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 2 

Abstract (200 words) 39 

 40 

There is a growing interest in decomposing high-density surface electromyography (HDsEMG) 41 

into motor unit spike trains to improve knowledge on the neural control of muscle contraction. 42 

However, the reliability of decomposition approaches is sometimes questioned, especially 43 

because they require manual editing of the outputs. We aimed to assess the inter-operator 44 

reliability of the identification of motor unit spike trains. Eight operators with varying 45 

experience in HDsEMG decomposition were provided with the same data extracted using the 46 

convolutive kernel compensation method. They were asked to manually edit them following 47 

established procedures. Data included signals from three lower leg muscles and different 48 

contraction intensities. After manual analysis, 126  5 motor units were retained (range across 49 

operators: 119-134). A total of 3380 rate of agreement values were calculated (28 pairwise 50 

comparisons  11 contractions/muscles  4-28 motor units). The median rate of agreement 51 

value was 99.6%. Inter-operator reliability was excellent for both mean discharge rate and time 52 

at recruitment (intraclass correlation coefficient > 0.99). These results show that when provided 53 

with the same decomposed data and the same basic instructions, operators converge toward 54 

almost identical results. Our data have been made available so that they can be used for training 55 

new operators. 56 

 57 
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 3 

Introduction  59 

Movements result from the activation of motor units, each comprising a motoneuron and the 60 

muscle fibers it innervates. Motoneurons send a neural activation signal to the muscle fibers, 61 

which produce force. The neural drive is the net output of all the motor neurons that innervate 62 

the muscle, i.e. the ensemble of activation times of the motoneurons. In healthy individuals, 63 

there is a one-to-one relationship between the generation of an action potential in the motor 64 

neuron and the generation of an action potential in the innervated muscle fibers. Thus, the 65 

discharge characteristics of motor units contain direct information about the neural drive. As a 66 

result, there is a growing interest in decoding the discharge characteristics of motor units to 67 

advance our knowledge on the neural control of movement (Del Vecchio et al. , 2020, Farina 68 

et al. , 2016) and to develop human-machine interfaces (Chen et al. , 2020).  69 

Activity of motor units is conventionally detected using intramuscular electromyography 70 

(EMG) electrodes. Although it provides direct recordings of motor unit action potentials, this 71 

invasive technique can only identify a limited number of units from small muscle regions. 72 

Recent developments in electrode technology and signal processing makes it possible to 73 

identify the concurrent activity of many motor units non-invasively (Farina, Negro, 2016, 74 

Marateb et al. , 2011). Specifically, high-density surface EMG (HDsEMG) electrodes can be 75 

used to provide a spatial sampling of motor unit action potentials (Merletti et al. , 1999, Merletti 76 

et al. , 2008). Blind source separation procedures (Holobar and Zazula, 2007, Negro et al. , 77 

2016) applied to these signals currently enable the identification of up to 30-40 motor units. 78 

However, after an automatic extraction, these approaches require some degree of manual 79 

analysis/editing of the motor unit spike trains to check for false positives and false negatives 80 

(Del Vecchio, Holobar, 2020, Enoka, 2019). This manual analysis consists of reinforcing the 81 

motor unit spike trains with tuned motor unit filters where spurious firings are manually 82 

removed. This manual step potentially calls into question the accuracy of such results, casting 83 
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doubt on any conclusions reached by interpreting decomposed motor unit activity. It is therefore 84 

important to quantify the reliability of the manual editing step among different operators. In 85 

other words, we need to determine whether different operators who have access to the same 86 

raw data (output provided by the decomposition algorithm) would extract similar motor unit 87 

spike trains. 88 

The overall aim of this study was to assess the inter-operator reliability of the identification of 89 

motor unit spike trains. Specifically, we aimed to assess the rate of agreement among operators 90 

from experimental signals and its relationship with the accuracy of the motor unit identification 91 

(pulse-to-noise ratio). A secondary aim was to assess the inter-operator reliability for two motor 92 

unit discharge characteristics commonly used in the literature, i.e., the mean discharge rate and 93 

the recruitment threshold. All raw and processed data have been made available so that they 94 

can be used for training new operators. 95 

 96 

  97 
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Methods 98 

1. Participants 99 

Eight operators with varying amount of experience in HDsEMG decomposition volunteered to 100 

participate in this experiment (Table 1). They all co-authored this article (FH, JI, JR, SN, SA, 101 

ADV, AC, and AH). The research ethics committee of the University of Nantes approved this 102 

study (CERNI, n°13102020), which was based on the re-use of data collected in two different 103 

experiments (approval # 2013001448 from the University of Queensland and approval #44 680 104 

from the University of Rome ‘Foro Italico’).  105 

Operator # No. studies with HDsEMG 

decomposition 

Time to edit (min) 

1 2 239 

2 2 310 

3 0 210 

4 0 389 

5 2 428 

6 20 186 

7 5 211 

8 55 152 

Table 1. Operator expertience. The number of published articles that involved decomposition 106 

of HDsEMG signals is given for each operator, together with the total time each took to edit 107 

the motor units in the present study.  108 

 109 

2. Experimental data 110 

In two different experiments, HDsEMG was recorded from the Gastrocnemius lateralis (GL) 111 

and Gastrocnemius medialis (GM) [experiment I, (Hug et al. , 2021)] and the tibialis anterior 112 

(TA) [experiment II, (Del Vecchio et al. , 2019)]. These muscles were selected because they 113 

usually yield to different numbers – and accuracy - of decomposed units. For example, Hug et 114 

al. (2021) highlighted the challenge of extracting motor units from the GL muscle. In contrast, 115 

the TA muscle is known to be a reliable muscle for HDsEMG decomposition (Del Vecchio, 116 

Holobar, 2020). Apart from the muscle investigated, the decomposition output depends on the 117 

contraction level and volume conductor, which are specific to each participant (Del Vecchio, 118 
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Holobar, 2020). Therefore, we focused on data from four contraction intensities, collected from 119 

different participants. 120 

 121 

2.1. Experimental design. Data from the GL and GM muscles were collected during a series of 122 

isometric tasks, as detailed in Hug et al. (2021). Participants laid prone on a custom-made 123 

dynamometer equipped with a torque sensor (TRE-50K, Dacell, Korea). Their right ankle angle 124 

was set at 10° of plantarflexion (0° being the foot perpendicular to the shank), with their knee 125 

was fully extended. After a standardized warm-up, the participants performed three maximal 126 

isometric contractions for 3 to 5 s with 120-s rest in between. The maximal value obtained from 127 

a 250-ms window was considered as the peak torque (MVC torque). Then, participants 128 

performed three contractions at each of the following intensities: 10%, 30%, 50%, and 70% of 129 

their MVC torque. The order of the intensities was randomized. These contractions involved a 130 

5-s ramp-up, a 15-s (50% and 70% of MVC) or 20-s plateau (10% and 30% of MVC) and a 5-131 

s ramp down phase. The contractions were separated by either 60-s (10% of MVC) or 120-s 132 

(30%, 50% and 70% of MVC) of rest. Feedback of the target and torque output was displayed 133 

on a monitor.  134 

The detailed description of the experimental protocol with the TA muscle has been described 135 

previously (Del Vecchio, Casolo, 2019). The force sensor (load cell, CCt Transducer s.a.s, 136 

Turin, Italy) was placed in a custom dynamometer to measure the isometric dorsiflexion force 137 

of the dominant leg [see Figure 1 in (Del Vecchio, Casolo, 2019)]. Participants were seated on 138 

a massage table with their hip flexed at 120° (180° being supine), their knee extended to 180°, 139 

and their ankle placed at 10° of plantar flexion (0° being the foot perpendicular to the shank). 140 

The foot and the ankle were held in place with Velcro straps on an adjustable footplate. 141 

Participants performed three to four maximal isometric contractions with 30 s of recovery in 142 

between. The peak force (MVC force) was used as a reference to determine the target force for 143 
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 7 

the submaximal contractions. These contractions involved a ramp-up phase at 5% MVC s−1, a 144 

10-s plateau (35%, 50%, or 70% MVC), and a ramp-down phase performed at the same rate as 145 

the ramp-up phase. Two repetitions were performed at each contraction level. The order was 146 

randomized, and the contractions were separated by 3-5 min of rest. 147 

 148 

2.2. High-density surface electromyography. 149 

For GL, GM, and TA muscles, HDsEMG was measured using two-dimensional adhesive grids 150 

of 64 electrodes (13×5 electrodes with one electrode absent from a corner, gold-coated, inter-151 

electrode distance: 8 mm; [ELSCH064NM2, SpesMedica, Battipaglia, Italy]). 152 

 The grids were aligned with the main fascicle direction as determined using B-mode ultrasound 153 

(Aixplorer, Supersonic Imagine, France) for GM and GL or using a dry array of 16 electrodes 154 

for TA. Before electrode application, the skin was shaved and then cleaned with an abrasive 155 

pad and alcohol. The adhesive grids were held on the skin using semi-disposable bi-adhesive 156 

foam layers (SpesMedica, Battipaglia, Italy). The skin-electrode contact was optimized by 157 

filling the cavities of the adhesive layers with conductive paste (SpesMedica, Battipaglia, Italy). 158 

Strap electrodes dampened with water were placed around the contralateral (ground electrode) 159 

and ipsilateral ankle (reference electrode). The EMG signals were recorded in monopolar mode, 160 

bandpass filtered (20-500 Hz) and digitized at a sampling rate of 2048 Hz using a multichannel 161 

acquisition system (EMG-Quattrocento; 400-channel EMG amplifier, OT Biolelettronica, 162 

Turin, Italy).  163 

 164 

3. Data analysis 165 

Automatic decomposition of the HDsEMG signals 166 

First, the monopolar EMG signals were bandpass filtered between 20 and 500 Hz using a 167 

second-order Butterworth filter. The HDsEMG signals were decomposed with the convolutive 168 
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blind source separation method (Holobar and Farina, 2014, Holobar et al. , 2014, Holobar and 169 

Zazula, 2007) implemented in the DEMUSE software tool (v5.01; The University of Maribor, 170 

Slovenia). The following extraction parameters were selected: 50 iterations, maximal 171 

coefficient of variation of 50%. This decomposition procedure can identify motor unit discharge 172 

times over a wide range of contraction intensities and has been extensively validated using 173 

experimental and simulated signals (Holobar and Farina, 2014, Holobar, Minetto, 2014). The 174 

decomposition was performed on either 10-s (TA, GL, and GM at 50% and 70% MVC) or 15-175 

s (GL and GM at 10% and 30% MVC) centered on the torque (GL, GM) or force (TA) plateau. 176 

 177 

Manual edition of the decomposition results  178 

After the automatic identification of the motor units, all the motor unit spike trains were visually 179 

inspected and manually edited by each of the eight operators. Together with the initial automatic 180 

decomposition data, a standardized list of instructions was given to each operator. Specifically, 181 

they had to:  182 

i) Read a tutorial (Del Vecchio, Holobar, 2020) to make sure that they all had the same 183 

basic knowledge on HDsEMG decomposition, 184 

ii) Inspect and edit the motor unit spike trains over the whole contraction,  185 

iii) Remove unreliable motor units that had a pulse-to-noise ratio lower than 30 dB 186 

(Holobar, Minetto, 2014), as classically done in the literature (Avrillon et al. , 2021, 187 

Laine et al. , 2015), 188 

iv) Note the time that they took to edit each file. 189 

It should be noted that the decision to discard a motor unit with a pulse-to-noise ratio < 30 was 190 

taken after manual edition (step ii), i.e., after first trying to improve its accuracy. As explained 191 

in detail in Del Vecchio et al. (2020), the manual editing/analysis of the motor unit spike trains 192 

(step ii) consisted in the following steps performed in an iterative way: i) identifying and 193 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2021. ; https://doi.org/10.1101/2021.02.19.431376doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.19.431376
http://creativecommons.org/licenses/by-nd/4.0/


 9 

removing the spikes of lower quality, ii) re-calculating the motor-unit filter and re-applying it 194 

over a portion of the signal, and iii) adding the new spikes recognized as motor unit firings. 195 

Each of these steps includes subjective decision-making, which is a potential source of 196 

discrepancies between operators. 197 

 198 

Rate of agreement 199 

For each motor unit, the rate of agreement (RoA) between decompositions was calculated for 200 

all pairs of operators (i.e. 28) as follows: 201 

𝑅𝑜𝐴𝑗 =
𝐴𝑗

𝐴𝑗+𝐼𝑗+𝑆𝑗+
 (1)  202 

Where Aj denotes the number of discharges of the jth motor unit that were identified by both 203 

operators, Ij is the number of discharges identified by operator #1 but not by operator #2, and 204 

Sj is the number of discharges identified by operator #2 but not by operator #1. The discharge 205 

time tolerance was set to 1 time point. It means that a firing was considered Aj if it was 206 

identified by both operators at time instants separated by not more than ~ 0.49 ms (1/2048 Hz).  207 

 208 

Motor unit discharge characteristics 209 

We assessed the inter-operator reliability of two motor unit discharge characteristics commonly 210 

extracted from motor unit spike trains. First, the time of recruitment of each motor unit was 211 

determined as the time when the first action potential was observed.  Second, we estimated the 212 

mean discharge rate of each motor unit during the plateau of torque/force.  213 

 214 

 215 

5. Statistical analysis 216 

Statistical analyses were performed in Statistica v7.0 (Statsoft, Tulsa, OK, USA). A Shapiro-217 

Wilk test was used to test for a normal distribution. A Mann-Whitney test was used to compare 218 

the RoA and the pulse-to-noise ratio values between the motor units that had been identified by 219 
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 10 

all eight operators and those that had been only identified by some of the operators. We used 220 

Pearson’s correlation coefficient to assess the relationship between the RoA and the pulse-to-221 

noise ratio of the edited units. Finally, we assessed the inter-operator reliability of the motor 222 

unit discharge rate and time of motor unit recruitment by calculating the intraclass coefficient 223 

of correlation (ICC). All data are reported as mean ± standard deviation and the level of 224 

significance was set at p ≤ 0.05.  225 

  226 
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Results 227 

The entire dataset is available at https://figshare.com/s/68a626ace01af6b4d98b 228 

Fig. 1 depicts an example of the outcome of the decomposition, before and after the manual 229 

analysis step. The automatic decomposition allowed the identification of 231 motor units 230 

(ranging from 5 for GL at 10% MVC to 39 for GM at 30% MVC; Table 2). On average, 265  231 

99 min were needed for manual editing of these motor units (Table 1), i.e., 1 min 8s per motor 232 

unit for contractions ranging from 25 to 30 s. After manual editing, 126  5 motor units were 233 

retained for further analysis (range across operators: 119-134) (Table 2). The number of motor 234 

units identified by each operator is detailed in Table 3.  235 

 236 

Fig. 1. Example of the decomposition outcome before and after manual analysis. Three 237 

motor units from the gastrocnemius medialis (70% MVC) are depicted. The left panels (A) 238 

exhibit the discharge times identified by the automatic decomposition over a 10-s window. 239 

After identifying and removing the spikes with lower quality, the motor-unit filter was re-240 

calculated and re-applied over the whole contraction. The new spikes recognized as motor 241 

unit firings were added leading to the results depicted on the right panels (B). Of note, manual 242 

analysis of the first motor unit (MU#1) did not lead to a pulse-to-noise ratio>30 dB, and 243 

therefore this motor unit was discarded following manual editing. MVC, Maximal Voluntary 244 

Contraction. 245 

 246 

 247 
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 After automatic 

decomposition 

After manual editing 

Muscle & 

condition  

No. 

MUs 

Mean PNR 

 (range) 

No. MUs 

(range) 

Mean PNR 

(range) 

Mean DR, pps 

(range) 

GL  

10% MVC 

5 34.25.1 

(27.1-39.8) 

4.00 

(4-4) 

37.57.5 

(31.2-47.2) 

8.10.9 

(7.2-8.9) 

GL  

30% MVC 

16 30.75.2 

(18.9-37.7) 

8.60.7 

(8-10) 

33.72.2 

(30.7-36.8) 

8.21.3 

(5.2-9.6) 

GL  

50% MVC 

36 23.55.9 

(16.2-35.2) 

4.00 

(4-4) 

32.51.8 

(30.5-34.7) 

11.31.3 

(10.1-12.8) 

GL  

70% MVC 

13 29.84.5 

(20.5-36.3) 

4.90.4 

(4-5) 

32.51.1 

(31.7-34.3) 

14.01.5 

(12.5-15.7) 

GM  

10% MVC 

22 31.93.1 

(26.4-38.6) 

16.50.8 

(16-18) 

32.62.0 

(30.4-37.5) 

8.11.1 

(6.3-10.4) 

GM 

30% MVC 

39 31.86.1 

(18.9-41.2) 

26.11.6 

(24-28) 

34.62.7 

(30.0-40.3) 

8.11.0 

(6.0-10.5) 

GM  

50% MVC 

19 37.46.4 

(23.3-46.5) 

15.40.5 

(15-16) 

38.14.3 

(31.2-45.1) 

7.61.2 

(5.7-9.8) 

GM  

70% MVC 

10 31.33.5 

(27.3-39.2) 

5.80.5 

(5-6) 

32.42.8 

(30.2-37.7) 

12.20.6 

(11.7-13.1) 

TA  

35% MVC 

22 37.84.8 

(27.8-49.6) 

20.31.0 

(19-21) 

38.74.0 

(32.8-50.1) 

12.01.2 

(9.0-14.4) 

TA  

50% MVC 

18 32.65.4 

(18.8-39.0) 

13.31.3 

(12-15) 

35.63.4 

(31.0-40.6) 

15.51.4 

(12.4-17.6) 

TA  

75% MVC 

31 24.36.8 

(17.3-36.9) 

6.90.8 

(6-8) 

33.41.9 

(30.7-36.1) 

17.41.5 

(15.4-20.5) 

Table 2. Characteristics of the decomposed motor units. The number of decomposed motor 248 

units (No. MUs) and the mean pulse-to-noise ratio (PNR) obtained both after the automatic 249 

decomposition and after the manual editing are given for each contraction. The mean discharge 250 

rate (DR) calculated over the plateau of force is displayed for the edited motor units. GL, 251 

Gastrocnemius lateralis; GM, Gastrocnemius medialis; TA, Tibialis anterior; MUs, motor units. 252 

MVC, maximal voluntary contraction 253 

 254 

 Operators 

 #1 #2 #3 #4 #5 #6 #7 #8 

GL 10% MVC 4 4 4 4 4 4 4 4 

GL 30% MVC 9 10 9 8 8 8 8 9 

GL 50% MVC 4 4 4 4 4 4 4 4 

GL 70% MVC 5 5 5 4 5 5 5 5 

GM 10% MVC 16 17 16 16 18 16 16 17 

GM 30% MVC 27 28 27 25 27 24 24 27 

GM 50% MVC 16 16 15 15 16 15 15 15 

GM 70% MVC 6 6 5 5 6 6 6 6 

TA 35% MVC 21 21 21 19 21 19 19 21 

TA 50% MVC 14 15 12 12 12 13 13 15 

TA 70% MVC 8 8 6 7 6 6 7 7 

Total number of MUs 130 134 124 119 127 120 121 130 
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Table 3. Number of selected motor units per operator. The operators were asked to select 255 

motor units only if their pulse-to-noise ratio was higher than 30 (see Methods). Despite this 256 

common criterion, the manual decomposition yielded to a slightly different number of units 257 

depending on the operators. MUs, motor units. MVC, maximal voluntary contraction 258 

 259 

Fig. 2 shows representative motor unit spike trains identified by each of the eight operators. A 260 

total of 3380 RoA values were calculated, i.e. 28 pairwise comparisons  11 contractions  4-261 

28 motor units per contraction. The mean and median RoA values were 98.9% and 99.6%, 262 

respectively (Fig 3).  RoA ranged from 56.5% to 100%, with only 20 out of 3380 values (0.6%) 263 

being lower than 85%. These lowest RoA values were observed for two particular motor units 264 

(motor unit #4 for GL 50% MVC and motor unit #15 for GM 50% MVC). For motor unit #15, 265 

one operator did not recalculate the motor unit filter over the whole contraction. This led to 266 

some firings being missed, and thus to a low RoA value (60.2%) for the comparison with each 267 

of the seven other operators. Of note, the RoA was 100% when calculated between all the other 268 

operators. For motor unit #4, the recalculation of the motor unit filter led to the identification 269 

of new spikes with moderate quality, which were selected by two out of the eight operators 270 

(Fig. 4).  271 

Both the RoA (99.0  2.1 vs. 96.6  5.5%; p < 0.001) and the pulse-to-noise ratio (35.7  3.8 272 

vs. 33.1  3.6 dB; p<0.001) were higher for the motor units that were retained by all the 8 273 

operators (n = 112) than those retained by only some operators (n = 24). 274 
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 275 

Fig. 2. Example of the inter-operator reliability of the identification of a motor unit 276 

spike train (MU #2 of the Gastrocnemius medialis). After the automatic identification of 277 

the motor units on a portion of the torque plateau (Panel A), all the motor unit spike trains 278 

were visually inspected and manually edited by each of the eight operators (Panel B). The rate 279 

of agreement was then calculated for each pair of operators (Panel C).  280 

 281 

 282 

Fig. 3. Distribution of rate of agreement values. The rate of agreement was calculated for 283 

each pair of operators leading to 3380 values (28 pairwise comparisons  11 contractions  4-284 

28 motor units per contraction). 285 

 286 
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 287 

Fig 4. Example of discrepancies between two operators. The recalculation of the motor 288 

unit filter led to the identification of new spikes with moderate quality, which were selected 289 

by operator #5 but not by operator #1. 290 

 291 

Fig. 5 shows the mean RoA value for each motor unit and each contraction. The association 292 

between the RoA and the PNR of the edited units was analyzed by correlation analysis. There 293 

was a significant positive correlation, albeit small (P = 0.026, r = 0.19), indicating that the inter-294 

operator agreement tended to be higher for motor units that were identified with higher 295 

accuracy. 296 

 297 

Fig. 5. Rate of agreement between operators for each contraction and each motor unit. 298 

The mean rate of agreement across operators is depicted for each motor unit (black dot) and 299 

each contraction (grey bar). GL, Gastrocnemius lateralis; GM, Gastrocnemius medialis; TA, 300 

Tibialis anterior; Numbers indicate the contraction intensity in % of the maximal voluntary 301 

contraction. 302 
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We assessed the impact of the discrepancies between operators, albeit very limited, on two 303 

discharge characteristics commonly used, i.e. the mean discharge rate over the plateau and the 304 

time of recruitment. To do this, we considered the motor units identified by all the operators (n 305 

= 112). For both the mean discharge rate and the time of recruitment, the ICC value was very 306 

high (> 0.99). 307 

 308 

  309 
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Discussion  310 

We assessed the inter-operator reliability of identification of motor unit spike trains from 311 

HDsEMG. Specifically, eight operators were provided with the same automatically extracted 312 

data and were asked to manually edit them. Based on the 126  5 motor units retained after 313 

manual edition, the median RoA value was very high (99.6%) leading to an excellent inter-314 

operator reliability of the mean discharge rate at the force/torque plateau and the time at 315 

recruitment (recruitment threshold). There was a significant, albeit weak, positive correlation 316 

between RoA and the accuracy of the final decomposition assessed by the pulse-to-noise ratio. 317 

Taken together, these results show that identification of motor unit discharge times from 318 

HDsEMG decomposition is highly reliable across operators with varying levels of experience. 319 

 320 

Recent advances in technology and signal processing have made it possible to identify motor 321 

units from surface HDsEMG signals. There is a growing interest in using this approach to 322 

improve our knowledge on the neural control of movement and to develop human-machine 323 

interfaces. However, the reliability of this approach is sometimes questioned, especially 324 

because it requires manual editing of the output from the decomposition algorithm (Enoka, 325 

2019). As described in the methods section, manual editing requires different subjective steps 326 

(Del Vecchio, Holobar, 2020), each having the potential to introduce discrepancies between 327 

operators. In our experiment, the eight operators analyzed the same dataset (extraction data) by 328 

following the same instructions, such as discarding motor units with a pulse-to-noise ratio < 30 329 

dB. Despite this standardized process, they retained a slightly different number of motor units. 330 

There are different potential explanations for the differing number of motor units identified 331 

among operators. First, some operators could have discarded some motor units early in the 332 

editing process, considering that manual editing would not increase their pulse-to-noise ratio, 333 

while other operators could have successfully edited these same motor units. Second, the 334 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 19, 2021. ; https://doi.org/10.1101/2021.02.19.431376doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.19.431376
http://creativecommons.org/licenses/by-nd/4.0/


 18 

subjective steps of the editing process may have differed among operators, even slightly, such 335 

that only some operators succeeded in obtaining a pulse-to-noise ratio > 30 dB for some motor 336 

units. Specifically, the motor unit filter is updated from the spikes being present in the time-337 

window of interest. Therefore, even small discrepancies in the selection of the false and true 338 

positives affect the motor unit filter and thus the spikes that will be identified with the updated 339 

filter. As both the most experienced operator (#8) and one of the least experienced operator (#1) 340 

extracted a similar number of motor units (n = 130, Table 3), we believe that experience did 341 

not have a major influence on the number of identified motor units, at least in our experimental 342 

conditions. Of note, quantifying the experience of the operators was not straightforward and 343 

further work is needed to assess the effect of experience and/or training on the editing step. 344 

 345 

The vast majority of motor units were identified by all the operators. An important result is that 346 

the RoA between pairs of operators was very high, with a median value of 99.6% (Fig. 3). This 347 

means that when provided with the same decomposed data and the same basic instructions, 348 

operators converged toward almost identical motor unit spike trains. This logically led to very 349 

similar mean discharge rate and time of recruitment (both ICC > 0.99), which are two motor 350 

unit discharge characteristics often calculated from HDsEMG decomposition. In the rare cases 351 

where RoA values were low (0.6% of the RoA values < 85%), there was either a mistake made 352 

by one operator (motor unit #15 for GM 50% of MVC) or clear discrepancies between operators 353 

for a significant portion of the signal (motor unit #4 for GL 50% of MVC; Fig. 4). Specifically, 354 

Fig. 4 shows that the recalculation of the motor unit filter yielded to pulse trains of low 355 

amplitude, which were selected as being spikes by two out of the eight operators. Of note, 356 

because our study was designed to test the reliability between operators, we cannot infer 357 

accuracy; this means that we cannot determine which operators made the correct choice. 358 
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It is well known that the outcomes of the decomposition (number of identified units and 359 

accuracy) depend on the muscle being investigated, the volume conductor properties of the 360 

participant and the contraction intensity (Del Vecchio, Holobar, 2020). Here, we selected data 361 

from different muscles, different contraction intensities, and different participants. The number 362 

of identified motor units tended to be lower for GL than either GM or TA. In addition, there 363 

were less identified motor units at 70-75% of MVC than at lower intensities. Because of the 364 

small number of identified units for some muscles/contraction intensities, and the different 365 

contraction intensities tested for TA compared to GM and GL, it was impossible to 366 

systematically test for between-muscle or between-intensity differences in RoA, with 367 

appropriate statistics. However, given the very high RoA values (Fig. 5), we can confidently 368 

conclude that the inter-operator reliability was high, regardless of the muscle or the contraction 369 

intensity.  370 

 371 

This study requires consideration of several methodological aspects. First, the high RoA values 372 

should be interpreted within the context of our standardized procedure, in which we gave a set 373 

of instructions based on previous recommendations (Del Vecchio, Holobar, 2020). Slight 374 

divergence from this procedure, such as a different pulse-to-noise ratio threshold, could have 375 

led to different results. Importantly, our results demonstrate that following our basic set of 376 

instructions (see Methods) ensures that the manual analysis of motor unit spike trains is highly 377 

reliable across operators. Second, even though our results are based on outputs from a specific 378 

decomposition algorithm (DEMUSE tool software, see Methods), we do not believe that 379 

different results would have been obtained with another decomposition algorithms. Third, we 380 

selected operators with varying experience. Quantifying this experience is not straightforward. 381 

Ideally, we should have used the total number of units they had decomposed in their careers, 382 

but none of the operators had kept such a record. We therefore estimated this experience based 383 
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on the number of published peer-reviewed articles including HDsEMG decomposition. Also, 384 

we selected operators from different research teams/universities, which ensured that they had 385 

had different prior training. Because HDsEMG decomposition requires training and some basic 386 

knowledge on neuromuscular physiology, we chose not to select fully inexperienced operators. 387 

Our results showed that moderate experience together with simple instructions are sufficient to 388 

ensure high reliability across operators. It suggests that the level of experience is certainly not 389 

a critical issue, at least not more than what is required for editing intramuscular EMG 390 

decomposition. We hope that the raw and the decomposed data provided with this article can 391 

be used to train new operators. Finally, it is important to note that the high RoA across operators 392 

does not provide information about the decomposition accuracy. However, the accuracy of 393 

decomposition was verified in previous studies using experimental (Chen and Zhou, 2016, 394 

Holobar et al. , 2010, Negro, Muceli, 2016) or simulated signals (Holobar, Minetto, 2014, 395 

Holobar and Zazula, 2007). Together with the excellent reliability of the manual editing 396 

reported herein, it provides further evidence that motor unit spike trains can be reliably 397 

estimated from HDsEMG decomposition. 398 

 399 

 400 

  401 
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