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2 

Abstract 1 

Endogenous neuronal activity is a hallmark of the developing brain. In rodents, a 2 

handful of such activities were described in different cortical areas but the unifying 3 

macroscopic perspective is still lacking. Here we combined large-scale in vivo Ca2+ 4 

imaging of the dorsal cortex in non-anesthetized neonatal mice with advanced 5 

mathematical analyses to reveal unique behavioral state-specific maps of 6 

endogenous activity. These maps were remarkably stable over time within and 7 

across experiments and used patches of correlated activity with little hemispheric 8 

symmetry as well as stationary and propagating waves as building blocks. 9 

Importantly, the maps recorded during motion and rest were almost inverse, with 10 

sensory-motor areas active during motion and posterior-lateral areas active at rest. 11 

The retrosplenial cortex engaged in both resting- and motion-related activities, 12 

building functional long-range connections with respective cortical areas. The data 13 

obtained bind different region-specific activity patterns described so far into a single 14 

consistent picture and set the stage for future inactivation studies, probing the exact 15 

function of this complex activity pattern for cortical wiring in neonates. 16 

 17 

  18 
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Introduction 1 

Mammalian cortex represents a complex computational space with information 2 

processing units interconnected via local and long-range connections. The initial 3 

formation of cortical architecture is laid out by molecular cues but its refinement 4 

critically depends on neuronal activity (Katz and Shatz, 1996; Kirkby et al., 2013; 5 

Luhmann et al., 2016). In the rodent forebrain, many of the initial coarse connections 6 

are refined during the first postnatal week leading, for example, to the eye-specific 7 

input segregation in the lateral geniculate nucleus of the thalamus and formation of 8 

the retinotopic map in the visual (Ackman and Crair, 2014; Kirkby et al., 2013) or the 9 

emergence of the barrel map in the somatosensory (Luhmann et al., 2016; Petersen, 10 

2007) cortex. Because during this time period activation of these cortices through 11 

extrinsic (sensory) stimuli is rather limited (see Fig. 2 in (Hanganu-Opatz, 2010)), this 12 

refinement likely relies on intrinsic neuronal activity. 13 

In neonatal rodents, we and others have characterized multiple types of intrinsic 14 

cortical activity patterns with distinct spatiotemporal properties. In vivo, the latter 15 

include spindle bursts in the developing visual and somatosensory cortex (Hanganu 16 

et al., 2006; Khazipov et al., 2004), gamma and spindle bursts in the primary motor 17 

cortex (An et al., 2014), spindle-shaped field oscillations in the prefrontal cortex 18 

(Brockmann et al., 2011), intermittent population bursts in the medial entorhinal 19 

cortex (Valeeva et al., 2019), early sharp waves in the hippocampus (Valeeva et al., 20 

2019), cortical Ca2+ waves/transients and accompanying spindle-shaped oscillations 21 

in the temporal and occipital cortex (Adelsberger et al., 2005; Kirmse et al., 2015), 22 

etc. Similar patterns of early spontaneous cortical activity were also found in preterm 23 

infants (McVea et al., 2016; Vanhatalo et al., 2002). In the latter, abnormal activity 24 

patterns were associated with adverse cognitive outcomes (Arichi et al., 2017), 25 
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whereas the frequency of physiologically patterned activity was positively correlated 1 

with brain growth (Benders et al., 2015). 2 

So far, however, the mentioned above activity patterns were mostly studied in 3 

isolation, from the perspective of a given sensory or sensorimotor system (Ackman 4 

and Crair, 2014; An et al., 2014; Anton-Bolanos et al., 2019; Khazipov and Milh, 5 

2017). The results of these studies suggest that spontaneous activity of the 6 

peripheral sensory organs (e.g. developing retina or cochlea) or spontaneous muscle 7 

twitches interact with intrinsic cortical oscillators thereby modulating neuronal spiking 8 

in corresponding cortical regions (Luhmann et al., 2016). Moreover, the spontaneous 9 

network activity in some cortical regions (e.g. prefrontal, motor, or somatosensory 10 

cortex) was reported to be entrained by the activity in the other cortical/subcortical 11 

structures (e.g. hippocampus, S1, thalamus, or M1, respectively) likely priming the 12 

functional coupling between the two areas seen in the adulthood (An et al., 2014; 13 

Anton-Bolanos et al., 2019; Brockmann et al., 2011). Similarly, spontaneous network 14 

activity was suggested to sculpt both inter- and intra-hemispheric efferent projections 15 

from the developing visual cortex of rats and ferrets (Ackman and Crair, 2014). 16 

Together, this data suggests that early cortical development is driven by highly 17 

complex and hierarchic patterns of endogenous activity. However, the integral map of 18 

intrinsic cortical activity in neonates as well as the spatiotemporal relationship 19 

between the activity patterns in different cortical areas remain obscure. 20 

To clarify these issues, we captured intrinsic cortical activity by means of large-scale 21 

single-photon Ca2+ imaging and analyzed it using data-driven mathematical 22 

techniques. The data-driven nature of our approach precluded the use of the 23 

standard region of interest (ROI)-based spatial segmentation technique, as the 24 

spatial location of the endogenous activity patterns was a priory unknown. Forcing 25 

the activity pattern to be confined to a given anatomical region could be meaningful 26 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2021. ; https://doi.org/10.1101/2021.02.19.431943doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.19.431943
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 

for sensory-driven but not for spontaneous activity. Moreover, this approach does not 1 

apply to the developing brain where there is no fine-grained anatomical atlas and 2 

activity patterns change on a day-to-day basis, due to maturation of the underlying 3 

neural circuitry. Thus, automatic feature selection techniques, able to extract relevant 4 

features of the original high dimensional data space, had to be used. We chose a 5 

decomposition technique (Non-negative Matrix Factorization (NMF)), which doesn't 6 

need prior information about the location of ROIs and extracts information about 7 

activity patterns by positively constraining spatial and temporal components and 8 

relaxing the orthogonality constrain (used e.g. in Principal Component Analysis 9 

(PCA)), which is not essential. To study functional connectivity (i.e. statistical 10 

measure of synchronicity between activities in two different ROIs), we calculated the 11 

inverse covariance matrix and penalized our model with a sparsity regularizer 12 

(Friedman et al., 2008). 13 

By using the described above mathematical workflow (schematically illustrated in Fig. 14 

2-1), we characterized the self-initiated motion- and rest-specific spatiotemporal 15 

activity patterns in the dorsal cortex of neonates. The developmental stage (P3), 16 

analyzed in this study, is reminiscent of late gestation (preterm) stage in human 17 

babies, when (i) long-range neuronal projections are still developing, and (ii) the 18 

electrical brain activity consists of developmentally unique, intermittent events, 19 

believed to guide activity-dependent brain wiring (Omidvarnia et al., 2014; Vanhatalo 20 

et al., 2002). 21 

 22 

Materials and methods 23 

Mice 24 

All experiments were conducted in accordance with institutional animal welfare 25 

guidelines and were approved by the state government of Baden-Württemberg, 26 
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Germany. Because during the first postnatal week the rapidly developing rodent 1 

cortex is known to traverse several developmental states (Kirischuk et al., 2017), for 2 

the sake of consistency we focused on a defined animal age (P3), characterized by 3 

cortical early network oscillations (Adelsberger et al., 2005; Garaschuk et al., 2000; 4 

Kirmse et al., 2015) with their developmentally unique intermittent activity, first 5 

appearance of spontaneous activity patterns in the prefrontal cortex (Brockmann et 6 

al., 2011) but immature callosal projections (Son et al., 2017; Wang et al., 2007). In 7 

accord with mentioned above human studies (Omidvarnia et al., 2014), we use the 8 

term network as a functional concept referring to a set of brain regions displaying 9 

simultaneous activity or a high degree of functional connectivity, as measured by the 10 

mathematical paradigms used. 11 

In line with the biometric planning, seven 3-day-old nestin-Cre x 12 

Ai95(RCL‐GCaMP6f)-D and three age-matched wild type C57BL/6) mouse pups of 13 

either sex were used. Parent mouse lines B6.Cg-Tg(Nes-cre)1Kln/J and B6;129S-14 

Gt(ROSA)26Sortm95.1(CAG-GCaMP6f) Hze/J were originally obtained from Jackson 15 

Laboratory (stock № 003771 and stock № 024105, respectively) and were bred on 16 

the C57BL/6 background.  17 

 18 

Animal preparation for in vivo Ca2+ imaging 19 

Mouse pups were anesthetized with isoflurane (2.5% for induction, 1-2% for the rest 20 

of surgery). The skin above the dorsal part of the skull was cut away, the connective 21 

tissue was gently peeled off and the custom-made ring-like plastic chamber was 22 

glued to the skull. Xylocaine gel (2%) was applied to the wounded skin edges. To 23 

prevent the skull from drying out, it was covered with agarose (1-2%) dissolved in 24 

standard Ringer’s solution containing (in mM): NaCl 125, KCl 4.5, MgCl2 1, CaCl2 2, 25 

NaHCO3 26, NaH2PO4 1.25, Glucose 20, pH 7.4. The procedure described above 26 
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lasted 23 ± 3.8 min (n=7 mice). Thereafter, the isoflurane anesthesia was terminated 1 

and the animal was allowed to recover on a warming plate (34oC - 36oC) for at least 2 

one hour. This well established (Ackman et al., 2012; Adelsberger et al., 2005; Che 3 

et al., 2018; Dooley et al., 2020; Hagihara et al., 2015) protocol provided stable 4 

recording conditions with similar ongoing in vivo activity patterns, observed within 5 

and across experimental animals (Fig. 2-2). 6 

 7 

In vivo large-scale single-photon Ca2+ imaging 8 

After recovery the animal, resting on a warming plate, was transferred into the 9 

imaging setup and head-fixed under the MVX10 Research Macro Zoom Microscope 10 

equipped with an LED source for excitation (Thorlabs, central wavelength 470 nm), 11 

470/40 nm excitation filter, 495LP beam splitter, 525/50 nm emission filter (all from 12 

Chroma Technology), the Zyla 4.2 sCMOS camera (Andor Technology) and Andor 13 

Solis software for image acquisition. Animal’s limbs were free to interact with each 14 

other and with the surface of the warming plate. Both the left and the right 15 

hemispheres were imaged simultaneously through the intact skull at 256x256 pixel 16 

resolution (1 pixel ≈ 25x25 µm2) and 11 ms/frame for half an hour (three consecutive 17 

10-min-long acquisition series). During the recordings, mice spent 70.6 ± 12% of their 18 

time in a state without any apparent movement (Fig. 2C and D). This behavior is very 19 

similar to that of control neonatal mice (Fig. 3e in (Adelsberger et al., 2005)) and 20 

differs substantially from the one indicating distress (e.g. sudden movements, 21 

vocalization, and urination) (Castelhano-Carlos et al., 2010). 22 

 23 

The nature of recorded Ca2+ signals. To understand the nature of the recorded 24 

large-scale Ca2+ signals we imaged them in the temporal cortex using high resolution 25 

two-photon microscopy in brain slices because this cortical region shows similar 26 
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spontaneous large-scale Ca2+ signals in situ and in vivo (Adelsberger et al., 2005). 1 

To do so, at the end of in vivo imaging experiments horizontal 500-µm-thick slices 2 

were prepared from three P3 nestin-Cre x Ai95(RCL‐GCaMP6f)-D mice as described 3 

earlier (Adelsberger et al., 2005). As the nestin promotor, driving the Cre 4 

recombinase activity in our mice, is expressed in both neuronal and glial precursors, 5 

both neurons and astrocytes expressed GCaMP6f (Fig. 2-3). In addition, astrocytes 6 

were stained by bathing the slice for 10 min at 37 °C in the standard Ringer’s solution 7 

(composition see above) containing the red fluorescent dye sulforhodamine 101 8 

(S101, 3 µg/ml; Fig. 2-3A) (Adelsberger et al., 2005). To speed up the data 9 

acquisition, we selected fields of view with a rather high density of astrocytes. Ca2+ 10 

imaging was performed at 32-34 °C using a two-photon microscope (Olympus 11 

Fluoview 1000, Olympus) coupled to a mode-locked Ti-Sapphire laser working at a 12 

wavelength of 710-990 nm (MaiTai, Spectra Physics) and equipped with a water-13 

immersion objective (Olympus 60x, 1.0 NA). The emission signals of GCaMP6f and 14 

S101 were split by a 570 nm dichroic mirror and sent through the BP 536/40 and BP 15 

630/92 filters, respectively. We analyzed ROIs containing individual cells (neurons 16 

and astrocytes) as well as the large-scale ROIs (176 x 176 µm), covering the entire 17 

imaging frame. The latter contained the mixed signal alike our in vivo data. ROIs for 18 

each individual neuron or astrocyte were drawn manually. The respective traces 19 

were calculated by averaging all pixels inside the ROI. Ca2+ signals were detected by 20 

the Matlab (R2016b) peak detection function after smoothing original traces (moving 21 

average function, 1 s moving window size). As shown in Fig. 2-3B, the Ca2+ signals 22 

recorded from large-scale ROIs closely resembled signals of individual neurons, 23 

while astrocytes either showed no Ca2+ signals at all (88 of 119 analyzed cells) or 24 

showed Ca2+ signals with much slower kinetics (31 of 119 analyzed cells; Fig. 2-3C). 25 

Note that in astrocytes the frequency of spontaneous Ca2+ signals is much lower than 26 
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in neurons (Adelsberger et al., 2005; Nimmerjahn et al., 2004; Tian et al., 2006), thus 1 

explaining the rare appearance of the latter in our recordings. The similarity among 2 

traces was determined using the Pearson correlation coefficient. Correlation 3 

coefficients among neurons and between each neuron and the large-scale ROI were 4 

high, quite opposite to those obtained when correlating the respective astrocytic data 5 

(Fig. 2-3D). The median correlation coefficients obtained when comparing individual 6 

neurons with the respective large-scale ROIs were as high as 0.9 ± 0.1 (n=190 7 

neuron/large ROI pairs; Fig. 2-3E). The much lower coefficients were obtained when 8 

conducting the same comparison for astrocytes (0.29 ± 0.27, n=119 astrocyte/large 9 

ROI pairs). 10 

We concluded, therefore, that in vivo Ca2+ signals analyzed in the present study are 11 

of neuronal origin. This conclusion is further supported by the fact that between P0 12 

and P3 neurons represent ~ 88% of all cells in the rodent cortex (Bandeira et al., 13 

2009).  14 

 15 

Recordings of animal’s movement 16 

Animals were imaged with a monochrome infrared (IR) light-sensitive camera. IR 17 

LED (950 nm) was used for illumination. To remove the salt-and-pepper noise, the 18 

image sequence (720x480 pixels, 29 Hz) was filtered with a median filter of kernel 19 

size 3 x 3. Subsequently, adjacent frames were pixel-wise subtracted from each 20 

other thus transforming the original image sequence into an image sequence 21 

containing the information about the temporal changes within the field of view (Lipton 22 

et al., 1998). For a given resulting image, the sum of absolute values of all pixels was 23 

taken as a measure of instantaneous body motion. Subsequently, the movement 24 

trace was upsampled using Matlab's 1D interpolation function to match the sampling 25 

rate of the Ca2+ signals (~91 Hz), plotted over time, and normalized to the maximum 26 
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recorded value. The breathing-related motion artifacts were identified by the back-to-1 

back comparison of the animal behavior and the corresponding movement trace. For 2 

each recording, the threshold was selected such that these artifacts were discarded. 3 

On average the threshold was ~6% of the maximum recorded value and was used to 4 

create a binary signal, where all ones corresponded to the motion period and all 5 

zeros corresponded to the resting state (Fig. 2-4). The on/off switching of the 470 nm 6 

excitation light, recorded by both cameras, was used to synchronize the imaging of 7 

Ca2+ and movement signals. In addition, we defined the time window including one 8 

second before the movement onset and three seconds after the end of the 9 

movement (corresponding to the decay time of the eventual movement-evoked Ca2+ 10 

signals) as a transition state. With this procedure, the behavior of the animal was 11 

automatically subdivided into three different states: motion, rest, and transition. 12 

As the motion state potentially contained either spontaneous muscle twitches 13 

(Blumberg, 2010) or generalized movements, in a separate series of experiments we 14 

recorded nuchal muscle electromyogram (EMG (Seelke et al., 2005)) simultaneously 15 

with imaging body movements. Note that at P3 the EEG traces are discontinuous 16 

thus providing no information about the vigilance states (Blumberg et al., 2014; 17 

Jouvet-Mounier et al., 1970; Rensing et al., 2018). For EMG recordings a stainless 18 

steel wire (type SS-3T, Science Products GmbH, Hofheim, Germany) was used. Two 19 

to five mm of the insulation were stripped off and the insulation-free ends of the wire 20 

were gently inserted subcutaneously and placed bilaterally on the top of the neck 21 

muscles. After the correct position of the wires has been verified, the wires were fixed 22 

to the ring-like plastic chamber (see above) with UV-cured dental cement. EMG data 23 

were recorded at 1 kHz (0.3-500 Hz band-pass filter) using the Powerlab differential 24 

amplifier (ADInstruments Ltd, Oxford, United Kingdom). 25 
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Movement binary signal was created from the EMG signal using signal envelope 1 

analysis (Oppenheim et al., 1999). The normalized cross-correlation between the 2 

movement signals extracted from the imaging and the EMG data showed peak 3 

values of 0.6-0.85 (n = 9 recording in 3 mice) suggesting that both signals reflect the 4 

structure of the animal’s movement in a consistent way. Note, however, that some 5 

tiny movements, as well as limb twitches, likely remain unrecognized by either one or 6 

even both techniques (Seelke et al., 2005). This fact and the fragmentation of sleep 7 

in the neonatal mice (Fig. 2-4, see also Fig. 3A in (Blumberg et al., 2014)) made 8 

unequivocal identification of active and quiet sleep periods difficult. Next, we 9 

separately used EMG- and imaging-based data sets of individual animals to 10 

construct the distributions of the durations of movement episodes. Both data sets 11 

identified the first peak at 350-600 ms, followed by a local minimum at 700-800 ms. 12 

Based on this data we chose 750 ms as an empirical border between spontaneous 13 

muscle twitches and generalized movements. In our hands, muscle twitches 14 

represented 39.5 ± 14 % of all movement events (n=6 mice) and the fraction of time 15 

covered by muscle twitches ranged between 5% and 16% (median per mouse) of the 16 

total movement time. We concluded, therefore, that under our experimental 17 

conditions Ca2+ signals recorded during the animal’s movement mainly reflect the 18 

ones associated with generalized movements. 19 

 20 

Analyses of spontaneous cortical activity 21 

If not otherwise indicated, data analyses started with reducing the image size to 22 

128x128 pixels using 2 x 2 binning and motion correction (Matlab R2016b image 23 

registration toolbox; Fig. 2-1). We used full-band data for all analyses, no frequency 24 

filtering was applied. Because our (see Movie 2-1 recorded in WT mice) as well as 25 

literature (Kozberg et al., 2016) data show that localized neural activity in neonatal 26 
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mice does not evoke local functional hyperemia (in contrast to the adult brain), no 1 

hemodynamic correction was applied. 2 

ROI detection based on Nonnegative Matrix Factorization (NMF). Pixels that 3 

showed a coherent change in fluorescence intensity were grouped into ROIs using 4 

the NMF algorithm, running on a full data set. According to NMF, a given data matrix 5 

X is factorized into two matrices   and   containing spatial filters ( ) and the 6 

corresponding time information ( ): X   ,       &      .   and   can be 7 

calculated by minimizing a cost function,              . In the case of the low-8 

rank NMF, the rank (k) of   and   is set to be smaller than the dimension of X. To 9 

minimize the cost function we have chosen the alternating least-squares algorithm 10 

(Berry et al., 2007). The initialization method was based on ICA (Fig. 2-1). Selection 11 

of the rank for   and   relied on PCA singular values. We found that selecting 300 12 

components in the PCA insured that the explained variance in the data was ≥95 % 13 

whilst data noise was significantly reduced. 14 

The 300 spatial filters were inspected by eye. Filters resembling either the blood 15 

vessel pattern or the whole brain image contaminated by blood vessels (e.g., Figs. 2-16 

5A and 2-5B, Movies 2-1 and 2-2), likely reflecting movement artifacts, were 17 

discarded. The total number of such filters was in the range of 95 ± 34. The total data 18 

variance, explained by the discarded data, amounted to 36 ± 3% (mean ± S.E.M, n=7 19 

mice). The remaining filters contained groups of active neighboring pixels, clearly 20 

discernible from the noisy background (e.g., Fig. 2-5C). Sobel edge detector 21 

algorithm (Lim, 1990) was used to define the border between the active and 22 

background pixels. Finally, the filters were binarized using the threshold value of 23 

fourfold the SD of the corresponding background noise (see above). Groups of 24 

connected pixels with n > 10 pixels were defined as ROIs. The filters containing one 25 

ROI were called single ROI filters and the ones with more than one ROI were called 26 
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multi-ROI filters. To create an ROI-based frequency map, each ROI was weighted 1 

by ascribing a value equal to the number of peaks detected in its temporal domain 2 

(  . For peak detection traces corresponding to spatial filters ( ) were thresholded 3 

at 95% of their maximal amplitude. Finally, the weighted ROIs were superimposed to 4 

create a color-coded ROI-based frequency map (e.g. Fig. 2A). 5 

 6 

Calculating the association between fluorescence intensity in C57BL/6 mice 7 

and the body movement. Using the result of NMF analysis, the data was 8 

reconstructed based on those spatial filters which only contain the blood vessel 9 

pattern or the whole brain image contaminated by the blood vessel pattern 10 

(exemplified in Figs. 2-5A and 2-5B), likely reflecting movement artifacts. Using the 11 

reconstructed video, the trace of the global fluorescence intensity was calculated by 12 

averaging the intensity of all pixels within the recorded brain area. Taking this trace, 13 

the Gaussian mixture model with 2 Gaussians was used to separate large intensity 14 

changes from small baseline fluctuations. The intercept of two Gaussians was taken 15 

as the separation threshold. Next, the calculated trace was binarized using the 16 

threshold value, returning a sequence of individual blocks of activity. Finally, the 17 

association between the binary fluorescence intensity signal and the binary 18 

movement signal was calculated using the following formula: 19 

  
                                                

                                                            
                   

              
  20 

 21 

Symmetry maps. For calculation of the cortical symmetry maps, one hemisphere 22 

was mirrored to another against the mid-sagittal plane and all ROIs belonging to 23 

each multi-ROI filter were examined pair-wise by calculating their two-dimensional 24 

correlation coefficients. A pair of ROIs was considered symmetric if the correlation 25 
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coefficient was ≥0.5. Spatial filters which contained only symmetric ROIs were 1 

classified as total symmetry filters and filters with at least one pair of symmetric 2 

ROIs were classified as semi-symmetry filters. Further, according to their 3 

corresponding time information (matrix  ) and the animal state, the symmetry filters 4 

were subdivided into three categories: motion, rest, and transition. Superpositions of 5 

filters of a given class and category were used to produce behavioral state-specific 6 

symmetry maps. 7 

 8 

Wave analyses. To detect propagating Ca2+ waves the image sequences were 9 

processed by the nonparametric spectral estimation method: Multi-channel Singular 10 

Spectrum Analysis (MSSA; (Golyandina and Usevich, 2010)). Before being reshaped 11 

into a two-dimensional space, full-band data were down-sampled by a factor of 10 in 12 

the temporal domain. The resulting matrix      was centered in the time domain by 13 

subtracting the mean value of each pixel. Thus, 14 

      

   

 
   

   

 
   

 
 
 

   

 
   

 ,  15 

where   is the number of samples in time and   is the number of pixels in each 16 

image. 17 

According to the MSSA algorithm, we determined the embedding matrix M and 18 

covariance matrix   as 19 

 
     

 

 
 
 
 
 
       
       
     
     
     

       
       
     
     
      

 
 
 
 

, where           , and k is a lag shift. 20 

       
 

   
  . 21 

By eigen decomposition of the covariance matrix  , principle vectors and principle 22 

components were calculated. In the MSSA, each principle vector describes an 23 
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oscillatory component in the data set whereas principle components represent the 1 

corresponding weighting coefficients. The k value (lag shift) was set to 15 s. 2 

Data were reconstructed (MSSA (Golyandina and Usevich, 2010)) based on a 3 

subgroup of components (sorted components 20-150th). The remaining components 4 

represented either noise or slow baseline drifts. Finally, the reconstructed data were 5 

spatially thresholded to obtain the corresponding binary mask of each frame. 6 

Thresholding was based on fitting Laplace distribution to the reconstructed data. As a 7 

threshold, we selected a fourfold of scale parameter of the estimated Laplace 8 

distribution. The location, in which the activity was observed in the first frame of each 9 

individual wave, was defined as its pacemaker region. Populations of connected 10 

pixels were treated as objects and dynamics of each object in time represented a 11 

single wave. The distance traveled by each wave was characterized by the sum of 12 

displacements of the corresponding object’s center of mass. The waves were divided 13 

into two groups: (1) stationary waves with the center of mass moving less than 200 14 

µm and (2) propagating waves with the center of mass moving more than 200 µm. To 15 

calculate the speed of a wave we divided the total distance traveled by the respective 16 

time. Further, we counted the waves propagating within a given cortical region and 17 

calculated the fraction of waves occurring during the motion and resting periods, 18 

respectively. A similar procedure was applied to calculate the fraction of waves 19 

propagating between any two cortical regions. One animal (Mouse 6 in Fig. 2-2) was 20 

excluded from the above analyses because compared to other mice, this data set 21 

contained more brief motion periods disrupting the resting period and thus making 22 

the analysis of wave propagation and functional connectivity impossible. 23 

 24 

 25 

 26 
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Map of simultaneously active cortical regions 1 

To identify brain regions synchronously active during the movement and the resting 2 

states, spatial filters in multi-ROIs obtained from NMF analysis (see above) were 3 

processed according to the time information (matrix H) and the animal state. Then, 4 

the subregions from each multi-ROI were assigned to the anatomical regions based 5 

on the location of their center of mass. For any multi-ROI filter, each pair of 6 

simultaneously active subregions (within each cortical region or between the two 7 

distinct cortical regions) was represented by an entry in the matrix (10 x 10 - each 8 

row or column corresponds to one of the cortical regions (see Fig. 5-1)). Such entry 9 

was made each time when the two subregions were simultaneously active. This 10 

procedure was repeated for all multi-ROIs in motion and resting states providing two 11 

matrices. Then each matrix was normalized to the sum of both matrices and values 12 

below 50% were removed, to focus on interactions, predominant for each state. The 13 

median of three matrices (three 10-min-long image series) was taken as a 14 

representative map for each mouse (Fig. 5-1C) and the median of all maps from n = 15 

6 mice was depicted in Fig. 5-1D. 16 

 17 

Functional connectivity maps 18 

For calculating direct connectivity maps, input data were binned 5 by 5 pixels, 19 

temporally down-sampled by a factor of 10, and centered in the time domain by 20 

subtracting the mean value of each pixel. Thereafter, the connectivity maps were 21 

calculated separately for resting and motion periods by using the sparse partial 22 

correlation algorithm (Smith, 2012; Smith et al., 2011). Assuming that data are drawn 23 

from a multivariate Gaussian distribution, elements of the precision matrix    
 24 

explain partial covariance in a given data set. Sparsity constraint was introduced by 25 

adding an extra penalty term to the likelihood function. To calculate the sparse partial 26 
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covariance one has to maximize the penalized log-likelihood L (Friedman et al., 1 

2008), 2 

                               , 3 

where      , and   is the empirical covariance matrix 4 

      is l1 norm and γ is a sparseness tuning parameter. 5 

The sparse partial covariance was calculated with a range of different γ values. The 6 

smaller γ values provide a more dense connectivity pattern, whereas the larger γ 7 

values increase sparseness in the connectivity map by removing weak connections 8 

between the nodes. After obtaining the direct connectivity map, pixels belonging to 9 

specific cortical regions were identified using the corresponding anatomical map of 10 

the brain (like the one shown in Fig. 1A). Partial covariances between pixels of each 11 

specific cortical region were summed up giving the value αij, where αij reflects the 12 

strength of the connectivity within the given cortical region if i=j. Similarly, partial 13 

covariances between pixels belonging to a pair of specific cortical regions were 14 

summed up, contributing those values of αij (i≠j), where αij reflects the strength of the 15 

connectivity between the two different cortical regions. Finally, all values were 16 

normalized to the maximal αij value.  17 

 18 

Statistical analyses 19 

Statistics was performed using JASP and SPSS software. The normality of the data 20 

distribution was tested using the Shapiro-Wilk test. The two-tailed paired Student’s t-21 

test was used for pair-wise comparisons of normally distributed data sets. For pair-22 

wise comparisons of not normally distributed data, Wilcoxon signed-rank test was 23 

applied. One-way or two-way repeated measures ANOVA (rANOVA) was used for 24 

comparing more than two normally distributed dependent variables. In the case of not 25 

normally distributed data, the Friedman test was used. In rANOVA sphericity 26 
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assumption was tested using Mauchly's test and in case of sphericity violation, 1 

Greenhouse-Geisser correction was applied. All ANOVAs, which show significant 2 

results, were followed by a post-hoc test with Hold-Sidak correction for multiple 3 

comparisons. For all tests, differences were considered significant if P < 0.05. 4 

If not otherwise indicated, data are presented as median ± interquartile range (IQR)). 5 

 6 

Results 7 

To monitor patterned neuronal activity in the dorsal cortex of neonates, we imaged 8 

non-anesthetized nestin-Cre x Ai95(RCL‐GCaMP6f)-D mice through an intact skull 9 

with a high speed/ high quantum efficiency sCMOS camera. Although the use of 10 

genetically-modified mice is the only technique enabling large-scale cortical Ca2+ 11 

imaging in this young age, the use of Cre-driver lines was recently questioned by the 12 

work of Steinmetz et al., reporting the presence of the epileptiform activity in different 13 

crosses of Ai93/Ai94 and various Cre-driver mice (Steinmetz et al., 2017). Unlike the 14 

Ai93/Ai94 mice, Ai95 mice used here do not contain tetracycline-controlled 15 

transactivator protein (tTA), reported to be neurotoxic (Han et al., 2012). Still, we 16 

searched for non-physiological activity in our mice using the same approach as 17 

Steinmetz et al. We analyzed fluorescence traces recorded in the frontal and the 18 

visual cortices and only found events with variable amplitude, duration, and shape 19 

(Fig. 1-1), in sharp contrast to large amplitude, brief duration, stereotyped shape 20 

epileptiform events recorded by Steinmetz et al. (see their Figs. 2, 3). The fact that 21 

we did not observe any pathological activity is consistent with the literature, showing 22 

that in used here B6.Cg-Tg(Nes-cre)1Kln/J mice expression of the Cre recombinase 23 

becomes widespread only during the perinatal development (around P0; (Liang et al., 24 

2012)). With data acquired at P3, this leaves any pathology no time to develop. 25 
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Moreover, Steinmetz et al. never saw any aberrant activity before the age of at least 1 

7 weeks, again arguing against the presence of any pathology at P3. 2 

 3 

Patterns of spontaneous activity in the dorsal cortex of neonates 4 

As shown in Fig. 1A-C, we observed diverse patterns of endogenous activity ranging 5 

from localized signals, involving one or several anatomical regions (Fig. 1B, upper 6 

panel) to large distributed signals, covering almost the entire dorsal cortical surface 7 

(Fig. 1B, middle panel). Placing regions of interest onto major anatomical regions of 8 

the dorsal cortex (i.e. visual, auditory, somatosensory, and motor cortices) revealed 9 

rich patterns of recurring changes in ΔF/F in each studied region (Fig. 1C). 10 

Simultaneous recording of animal movements (consisting at this age of muscle 11 

twitches and generalized movements, see Materials and methods for details about 12 

the estimation of movement’s nature) by means of an infrared imaging camera (a 13 

gray trace in Fig. 1C; Fig. 2-4), revealed the presence of changes in ΔF/F during both 14 

moving and resting states. 15 

To understand the nature of the observed changes in ΔF/F, pixels that showed a 16 

coherent change in fluorescence intensity were grouped into ROIs using NMF (see 17 

Materials and methods), running on a full 10-min-long set of data. The analyses 18 

returned 3 typical ROI patterns (so-called spatial filters) resembling (i) blood vessel 19 

pattern (Fig. 2-5A), (ii) the whole brain image contaminated by the blood vessel 20 

pattern (Fig. 2-5B), or (iii) groups of active neighboring pixels, clearly discernible from 21 

the background (Fig. 2-5C).  22 

The first two ROI patterns were also seen in wild type C57BL/6 mice (n=3), where 23 

95% of them were associated with animal’s movement, whereas the third one was 24 

observed only in GCaMP6f-expressing nestin-Cre x Ai95(RCL‐GCaMP6f)-D mice 25 

(compare Movies 2-1 and 2-2). Thus, although distributed fluorescence signals, seen 26 
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in nestin-Cre x Ai95(RCL‐GCaMP6f)-D mice (Fig. 1B, middle panel), likely also 1 

include a Ca2+-sensitive component, in-depth analysis of these events was precluded 2 

by contaminating movement artifacts and, if any, artifacts, related to flavoprotein 3 

autofluorescence and confounding hemoglobin absorption. 4 

 5 

Behavioral state-dependent patterns of local cortical activity 6 

In the subsequent analyses, we thus concentrated on the properties of localized 7 

activity, which mainly reflected Ca2+ signaling in the underlying neuronal population 8 

(Fig. 2-3, see Materials and methods). 9 

Regarding the localized activity, the NMF algorithm identified either “single ROIs”, in 10 

which all coherently active pixels were immediately adjacent to each other, or “multi-11 

ROIs”, in which coherently active pixels were distributed in patches throughout the 12 

dorsal cortex (see Materials and methods for details). Next, we constructed ROI-13 

based frequency maps of the local spontaneous activity during the motion and the 14 

resting periods (Fig. 2A and B; see Materials and methods for details). To clearly 15 

discriminate between the motion and the resting states we separated them by 16 

transition periods including one second before the movement onset and three 17 

seconds after the end of the movement (Fig. 2C and D). Analysis of the amount of 18 

variance (Pedregosa et al., 2011) in the data related to each state (rest, transition 19 

(before and after the movement), generalized movements, and muscle twitches) 20 

showed that the amount of variance related to twitches was 0.2 ± 0.6% and thus 21 

much less than that related to generalized movements (61.98 ± 9.39 %; Fig. 2-6), 22 

probably due to the short duration of twitches (see Materials and methods). 23 

Therefore, the motion-related frequency maps almost exclusively explain the activity, 24 

happening during the generalized movements. Overall, the 3-day-old mice moved 25 

only 32 ± 18.5% of the recording time (Fig. 2D), thus spending most of their time in a 26 
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state with no detectable motion. This is consistent with our earlier data described in 1 

ref. (Adelsberger et al., 2005).  2 

On average, coherently active local cortical subregions belonging to either single or 3 

multi-ROIs covered the areas of approximately 0.2 mm2 (Fig. 2-7) and the size of 4 

these areas was similar during different behaviors (rest: 0.21 ± 0.06, generalized 5 

movements: 0.17 ± 0.03, muscle twitches: 0.18 ± 0.06). However, the resulting ROI-6 

based frequency maps differed dramatically between the motion and rest (Fig. 2A).  7 

During the motion period, activity was mostly localized to the somatosensory and a 8 

lesser extent motor cortex, whereas at rest it was predominantly found in the visual 9 

and auditory cortices as well as a rim of lateral cortical areas likely including temporal 10 

and parietal cortices. 11 

Noteworthy, the distinct behavioral state-specific activity patterns were highly 12 

conserved across experimental animals (Figs. 2-2 and 2B). To quantify this 13 

difference, we calculated spatial correlation coefficients (Lewis, 1995) for ROI-based 14 

frequency maps recorded during either the same or different behavioral state. First, 15 

we compared the maps calculated for three 10-min-long consecutive recordings in 16 

the same animal (Fig. 2E) and then compared the median values obtained in 7 mice 17 

(Fig. 2F). For all animals tested, spatial correlation coefficients were high for “within 18 

the state” comparison and much lower when comparing the maps across the different 19 

states. From a statistical point of view (Fig. 2F), the coefficients were highest during 20 

the motion state and somewhat lower during the resting state, whereas the 21 

comparison between motion and rest produced very small correlation coefficients. 22 

The differences between the three groups were statistically significant (One-way 23 

Repeated Measure ANOVA F2, 12 = 71.1, P < 10-3 followed by Holm-Sidak multiple 24 

comparisons test; motion vs. rest P = 10-3 and P < 10-3 for the two remaining 25 

comparisons). The almost inverse spatial maps of the local activity during the two 26 
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behavioral states suggest that cortical networks involved in generation and 1 

propagation of this spontaneous activity are tightly controlled in a state-dependent 2 

manner. 3 

 4 

Hemispheric asymmetry of the local cortical activity 5 

Next, we used the multi-ROI filters to analyze whether the patterns of coherent 6 

spontaneous activity were hemisphere-symmetric (Fig. 3). To do so, for each 7 

recording we constructed the total symmetry map (containing only hemisphere-8 

symmetric ROIs) and the semi-symmetry map (containing at least one pair of 9 

hemisphere-symmetric ROIs, see Materials and methods) and compared these maps 10 

across the animals and the behavioral states. In general, only 6 ± 2.4% of all multi-11 

ROIs showed a stringent hemispheric symmetry (Fig. 3A-C). Another 9 ± 7.3% of 12 

multi-ROIs were partially symmetric, whereas 83 ± 6.5 % were asymmetric (the 13 

superposition of these ROIs would look similar to Fig. 2A and 2B). The vast majority 14 

(73 ± 22.7%) of totally symmetric ROIs was observed during the motion period, and 15 

only some 10.3 ± 14% of symmetric activity patterns happened at rest (Fig. 3D-F). 16 

Similar results were obtained for semi-symmetry maps, with 75 ± 29% of respective 17 

activity patterns observed during the motion and 12 ± 28% observed during the 18 

resting period (Fig. 3G-I). Because the cortical activity was more frequent during the 19 

motion period (Fig. 2A and 2B), we normalized the number of total/semi-symmetry 20 

events during motion/rest to the respective total number of events. The normalized 21 

fractions of events remained low (semi-symmetry: 9 ± 2% and 3.4 ± 1% and total 22 

symmetry: 6 ± 1 % and 1.5 ± 0.5 % during motion and rest, respectively; mean ± 23 

S.E.M). On average, total/semi-symmetry events were 2.3 ± 0.5 times more frequent 24 

during motion than during rest. Because at the age studied here the callosal 25 

projections, providing interhemispheric communication, are immature (Son et al., 26 
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2017; Wang et al., 2007), more frequent occurrence of symmetric events during 1 

motion is likely caused by peripheral or subcortical structures. 2 

Subsequently, we asked whether regions contributing to hemisphere-symmetric 3 

neuronal activity differ between the two behavioral states. For both total and semi-4 

symmetry maps, the fraction of active pixels amounted to less than 22% of all imaged 5 

cortical pixels (Fig. 4A-D).  6 

Still, the fraction of pixels active during the motion period (17.2 ± 3.9% and 21 ± 7 

11.1%, for total and semi-symmetry maps, respectively) was significantly higher than 8 

the fraction of pixels active at rest (2.5 ± 5.9% and 7 ± 21.3%; Paired student's t-test; 9 

total symmetry: motion vs. rest, t5 = 7, P < 10-3; semi-symmetry: motion vs. rest, t5 = 10 

5.7, P = 2x10-3). Although we did identify some anatomical regions involved in totally- 11 

and semi-symmetric activities during both behavioral states (the most prominent 12 

being the retrosplenial cortex, marked with an arrow in Fig. 4B), in general, the 13 

regions involved in these kinds of activity differed between the resting and motion 14 

periods. Thus, for the total symmetry maps (Fig. 4E) there were virtually no pixels 15 

active both during motion and rest (0 ± 8%). For the semi-symmetry maps, 11 ± 16 

41.8% of pixels active during motion were also active at rest (Fig. 4F). 17 

Taken together, the data clearly documents a profound hemispheric asymmetry of 18 

spontaneous neuronal activity at this developmental state. This lack of symmetry is 19 

likely due to the immature corpus callosum (Son et al., 2017; Wang et al., 2007), 20 

known to coordinate synchronous patterns of activity between hemispheres (McVea 21 

et al., 2016). At the same time, we show that in the minority of cases hemisphere-22 

symmetric activity patterns do occur and identify the retrosplenial cortex as a region, 23 

frequently involved in such type of activity during both the movement and the resting 24 

periods. 25 

 26 
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Behavioral state-specific maps of simultaneously active cortical subregions 1 

Multi-ROI filters, automatically provided by a nonnegative matrix factorization 2 

algorithm, contain synchronously active areas. We used this property to visualize 3 

brain regions active simultaneously during either the movement or the resting states. 4 

First, we determined the anatomical location of all multi-ROI subregions using the 5 

map similar to the one shown in Fig. 1A but including also the retrosplenial cortex 6 

(Fig. 5-1A). Subsequently, we constructed the state-dependent maps (see Materials 7 

and methods for details), in which each edge connected brain regions, which were 8 

consistently simultaneously active in a behavioral state-specific manner within and 9 

across experimental animals (Fig. 5-1B-D). The circles indicate instances in which 10 

pairs of active subregions of a multi-ROI were located within the same anatomical 11 

region. 12 

In both behavioral states, the simultaneously active subregions were found either 13 

close to each other (e.g., within the same anatomical region) or up to several mm 14 

apart, as exemplified in Fig. 5-1B-D. In general, the center-to-center distances 15 

between simultaneously active subregions ranged from 0.3 to 5.8 mm (1st - 99th 16 

percentile), with a median of 2.1 ± 0.4 mm. When comparing median (per mouse) 17 

distances between the subregions, active during the motion and the resting states, 18 

no significant difference was found (motion: 2.1 ± 0.4 mm, rest: 2.2 ± 0.2 mm; 19 

Wilcoxon signed-rank test z = 0.52, P = 0.69, n=6 mice; Fig. 5-2B). However, 20 

consistent with the general activity pattern described in Fig. 2, the regions 21 

contributing to the simultaneous activity map differed dramatically between the 22 

motion and the resting state. During the motion state, the synchronously active 23 

subregions were mostly located in the anterior (motor, somatosensory) cortical 24 

regions, shifting to the posterior (e.g., visual) cortical regions during the resting state 25 

(Fig. 5-1C and 5-1D). Interestingly, auditory and retrosplenial cortices contributed to 26 
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the map of simultaneous activity during both behavioral states. During the motion 1 

period, however, the retrosplenial cortex was predominantly active together with the 2 

motor cortex, while during the resting state it was predominantly active together with 3 

the visual cortex. The median simultaneous activity map obtained for all recorded 4 

mice (n = 6; Fig. 5-1D) assured the solidity of the described above findings. 5 

 6 

Waves of activity propagating through the neonatal cortex 7 

So far when describing the observed activity patterns we have mostly considered 8 

their spatial dimension. With the temporal dimension added (see Materials and 9 

methods for details), the observed neonatal activity patterns turned into waves of 10 

activity either propagating in a given direction (e.g. Fig. 5A, left panel) or waxing and 11 

waning in magnitude and spatial area involved without any clear movement of the 12 

wave’s center of mass (so-called stationary waves). Of all propagating waves 13 

observed, the majority (81 ± 25%) were recorded during the motion period with a 14 

significantly smaller fraction of waves (19 ± 25%; Paired student's t-test, t5 = 3.2, P = 15 

0.02) being recorded at rest (Fig. 5B, upper panel). A similar trend was also observed 16 

for stationary waves (motion: 81 ± 36%, rest: 19 ± 34%) but the difference did not 17 

reach the level of statistical significance (Fig. 5B, lower panel). 18 

Next, we characterized the fractions of waves invading different anatomical regions 19 

(i.e. motor, somatosensory, auditory, visual, and retrosplenial cortices) of the right 20 

and the left hemispheres during the two behavioral states. For both propagating and 21 

stationary waves we did not observe any differences between the left and the right 22 

hemisphere for any condition tested (Repeated Measures ANOVA; Fig. 5-3A: F1, 5= 23 

3.5, p=0.12; Fig. 5-3B: F1, 5= 2.8x10-4, p=0.98; Fig. 5-3C: F1, 5= 4.1, p=0.1; Fig. 5-3D: 24 

F1, 5= 10-3, p=0.98). Therefore, for further analyses, we averaged the data from both 25 

hemispheres (Fig. 5C-F). During the motion state the highest fraction of both 26 
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propagating (23 ± 4.5%, Fig. 5C) and stationary (27 ± 8.5%, Fig. 5D) waves invaded 1 

the somatosensory cortex, whereas at rest the waves mostly invaded 2 

somatosensory, auditory, and visual cortices (9.8 ± 4%, 15.8 ± 4.5%, 11.8 ± 6% for 3 

propagating and 13 ± 9.5%, 18.8 ± 7.5%, 9.8 ± 4.5% for stationary waves, 4 

respectively). 5 

As to the wave frequency (Fig. 5-4A and C), it was highest in the somatosensory 6 

cortex (2.3 ± 0.45 waves/min for propagating and 2.7 ± 0.85 waves/min for stationary 7 

waves) during motion and in the auditory, visual and somatosensory cortices 8 

(propagating: 1.58 ± 0.45, 1.18 ± 0.6, 0.98 ± 0.4 waves/min; stationary: 1.88 ± 0.75, 9 

0.98 ± 0.45, 1.3 ± 0.95, waves/min, respectively) during rest. A similar frequency 10 

range was reported previously for different types of early intrinsic cortical activity in 11 

rats and mice (Adelsberger et al., 2005; An et al., 2014; Brockmann et al., 2011; 12 

Hanganu et al., 2006; Kirmse et al., 2015). To account for different sizes of the 13 

cortical areas under study, in the next step we normalized fractions of waves, 14 

invading different cortical regions, to the area of that particular region (Fig 5-5A and 15 

C). This analysis stressed the contributions of the somatosensory cortex to the 16 

activity during the motion and that of the auditory and visual cortices to the activity 17 

during the resting state. 18 

Next, we analyzed locations of pacemakers (defined as described in Materials and 19 

methods), initiating a given type of activity. During the motion state, the pacemakers 20 

were mostly located in the somatosensory cortex (25.5 ± 6.5% of pacemakers for 21 

propagating (Fig. 5E) and 27.3 ± 8.5% for stationary (Fig. 5F) waves, respectively). 22 

During the resting state the pacemakers were mostly distributed between the 23 

somatosensory, auditory, and visual cortices (11.8 ± 5.5%, 18 ± 5%, 13.5 ± 7.5% of 24 

pacemakers for propagating and 13 ± 10%, 19 ± 7.5%, 9.8 ± 5% for stationary 25 

waves, respectively). The frequency, with which pacemakers appeared in different 26 
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cortical regions (Fig. 5-4B and D), was highest (2.55 ± 0.65 per min for propagating 1 

and 2.73 ± 0.85 per min for stationary waves) in the somatosensory cortex during 2 

motion and in the auditory, visual and somatosensory cortices (propagating: 1.8 ± 3 

0.5, 1.35 ± 0.75, 1.18 ± 0.55 per min; stationary: 1.9 ± 0.75, 0.98 ± 0.5, 1.3 ± 1, per 4 

min, respectively) during rest. 5 

Normalization to the relative size of the cortical region showed that both for 6 

propagating and stationary waves the pacemaker density was highest in the 7 

somatosensory cortex during motion and in the auditory, visual and retrosplenial 8 

cortices during rest (Fig. 5-5B and D). The overall similarity in the distributions of 9 

waves, invading a given cortical area, and their pacemakers suggests that the 10 

majority of waves spread over rather short distances.  11 

To test this assumption, we analyzed the distances traveled by the centers of mass 12 

of all propagating waves in our dataset. In general, the propagating waves spread 13 

over distances of 0.22 - 4.8 mm (1st – 99th percentile), with the median of 0.47 ± 0.02 14 

mm (n = 6 mice, not differentiating between motion and rest). The apparent speed of 15 

the center of mass ranged from 0.06 to 3.5 mm/s (1st – 99th percentile), with the 16 

median of 0.38 ± 0.05 mm/s (n = 6 mice). When comparing the properties of waves 17 

propagating during the motion and the resting states (Fig. 5-6), there was no 18 

significant difference between the distributions of median (per mouse) propagation 19 

distances (motion: 0.47 ± 0.02 mm, rest: 0.47 ± 0.06 mm; Paired student's t-test t5 = 20 

0.34, P = 0.75, n = 6 mice; Fig. 5-6B) but the respective propagation speed (Fig. 5-21 

6D) was significantly different (motion: 0.42 ± 0.05 mm/s, rest: 0.28 ± 0.13 mm/s; 22 

Paired student's t-test t5 = 4.3, P = 0.01, n = 6 mice).  23 

Thus, the spontaneous neuronal activity in the dorsal cortex of neonates contains a 24 

rich and spatially complex pattern of both stationary and propagating waves. The 25 

majority of the propagating waves are associated with the animal’s movement, 26 
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whereas stationary waves seem to occur with roughly similar incidence during the 1 

movement and the resting periods. Interestingly, the waves of both types are 2 

triggered predominantly in the somatosensory or auditory cortices.  3 

 4 

Functional connectivity map of early cortical activity 5 

Spontaneous correlated neuronal activity is believed to represent a functional 6 

template for activity-dependent maturation of intracortical connections and the 7 

refinement of functional units underlying information processing at adulthood 8 

(Hanganu-Opatz, 2010; Luhmann et al., 2016). To test for functional connectivity 9 

between the different cortical regions (Fig. 6), we used a sparse inverse covariance 10 

matrix estimation algorithm (see Materials and methods for details).  11 

This analysis was shown to measure the direct association between the two brain 12 

regions removing the contributions caused by global or third-party effects (for more 13 

details on the method we refer the reader to ref. (Huang et al., 2010)). 14 

The level of sparseness of the algorithm’s outcome was controlled by the tuning 15 

parameter γ. Thanks to the monotone property of the algorithm used (Huang et al., 16 

2010), increasing γ monotonically increases the level of sparseness of cortical 17 

connectivity at the expense of weaker connections. As, shown in Fig. 6-1, at γ=1.4 18 

the sparsity of the connectivity map was reached for the first time for both the motion 19 

and resting states. Beyond γ=1.8 the number of connections was strongly 20 

diminished. At γ=1.4 we have observed direct functional connections within and in-21 

between of many anatomical regions (Fig. 6, upper panel), defined as illustrated in 22 

Fig. 5-1A. However, the majority of these connections were weak (Fig. 6, upper 23 

panel) and disappeared with an increasing γ (Fig. 6, lower panel). The remaining 24 

strong connections emphasized the short-range intraregional connectivity as well as 25 

behavioral state-specific long-range connections between the more anterior regions 26 
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during motion. Interestingly, the method identified a strong and direct functional link 1 

between the ipsilateral retrosplenial and somatosensory cortices, present during both 2 

behavioral states, as well as some prominent behavioral state-specific connections 3 

(Fig. 6). 4 

Together, these data reveal that in neonatal mice functionally connected cortical 5 

subregions are distributed through the entire dorsal cortical surface. The connectivity 6 

pattern is characterized by dense short-range connections, linking together different 7 

subregions of the given anatomical area and immediately adjacent cortical areas, as 8 

well as sparse long-range connections. The latter differ substantially between the 9 

resting and the motion state. These differences are highly conserved across 10 

experimental animals thus reflecting typical activity patterns of the neonatal brain. 11 

 12 

Discussion 13 

The current study reveals behavioral state-specific large-scale cortical maps in the 14 

dorsal cortex of neonates (Fig. 2). The motion- and rest-associated maps are almost 15 

orthogonal in nature and are built of patches of recurrent endogenous activity. The 16 

existence of these reciprocal maps could not have been anticipated based on the 17 

previously available data (Adelsberger et al., 2005; An et al., 2014; Anton-Bolanos et 18 

al., 2019; Golshani et al., 2009; Hanganu et al., 2006; Khazipov et al., 2004; McVea 19 

et al., 2012; Smith et al., 2018; Valeeva et al., 2019). For both behavioral states 20 

studied, the recurrent endogenous activity showed little hemispheric symmetry and 21 

consisted of a complex mixture of (i) small local events, often limited to a given 22 

anatomical region, (ii) larger events, connecting the neighboring cortical regions, as 23 

well as (iii) simultaneous or correlated activity patterns, binding together activities of 24 

different cortical regions located up to 6 mm apart. Moreover, the patterns of the 25 

binding activity were different between the different behavioral states with 26 
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somatosensory-motor areas functionally connecting during the motion and the 1 

auditory-visual areas functionally connecting during the rest.  2 

Interestingly, frontal and parieto-occipital activity patterns were revealed (by EEG 3 

recordings) also in the perinatal human cortex (Omidvarnia et al., 2014). The latter 4 

turned out to be vigilant state-specific with parieto-occipital activity patterns observed 5 

during the active and a more widespread increase in connectivity throughout the 6 

cortex with notable involvement of the frontal areas observed during the quiet sleep 7 

(Tokariev et al., 2019). Despite the robust neuronal activity, the accompanying local 8 

hyperemia is apparently absent in both perinatal humans (Omidvarnia et al., 2014) 9 

and mice (Movie 2-1, (Kozberg et al., 2016)), disabling the analyses of this activity by 10 

fMRI. The “small-worldness” represents another feature, similar for both species 11 

(Figs. 6 and (Omidvarnia et al., 2014)). Compared to adults and full-term newborns, 12 

activity patterns in the perinatal, especially preterm, human cortex are also known for 13 

the reduced interhemispheric synchrony and symmetry (see (Koolen et al., 2014; 14 

Kwon et al., 2015; Meijer et al., 2016; O'Toole et al., 2019) and references therein). 15 

In both mice and humans, this is likely due to the immature corpus callosum, 16 

developing in humans between 35 and 37 weeks of gestation (Meijer et al., 2016; 17 

Son et al., 2017; Wang et al., 2007). 18 

Our work has also identified the unique binding role of the retrosplenial cortex, an 19 

area (i) involved in both motion- and rest-related ongoing activities, especially in their 20 

hemisphere-symmetric subtypes, and (ii) maintaining strong long-range functional 21 

connections with many other studied cortical regions. Although the consensus on the 22 

precise function of this cortical area is still missing, evidence from both human and 23 

animal studies points to its role in spatial navigation, visuospatial integration, and 24 

hippocampus-related learning and memory (Czajkowski et al., 2014; Vann et al., 25 

2009). Moreover, in adult humans and mice retrosplenial cortex was shown to be 26 
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active during the resting brain state, thus belonging to the so-called “default mode 1 

network” (Chan et al., 2015; Vann et al., 2009). Whereas many areas of the default 2 

mode network are known to decrease their activity upon engagement into a cognitive 3 

task (Anticevic et al., 2012), this is not the case for the retrosplenial cortex, which 4 

increases its activity, for example, during spatial navigation or autobiographical 5 

memory retrieval (Vann et al., 2009). Of special interest is also the fact that although 6 

areas involved in the default mode network vary across different age groups, this is 7 

not the case for the retrosplenial cortex, which represents its inherent part from early 8 

infancy through adolescence into adulthood (Vann et al., 2009). We hypothesize that 9 

both in humans and now also in mice from early on the retrosplenial cortex 10 

represents a functional bridge between the default mode network active at rest and 11 

the task- or movement-specific neural networks coordinating ongoing activity in the 12 

sensorimotor system. To do so, the retrosplenial cortex engages in a behavioral 13 

state-specific coherent activity with the respective cortical areas: visual cortex at rest 14 

and somatomotor cortices during motion.  15 

The long-range nature of the latter functional connections is in marked contrast with 16 

the developmental state of the immature P3 mouse brain, in which long-range 17 

anatomical connections are immature (Hartung et al., 2016; Tagawa and Hirano, 18 

2012). Interestingly, a recent study of the ferret visual cortex also discovered long-19 

range (albeit intra-regional) functional connections at the developmental stage (P21 - 20 

22 in ferret) similar to the one studied here (Smith et al., 2018). To explain their data 21 

the authors presented a dynamical rate network model, which in a regime of strongly 22 

heterogeneous local connectivity and moderate input modulation produces 23 

pronounced long-range correlations, similar to the ones observed in an experiment. 24 

Noteworthy, the spatial structure of the correlated activity produced by the model was 25 

fairly robust against changes in the input drive strength, in agreement with the 26 
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author’s data that long-range correlations persisted in the immature cortex even after 1 

silencing the main driving input (i.e. spontaneous retinal waves reaching the visual 2 

cortex via the lateral geniculate nucleus (Smith et al., 2018)). The described above 3 

findings suggest that the neonatal brain utilizes local spontaneously active inputs to 4 

drive the correlated activity of distant cortical regions, thus providing the template for 5 

activity- and Ca2+-dependent growth and branching of long-range axonal projections 6 

(Tagawa and Hirano, 2012). Indeed, anatomical studies in adult rodents suggest that 7 

the retrosplenial cortex, to stay with this example, is directly linked with anterior 8 

cingulate, motor, and visual cortices (Oh et al., 2014; Vann et al., 2009; Yamawaki et 9 

al., 2016). 10 

Local self-initiated activity and associated spatially-restricted Ca2+ signals represent 11 

the predominant type of activity also in our study. In-depth characterization of this 12 

type of activity revealed its rich spatiotemporal structure comprising distributed 13 

patches of coherent activity in spatial as well as propagating and stationary waves in 14 

spatiotemporal domains. Strikingly, local cortical activity patterns recorded during the 15 

motion and the resting states populated different brain areas. During the motion, 16 

activity was restricted to the somatosensory-motor area (compare active area in Fig. 17 

2B to the map of the adult mouse brain in ref. (Vanni et al., 2017)), consistent with 18 

the cumulative knowledge derived from earlier reports (An et al., 2014; Khazipov et 19 

al., 2004; McVea et al., 2012; Tiriac et al., 2012) as well as with recent data showing 20 

that active wake movements suppress spontaneous neural activity in the visual 21 

cortex of neonatal rats (Mukherjee et al., 2017). In contrast, during the rest local 22 

activity spared the above areas being mostly restricted to the visual, auditory, and 23 

retrosplenial cortex as well as lateral cortical areas, such as, for example, the 24 

temporal cortex, known for its movement-independent spontaneous network activity 25 

(Adelsberger et al., 2005). In-depth analyses of the propagating and stationary waves 26 
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showed that the local activity has the highest frequency in the somatosensory cortex 1 

during motion and the highest density in the auditory cortex during rest (Figs. 5-4 and 2 

5-5).  3 

The described above segregation of the activity patterns is surprising also in view of 4 

the fact that during the developmental stage studied here both motion and rest are 5 

behaviorally heterogeneous. Indeed, motion comprises both generalized movements 6 

happening during wakefulness and muscle twitches, mainly observed during active 7 

sleep (Seelke et al., 2005; Tiriac et al., 2014). Similarly, the resting period might also 8 

include both quiet wakefulness and quiet sleep. Because under our experimental 9 

conditions the overall duration of muscle twitches comprised only 5 - 16% of the total 10 

movement time and the amount of data variance related to twitches was only 0.2 ± 11 

0.6%, the described here motion-related activity pattern is dominated by the one 12 

caused by wake-related generalized movements. Still, it is consistent with the activity 13 

pattern, seen by others during spontaneous muscle twitches (McVea et al., 2012; 14 

Tiriac et al., 2012). Thus, under conditions when animal’s limbs are free to interact 15 

with each other and the supporting surface, both kinds of self-generated movements 16 

discussed above (predominantly wake-related generalized movements: current 17 

study; muscle twitches refs. (Khazipov et al., 2004; McVea et al., 2012; Tiriac et al., 18 

2014; Tiriac et al., 2012)) cause a robust and predominantly reafferent neuronal 19 

activity in the somatosensory-motor area of the cortex. However, the measured here 20 

high amount of data variance associated with self-initiated generalized movements is 21 

in contrast to the belief that “reafference from twitches triggers cascades of neural 22 

activity throughout the sensorimotor system at ages when wake-related movements 23 

largely fail to do so” (Del Rio-Bermudez et al., 2020). 24 

 25 

 26 
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 1 

Fig. 1. Large-scale spontaneous neuronal activity in the neonatal mouse cortex. 2 
A, Top view on a P3 mouse cortex taken through an intact skull. Broken lines delineate cortical 3 
regions of interest (estimated as in (Gee et al., 2014)): ML, MR - motor cortex (left and right), SL, SR - 4 
somatosensory cortex (left and right), AuL, AuR - auditory cortex (left and right) and VL, VR - visual 5 
cortex (left and right). B, Averages of 100 consecutive autofluorescence-subtracted images taken 6 
during periods of either local (top) or global (middle) cortical activities or no activity (bottom). 7 
Autofluorescence values are averages of mean pixel values recorded in three different 3-day-old 8 
C57BL/6 mice. Subtraction was done for display purposes only. Image brightness (arbitrary units, AU) 9 
is color coded, with warm colors reflecting higher values. C, 200-second-long ΔF/F traces recorded 10 
from ROIs delineated in A. Gray boxes mark periods of animal’s movement. Arrowheads mark muscle 11 
twitches. Data shown are from mouse 1 (Fig. 2-2). 12 
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 1 

Fig. 2. ROI-based frequency maps of local activity. 2 
A, Representative frequency maps (NMF-based ROI analysis) recorded in a mouse 5 (Fig. 2-2) during 3 
motion (left panel) and resting (right panel) time periods. B, Same analyses as in A, but each pixel is a 4 
median of data obtained in 7 different animals. C, Box-and-whisker plots illustrating the fraction of time 5 
animals spent in three different states: motion, rest and transition. The plot shows representative data 6 
from one mouse (same as in A, n=3 consecutive 10-min-long image series). D, Same analyses as in 7 
C but the plot shows a median of 7 mice. A significant difference was observed between the fractions 8 
of time spent in 3 different conditions (One-way repeated measure ANOVA followed by Holm-Sidak 9 
multiple comparisons test, F1.79

*
,10.73

*
=5.4, P = 0.03, here and below a star (

*
) denotes Greenhaus-10 

Geisser sphericity correction). However, pairwise comparisons using Holm-Sidak post-hoc test did not 11 
reach the level of statistical significance. E, Box-and-whisker plot illustrating spatial correlation 12 
coefficients within and between maps obtained during motion and resting time periods (3 maps, each 13 
representing a 10-min-long image series recorded in a mouse shown in A). F, Box-and-whisker plot 14 
illustrating median (per mouse) spatial correlation coefficients within and between maps obtained 15 
during motion and resting time periods. Obtained values are significantly different (One-way repeated 16 
measure ANOVA followed by Holm-Sidak multiple comparisons test, F1.6

*
,9.62

*
=71.1, P < 10

-3
, motion 17 

vs. rest: P = 10
-3

, the other two comparisons: P < 10
- 3

). 18 
  19 
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 1 

 2 

Fig. 3. Hemisphere-symmetric neuronal activity in the neonatal mouse cortex. 3 
A, Representative active subregions belonging to one multi-ROI filter (upper) as well as symmetry 4 
maps (lower) projected on a grayscale image of P3 mouse cortex. Here and in Fig. 4 the sample data 5 
are from mouse 4 (Fig. 2-2). Upper panels: fluorescence signals are color-coded with warmer colors 6 
indicating higher signal intensity. Lower panels: different colors delineate multi-ROIs, each satisfying 7 
the total (left panel) or semi- (right panel) symmetry criterion (see Materials and methods). B, Box-8 
and-whisker plot illustrating the median fractions of multi-ROIs in three distinct categories: total, semi-, 9 
and no symmetry (3 consecutive 10-min-long image series recorded in mouse 4). C, Same analyses 10 
as in B illustrating the median data obtained in 7 different animals. Obtained values are significantly 11 
different (One-way repeated measure ANOVA followed by Holm-Sidak multiple comparisons test, 12 
F1.26

*
,7.56

*
=625.7, P < 10

-3
; P < 10

-3
 for both semi-symmetry vs. no symmetry, and total symmetry vs. no 13 

symmetry comparisons). D, Representative total symmetry maps recorded during motion (left panel) 14 
and resting (right panel) time periods (mouse 4). Different colors delineate multi-ROIs, each satisfying 15 
the total symmetry criterion. E, Box-and-whisker plot showing the median fractions of symmetric multi-16 
ROIs during the three time periods: motion, rest, and transition (3 consecutive 10-min-long image 17 
series recorded in mouse 4). F, Same analyses as in E illustrating the median data obtained in 7 18 
different animals. Obtained values are significantly different (One-way repeated measure ANOVA 19 
followed by Holm-Sidak multiple comparisons test, F1.5

*
,9.02

*
=44.7, P < 10

-3
; P = 10

-3
 for both 20 

comparisons). G, Similar maps as in D but here colors delineate multi-ROIs, each satisfying the semi-21 
symmetry criterion. H, Box-and-whisker plot showing the median fractions semi-symmetric multi-ROIs 22 
during the three time periods: motion, rest, and transition (3 consecutive 10-min-long image series 23 
recorded in mouse 4). I, Same analyses as in H illustrating the median data obtained in 7 different 24 
animals.  25 
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 1 

Fig. 4. Regions contributing to hemisphere-symmetric cortical activity in the neonatal mouse 2 
cortex differ between behavioral states. 3 
A, Spatial representation of the overlap between total symmetry maps recorded during motion and 4 
resting time periods in a P3 mouse. Purple color indicates the area active during the motion period, 5 
green color marks the area active during the resting period and white color shows the overlapping 6 
area. B, The same representation as in A but for the semi-symmetry map obtained in the same 7 
experimental animal. The arrow points to the retrosplenial cortex. For display purposes, an experiment 8 
with a prominent overlap is shown. C, Box-and-whisker plot showing the number of pixels belonging to 9 
the total symmetry map during motion (purple area) and rest (green area), as median (per mouse) 10 
fractions of the total number of imaged cortical pixels (n = 7 mice). Obtained values are significantly 11 
different (paired Student’s t-test, t5 = 7, P < 10

-3
). D, The same analyses as in C but for the areas 12 

contributing to the semi-symmetry map. Obtained values are significantly different (paired Student’s t-13 
test, t5 = 5.7, P = 2 x 10

-3
). E, Box-and-whisker plot showing median (per mouse) numbers of pixels 14 

belonging to the white area (as in A) normalized to the number of pixels belonging to the purple area 15 
(n = 7 mice). F, The same analyses as in E but for the areas contributing to the semi-symmetry map. 16 
  17 
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 1 

Fig. 5. Stationary and propagating Ca
2+

 waves in the neonatal mouse cortex. A, Left panel shows 2 
(from left to right): (i) top view on a right hemisphere of P3 mouse cortex (mouse 5 in Fig. 2-2) with a 3 
sample propagating wave (the direction of movement is color coded from green to red, blue stars 4 
depict the location of the center of mass in each frame (see Materials and methods); (ii) a 5 
superposition of propagating waves recorded in this animal in 6 min (here and below the 6 
corresponding center of mass trajectories are depicted as red lines) and (iii) the framed area, shown 7 
on an expanded scale. Right panel shows (from left to right): (i) a superposition of stationary waves 8 
recorded in this animal in 6 min and (ii) the framed area shown on an expanded scale. Broken lines 9 
delineate the contour of the brain area imaged in this experiment. False colors reflect the number of 10 
waves each pixel was involved into. B, Box-and-whisker plots showing median (per mouse) fractions 11 
of propagating (upper panel - t5 = 3.21, P = 0.024) and stationary (lower panel) waves happening 12 
during motion and rest, respectively (n = 6 mice). For each mouse, the number of propagating waves 13 
during the motion (or rest) was normalized to the number of all propagating waves recorded. A similar 14 
normalization procedure was used for stationary waves. C, D, Box-and-whisker plots showing 15 
averaged between the two hemispheres median (per mouse) fractions of propagating C, and 16 
stationary D, waves invading the respective cortical regions. E, F, Similar analyses as in C, D but 17 
illustrating median (per mouse) fractions of pacemakers for propagating E, and stationary F, waves 18 
located in the given cortical region (n = 6 mice). To calculate the fraction of propagating/stationary 19 
waves in a given cortical region during the motion/rest the number of propagating waves observed in 20 
this region during this particular state was normalized to the number of all propagating waves detected 21 
in this state. 22 
  23 
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 1 

Fig. 6. Functional connectivity map.  2 
Direct connectivity maps calculated for motion (left panels) and resting (right panels) periods with two 3 
different values of γ (see Materials and methods). Each connectivity map is shown in the matrix as 4 
well as trivial graph format. In the latter format, nodes represent cortical regions of interest predefined 5 
in Fig. 5-1A, and edges between the two nodes show the direct connectivity between the two cortical 6 
regions. Edge thickness represents the median strength of connections between the two cortical 7 
regions. Similarly, circles depict connectivity within the given cortical region, and the thickness of each 8 
circled line shows the median strength of connections in this cortical region. Note that in the matrix 9 
format the strength of connectivity is shown on a logarythmic scale, providing a higher dynamic range. 10 
Median of data obtained from 6 different animals. Color-coded scale bars show median connectivity 11 
strength within and among cortical regions (see Materials and methods for details).  12 
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