level effects under HT 122 

is rare. Additionally, ultrastructural analysis in C4 plants under HL or HT can help us 123 

understand how HL or HT limits C4 photosynthesis and affects the coordination between 124 

M and BS cells, but currently such information is lacking.  125 

  126 

To gain deeper insights into the molecular and physiological responses of C4 plants to HL 127 

or HT, we used the green foxtail Setaria viridis as a model. S. viridis is an excellent model 128 

to study C4 photosynthesis because of its expanding genetics and genomics toolkit, 129 

common growth condition, relatively quick generation time (8~10 weeks, seed to seed), 130 

and similarity to important agronomic C4 crops, e.g. maize and sorghum2,42,43. We 131 

hypothesized that HL or HT affected C4 plants at different levels and linking multi-level 132 

changes could improve our understanding of HL or HT tolerance in C4 plants. We 133 

investigated the response of S. viridis to moderately HL or HT over a four-hour time-134 

course at photosynthetic, ultrastructural, and transcriptomic levels (Fig. 1a). We 135 

monitored the dynamic changes of transcriptomes, pigments, and ABA levels over 4 h 136 

time points during the different treatments. We also measured photosynthetic parameters 137 

and ultrastructural changes after 4 h treatments, which revealed cumulative changes 138 

associated with the different treatments.  139 

 140 

Although we observed a comparable reduction of photosynthetic efficiency in HL- or HT-141 

treated leaves, detailed analysis at multiple levels revealed different acclimation 142 

strategies to these two stresses in S. viridis. The transcriptional changes under HT were 143 

much less but more dynamic than under HL. The HL-treated leaves had over-144 

accumulated starch in both M and BS chloroplasts, which may increase chloroplast 145 

crowdedness and inhibit PSII repair. While both HL and HT induced PG formation in 146 

chloroplasts, HT-treated leaves also had swollen chloroplasts and grana in M cells. 147 

Additionally, we observed different responses of M and BS cells under HT or HL and 148 

demonstrated the crosstalk between HL response and ABA signaling in C4 plants. Our 149 

research provides a systematic analysis of HL and HT responses in S. viridis and 150 

identifies potential targets to improve stress tolerance in C4 crops.  151 

 152 
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 6 

Results 153 

HL or HT caused comparable reduction of photosynthesis and HL also resulted in 154 

photoinhibition 155 

S. viridis leaves treated with 4 h HL (HL_4h) exhibited significantly reduced maximum 156 

efficiencies of PSII (Fv/Fm) as compared to that in 4 h control leaves (ctrl_4h) (Fig. 1b), 157 

suggesting HL-induced photoinhibition. Net CO2 assimilation rates (ANet) were 158 

significantly reduced in HL or HT-treated leaves in response to changes in light or CO2 159 

(Fig. 1c,d). Pre-treatment control leaves (ctrl_0h) also had lower ANet as compared to 160 

ctrl_4h leaves, suggesting circadian regulation of photosynthesis over the course of the 161 

day. The comparisons between different treatments at the 4 h time point should exclude 162 

the effects of circadian regulation. Stomatal conductance and transpiration rates in 163 

response to light were reduced in HL_4h leaves, especially at the beginning of the light 164 

response curve (Supplementary Fig. 3a,c). Stomatal conductance and transpiration rate 165 

in response to CO2 were lower in HL_4h or HT_4h leaves than ctrl_4h leaves 166 

(Supplementary Fig. 3b,d). PSII efficiency and electron transport rates in light-adapted 167 

leaves were reduced in HL_4h leaves as compared to ctrl_4h leaves in response to light 168 

(Supplementary Fig. 3e, g). 169 

 170 

To estimate and model a variety of photosynthetic parameters, we assessed various 171 

aspects of leaf-level gas exchange measurements based on the light response curves 172 

and CO2 response curves (Supplementary Fig. 4). HL or HT compromised photosynthetic 173 

capacities and reduced several photosynthetic parameters in HL_4h and HT_4h leaves 174 

compared to ctrl_4h leaves, including gross maximum CO2 assimilation rates (Amax), 175 

maximum carboxylation rates (Vcmax), and quantum yields of CO2 assimilation 176 

(Supplementary Fig. 4a,b,c). HL_4h leaves had reduced stomatal conductance (gs) but 177 

increased light compensation point as compared to ctrl_4h leaves (Supplementary Fig. 178 

4e, g). HT_4h leaves had reduced light saturation point as compared to ctrl_4h leaves 179 

(Supplementary Fig. 4h).  180 

 181 

Transcriptomics revealed important differences in the key pathways responding to 182 

HL or HT 183 
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 7 

To investigate the transcriptional patterns that may underlie the photosynthesis 184 

phenomena observed above, we performed RNA-seq analysis (Fig. 1a). Principal 185 

component analysis (PCA) of transcripts per million (TPM) (Supplementary Data 1) 186 

normalized read counts from ctrl, HL, and HT treatments showed the experimental 187 

conditions dominated the variance in the dataset (Fig. 2a).   188 

 189 

Next, we compared differentially expressed genes (DEGs) between HL and HT 190 

treatments. Genes that were either up- or down-regulated in at least one time point were 191 

included in the lists of DEGs for each condition. Utilizing this method, we were able to 192 

broadly compare the trends between the HL and HT transcriptomes. There were more 193 

DEGs identified in the HL dataset than the HT dataset (Fig. 2b, Supplementary Fig. 5 and 194 

Data 2). Significantly more genes were up-regulated in both HL and HT-treated 195 

transcriptomes than would be expected by random chance (Fig. 2b, Supplementary Data 196 

4).  Additionally, significantly more genes were regulated in opposite directions between 197 

HL and HT transcriptomes than would be expected by random chance. To visualize how 198 

DEGs were conserved between time points within treatments, we plotted the overlaps 199 

between up- and down-regulated genes at each time point.  In HL-treated samples, 742 200 

genes were up-regulated at 1, 2, 4 h time points, representing the largest subset of 201 

uniquely overlapping genes and the core HL-induced genes (Fig. 2c, Supplementary Data 202 

3). Similarly, 674 genes were down-regulated at all three time points of HL treatment, 203 

representing the core HL-reduced genes. Conversely, in the HT-treated samples, the 204 

expression pattern was dominated by genes differentially expressed at a single time point 205 

(Fig. 2d), indicating the transcriptional response to HT was more transient and dynamic 206 

than that to HL. In HT-treated samples, 102 and 72 genes were up- and down-regulated 207 

at all three time points, representing the core HT induced and reduced genes, 208 

respectively.  209 

 210 

To reveal transcriptional changes that may explain the reduced photosynthesis under HL 211 

or HT, we grouped DEGs into several key pathways. Investigation of genes related to the 212 

light reaction of photosynthesis revealed that many genes involved in PSII 213 

assembly/repair and photoprotection (e.g., PsbS), were up-regulated in HL, while many 214 
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genes relating to LHCII and the core complexes of PSII/PSI were down regulated in HL 215 

(Fig. 3a,b). Although HT treatment did not result in the same extent of differential 216 

regulation of light reaction related genes as HL, STN7, a kinase involved in state 1 to 217 

state 2 transitions44 was induced, while TAP38, a phosphatase involved in state 2 to state 218 

1 transitions45, was repressed in HT-treated leaves (Supplementary Fig. 6a). This 219 

suggests a possible heat induced state transition to move the mobile LHCII from PSII 220 

(state 1) to PSI (state 2). Additionally, several genes related to the chloroplast NDH 221 

(NADPH dehydrogenase) complex were up-regulated in the HT treatment (Fig. 3b). 222 

Furthermore, when investigating genes involved in cyclic electron flow (CEF) 223 

(Supplementary Fig.  6), we found that key components of CEF, PGR5 (proton gradient 224 

regulation 5)46  and two copies of PGRL1 (PGR5-like photosynthetic phenotype 1)47, were 225 

induced under HT, suggesting heat-induced CEF around PSI.  226 

 227 

Under HL treatment, the transcriptional changes of genes involved in the Calvin-Benson 228 

cycle were less than those involved in the light reactions of photosynthesis (Fig. 3c). 229 

Rubisco activase (RCA) is essential for CO2 fixation by maintaining the active status of 230 

Rubisco48,49. The S. viridis genome has two adjacent genes encoding RCAs 231 

(Supplementary Fig.  7). Protein sequence alignment of the two S. viridis RCAs with 232 

Arabidopsis RCAs revealed one SvRCA-a which retains the two conserved redox-233 

sensitive cysteine residues as in AtRCA_a, and one SvRCA_b which has higher basal 234 

expression (approximately 700-fold higher) than SvRCA_a and possibly the major RCA 235 

in S. viridis. SvRCA_a was highly induced during the entire 4 h HT (Fig. 3c).  236 

 237 

Key genes involved in photorespiration, e.g. GOX1 (glycolate oxidase)50,51 and AGT1 238 

(Serine:glyoxylate aminotransferase)52 were down-regulated under HL (Fig. 3c). GOX1 239 

and several other genes involved in photorespiration, PGLP1 (2-phosphoglycolate 240 

phosphatase)53, HPR1 (hydroxypyruvate reductase)54, and PLGG1 (plastidic 241 

glycolate/glycerate transporter)55 were induced under HT, suggesting heat-induced 242 

photorespiration. 243 

 244 
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 9 

Some genes important for C4 carbon metabolism were up-regulated under HL (Fig. 3c), 245 

e.g. PEPC_B (phosphoeynylpyruvate carboxylase) and NADP-MDH (NAD-dependent 246 

malate dehydrogenase)1. Carbonic anhydrase56 (CA_A) was induced under both HL and 247 

HT.  248 

 249 

By investigating pathways associated with photosynthesis, we found HL increased the 250 

expression of starch biosynthesis/degradation genes and genes encoding PG-localized 251 

proteins (Fig. 4a), but down-regulated several genes in the sugar-sensing pathway (Fig. 252 

4b), and differentially regulated several sugar transporter genes (Supplementary Fig. 6b). 253 

These transcriptional changes were much less pronounced under HT.  254 

 255 

Several HSFs had highly induced expression under either HL or HT, but interestingly, 256 

different HSFs were up-regulated in HL vs HT (Fig. 4c). HSFA6B was a notable exception, 257 

which was induced in both HL and HT. A set of shared HSPs were induced under both 258 

HT and HL, but the induction was quicker and stronger under HT than HL, especially the 259 

small HSPs, suggesting shared but also temporally distinct transcriptional responses of 260 

HSPs under HL and HT.  261 

 262 

We also investigated genes associated with ROS pathways. Specialized ROS 263 

scavenging pathways have evolved in plants57. We identified genes encoding antioxidant 264 

enzymes in S. viridis and investigated their expression patterns under HL or HT 265 

(Supplementary Fig. 6c). Three gene families of antioxidant enzymes have many 266 

members with strong differential expression in HL-treated leaves: TRX (thioredoxin), POX 267 

(peroxidases), and GST (glutathione S-transferase). Interestingly, within each of the three 268 

antioxidant pathways, some genes were up-regulated while others were down-regulated 269 

in HL-treated leaves. A similar pattern was shown in HT-treated leaves, although with 270 

fewer differentially regulated genes.  271 

 272 

The reduced stomatal conductance in HL_4h leaves (Supplementary Fig. 3a) suggested 273 

there may be changes in ABA pathways and leaf ABA levels. Our RNA-seq analysis 274 

showed that several genes in the ABA pathways were up-regulated in response to HL 275 
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(Fig. 5a). Additional, ABA levels were increased 3-fold in HL_1h leaves followed by a 276 

return to baseline by HL_4h (Fig. 5b). 277 

 278 

To distinguish M and BS specific transcriptomic responses and gain more information 279 

about how these two specialized cell types function together in HL or HT responses, we 280 

investigated the cell type specificity of our pathways of interest (Supplementary Fig. 8, 281 

Supplementary data 6) by using previously published M and BS specific transcriptomes 282 

under control conditions58. We observed several cell-type specific transcriptional 283 

responses to HL or HT, e.g. pathways related to ROS-scavenging, sugar transport, and 284 

HSPs.  285 

 286 

HL treatment induced NPQ in S. viridis  287 

The increased photoinhibition in HL_4h leaves and the increased PsbS transcription 288 

under HL prompted us to quantify NPQ and xanthophyll pigments.  NPQ was significantly 289 

higher in HL_4h leaves than ctrl_4h leaves in response to light and CO2 (Fig. 6a,b). The 290 

HL-induced NPQ measured by LI_6800 was confirmed using MultispeQ with the 291 

estimated NPQ, NPQ(T), based on a method that estimates NPQ in light-adapted leaves59 292 

(Supplementary Fig. 9c). The increased NPQ was also supported by the observed 4-fold 293 

increase of zeaxanthin (Fig 6c) during HL. Additionally, HL treatment doubled the 294 

intermediate antheraxanthin level (Fig. 6d) and tripled the overall de-epoxidation state of 295 

the xanthophyll cycle (Fig. 6e). In Arabidopsis, lutein also has a role in NPQ or qE and 296 

can substitute for zeaxanthin in qE formation60. Lutein as well as total carotenoids were 297 

significantly induced in HL_4h leaves (Supplementary Fig. 10c,d). These results indicate 298 

the occurrence of photoprotection in HL-treated leaves. Ctrl and HT treatments had little 299 

effect on leaf pigments. 300 

 301 

HL or HT altered chloroplast ultra-structures 302 

The reduced photosynthesis (Fig. 1c,d) in HL_4h and HT_4h leaves, and the HL-induced 303 

photoinhibition (Fig. 1b) and transcripts related to the starch as well as PG pathways (Fig. 304 

4a) led us to investigate the ultrastructural changes of the M and BS chloroplasts in 305 

ctrl_4h, HL_4h, and HT_4h leaves by using transmission electron microscopy (TEM). 306 
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TEM images showed HL_4h leaves had increased relative starch volume fraction and 307 

chloroplast area in both M and BS chloroplasts, but decreased relative volume fractions 308 

of stroma plus stroma lamellae (unstacked thylakoid membranes) in M chloroplasts as 309 

compared to ctrl_4h leaves (Fig. 7, Supplementary Fig. 15), suggesting increased starch 310 

accumulation and chloroplast crowdedness under HL. Starch quantification using 311 

biochemical assays confirmed 3x starch levels in HL_4h leaves as compared to ctrl_4h 312 

leaves (Fig. 7m). In HT_4h leaves, M chloroplasts had reduced relative starch volume 313 

fraction but increased chloroplast area (Fig. 7, Supplementary Fig. 15). HT did not affect 314 

the relative volume of stroma or stroma lamellae in either M or BS chloroplasts.  315 

 316 

Like in other C4 plants, grana in S. viridis are dominantly present in the M chloroplasts. 317 

BS chloroplasts also have some grana, which are absent from the central area but present 318 

in the peripheral region (Fig. 7d-f). HL reduced grana width in M chloroplasts and the 319 

relative volume, height, and area of grana in BS chloroplasts as compared to the ctrl 320 

condition (Fig. 7j, Supplementary Fig. 14,15). The HT effects on grana structure were 321 

quite different from HL. M chloroplasts at HT had increased relative volume, height, area, 322 

and mean layer thickness of grana, indicating heat-induced grana swelling. However, in 323 

BS chloroplasts, HT decreased the relative volume, width, and area of grana, suggesting 324 

that HT affected grana structure differently in M and BS chloroplasts.  325 

 326 

HL increased PG count and the total PG area per chloroplast, while it decreased the mean 327 

individual PG size in M chloroplasts, indicating smaller but more numerous PGs in M 328 

chloroplasts (Fig. 7k, l, Supplementary Fig. 13). Furthermore, HL increased individual PG 329 

size and total PG area per chloroplast in BS chloroplasts (Supplementary Fig. 13). HT 330 

increased individual PG size and total PG area, suggesting heat-induced PG formation in 331 

both M and BS chloroplasts. 332 

 333 

HL- and HT-treated Leaves had reduced photosynthetic capacity 334 

The over-accumulated starch in HL_4h leaves (Fig. 7) and the increased leaf ABA levels 335 

(Fig. 5) led us to investigate photosynthesis under the simulated stress conditions and 336 

immediately after different treatments without dark-adaptation in the LI_6800 leaf 337 
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chamber (Fig. 8). Under the same temperature and light intensity in the LI-6800 leaf 338 

chamber, most photosynthetic parameters with or without dark-adaptation  were similar 339 

(groups 1 vs. 2) (Fig. 8). Under the simulated treatment condition in the LI-6800 leaf 340 

chamber (group 3), HL_4h leaves had higher net CO2 assimilation rates (ANet) and 341 

stomatal conductance under 600 µmol photons m-2 s-1 light than ctrl_4h leaves under 200 342 

µmol photons m-2 s-1 light, but both parameters in HL_4h leaves were lower than ctrl_4h 343 

leaves under the same light intensity (group 3, 4) (Fig. 8a). This suggests that HL_4h 344 

leaves had reduced capacities for ANet and stomatal conductance as compared ctrl_4h 345 

leaves under the same condition. Under the simulated treatment condition (group 3), 346 

HL_4h leaves under 600 µmol photons m-2 s-1 light had reduced PSII operating efficiency 347 

(Fig. 8c), increased electron transport rates (Fig. 8d), and increased NPQ (Fig. 8f) as 348 

compared to the ctrl_4h leaves under 200 µmol photons m-2 s-1 light, consistent with light 349 

induced electron transport and NPQ.  350 

 351 

Without dark-adaptation, HT_4h leaves had similar ANet as ctrl_4h leaves (Fig. 8a, group 352 

2). This may be due to the transient recovery of photosynthesis after switching the HT_4h 353 

leaves from 40oC in the growth chamber to 25oC in the LI_6800 leaf chamber for 354 

measurements. Under the same light intensity, HT_4h leaves had significantly lower ANet 355 

(Fig. 8a) and more reduced plastoquinone (Fig. 8e) than ctrl_4h leaves. Under the 356 

simulated treatment condition in LI-6800 leaf chamber (group 3), HT_4h leaves had 357 

increased stomatal conductance (Fig. 8b) but reduced ANet as compared to ctrl_4h leaves 358 

(Fig. 8a), consistent with transpiration cooling of leaf temperature (Supplementary Fig. 1) 359 

and reduced photosynthetic capacity in HT-treated leaves (Supplementary Fig. 4a-c). 360 

 361 

The activity of ATP synthase was inhibited in HL-treated leaves 362 

Based on the HL-induced starch accumulation, we hypothesized that starch may inhibit 363 

photosynthesis through feedback regulation. We measured electrochromic shift (ECS) 364 

and chlorophyll fluorescence using MultispeQ61 to evaluate proton fluxes and the 365 

transthylakoid proton motive force (pmf) in vivo62–64. Different treatments did not 366 

significantly change pmf (Fig. 9a). HL_4h leaves had significantly reduced proton 367 

conductivity and lower proton flux rates as compared to ctrl_4h leaves (Fig. 9b,c), 368 
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indicating reduced ATP synthase activity in HL-treated leaves. The MultispeQ NPQ(T) data 369 

showed that the HL-induced NPQ was more sensitive to pmf than ctrl_4h leaves, with 370 

higher NPQ produced at a given level of proton motive force in HL_4h leaves than ctrl_4h 371 

leaves (Fig. 9d). 372 

 373 

Discussion 374 

We investigated how the C4 model plant S. viridis responds to HL or HT stresses at 375 

multiple levels by employing diverse approaches (Fig. 1a). Our data provide a thorough 376 

analysis of HL and HT responses in S. viridis at photosynthetic, transcriptomic, and 377 

ultrastructural levels and reveal limitations of photosynthesis under HL or HT. The HL 378 

(900 µmol photons m-2 s-1) and HT (40oC) treatments we chose were both moderate 379 

stresses within the physiological range for S. viridis. Although the impact of moderate 380 

stresses can be difficult to analyze due to mild phenotypes, moderate stresses are highly 381 

relevant and occur frequently in the field65. Understanding the impacts of moderate 382 

stresses on C4 plants is imperative for agricultural research. The moderately HL and HT 383 

we used reduced net CO2 assimilation rates at comparable levels in S. viridis leaves (Fig. 384 

1c), but via different mechanisms (Fig. 10). 385 

 386 

Starch over-accumulation may contribute to photoinhibition in HL-treated leaves 387 

In response to HL, S. viridis induced NPQ to dissipate excess light energy via increased 388 

PsbS transcription and zeaxanthin accumulation (Fig. 3a, 6c). At the transcriptional level, 389 

HL-treated plants up-regulated transcripts involved in PSII assembly/repair and 390 

photoprotection before down-regulating transcripts involved in LHCII, PSII core complex, 391 

and PSI complex (Fig. 3), suggesting a strategy to dissipate light and repair damaged 392 

PSII before the remodeling of photosystems. With the rapid induction of photoprotective 393 

pathways, it was initially surprising to see the significant amount of photoinhibition in HL-394 

treated leaves of S. viridis (Fig. 1b), but the HL-induced starch accumulation may provide 395 

some insight.  396 

 397 

Our TEM data showed that the mean relative starch volume fraction was increased 398 

significantly in both M and BS chloroplasts in HL_4h leaves as compared to ctrl_4h leaves 399 
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(Fig. 7, Supplementary Fig. 15). The increased starch accumulation likely resulted from 400 

increased CO2 fixation rates (Fig. 8a) but imbalance of starch synthesis/ degradation and 401 

sugar transport from downstream pathways under HL. In C3 plants, starch is mostly 402 

present in M chloroplasts where photosynthesis occurs66,67. In C4 plants, starch is present 403 

in both BS and M chloroplasts (Fig. 7a-f), although Rubisco dominantly localizes in the 404 

BS chloroplasts67. The over-accumulated starch increased the crowdedness of the 405 

chloroplasts (Fig. 7, Supplementary Fig. 15), which may hinder PSII repair, especially in 406 

M chloroplasts where PSII is enriched. PSII complexes are concentrated in the stacked 407 

grana regions; during PSII repair, damaged PSII subunits migrate from the stacked grana 408 

region to the grana margin and the unstacked grana region (stroma lamellae) where the 409 

proteins involved in PSII repair are localized (e.g., FtsH, Deg proteases that degrade 410 

damaged PSII subunits)15,68. In Arabidopsis under HL, the grana lumen and margin swell 411 

to facilitate protein diffusion and PSII repair23,69, however, we did not see these changes 412 

in HL-treated S. viridis leaves (Supplementary Fig. 12d, e, i). Starch overaccumulation 413 

and increased chloroplast crowdedness may slow down the migration of damaged PSII 414 

subunits and inhibit PSII repair, contributing to the HL-induced photoinhibition (Fig. 1b, 415 

10). Additionally, ATP synthase activity was significantly reduced in HL_4h leaves as 416 

compared to ctrl_4h leaves (Fig. 9b,c), which may be associated with the starch 417 

accumulation and sugar feedback inhibition of photosynthesis. HL-treated Arabidopsis 418 

plants had reduced starch in chloroplasts70, which may reflect the differences in 419 

experimental conditions or the stronger capability to use HL for carbon fixation in C4 plants 420 

than C3 plants.  421 

 422 

HL differentially regulated genes involved in sugar-sensing pathways  423 

Sugar signaling integrates sugar production with environmental cues to regulate 424 

photosynthesis35,71,72. In C3 plants, some of the sugar-sensing pathways include: (1) 425 

SnRK1 pathway (sucrose-non-fermenting 1 related protein kinase 1, starvation sensor, 426 

active under stressful and sugar deprivation conditions to suppress growth and promote 427 

survival)73–75; (2) Trehalose pathway (trehalose is a signal metabolite in plants under 428 

abiotic stresses and helps plants survive stresses)65,76. Sugar sensing pathways under 429 

abiotic stresses are underexplored in C4 plants35. Our RNA-seq data showed that two 430 
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subunits of SnRK1 (b2, g4) were highly down-regulated under HL (Fig. 4b), suggesting 431 

possible inhibition of the SnRK1 pathway. In the trehalose pathway, trehalose-6-432 

phosphate synthase (TPS) produces trehalose-6-phosphate (T6P); the T6P phosphatase 433 

(TPP) dephosphorylates T6P to generate trehalose65. A copy of the potential catalytically 434 

active TPS (TPSI) in S. virids was induced and two copies of TTP were down-regulated 435 

during HL (Fig. 4b), suggesting possible increased level of T6P. T6P is a signal of sucrose 436 

availability, inhibits SnRK1 pathway, promotes plant growth and development77,78. Based 437 

on the expression pattern of genes involved in sugar-sensing pathways and the over-438 

accumulated starch under HL, we postulated that HL-treated S. viridis leaves had 439 

increased sugar levels, and possibly up-regulated T6P sugar-sensing pathway to down-440 

regulate the SnRK1 pathway and promote plant growth76,79, which may alleviate the 441 

stress of starch over-accumulation and photosynthesis inhibition under HL. 442 

 443 

Potential links between HL response and ABA pathway exist in S. viridis 444 

The links between HL responses and ABA have been reported in C3 plants11,12,80,81. 445 

Arabidopsis ABA biosynthesis mutants (e.g., nced3) were more sensitive to HL than 446 

WT11,12.  HL-treated S. viridis leaves had reduced capacity for stomatal conductance (Fig. 447 

8b), which can most likely be attributed to an acute increase of ABA levels in HL-treated 448 

leaves (Fig. 5b). Although ABA levels were only significantly increased at HL_1h and then 449 

gradually decreased, the ABA-induced stomatal closure may be prolonged. Consistent 450 

with this, RNA-seq data showed increased expression of genes involved in ABA 451 

responses and signaling during the 4-h HL treatment (Fig. 5a). Stomatal conductance 452 

increases with light to increase CO2 uptake, which also increases water loss. To reduce 453 

water loss and improve water use efficiency, a relatively lower stomatal conductance 454 

under HL may be an adaptive response. Our results in S. viridis provide insight into the 455 

reduced stomatal conductance and photosynthesis in sorghum leaves under HL9.  456 

 457 

ABA homoeostasis is maintained by the balance of its biosynthesis, catabolism, 458 

reversible glycosylation, and transport pathways19. Several ABA biosynthesis genes were 459 

up-regulated during HL (Fig. 5a), including NCED1 (9-cis epoxycarotenoid 460 

dioxygenase)19,82,83 and ABA1/ZEP1, suggesting that local, de novo ABA biosynthesis 461 
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may be one source of the rapid and large induction of ABA at HL_1h. The up-regulation 462 

of CYP707As, which are responsible for ABA degradation84, may contribute to the gradual 463 

reduction of ABA levels after 1 h HL. Furthermore, the S. viridis homolog of Arabidopsis 464 

BG1 (glucosidases, hydrolyze inactive ABA-GE to active ABA in endoplasmic reticulum)85 465 

was induced at HL_2h and HL_4h. Dehydration rapidly induces polymerization of AtBG1 466 

and a 4-fold increase in its enzymatic activity85. It is possible that the hydrolysis of ABA-467 

GE to ABA by polymerized BG1 may precede the induction of the BG1 transcript, 468 

contributing to the transiently increased ABA levels. Several putative ABA transporters 469 

were not differentially expressed (Supplementary Data 6), but a S. viridis homolog of the 470 

Arabidopsis ABA importer ABCG40 was down-regulated in HL (Fig. 5a), suggesting ABA 471 

import from other parts of the plant to leaves may be less likely. Thus, the HL increased 472 

ABA level may be due to ABA de novo biosynthesis and/or reversible glycosylation from 473 

ABA-GE to ABA.  474 

 475 

HT responses had distinct features in comparison to HL  476 

Compared to HL, HT_4h leaves showed much less change in starch accumulation, little 477 

change in chloroplast crowdedness (Fig. 7), and no photoinhibition (Fig. 1). Under HT, M 478 

chloroplasts had reduced relative starch volume fraction but increased chloroplast area 479 

as compared to ctrl (Supplementary Fig. 13), suggesting heat-induced chloroplast 480 

swelling that is independent of starch accumulation. Grana dimension increased in HT-481 

treated M chloroplasts (Supplementary Fig. 13), suggesting heat-induced grana swelling. 482 

In contrast, BS chloroplasts have slightly increased starch, no change of chloroplast area, 483 

but decreased grana dimension under HT, suggesting cell-type specific heat responses. 484 

PG formation was highly induced in both M and BS chloroplasts under HT, which may be 485 

associated with heat-increased thylakoid membrane leakiness, consistent with previous 486 

reports26,86,87. Induced chloroplast/grana swelling and PG formation may reflect heat-487 

induced damage to chloroplast ultrastructure, which may contribute to the reduced 488 

photosynthetic rates under HT. 489 

 490 

The transcriptome changes under HT were less extensive but more dynamic than under 491 

HL (Fig. 2-5). HT induced more PG formation than HL (Supplementary Fig. 13), however, 492 
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surprisingly there were few transcriptional changes of genes encoding proteins that 493 

localize to PG under HT (Fig. 4a). These results suggest the heat-induced PG formation 494 

may be a direct and physical response of thylakoid membranes to moderately HT and not 495 

regulated at the transcriptional level.  496 

 497 

Response to HT also showed some unique transcriptional changes that were absent or 498 

minimal under HL. First, HT resulted in high and sustained induction of Rubisco activase 499 

(RCA_a) (Fig. 3c). RCA removes inhibitors from Rubisco, maintains Rubisco activation, 500 

and is important for carbon fixation48,49. Rubisco is thermostable but RCAs are heat labile, 501 

resulting in reduced Rubisco activation and CO2 fixation under HT36. Plants grown in 502 

warm environments usually have RCAs that are more thermotolerant88–90. In S. viridis, 503 

maize, and sorghum, HT induces the protein level of RCA_a and the rate of RCA_a 504 

induction is associated with the recovery rate of Rubisco activation and photosynthesis91, 505 

suggesting the heat-induced RCA_a may be the thermotolerant isoform. Understanding 506 

the function and regulation of RCAs may help improve thermotolerance of photosynthesis 507 

in C4 plants. Additionally, HT upregulated small HSPs much quicker than HL. 508 

 509 

Key genes involved in photorespiration (Fig. 3c) and cyclic electron flow (CEF) around 510 

PSI (Supplementary Fig. 6a) were up-regulated under HT, suggesting HT-induced 511 

photorespiration and CEF. C4 plants employ carbon-concentrating mechanisms (CCM) to 512 

concentrate CO2 around Rubisco and reduce photorespiration in the BS chloroplasts. 513 

However, S. viridis BS chloroplasts have a small number of grana (Fig. 7d-f), where PSII 514 

is present and can be a source of O2 production. Photorespiration increases with 515 

temperature faster than photosynthesis30,92 and HT may also increase the CO2 leakiness 516 

of BS chloroplasts38,39, promoting photorespiration and reducing photosynthesis. CEF 517 

generates only ATP without NADPH, balances ATP/NADPH ratio, generates 518 

transthylakoid proton motive force (pmf), and protects both PSI and PSII from photo-519 

oxidative damage in C3 plants93,94. Increased CEF activity has been frequently reported 520 

under stressful conditions in C3 plants26,95,96, indicating its important role in stress 521 

protection. To compensate for the extra ATP needed for CCM, C4 plants are proposed to 522 

have high CEF in BS chloroplasts3,97. CEF is reported to increase in S. viridis under salt 523 
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stress98. The heat-induced CEF could protect photosynthesis under HT by maintaining 524 

transthylakoid pmf and generating extra ATP.   525 

 526 

Frey et al. identified 39 heat-tolerance genes in maize that were significantly associated 527 

with heat-tolerance and up-regulated in most of the 8 maize inbred lines41. Five S. viridis 528 

homologs of the maize heat-tolerance genes were also up-regulated in our RNA-seq data 529 

under HT, providing potential engineering targets to improve heat tolerance in C4 plants 530 

(Supplementary Data 5). 531 

 532 

Although HL and HT responses had their own unique features, their transcriptional 533 

responses had significant overlaps (Fig. 2b). We identified 42 highly induced genes (FC 534 

≥ 5) and 13 highly repressed genes (FC ≤ -5) in both conditions (Supplementary Fig. 5, 535 

Supplementary Data 5). The 42 highly induced genes provide potential targets for 536 

improving resistance to HL and HT in C4 crops, including several putative transcription 537 

factors, HSP20/70/90 family proteins, b-amylase, and a putative aquaporin transporter for 538 

promoting CO2 conductivity in C4 plants3,99,100. Additionally, HSFA6B was induced (2≤ FC 539 

≤5) at both HL and HT. It is reported that HSFA6B operates as a downstream regulator 540 

of the ABA-mediated stress response and is involved in thermotolerance in Arabidopsis, 541 

wheat, and barley101,102. This gene may be involved in regulation of genes that are 542 

common to both the HL and HT responses and it would be interesting for further study to 543 

generate HL and HT tolerant C4 crops.  544 

 545 

In comparison to the C3 model plant Arabidopsis, the C4 model plant S. viridis has shared 546 

and unique responses under HL and HT. The shared responses include induced NPQ, 547 

PsbS transcription, zeaxanthin accumulation, PG formation, and ABA levels under HL, 548 

and the induced PG formation as well as swollen M chloroplasts under HT. The unique 549 

responses in S. viridis to HL include the over-accumulated starch in both M and BS 550 

chloroplasts and increased chloroplast crowdedness. In HT, the unique responses in S. 551 

viridis include dynamic transcriptome regulation and different heat sensitivities of M and 552 

BS chloroplasts. The reduced photosynthetic capacity under HL or HT also demonstrated 553 

the need to increase the tolerance to these two stresses in C4 plants. 554 
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The different responses in M and BS chloroplasts in S. viridis are particularly interesting 555 

and warrant further study. We sorted HL or HT induced DEGs into M and BS specific 556 

pathways based on previously published M/BS transcriptomes58 (Supplementary Fig. 8). 557 

Although we cannot rule out some transcripts may have altered cell type specificity under 558 

stressful conditions, due to the function specificity of the M and BS cells, a significant 559 

fraction of the M and BS specific transcripts likely keep similar cell type specificity under 560 

our HL and HT conditions as compared to the published control condition. Our analysis 561 

revealed M- and BS-specific transcriptional regulation in response to HL or HT in S. viridis 562 

(Supplementary Fig. 8). Under HL, the majority of M-specific DEGs related to ROS-563 

scavenging and HSPs were up-regulated while the majority of BS-specific DEGs related 564 

to these two pathways were down-regulated, suggesting M cells may require more ROS 565 

scavenging and HSPs than BS cells in response to HL, probably due to more ROS 566 

production and higher need for maintaining protein homeostasis in M cells than BS cells 567 

under HL. In contrast, under HT, many ROS-scavenging DEGs were up-regulated in BS 568 

cells but down-regulated in M cells (possibly due to heat-induced photorespiration) while 569 

DEGs related to HSPs were up-regulated in both cell types. It is intriguing that HL up-570 

regulated M-specific sugar transporters but down-regulated BS-specific sugar 571 

transporters. In Arabidopsis, SWEET16/17 plays a key role in facilitating bidirectional 572 

sugar transport along sugar gradient across the tonoplast of vacuoles103,104. The 573 

homologous copy of SWEET16/17 in S. viridis is M-cell specific and was up-regulated in 574 

HL (Supplementary Fig. 6b), suggesting SvSWEET16/17 may mediate sugar uptake into 575 

vacuoles in response to a high centration of cytosolic sugar level in M cells. The down-576 

regulation of BS-specific SWEETs under HL may indicate feedback inhibition of sugar 577 

phloem loading due to unmatched sugar usage in downstream processes105.  578 

 579 

In summary, we elucidated how the C4 model plant S. viridis responds to moderately HL 580 

or HT at the photosynthetic, transcriptomic, and ultrastructural levels (Supplementary Fig. 581 

14). Our research furthers understanding of how C4 plants respond to HL and HT by 582 

linking the data from multiple levels, reveals different acclimation strategies to these two 583 

stresses in C4 plants, discovers unique HL/HT responses in C4 plants in comparison to 584 

C3, demonstrates M/BS cell type specificity under HL or HT, distinguishes adaptive from 585 
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maladaptive responses, and identifies potential targets to improve abiotic stress tolerance 586 

in C4 crops.   587 

 588 

Methods 589 

Plant growth conditions and treatments 590 

S. viridis ME034 (also known as ME034v) plants were grown in a controlled 591 

environmental chamber under constant 31°C, 50% humidity, ambient CO2 conditions, 12 592 

h photoperiod, and leaf level light intensity of 250 μmol photons m-2 s-1. Similar level of 593 

growth light has been used in literatures for S. viridis under control conditions58,98,106. 594 

Seeds were germinated on Jolly Gardener C/V Growing Mix (BGF Supply Company, 595 

Oldcastle, OCL50050041) and fertilized with Jack’s 15-5-15 (BGF Supply Company, J.R. 596 

Peters Inc., JRP77940) with an Electrical Conductivity (EC) of 1.4. At seven days after 597 

sowing (DAS), seedlings were transplanted to 3.14” x 3.18” x 3.27” pots.  At 13-DAS, 4 h 598 

after light was on in the growth chamber, plants with fourth fully expanded true leaves 599 

were selected for 4 h HL (leaf level light intensity of 900 μmol photons m-2 s-1 and chamber 600 

temperature of 31°C) or 4 h HT (chamber temperature of 40°C and leaf level light intensity 601 

of 250 μmol photons m-2 s-1) treatments carried out in separate controlled environmental 602 

chambers under 50% humidity and ambient CO2 conditions. A separate set of plants 603 

remained in the control chamber set to growth conditions. Leaf temperature was stable 604 

at 31°C under control and HL treatments while it increased gradually from 31oC to 37°C 605 

by the end of 4 h treatment of 40°C (Supplementary Fig. 1). 606 

 607 

Gas-exchange and chlorophyll fluorescence measurements  608 

Leaf-level gas exchange and pulsed amplitude modulated (PAM) chlorophyll a 609 

fluorescence was measured using a portable gas-exchange system LI-6800 coupled with 610 

a Fluorometer head 6800-01 A (LI-COR Biosciences, Lincoln, NE). Fourth fully expanded 611 

true leaves of S.viridis plants from different treatments were first dark-adapted for 20 min 612 

in the LI-6800 chamber to measure maximum PSII efficiency (Fv/Fm) under constant CO2 613 

partial pressure of 400 ppm in the sample cell, leaf temperature 25°C, leaf VPD 1.5 kPa, 614 

fan speed 10,000 RPM, and flow rate 500 μmol s-1. We then performed the light response 615 

curves followed by CO2 response curves (A/Ci curve) as described (Supplementary Fig. 616 
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2). Red-blue actinic light (90%/10%) and 3-6 biological replicates for each treatment were 617 

used for all measurements. We used leaf temperature of 25°C for light and CO2 response 618 

curves as described in previous publications for S. viridis regardless of growth 619 

temperatures56,98,107–109. During all measurements, the instrument parameters were 620 

consistent and stable. For CO2 response curves, all net CO2 assimilation rates were 621 

corrected with the empty chamber data to count for inevitable and minor LI-6800 leaf 622 

chamber leakiness during the CO2 response curves following the established 623 

protocols110. 624 

 625 

Photosynthetic parameters were calculated as described62 (see formulas, Supplementary 626 

Table 1). To estimate the true NPQ, Fm used in the NPQ formula (Fm / Fm’ – 1) needs to 627 

be the maximum chlorophyll fluorescence in fully relaxed, dark-adapted leaves in which 628 

there is no quenching62,111. Fm and Fm’ are the maximum chlorophyll fluorescence yields 629 

in dark-adapted and light-adapted leaves, respectively62,111,112. In ctrl leaves, Fm could be 630 

reached with 20 min dark-adaptation without further change after that, but HL-treated 631 

leaves needed a much longer recovery period to relax the quenching processes due to 632 

the light-induced photoinhibition (Supplementary Fig. 9a). Because the values of Fm in 633 

dark-adapted ctrl_4h leaves were highly consistent among different biological replicates 634 

and reflected the reference level of Fm (i.e., without stress treatments), we used the mean 635 

Fm of ctrl_4h leaves as a baseline to calculate NPQ in leaves with different treatments.  636 

 637 

To investigate photosynthetic performance in plants immediately following 4 h of different 638 

treatments (ctrl, HL or HT), we also performed short LI-6800 measurements for 5 min on 639 

each plant immediately after 4 h treatments without dark-adaptation at 400 ppm CO2 with 640 

indicated leaf temperatures and light intensities (Fig. 8). To estimate photosynthetic 641 

parameters under different treatments as in the growth chambers, the LI-6800 leaf 642 

chamber was set to simulate the condition of different treatments: ctrl (31°C, 200 µmol 643 

photons m-2 s-1 light), HL (31°C, 600 µmol photons m-2 s-1 light,) or HT (40°C, 200 µmol 644 

photons m-2 s-1 light). The temperature and light refer to the conditions in the LI-6800 leaf 645 

chamber. The light in LI-6800 leaf chamber (90% red and 10% blue) was different from 646 

the white light in the growth chamber, therefore we selected two lights in the LI-6800 leaf 647 
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chamber that were close to the white lights in growth chambers based on the light 648 

quantification in the red (580-670 nm) and blue (440-540 nm) spectrum range. LI-6800 649 

light intensities of 200 and 600 µmol photons m-2 s-1 were also two of the conditions used 650 

in the light response curves with dark-adaptation (Fig. 1c, 8, group 1), allowing for direct 651 

comparison. Individual plants were used for each measurement and replicate.  652 

 653 

The high abundance of PSI in BS chloroplasts of C4 leaves can affect chlorophyll 654 

fluorescence measurement (up to 50%) and underestimate the PSII efficiency (Fv/Fm) and 655 

electron transport rates113,114. Thus, our chlorophyll fluorescence data were corrected with 656 

0.5 Fo, which is the mean minimal chlorophyll fluorescence in dark-adapted leaves under 657 

the control condition (ctrl_4h). The PSII operating efficiency calculated from the corrected 658 

and uncorrected chlorophyll fluorescence data correlated with each other but the 659 

corrected data yielded higher PSII efficiency, with the maximum PSII efficiency in ctrl_4h 660 

leaves closer to the theoretical values of 0.86115 (Fig. 1b). 661 

 662 

Modeling of photosynthetic parameters using leaf-level gas exchange information 663 

To model photosynthetic parameters, we used gas exchange data from light response 664 

curves and CO2 response curves (A/ci curves). The model parameterization and analyses 665 

were conducted in R 3.4.3 Project software® (R Development Core Team 2016). First, 666 

light response curves were fitted as previously described116. We fit a non-linear least 667 

squares regression (non-rectangular hyperbola) to estimate photosynthetic parameters 668 

(Supplementary Fig. 4). A/ci curves were fitted as previously described117 to estimate the 669 

Vcmax (the maximum rate of carboxylation). Feng et al. (2013) followed the C4 670 

photosynthesis model using a Bayesian analysis approach118. The normality of the data 671 

was verified with the Shapiro-Wilk test. Statistical analysis was performed using Student’s 672 

two-tailed t-test with unequal variance by comparing ctrl_4h with all other conditions.  673 

 674 

RNA isolation 675 

To isolate RNA from leaves, four biological replicates containing two 2-cm mid-leaf 676 

segments from two plants for each time point and treatment were collected from fourth 677 

fully expanded true leaves into screw cap tubes (USA Scientific, 1420-9700) with a 678 
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grinding bead (Advanced Materials, 4039GM-S050) and immediately frozen in liquid 679 

nitrogen and stored at -80°C. Frozen samples were homogenized using a paint shaker. 680 

RNA was extracted using a Trizol method with all centrifugation at 4°C and 11,000 RCF. 681 

One mL of Trizol Reagent (Invitrogen, 15596018) was added to homogenized leaf tissue 682 

and resuspended, then 200 µL of Chloroform:Isoamyl alcohol (25:1) was added and 683 

vortexed. Tubes were centrifuged for 15 min. 600 µL from the aqueous layer was 684 

transferred to a clean tube with equal volume Chloroform:Isoamyl alcohol, vortexed, and 685 

centrifuged for 5 min. Next, 450 µL of aqueous layer was transferred to 0.7x volume 100% 686 

Isopropanol, mixed well, and chilled for 30 min in -20°C freezer. Samples were centrifuged 687 

for 15 min to pellet RNA. Supernatant was decanted, and RNA pellet was rinsed twice 688 

with ice-cold 75% ethanol with a 2-min centrifugation following each rinse. RNA was dried 689 

in a laminar flow hood until residual ethanol evaporated and was resuspended in 50 µL 690 

of nuclease free H2O. RNA was quantified using a NanoDrop and Qubit RNA Broad 691 

Range (BR) Assay Kit (Thermo Fisher Scientific Inc., Q10210) with the Qubit 3.0 machine. 692 

RNA integrity was verified using a Bioanalyzer Nano Assay (Genome Technology Access 693 

Center, Washington University in St. Louis).  694 

 695 

RNA-seq library construction and sequencing 696 

RNA samples were diluted to 200 ng/µL in nuclease free H2O for a total of 1 µg RNA. 697 

Libraries were generated with the Quantseq 3’ mRNA-seq library prep kit FWD for Illumina 698 

(Lexogen, 015.96). Libraries were generated according to manufacturer’s instructions. 699 

Cycle count for library amplification for 1 µg mRNA was tested using the PCR add-on kit 700 

for Illumina (Lexogen, 020.96). qPCR was performed and a cycle count of 13 was 701 

determined for the amplification of all libraries. For library amplification, the Lexogen i5 6 702 

nt Dual Indexing Add-on Kit (5001-5004) (Lexogen, 047.4x96) was used in addition to the 703 

standard kit to allow all libraries to have a unique combination of i5 and i7 indices. All 704 

libraries were quantified using Qubit dsDNA High Sensitivity (HS) Assay Kit (Thermo 705 

Fisher Scientific Inc., Q32854) with the Qubit 3.0 machine. Prepared libraries were pooled 706 

to equimolar concentrations based on Qubit assay reads. Pooled libraries were submitted 707 

to Novogene to be sequenced on the HiSeq4000 platform (Illumina) with paired end, 150 708 

bp reads. 709 
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 710 

Mapping and transcript quantification 711 

Single-end reads were trimmed and quality-checked using Trim Galore (version 0.6.2). 712 

Trimmed reads from each library were mapped and processed for transcript quantification 713 

using Salmon (version 1.1.0) in quasi-mapping mode with a transcriptome index built from 714 

the S. viridis transcript and genome files (Sviridis_311_v2; Phytozome v12.1)42. Salmon 715 

outputs were imported into R using the Bioconductor package tximport (1.16.0) to extract 716 

gene-level expression values represented by transcript per million (TPM) for each gene 717 

across every time point, tissue, and treatment group sampled. Principal component 718 

analysis was performed with TPM normalized read counts of all genes using the R 719 

package FactoMineR119.   720 

 721 

Differential expression analysis 722 

Genes that met minimum read count cutoffs of at least 10 raw reads in at least 10% of 723 

samples (14,302 genes) were included in differential expression analysis using DeSeq2, 724 

FDR < 0.05120. HL or HT treatment time points were compared to the control condition 725 

from the same time point. Differentially expressed genes between different time points in 726 

either HL or HT were visualized in UpSetR121. To identify genes in key pathways of 727 

interest in S. viridis, we used the MapMan annotations for the closely related S. italica 728 

(RRID:SCR_003543). From the S. italica MapMan annotations, we identified the best hit 729 

in S. viridis for genes in pathways of interest. We then manually curated these lists based 730 

on relevant literature to obtain genes in pathways of interest (Supplementary Data 6), as 731 

well as to provide further annotation information for genes identified using the MapMan 732 

annotations. We sorted the differentially expressed genes in pathways of interest into fold 733 

change (FC) bins based on their DeSeq2 fold change values and presented their 734 

expression patterns. FC bins were defined as follows: highly induced: FC ≥ 5; moderately 735 

induced: 5 > FC ≥ 2; slightly induced: 2 > FC > 0; not differentially expressed: FC = 0; 736 

slightly repressed: 0 > FC > -2; moderately repressed: -2 ≥ FC > -5; highly repressed: FC 737 

≤ -5. Heatmaps of pathways of interest were generated using the R package pheatmap 738 

(version 1.0.12. https://CRAN.R-project.org/package=pheatmap). 739 

 740 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.20.431694doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.20.431694
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

ABA quantification 741 

Leaf samples of three biological replicates were harvested at 0, 1, 2 and 4 hours of ctrl, 742 

HL, or HT treatment. The fresh leaf weight was immediately measured after harvesting. 743 

The samples were quickly placed in liquid nitrogen and then stored in -80°C freezer until 744 

further processing. Frozen leaf tissue was homogenized and 15 ng of [2H6]-abscisic acid 745 

was added as an internal standard. Samples were dried to completeness under vacuum. 746 

ABA was resuspended in 200µl of 2% acetic acid in water (v/v) and then centrifuged; an 747 

aliquot was then taken for quantification. Foliar ABA levels were quantified by liquid 748 

chromatography tandem mass spectrometry with an added internal standard using an 749 

Agilent 6400 Series Triple Quadrupole liquid chromatograph associated with a tandem 750 

mass spectrometer according to the previously described methods122.   751 

 752 

Pigment analysis 753 

Three biological replicates of one 2-cm middle leaf segment were collected from fourth 754 

fully expanded true leaves into screw cap tubes (USA Scientific, 1420-9700) with a 755 

grinding bead (Advanced Materials, 4039GM-S050), immediately frozen in liquid 756 

nitrogen, and stored at -80°C. During pigment extraction, 600 µl ice-cold acetone were 757 

added to the samples before they were homogenized in a FastPrep-24 5G (MP 758 

Biomedicals) at 6.5 m/s for 30 s at room temperature. Cell debris were removed by 759 

centrifugation at 21,000 x g for 1 min. The supernatant was filtered through a 4 mm nylon 760 

glass syringe prefilter with 0.45 µm pore size (Thermo Scientific) and analyzed by HPLC. 761 

HPLC analyses were performed on an Agilent 1100 separation module equipped with a 762 

G1315B diode array and a G1231A fluorescence detector; data were collected and 763 

analyzed using Agilent LC Open Lab ChemStation software. Pigment extracts were 764 

separated on a ProntoSIL 200-5 C30, 5.0 μm, 250 mm by 4.6 mm column equipped with 765 

a ProntoSIL 200-5-C30, 5.0 μm, 20 mm by 4.0 mm guard column (Bischoff 766 

Analysentechnik) and gradient conditions as previously described123. Assuming 767 

interconversion of the intermediate antheraxanthin between both zeaxanthin and 768 

violaxanthin, the de-epoxidation level can be calculated by (zeaxanthin + 0.5 769 

antheraxanthin) / (violaxanthin + antheraxanthin + zeaxanthin)124. 770 

 771 
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Transmission electron microscopy (TEM) 772 

S. viridis leaves were collected after 4 h of different treatments and prepared for TEM.  773 

Four-millimeter biopsy punches were taken from the middle leaf segments of the fourth 774 

fully expanded leaves and fixed for 2 h in 2% paraformaldehyde and 2% glutaraldehyde 775 

(EM Science, Hatfield, PA, USA) plus 0.1% Tween20 in 0.1 M sodium cacodylate at pH 776 

7.4 at room temp and then at 4°C overnight. Samples were then rinsed 3x in buffer and 777 

fixed in 2% osmium tetroxide (EM Science, Hatfield, PA, USA) in ELGA water for 2 h, 778 

rinsed 3x in ELGA water and placed in 1% uranyl acetate in ELGA water at 4°C overnight 779 

and then at 50°C for 2 h. Next, samples were rinsed 5x in water, dehydrated in a graded 780 

acetone series and embedded in Epon-Araldite (Embed 812, EM Science, Hatfield, PA, 781 

USA). Embedments were trimmed and mounted in the vise-chuck of a Leica Ultracut UCT 782 

ultramicrotome (Leica, Buffalo Grove, IL, USA). Ultrathin sections (~60 to 70 nm) were 783 

cut using a diamond knife (type ultra 35°C; Diatome), mounted on copper grids 784 

(FCFT300-CU-50, VWR, Radnor, PA, USA), and counterstained with lead citrate for 8 785 

min125. Samples were imaged with a LEO 912 AB Energy Filter Transmission Electron 786 

Microscope (Zeiss, Oberkochen, Germany). Micrographs were acquired with iTEM 787 

software (ver. 5.2) (Olympus Soft Imaging Solutions GmbH, Germany) with a TRS 2048 788 

x 2048k slow-scan charge-coupled device (CCD) camera (TRÖNDLE 789 

Restlichtverstärkersysteme, Germany). Ninety electron micrographs were quantified for 790 

each experimental treatment using image analysis (FIJI software, National Institutes of 791 

Health) and stereology (Stereology Analyzer version 4.3.3, ADCIS, France). Each TEM 792 

image was acquired at 8,000X magnification and 1.37 nm pixel resolution with arrays of 793 

up to 5X5 tiles using automated Multiple Image Alignment software module (settings: 794 

correlation =1, FFT algorithm, overlap area = linear weighted, movement = emphasize, 795 

and equalize). TEM images were analyzed with Stereology Analyzer software version 796 

4.3.3 to quantify relative volume of various cell parameters including stroma, stroma 797 

lamellae, starch granules, and grana within individual chloroplasts (Supplementary Fig. 798 

11b). Grid type was set as “point” with a sampling step of 500x500 pixels and pattern size 799 

of 15x15 pixels. The percent of relative volume for each parameter was collected after 800 

identifying all grid points within one chloroplast and further analyzed in excel. TEM images 801 

with a magnification of 8K were used in the Fiji (ImageJ) analysis. The images were 802 
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scaled to 0.7299 pixel/nm in ImageJ before analyzing the chloroplast area, plastoglobuli 803 

area, and grana dimensions. The height of grana margin (positions 1 and 3) and grana 804 

core (position 2) were quantified as described previously23 (Supplementary Fig. 12d, e). 805 

The “polygon selections” tool was used to quantify the chloroplast and plastoglobuli area 806 

by outlining the target structure. The individual plastoglobuli (PG) size was measured 807 

using ImageJ. All PG in a chloroplast were quantified to get the total PG area per 808 

chloroplast. The “straight” tool was used to quantify grana height and width. The grana 809 

number and PG number were counted manually. Choosing the correct statistical test to 810 

reflect the quantified data is essential in making conclusions. Three different statistical 811 

tests were used to find the significance of p-values. The negative binomial test was used 812 

for counting data that followed a negative binomial distribution. The Kolmogorov-Smirnov 813 

test was used for relative volume data since it is commonly used to find significance 814 

between data in a form of ratios. A two-tailed t-test with unequal variance was used for 815 

all other data that followed a normal distribution. All three statistical tests compared the 816 

treatment conditions to the ctrl conditions of the same cell type. Each treatment had three 817 

biological replicates and a total of 90~120 images of each treatment were analyzed.  818 

 819 

Starch quantification 820 

To isolate starch from leaves, three biological replicates of 2-cm mid-leaf segments were 821 

collected from fourth fully expanded true leaves into screw cap tubes (USA Scientific, 822 

1420-9700) with a grinding bead (Advanced Materials, 4039GM-S050) and immediately 823 

frozen in liquid nitrogen and stored at -80°C. Frozen samples were homogenized using a 824 

paint shaker. For starch quantification, leaves decolorized by 80% ethanol and starch 825 

concentration was subsequently measured using a starch assay kit (Megazyme, K-TSTA-826 

100A).  827 

 828 

MultispeQ measurement 829 

A MultispeQ61 v2.0 was used to measure chlorophyll fluorescence parameters and 830 

electrochromic shift (ECS) in S. viridis leaves at the start or after 4 h treatments of ctrl, 831 

HL, or HT. ECS results from light-dark-transition induced electric field effects on 832 

carotenoid absorbance bands62,126 and is a useful tool to monitor proton fluxes and the 833 
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transthylakoid proton motive force (pmf) in vivo63,64. Light drives photosynthetic electron 834 

transport along the thylakoid membrane and proton fluxes across the thylakoid 835 

membrane. Protons flux into the thylakoid through H2O oxidation at PSII and plastoquinol 836 

oxidation at cytochrome b6f complex; protons flux out of the thylakoid mainly through ATP 837 

synthase to make ATP, which is driven by the transthylakoid pmf63,64. The total amplitude 838 

of ECS signal during the light-dark-transition, ECSt, represents the transthylakoid pmf. 839 

The decay time constant of light-dark-transition induced ECS signal, tECS, is inversely 840 

proportional to proton conductivity (ɡH+ = 1 / tECS), which is proportional to the aggregate 841 

conductivity (or permeability) of the thylakoid membrane to protons and largely dependent 842 

on the activity of ATP synthase62. The proton flux rates, vH+, calculated by ECSt / tECS, is 843 

the initial decay rate of the ECS signal during the light-dark-transition and reflects the rate 844 

of proton translocation by the entire electron transfer chain, usually predominantly through 845 

the ATP synthase62. ECS was measured using MultispeQ and the dark interval relaxation 846 

kinetics with a modified Photosynthesis RIDES protocol at light intensities of 250, 500, 847 

and 1000 µmol photons m-2 s-1. The MultispeQ v2.0 was modified with a light guide mask 848 

to improve measurements on smaller leaves. Parameters at the different light intensities 849 

were measured sequentially on the middle segment of a fourth fully expanded true leaf at 850 

room temperature with no dark adaptation prior to measurements. The estimated NPQ, 851 

NPQ(T), was measured by MultispeQ based on a method that does not require a dark-852 

adapted state of the leaf for determination of Fm59. NPQ(T) uses the minimal fluorescence 853 

(Fo’) and maximal fluorescence (Fm’) in light-adapted leaves to estimate NPQ. Statistical 854 

significance was assigned with a two-tailed t-test assuming unequal variance.  855 

 856 

Statistics and reproducibility 857 

All data presented had at least 3 biological replicates. Detailed information about statistics 858 

analysis were described for each method above. 859 

 860 

Data availability 861 

The datasets analyzed in this paper are included in this published article and 862 

supplementary information files. Other information is available from the corresponding 863 

author on request. 864 
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Supplementary Data 1: Normalized read counts in Transcripts Per Million (TPM) for all 913 

genes in all time points and biological replicates. Annotation information includes the S. 914 

viridis provisional defline, A. thaliana and O. sativa best hits and deflines from the Joint 915 

Genome Institute bulk annotation information. 916 

 917 

Supplementary Data 2: Differential expression data for all genes that were significantly 918 

differentially expressed in at least one time point and condition (DeSeq2, FDR < 0.05). 919 

Annotation information includes the S. viridis provisional defline, A. thaliana and O. sativa 920 

best hits and deflines from the Joint Genome Institute bulk annotation information. 921 

 922 

Supplementary Data 3: Genes up-regulated or down-regulated at all time points in high 923 

light or high temperature conditions. Annotation information includes the S. viridis 924 
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Supplementary Data 4: Overlapping differentially expressed genes between high light 928 

and high temperature conditions. Genes differentially expressed in at least one time point 929 
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 933 

Supplementary Data 5: Genes highly induced or highly repressed (FC ≥ 5, or ≤ -5) in 934 

both the high light and high temperature treatments during at least one time point.  935 

Annotation information includes the S. viridis provisional defline, A. thaliana and O. sativa 936 

best hits and deflines from the Joint Genome Institute bulk annotation information. 937 

Additionally, heat tolerance genes identified in maize with homologs in S. viridis. 938 

 939 

Supplementary Data 6: S. viridis v2.1 gene information used to generate heatmaps of 940 

pathways of interest. 941 
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High Light and High Temperature Reduce Photosynthesis  
via Different Mechanisms in the C4 Model Setaria viridis 

 
Anderson et al. Main figures 
 

 

Figure 1: High light (HL) and high temperature (HT) resulted in comparable 
reduction of net CO2 assimilation rates and HL also caused significant 
photoinhibition in S. viridis leaves. (a) Experimental overview. We investigated how 

the C4 model plant S. viridis ME034 responded to HL or HT at different levels. Plants were 

grown under the control condition (31°C and 250 μmol m-2 s-1 light) for 13 days, then 

treated with control growth condition or HL (31°C, 900 μmol m-2 s-1) or HT (40°C, 250 

μmol m-2 s-1 light) in different growth chambers for 4 h. The fourth fully expanded true 

leaves were utilized for all analyses. Leaf tissues from different treatments were 

harvested at 0, 1, 2, and 4 h time points for the analysis of RNA-seq, pigments, and leaf 
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ABA levels. Photosynthetic parameters were measured using intact leaves at 0 and 4 h 

time points, including gas exchange and chlorophyll fluorescence using LI-6800 and 

spectroscopic measurements using MultispeQ. Transmission Electron Microscopy (TEM) 

analysis was performed to investigate chloroplast ultrastructure changes in leaves after 

4 h treatments. (b) HL-treated leaves had reduced PSII maximum efficiency (Fv/Fm).  

Fv/Fm was measured by chlorophyll fluorescence in LI-6800 with 20 min dark-adapted 

leaves. Pound symbols indicate statistically significant differences of ctrl_0h (at the start 

of treatments), HL_4h (after 4 h HL), and HT_4h (after 4 h HT) compared to ctrl_4h (after 

4 h control treatment) using Student’s two-tailed t-test with unequal variance (# p<0.01). 

Percentages indicate reduction in Fv/Fm compared to ctrl_4h.  (c, d) Net CO2 assimilation 

rates during light response and CO2 response, respectively. Asterisk and pound symbols 

indicate statistically significant differences of ctrl_0h, HL_4h, and HT_4h compared to 

ctrl_4h using Student’s two-tailed t-test with unequal variance. P-values were corrected 

for multiple comparisons using FDR (*0.01<p<0.05, #p<0.01, the colors of * and # match 

the significance of the indicated conditions, black for ctrl_0h, yellow for HL_4h, red for 

HT_4h). Mean ± SE,  n = 3-6 biological replicates.  
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Figure 2: Time course transcriptome data reveal dynamic responses to high light 
or high temperature stresses in S. viridis. (a) Principal Component Analysis of TPM 

(transcripts per million) normalized read counts in control (ctrl), high light (HL), and high 

temperature (HT) treated samples. The first two principal components representing the 

highest percent variance explained are displayed. PC1 explains 16% of the variance in 

the dataset and mainly separates the samples based on time. PC2 explains 11% of the 

variance in the dataset and mainly separates the HL samples from the ctrl and HT 

samples.  Black diamonds indicate ctrl samples, yellow circles indicate HL samples, and 

red squares indicate HT samples. Different fillings for these symbols indicate different 

time points of each treatment. Each treatment and time point have four biological 

replicates, represented by symbols with the same shape and color. (b) HL and HT 

treatments had more overlapping differentially expressed genes than expected by 

random chance. Gene sets represent the number of genes differentially regulated in at 

least one time point in the given condition. Red upward arrows denote up-regulation and 
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blue downward arrows denote down-regulation. Yellow oval denotes HL up-regulated 

genes, green oval denotes HL down-regulated genes, red oval denotes HT up-regulated 

genes, purple oval denotes HT down-regulated genes.  Expected values (Exp) are the 

number of the overlapping genes expected by random chance based on size of the gene 

lists and background of all genes tested via DeSeq2 (14,302). Numbers above expected 

values are the actual number of overlapped genes between two conditions. *p<0.0001, 

Fisher’s Exact Test. (c, d) HT transcriptional responses are more transient than HL. 

UpSetR plots show number of uniquely overlapping genes between up and down 

regulated gene sets at each time point in HL and HT, respectively. Horizontal bars 

indicate the number of genes up or down regulated at each time point. Filled circles 

indicate the gene sets included in the overlap shown. Vertical bars indicate the number 

of genes represented in the overlap shown. Overlapping gene sets are arranged in 

descending order by number of genes. Genes may only belong to a single overlapping 

gene set and are sorted into the overlapping set with the highest number of interactions. 
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Figure 3: High light (HL) differentially regulated genes involved in photosynthesis 
more than high temperature (HT). (a, b) Genes related to light reaction of 

photosynthesis and photoprotection. (c) Genes related to carbon metabolism and 

chloroplast transport. The first green column displays log2(mean TPM + 1) at ctrl_0h (at 

the start of treatments, C). TPM, transcripts per million, normalized read counts. Heatmap 
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displays the fold change (FC) bin of DeSeq2 model output values at 1, 2, 4 h of HL or HT 

versus control at the same timepoint (q < 0.05). FC bins: highly induced: FC ≥ 5; 

moderately induced: 5 > FC ≥ 2; slightly induced: 2 > FC > 0; not differentially expressed: 

FC = 0; slightly repressed: 0 > FC > -2; moderately repressed: -2 ≥ FC > -5; highly 

repressed: FC ≤ -5.  Gene ID: S. viridis v2.1 gene ID, excluding “Sevir.”. All genes 

presented in the heatmaps were significantly differentially regulated in at least one time 

point. 
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Figure 4: High light (HL) and high temperature (HT) differentially regulated genes 
involved in several key pathways. (a, b) HL induced genes involved in starch 

biosynthesis/degradation and genes encoding plastoglobuli-localized proteins; (b) HL 

down-regulated many genes of the sugar-sensing pathways; (c) Both HL and HT induced 

genes encoding shock transcription factors (HSFs) and heat shock proteins (HSPs) but 

the induction was much quicker under HT than HL. The first green column displays 

log2(mean TPM + 1) at ctrl_0h (at the start of treatments, C). TPM, transcripts per million, 

normalized read counts. Heatmap displays the fold change (FC) bin of DeSeq2 model 

output values at 1, 2, 4 h of HL or HT versus control at the same timepoint (q < 0.05). FC 
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bins: highly induced: FC ≥ 5; moderately induced: 5 > FC ≥ 2; slightly induced: 2 > FC > 

0; not differentially expressed: FC = 0; slightly repressed: 0 > FC > -2; moderately 

repressed: -2 ≥ FC > -5; highly repressed: FC ≤ -5.  Gene ID: S. viridis v2.1 gene ID, 

excluding “Sevir.”. All genes presented in the heatmaps were significantly differentially 

regulated in at least one time point. 
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Figure 5:  High light (HL) up-regulated genes involved in the abscisic acid (ABA) 
pathway and transiently increased leaf ABA levels. (a) Heatmap of differentially 

regulated genes involved in the ABA pathway. Cat: catabolism. The first green column 

displays log2(mean TPM + 1) at ctrl_0h (at the start of treatments, C). TPM, transcripts 

per million, normalized read counts. Heatmap displays the fold change (FC) bin of 

DeSeq2 model output values at 1, 2, 4 h of HL or HT versus control at the same timepoint 

(q < 0.05). FC bins: highly induced: FC ≥ 5; moderately induced: 5 > FC ≥ 2; slightly 

induced: 2 > FC > 0; not differentially expressed: FC = 0; slightly repressed: 0 > FC > -2; 

moderately repressed: -2 ≥ FC > -5; highly repressed: FC ≤ -5.  Gene ID: S. viridis v2.1 

gene ID, excluding “Sevir.”. All genes presented in the heatmaps were significantly 

differentially regulated in at least one time point. (b) Concentrations of leaf ABA. Mean ± 

SE,  n = 3 biological replicates. Asterisk symbol indicates statistically significant 

differences as compared to the control condition at the same time point. (Student’s two-

tailed t-test with unequal variance, *0.01<p<0.05).   
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Figure 6: High light (HL) induced non-photochemical quenching (NPQ) and 
increased zeaxanthin as well as de-epoxidation levels. (a) Light and (b) CO2 response 

of NPQ. Mean ± SE,  n = 3-6 biological replicates. Asterisk and pound symbols indicate 

statistically significant differences of ctrl_0h (at the start of treatments), HL_4h (after 4 h 

high light), and HT_4h (after 4 h high temperature) compared to ctrl_4h (after 4 h control 

treatment) using Student’s two-tailed t-test with unequal variance. P-values were 

corrected for multiple comparisons using FDR (*0.01<p<0.05, #p< 0.01, the colors of * 

and # match the significance of the indicated conditions, black for ctrl_0h, yellow for 

HL_4h, red for HT_4h).  (c, d, e) Concentrations of zeaxanthin, antheraxanthin, and 

xanthophyll cycle de-epoxidation. Mean ± SE,  n = 3 biological replicates. Asterisk and 

pound symbols indicate statistically significant differences of high light (HL) or high 

temperature (HT) treatments compared to the control (ctrl) condition at the same time 

points using Student’s two-tailed t-test with unequal variance (*0.01<p<0.05, #p<0.01).  
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Figure 7: High light (HL) increased starch accumulation and both HL and high 
temperature (HT) treatments induced chloroplast plastoglobuli formation in S. 
viridis leaves. (a-f) Representative transmission electron microscopy (TEM) images of 

mesophyll (M) and bundle sheath (BS) chloroplasts in leaves of S. viridis after 4 h 
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treatments of control (ctrl_4h, 31°C, 250 μmol m-2 s-1 light) or high light (HL_4h, 31°C, 900 

μmol m-2 s-1) or high temperature (HT_4h, 40°C, 250 μmol m-2 s-1 light). TEM images of 

M (a, b, c) and BS (d,e,f) chloroplasts. S labels the starch granule; G labels grana, the 

orange arrows indicate grana in M and BS chloroplasts; PG labels plastoglobuli. (g, i, j) 
Relative volume fraction of indicated parameters were quantified using Stereo Analyzer 

with Kolmogorov–Smirnov test for statistical analysis compared to the same cell type of 

the control condition. (h, k, l) area and size of indicated parameters were quantified using 

ImageJ with two-tailed t-test with unequal variance compared to the same cell type of the 

control condition. Each treatment had three biological replicates, total 90-120 images per 

treatment. *0.05<p<0.01; #p<0.01. (m) Starch quantification using starch assay kits. 

HL_4h leaves accumulated 4x starch as compared to ctrl_4h leaves. Values are mean ± 

SE, n = 3 biological replicates. Pound symbols indicate statistically significant differences 

as compared to ctrl_4h using Student’s two-tailed t-test with unequal variance (#p< 0.01). 
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Figure 8: High light or high temperature treated leaves had lower photosynthetic 
capacities than leaves treated with the control condition. S. viridis plants were treated 

with 4 h of control growth condition (ctrl_4h, 31°C, 250 μmol m-2 s-1 light) or high light 

(HL_4h, 31°C, 900 μmol m-2 s-1 ) or high temperature (HT_4h, 40°C, 250 μmol m-2 s-1 light) 

in different growth chambers. After the treatments, an intact fourth fully expanded true 

leaf from each treated plant was clamped in the LI-6800 leaf chamber to measure various 

photosynthetic parameters. Group 1 are select data from the light response curves after 

20 min dark-adaptation in the LI-6800 leaf chamber with indicated light and temperature. 

Groups 2,3,4 were measured immediately after 4 h of ctrl, HL, HT treatments without 

dark-adaptation and under the indicated temperature and light condition in the LI-6800 

leaf chamber. Individual plants were used for each replicate. (a) Net CO2 assimilation 
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rates. (b) Stomatal conductance. (c) PSII operating efficiency. (d) Electron transport rate. 

(e) Plastoquinone redox status (QA). (f) NPQ, Non-photochemical quenching. Asterisk 

and pound symbols indicate statistically significant differences of HL_4h and HT_4h 

leaves compared to ctrl_4h leaves in the same group or under the same LI-6800 leaf 

chamber condition using Student’s two-tailed t-test with unequal variance (*0.01<p<0.05, 

#p<0.01).  
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Figure 9: High light treatment inhibited ATP synthase activity. S. viridis plants were 

treated with 4 h of control growth condition (ctrl_4h, 31°C, 250 μmol m-2 s-1 light) or high 

light (HL_4h, 31°C, 900 μmol m-2 s-1 ) or high temperature (HT_4h, 40°C, 250 μmol m-2 s-

1 light) in different growth chambers.  After the treatments, photosynthetic parameters in 

treated leaves were monitored using the MultispeQ instrument. (a) ECSt, measured by 

electrochromic shift (ECS), representing the transthylakoid proton motive force, pmf. (b) 
Proton conductivity (ɡH+ =1//tECS), proton permeability of the thylakoid membrane and 

largely dependent on the activity of ATP synthase, inversely proportional to the decay 

time constant of light-dark transition induced ECS signal (tECS). (c) Proton flux rates, vH+, 

calculated by ECSt /tECS, the initial decay rate of the ECS signal during the light-dark 

transition and proportional to proton efflux through ATP synthase to make ATP. (d) Non-

photochemical quenching (NPQ) measured by MultispeQ. Mean ± SE,  n = 3 biological 

replicates. Asterisk and pound symbols indicate statistically significant differences of 

ctrl_0h, HL_4h, and HT_4h compared to ctrl_4h using Student’s two-tailed t-test 

with unequal variance. (*0.01<p<0.05, #p< 0.01, the colors of * and # match the 

significance of the indicated conditions, yellow for HL_4h).   
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Figure 10: Summary of how S. viridis responds to high light (HL) or high 
temperature (HT). Light blue boxes denote changes that may lead to the reduced 

photosynthetic capacities; light green boxes denote changes that may be adaptive for 

stress acclimation. M: mesophyll chloroplasts; BS, bundle sheath chloroplasts. HL-

treated leaves had over-accumulated starch and increased chloroplast crowdedness, 

which may hinder PSII repair and result in photoinhibition. Starch accumulation may also 

inhibit photosynthesis through feedback regulation. Increased plastoglobuli (PG) 

formation in HL-treated leaves may affect thylakoid composition and function. Under HT, 

M chloroplasts had swollen chloroplasts/grana and seem more heat-sensitive than BS 

chloroplasts. Heat-induced photorespiration and PG formation could further reduce 

photosynthesis. Meanwhile, HL and HT also induce adaptive responses for acclimation. 

Under HL, the induced photoprotection, down-regulated light reaction, and increased 

water-use efficiency through abscisic acid (ABA) can help S. viridis acclimate to excess 

light. Under HT, the induced cyclic electron flow (CEF) and Rubisco activase (RCA-a) 

can protect photosynthesis from heat stress. The induced heat shock transcription factors 

(HSFs) and heat shock proteins (HSPs) are adaptive responses to both HL and HT 

although the induction was much quicker under HT. 
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High Light and High Temperature Reduce Photosynthesis  
via Different Mechanisms in the C4 Model Setaria viridis 

 
Anderson et al. Supplementary Figures 

               
Supplementary Figure 1.  Leaf temperatures of S. viridis stayed constant during the 
control and high light treatments while increased during high temperature 
treatment. Leaf temperatures of S. viridis measured over the 4 h time course of control 

or high light or high temperature treatments. S. viridis plants were treated with control 

growth condition (ctrl, 31°C and 250 μmol m-2 s-1 light) or high light (HL, 31°C and 900 

μmol m-2 s-1) or high temperature (HT, 40°C and 250 μmol m-2 s-1 light) in different growth 

chambers for 4 h. Leaf temperature was measured at 0, 1, 2, and 4 h for each treatment. 

Mean ± SE,  n = 3 biological replicates. Asterisk and pound symbols indicate 

statistically significant differences of HL and HT compared to ctrl in a given time point 

using Student’s two-tailed t-test with unequal variance (*0.01<p<0.05, #p<0.01). No 

significant changes of leaf temperatures during the ctrl and HL condition. 
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Supplementary Figure 2. LI-6800 protocol for characterizing photosynthetic 
parameters.  Before or after 4 h different treatments, intact S. viridis leaves were dark-

adapted in LI-6800 leaf chamber for 20 min (a) to measure the maximum PSII efficiency 

(Fv/Fm), followed by (b) light response experiment from 50 – 1500 μmol photons m-2 s-1 

light and then (c) CO2 response experiment at 1500 μmol photons m-2 s-1 light.  
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Supplementary Figure 3: High light or high temperature treatments affected 
photosynthetic parameters measured by gas exchange and chlorophyll 
fluorescence. Photosynthetic parameters measured during light (a, c, e, g) and CO2 (b, 
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d, f, h) response. Mean ± SE,  n = 3-6 biological replicates. Asterisk and pound symbols 

indicate statistically significant differences of ctrl_0h (at the start of treatments), HL_4h 

(after 4 h high light), and HT_4h (after 4 h temperature) compared to ctrl_4h (after 4 h 

control treatment) using Student’s two-tailed t-test with unequal variance. P-values were 

corrected for multiple comparisons using FDR (*0.01<p<0.05, #p< 0.01, the colors of * 

and # match the significance of the indicated conditions, black for ctrl_0h, yellow for 

HL_4h, red for HT_4h).   
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Supplementary Figure 4: High light or high temperature treated leaves had reduced 
photosynthetic efficiency. Photosynthetic parameters were derived from light and CO2 

response curves (mean ± SE; n = 3-6). (a) the maximum gross CO2 assimilation rates, 

Amax; (b) the maximum rate of carboxylation, Vcmax; (c) the quantum yield of CO2 
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assimilation, ΦCO2, which is the ratio of the moles of CO2 fixed in photosynthesis per mole 

of quanta (photons of light) absorbed, and is a measure of the efficiency in which light is 

converted into fixed carbon; (d) the day-time dark respiration rate, Rd, equal to An when 

light intensity is zero; (e) stomatal conductance, gs; (f) water use efficiency, WUE; (g) light 

compensation point, LCP, the threshold of low light intensity at which photosynthesis is 

equal to leaf respiration and, therefore An is zero; (h) light saturation point, LSP, the 

estimated light intensity where 75 % of Amax was reached. Asterisk and pound symbols 

indicate statistically significant differences of ctrl_0h (at the start of treatments), HL_4h 

(after 4 h high light), and HT_4h (after 4 h temperature) compared to ctrl_4h (after 4 h 

control treatment) using Student’s two-tailed t-test with unequal variance (*0.01<p<0.05, 

#p< 0.01). 
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Supplementary Figure 5. High light had more differentially regulated genes (DEGs) 
than high temperature while both also had overlapping DEGs. (a) Table of DEGs 

sorted into bins based on their DeSeq2 fold change values at each time point of high light 

(HL) or high temperature (HT) treatment. All genes that are differentially expressed in at 

least one timepoint are shown, those that are not differentially expressed at a given time 

point are represented in the “No change, FC = 0” category. (b) Number of genes that are 

highly induced (FC ≥ 5) or highly repressed (FC ≤ -5) in at least one time point in either 

HL or HT treatment. 42 genes are highly induced in at least one timepoint in both HL and 

HT and 13 genes are highly repressed in both HL and HT.   

 

 

 

 

 

 

All differentially expressed 
genes (DEGs) sorted into fold 
change (FC) bins

HL_1h HL_2h HL_4h HT_1h HT_2h HT_4h

Highly induced, FC≥5 176 292 276 87 71 65

Moderately induced, 2≤FC<5 738 1075 949 334 278 316

Slightly induced, 0<FC<2 576 1028 906 382 517 372

No change, FC=0 5301 3731 4261 6537 6468 6597

Slightly repressed, -2<FC<0 534 890 894 341 416 499

Moderately repressed, -5<FC≤-2 616 894 717 398 340 309

Highly repressed, FC≤-5 242 273 180 94 93 25

Highly induced or repressed genes in 
at least 1 time point

Highly Induced
FC≥5

Highly Repressed
FC≤-5

High Light 496 424
High Temperature 167 210
High light & high temperature overlapped 42 13

a

b
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Supplementary Figure 6. High light (HL) or high temperature (HT) differentially 
regulated genes involved in various pathways associated with photosynthesis. (a) 
Alternative light reactions of photosynthesis. PGR5 (proton gradient regulation 5) and 
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PGRL1 (PGR5-like photosynthetic phenotype 1) are genes involved in cyclic electron 

transport around photosystem I. (b) Genes encoding sugar transporters. SUC (Sucrose-

proton symporters) and SWEET (Sugar Will Eventually Exported Transporters) encode 

sucrose transporters. (c) Genes involved in antioxidant defense pathways. SOD: 

superoxide dismutase; PRX: peroxiredoxins; TRX: thioredoxin; CAT: catalase. POX: 

peroxidases. PPO: polyphenol oxidase; APX: ascorbate peroxidase; MDHAR: 

monodehydroascorbate reductase; DHAR: dehydroascorbate reductase; GR: glutathione 

reductase; GPX: glutathione peroxidase; GST: glutathione S-transferase. These 

antioxidant enzymes are colored in blue in the antioxidant defense pathways based on 

Hasanuzzaman et al57. SOD leads the frontline defense in the antioxidant defense system 

by converting superoxide anion (O2-) into hydrogen peroxide (H2O2) which is further 

detoxified to water (H2O) by one of these enzymes: POX, CAT, APX, PRX, or GPX. 

MDHA, monodehydroascorbate; PhOH, phenolic compounds; DHA, dehydroascorbate; 

GSH, reduced Glutathione; GSSG, oxidized glutathione; R, aliphatic, aromatic, or 

heterocyclic group; NADPH, nicotinamide adenine dinucleotide phosphate. Most 

antioxidant enzymes have multiple gene family members in S. viridis. The first green 

column displays log2(mean TPM + 1) at ctrl_0h (at the start of treatments, C). TPM, 

transcripts per million, normalized read counts. Heatmap displays the fold change (FC) 

bin of DeSeq2 model output values at 1, 2, 4 h of HL or HT versus control at the same 

timepoint (q < 0.05). FC bins: highly induced: FC ≥ 5; moderately induced: 5 > FC ≥ 2; 

slightly induced: 2 > FC > 0; not differentially expressed: FC = 0; slightly repressed: 0 > 

FC > -2; moderately repressed: -2 ≥ FC > -5; highly repressed: FC ≤ -5.  Gene ID: S. 

viridis v2.1 gene ID, excluding “Sevir.”. All genes presented in the heatmaps were 

significantly differentially regulated in at least one time point. 
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Supplementary Figure 7. Peptide sequence alignment of two S. viridis Rubisco 
Activases (RCAs) with A. thaliana RCAs reveals a and b copies of RCA in S. viridis. 

A. thaliana RCA_a has two redox sensitive cysteine residues, which are retained in the 

S. viridis RCA_a copy.     
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Supplementary Figure 8. Mesophyll (M) and bundle sheath (BS) specificity of 
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differentially expressed genes reveals cell type specific responses to high light 
(HL) or high temperature (HT). Light and dark green box denotes M and BS cells, 

respectively. The blue horizontal bars denote pathways of interest we investigated. 

Position of blue horizontal bars indicates cell type specificity of pathways, and represents 

the Log2(number of BS specific transcripts/number of M specific transcripts associated 

with a pathway) according to the published M and BS specific transcriptome data in S. 

viridis under the control condition58.  The numbers at the left and right end of each blue 

horizontal bar represent the numbers of M or BS specific transcripts associated with this 

pathway. Pathways that are preferentially expressed in M cells (more M than BS specific 

transcripts, log2(BS/M)<0) under control conditions include PSII assembly, LHCII, C4 

transport, ROS scavenging, ABA, PG, and HSPs. Pathways that are preferentially 

expressed in BS cells (more BS than M specific transcripts, log2(BS/M)>0) under control 

conditions include PSI, NDH complex, Calvin-Benson cycle, C4 metabolism, 

photorespiration, starch biosynthesis/degradation, sugar signaling, and sugar transport.  

Legends for M and BS specific transcript data in responses to HL or HT are on the top 

part of the light and dark green box, respectively. Each pathway has a table of data for 

each cell type. For each table, the first column indicates the number of M or BS specific 

transcripts related to a pathway that were differentially expressed in HL (top) or HT 

(bottom) in at least one time point.  The rest two columns of the table represent the fraction 

of up- (2nd Col) or down-regulated (3rd Col) transcripts out of the total number of cell-type 

specific differentially expressed genes (DEGs) related to a pathway in HL (top) or HT 

(bottom).  Bolded percentage indicates the larger portion (either up- or down-regulated) 

in HL or HT in each cell type. In HL, 83% of the BS-specific ROS-scavenging DEGs were 

down-regulated, whereas 54% of M-specific ROS-scavenging DEGs were up-regulated. 

In contrast, in HT, the majority of BS-specific ROS-scavenging DEGs were up-regulated 

while M-specific ROS-scavenging DEGs were down-regulated, which may be related to 

heat-induced photorespiration in BS chloroplasts. In HL, all differentially expressed sugar 

transports were up-regulated in M cells but down-regulated in BS cells. For HSPs, the 

majority of M-specific DEGs were up-regulated while the majority of BS-specific DEGs 

were down-regulated in HL. However, in HT, the majority DEGs of HSPs in both M and 

BS cells were upregulated. 
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Supplementary Figure 9. High light (HL) resulted in significant reduction of 
maximum chlorophyll fluorescence (Fm) and the HL-induced NPQ was confirmed 
by using MultispeQ. (a) HL treatments resulted in significantly reduced maximal 

chlorophyll fluorescence in 20 min dark-adapted leaves (Fm), however, Fm in ctrl_4h 

leaves were consistent among replicates. (b) HL and HT treatments resulted in reduced 

minimum chlorophyll fluorescence in dark-adapted leaves (Fo) but Fo in ctrl_4h leaves 

were consistent among replicates. Percentages indicate reduction in Fm or Fo compared 

to ctrl_4h.  (c) Estimated Non-photochemical quenching, NPQ(T), calculated by Fo’ and 

Fm’ obtained during light response using MultispeQ. Fo’ and Fm’ are minimum and 

maximum chlorophyll fluorescence in light-adapted leaves. Mean ± SE, n = 3-6 biological 

replicates. Asterisk and pound symbols indicate statistically significant differences of 

ctrl_0h (at the start of treatments), HL_4h (after 4 h HL), and HT_4h (after 4 h HT) 

compared to ctrl_4h (after 4 h control treatment) using Student’s two-tailed t-test 

with unequal variance (*0.01<p<0.05, #p<0.01). For panel c, the colors of * and # match 

the significance of the indicated conditions, yellow for HL_4h, red for HT_4h).   
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Supplementary Figure 10. High light treatment increased lutein and carotenoids 
formation. Leaves of S. viridis were harvested for high-performance liquid 

chromatography (HPLC) analysis before treatment or after 1, 2, 4 h treatments of control 

growth condition (ctrl, 31°C and 250 μmol m-2 s-1), or high light (HL, 31°C and 900 μmol 

m-2 s-1) or high temperature (HT, 40°C and 250 μmol m-2 s-1). (a) Violaxanthin. (b) Total 

xanthophyll pool (violaxanthin + antheraxanthin + zeaxanthin, V+A+Z). (c) Lutein. (d) 
Total carotenoids. (e,f) Chlorophyll a and b. (g) Chlorophyll a/b ratio. Mean ± SE,  n = 3 

biological replicates. *0.01<p<0.05, #p<0.01, compared to control leaves at the same time 

points. Students’ two-tailed t-test with unequal variance.  
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Supplementary Figure 11. Representative transmission electron microscopy (TEM) 
images illustrate two cell types in S. viridis leaves, Stereo Analyzer analysis to 
quantify chloroplast structures, and boxplot of TEM data. (a) TEM image of 

chloroplasts of the two cell types in S. viridis: mesophyll cells and bundle sheath cells. (b) 
Illustration of Stereo Analyzer analysis for TEM images, which was used to calculate the 

relative volume of a cellular structures, e.g. starch granules. The Stereo Analyzer outlines 

a chloroplast with equally spaced uniform grid within the outlined area. The blue crossings 

of the grid inside the chloroplast are identified as either starch granule, stroma, stroma 

lamellae, or grana when they overlap with these structures. When all crossings have been 

identified, the software provides the % of relative volume for each structure of interest. (c) 
Illustration of TEM boxplots based on Tukey-style whiskers. Q1, first quartile; Q3, third 

quartile; IQR, interquartile range. The median value is represented by the vertical black 

line between Q1 and Q3. The mean value is represented by the yellow X sign. 
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Supplementary Figure 12. High light or high temperature altered various 
chloroplast structures in S. viridis leaves. Chloroplast structure changes after 4 h 

different treatments of control growth condition (ctrl_4h, 31°C and 250 μmol m-2 s-1), or 

high light (HL_4h, 31°C and 900 μmol m-2 s-1) or high temperature (HT_4h, 40°C and 250 

μmol m-2 s-1). M, mesophyll chloroplast; BS, bundle sheath chloroplast. (a, b) Relative 

volume fractions were quantified using Stereo Analyzer with Kolmogorov–Smirnov test 

for statistical analysis compared to the same cell type of the control condition. (e, f, g, l) 
Parameters related to size and area were quantified using ImageJ with two-tailed t-test 

with unequal variance compared to the same cell type of the control condition. (c, j, k) 
The counting data was quantified using ImageJ followed by the negative binomial test for 

significance compared to the same cell type of the control condition. (d, e) Position 1 and 
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3 on grana are to measure the height of grana margin and position 2 is to measure the 

height of grana core. (h) Assuming grana are rectangular, grana area was estimated as 

grana core height multiplied by grana width. (i) The mean grana layer thickness was 

calculated as grana core height divided by the number of grana layers. Each treatment 

had three biological replicates with 90-120 images. 
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Supplementary Figure 13.  Summary of chloroplast structure changes by using 
transmission electron microscopy (TEM) images in leaves after 4 h treatments of high 

light (HL, 31°C and 900 μmol m-2 s-1) or high temperature (HT, 40°C and 250 μmol m-2 s-

1) as compared to the control growth condition (ctrl, 31°C and 250 μmol m-2 s-1). BS, 

bundle sheath chloroplast; M, mesophyll chloroplast. PG, plastoglobuli. Mean value of 

each parameter was used for comparison. Yellow highlighted cells and upward arrows 

denote increased percentages as compared to the control condition. Blue highlighted 

cells and downward arrows denote decreased percentage as compared to the control 

condition. Grey highlighted cells and N/A mean data unavailable due to the difficulties to 

quantify some structures in the BS chloroplasts. White cells and N.S. mean no significant 

differences between HL or HT as compared to the control treatment.  

 

 

Table of Parameters Compared to Control Condition

Treatment Condition:

HL_M HL_BS HT_M HT_BS

Relative Starch Volume ↑ 58% ↑ 67% ↓ 19% ↑ 10%

Chloroplast Area ↑ 33% ↑ 29% ↑ 14% N.S.

Relative Stroma  + Stroma Lamella Volume ↓ 24% ↓ 36% N.S. N.S.

Relative Stroma Volume ↓ 20% N/A N.S. N/A

Relative Stroma Lamella Volume ↓ 29% N/A N.S. N/A

Relative Grana Volume N.S. ↓ 37% ↑ 24% ↓ 26%

Grana Core Height, position 2 N.S. ↓ 16% ↑ 36% N.S.

Grana Margin Height, position 1, 3 N.S. N/A N.S. N/A

Grana Width ↓ 9% N.S. ↓    6% ↓ 8%

Grana Area N.S. ↓ 11% ↑ 29% ↓ 12%

Mean Grana Layer Thickness N.S. N/A ↑ 10% N/A

Grana Count per Chloroplast Area N.S. N.S. N.S. N.S.

Grana Count Normalized to Chloroplast Area ↓ 30% ↓ 24% ↓ 16% N.S.

Grana Layer Count N.S. N/A N.S. N/A

PG Count per Chloroplast ↑ 27% N.S. N.S. N.S.

Individual PG Size ↓ 7% ↑ 11% ↑ 38% ↑ 19%

Total PG Area per Chloroplast ↑ 20% ↑ 41% ↑   39% ↑ 26%

PG Area Normalized to Chloroplast Area N.S. N.S. ↑   21% ↑    7%

Grana

PG

Chloroplast 

crowdedness

Key
Increase ↑
Decrease ↓

Not Available N/A
Not Significant N.S.
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Supplementary Figure 14. Summarized multi-level changes of S. viridis in response 
to 4 h high light or high temperature treatments as compared to the control 
treatment. Upward arrows denote increase or induction; downward arrows denote 

decrease or repression. HL, high light; HT, high temperature; ABA, abscisic acid; M, 

mesophyll chloroplast; BS, bundle sheath chloroplast; PG, plastoglobuli; NPQ, non-

photochemical quenching; HSP, heat shock protein; HSF, heat shock transcription factor; 

RCA, Rubisco activase; CEF, cyclic electron flow around PSI.  

High light Parameters High 
temperature

↓ net CO2 assimilation, after 4 h stress ↓

↓ Stomatal conductance, during stress ↑

↑ Leaf ABA level No change

Many ↑ ABA pathway transcripts Little change

↑ M & BS PG formation in chloroplasts ↑ M & BS

Many ↑ Genes encoding PG localized proteins Little change

↑ M & BS Starch accumulation ↑ in BS but ↓ in M

Many ↑ starch biosynthesis/degradation transcripts Little change

↑ Chloroplast crowdedness Little change

↓ ATP synthase activity Little change

↓ Transcripts involved in light reaction Little change

Many ↑ Transcripts involved in photoprotection Little change

↑ Zeaxanthin Little change

Significant ↑ NPQ Slightly ↑

↑ Photoinhibition Little change

↑ slowly Transcripts of HSPs ↑ quickly

↑ HSFs, different genes ↑ under HL or HT ↑

Little change Transcripts of RCA-a ↑

Slightly ↓ Transcripts involved in CEF Slightly ↑

Stable Overall transcriptional changes Transient


