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ABSTRACT 21 

Coronavirus disease 2019 (COVID-19) pandemic has lasted more than a year since its first 22 

case in December 2019 and yet its social and economic burden continues to grow. While a 23 

tremendous amount of OMICs data has been generated from COVID-19 patient samples, the 24 

host antiviral response and markers of disease progression remain to be completely delineated. 25 

In this study, we have conducted a meta-analysis of published transcriptome and proteome 26 

profiles of the nasal swab and bronchioalveolar lavage fluid (BALF) samples of COVID-19 27 

patients to identify high confidence upregulated host factors. This was followed by rank 28 

ordering, shortlisting, and validation of overexpression of a set of host factors in a nasal 29 

swab/BALF samples from a cohort of COVID-19 positive/negative, 30 

symptomatic/asymptomatic individuals.  This led to the identification of host antiviral response 31 

in the upper respiratory tract and potential prognostic markers. Notably, SEPRIN B3 and 32 

Thioredoxin were identified as potential antiviral factors. In addition, several S100 family 33 
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proteins were found to be upregulated in COVID-19 specific and disease severity dependent 34 

manner. Overall, this study provides novel insights into the host antiviral mechanisms and 35 

COVID-19 disease progression.  36 

 37 
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 41 

INTRODUCTION 42 

COVID-19 pandemic has been reported in 221 countries with a total of 110,526,493 cases and 43 

2,442,986 deaths worldwide, as on February 18, 2021, 12:49 GMT 44 

(https://www.worldometers.info/coronavirus/).  The causative virus SARS-CoV-2 is a member 45 

of the family Coronaviridae which contains a single-stranded positive-sense RNA genome that 46 

encodes ~27 proteins (1).  The initial symptoms of infection are flu-like, including fever, dry 47 

cough, headache, muscle pain, and shortness of breath, which may resolve in 7-8 days in 48 

healthy individuals. The majority of infected individuals, especially young adults may remain 49 

asymptomatic, even with considerable viral load (2, 3). In severe cases, it may progress to 50 

Acute Respiratory Distress Syndrome (ARDS), multi-organ failure, and occasionally to death, 51 

especially in patients with immune-deficiency and comorbidities (4). An effective and timely 52 

IFN response is critical in resolving viral infections (5), however, SARS-COV-2 seems to have 53 

acquired multiple strategies to suppress host immune response and disrupt immune 54 

homeostasis (6). Severe cases of COVID-19 show extensive damage to lung tissues caused by 55 

a hyperactive proinflammatory response to the virus often termed as a cytokine storm. (7). The 56 

mechanisms underlying immune dysregulation brought about by the viral infection remain to 57 

be completely defined. Extensive efforts have been undertaken to understand the host response 58 

to viral infection using high throughput genomics and proteomics technologies. Several studies 59 

have explored serum diagnostic and prognostic markers by evaluating transcriptomic and 60 

proteomic changes in mild, severe and fatal cases of COVID-19 (8-11). Elevated levels of 61 

interleukins (IL6 and IL10), C-reactive proteins (CRP), MCP1, MIP1A, TNFα, procalcitonin 62 

(PCT), lactate dehydrogenase (LDH), ferritins, D-dimers and cardiac troponins in serum 63 

samples of COVID-19 patients are indicative of disease severity (8-13). Examination of host 64 

response at the primary site of infection in the upper respiratory tract, is crucial to understand 65 

viral pathogenesis. Various studies utilized the bronchoalveolar lavage and nasopharyngeal 66 
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swabs to characterize the changes in transcripts and proteins during infection to understand 67 

COVID-19 pathogenesis (14-19), which have highlighted significantly upregulated genes and 68 

biological pathways altered during infection. While proinflammatory cytokines, chemokines, 69 

enzymes in neutrophil mediated immunity and several IFN stimulated genes (ISGs) have 70 

consistently showed up in their analysis, an experimental validation and mechanistic studies 71 

are generally lacking (14-19). A detailed characterization of antiviral response in the upper 72 

respiratory tract of patients, its variation with age, sex and association with progression of 73 

disease severity remains to be accomplished.  74 

 75 

The goal of our study was to identify genes that are upregulated during SARS-CoV-2 infection 76 

in the upper respiratory tract of patients and understand their role in viral infection and disease 77 

progression. For this, we surveyed the literature for OMICs data from COVID-19 positive 78 

patient’s nasal swab and BALF samples and selected 4 transcriptomic and 3 proteomic datasets. 79 

We performed a hypergeometric distribution-based overlap analysis followed by cumulative 80 

fold change score-based prioritization to shortlist genes. This was followed by testing gene 81 

expression level in nasal swab/ BALF samples from a cohort of COVID positive, negative, 82 

symptomatic, and asymptomatic individuals, ranging from 30-60 years in age and of mixed 83 

gender. Quantitative PCR data analysis revealed upregulation of TXN, SERPINB3, S100A8, 84 

ASS1, S100A9, S100A6, S100P, DEFA3, and KRT6A in COVID-19 specific manner, whereas 85 

AGR2, LCN2, and BPIFB1 were identified to be associated with the severity of COVID-19 86 

symptoms. Overall, our analysis reveals a specific set of host genes that are upregulated in a 87 

COVID-19 specific manner and are indicative of disease severity. In addition, we have 88 

uncovered novel potential antiviral mechanisms that can be repurposed to mitigate viral 89 

replication and pathogenesis. 90 

 91 

MATERIALS AND METHODS: 92 

 93 

Data collection and Processing: 94 

Transcriptomics and protein abundance data from COVID-19 patient’s naso- and 95 

oropharyngeal swab, bronchoalveolar lavage fluid (BALF), and other respiratory specimens 96 

were chosen from PubMed, BioRxiv, and MedRxiv using different combinations of keywords 97 

like “COVID-19, SARS-CoV-2, Transcriptomics, Proteomics, BALF, swab”. Studies dealing with gene 98 

expression profiles of SARS-CoV-2 infected non-human cell lines and tissues were not 99 
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considered. The SARS-CoV-2 and COVID-19 collections in the EMBL-EBI PRIDE 100 

proteomics database (20) were retrieved and used without any modification. In the NCBI GEO 101 

database (21) the following combination of terms was used to collect relevant datasets: ((covid-102 

19 OR SARS-COV-2) AND gse [entry type]) AND "Homo sapiens"[porgn: _txid9606]. The retrieved 103 

datasets were then filtered by their date of publication to collect the studies published between 104 

the 1st of January 2020 and the 15th of September 2020.  The filtration of datasets was carried 105 

out using two parameters, fold-change, and its significance value. Genes and proteins with a 106 

fold-change value of ≥ 1.5 and q-value ≤ 0.05 were chosen for the overlap analysis. The raw 107 

p-value was used for filtering in cases where the adjusted p-value was not provided, albeit with 108 

a more stringent cut-off of ≤ 0.01. The UniProt IDs in filtered protein abundance datasets were 109 

converted to their corresponding primary Gene Symbols using UniProt (22). 110 

 111 

Gene set overlap analysis: 112 

The GeneOverlap class of R package “GeneOverlap” (23) was used for testing whether two 113 

lists of genes are independent, which is represented as a contingency table, and then Fisher’s 114 

exact test was used to find the statistical significance. Genes with less than 0.01 overlap p-115 

value were selected for further analysis. The number of background genes for proteome-116 

proteome pairwise study and the transcriptome-proteome pairwise study was 25,000, i.e., the 117 

number of protein-coding genes in Hg19. For the transcriptome-transcriptome overlap study, 118 

the number of background genes was taken to be the union of the expressed genes in both the 119 

datasets considered. 120 

 121 

Gene Ontology, Interferome Analysis, Cellular and tissue localization analysis:  122 

Enriched GO terms were obtained by express analysis on Metascape (24) and plotted using 123 

ggplot2 (25). The database Interferome v2.01 (26) was queried using gene symbols for 124 

identifying interferon regulated genes (IRGs) in normal samples of the respiratory system from 125 

both in vitro and in vivo experiments in humans. For cellular localization, each gene was 126 

queried on UniProt annotation (27) and Human Protein Atlas ver20.0 (28) and then manually 127 

annotated. The single-cell expression data of transcripts was also obtained from Human Protein 128 

Atlas ver20.0 (Available from http://www.proteinatlas.org/). They were further filtered to 129 

obtain cells that are associated with the immune system or respiratory tract. 130 

 131 

Virus-Host protein-protein interaction network analysis: 132 
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The interaction data for the selected 46 genes were retrieved from publicly available interaction 133 

datasets (29). The retrieved information was then used to generate a network map. Cytoscape 134 

v3.8.0 (30) was used to construct the interaction network for virus-host protein-protein 135 

interaction. STRING database within the Cytoscape store was used to query the proteins to 136 

elucidate the interactions between the proteins significantly altered during SARS-CoV-2 137 

infection. The resulting STRING interaction network (confidence ≥0.999 for all the proteins 138 

and confidence ≥0.90 for NAMPT; max number of interactors = 10) was merged with the virus-139 

host PPI on Cytoscape. 140 

 141 

Nasopharyngeal Swab Collection and RNA Isolation: 142 

Nasopharyngeal swabs were collected around Bengaluru Urban city and brought to COVID-143 

19 Diagnostic Facility at the Indian Institute of Science in viral transport media (VTM). RNA 144 

from patients was isolated using kits recommended and provided by the Indian Council of 145 

Medical Research. Appropriate RNA samples and VTMs were curated and selected manually 146 

based on age, sex, and severity of the disease. 147 

 148 

qRT-PCR based measurement of gene set expression: 149 

Equal amounts of RNA were converted into cDNA using Prime Script™ RT Reagent Kit with 150 

gDNA Eraser (Perfect Real Time) (RR047A, Takara-Bio) and then diluted with 80μl nuclease-151 

free water. The gene expression study was conducted using PowerUp™ SYBR™ Green Master 152 

Mix (A25778, Applied Biosystems™) with 18srRNA as the internal control and appropriate 153 

primers for the genes (Supplementary Table 3). 154 

 155 

Statistical analysis: 156 

All statistical analyses and overlaps were performed in the R statistical environment version 157 

4.0.3 via RStudio version 1.3.1093. All boxplots were made using the ggplot2 package in R 158 

(25) where the hinges of boxes represent the first and third quartiles. The whiskers of the 159 

boxplot extend to the value which is 1.5 times the distance between the first and third quartiles. 160 

Any data point that lies beyond it is plotted separately with a dot and is considered outliers. 161 

Each data point in the boxplot represents one of the triplicates in RT-qPCR for a particular 162 

gene in a particular patient sample. Heatmaps were generated using the R package 163 

ComplexHeatmap (31). 164 

 165 

Ethics Statement: 166 
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This study was conducted in compliance with institutional human ethics and biosafety 167 

guidelines, (IHEC No. 13-11092020; IBSC/IISc/ST/19/2019-20), following the Indian Council 168 

of Medical Research and Department of Biotechnology recommendations.  169 

 170 

Results: 171 

Compilation of published transcriptomics and proteomics data from COVID-19 patient 172 

samples and overlap analysis revealed 567 upregulated genes. 173 

Based on the selection criteria (materials and methods) four transcriptomics and three 174 

proteomics datasets were chosen and were carried down for the analysis as mentioned in the 175 

workflow (Figure 1A). All these studies identified differentially expressed genes in infected 176 

patients with healthy individuals as control (Table S1). The filtration of data was carried out to 177 

sort only significantly upregulated genes from all the datasets (Table S2). Pairwise overlap 178 

analysis was performed on the filtered genes/proteins from each study by calculating the 179 

Jaccard score and significantly overlapping genes (p-value < 0.01) between T1-T3 (14), T1-T4 180 

(9), T1-P3 (2), T3-T4 (504), T3-P1 (10), T3-P2 (8), T3-P3 (17), T4-P1 (8). T4-P3 (15) and P1-181 

P3 (3) were determined (Figure 1B). Similar forms of overlap analysis have been previously 182 

used to compare multiple datasets and obtain the significance of intersections (32). Union of 183 

intersections between the T-T and T-P and P-P after the overlap analysis results in 567 genes 184 

(Figure 1B). To reiterate the functional characteristics of the differentially expressed genes 185 

(DEGs), we scrutinized the biological processes and signaling pathways they are involved in. 186 

Pathway enrichment of 567 genes from the union of all intersections from overlap analysis 187 

(TT+TP+PP) shows that the genes are well enriched in a biological process like protein 188 

elongation, IFN signaling, chemotaxis of granulocytes, and inflammatory pathways (Figure 189 

1C). Interferons (IFNs) are secreted once the virus is detected within the cell by PRRs 190 

(pathogen recognition receptors) through a multitude of pathways involving transcription 191 

factors such as interferon regulatory factors (IRF3, IRF7, and IRF9.) and NF-B. Therefore, 192 

the possibility of these 567 genes being regulated by the IFNs was also investigated.  205 genes 193 

are type I IFN regulated, 170 genes by Type II IFNs, 327 genes are both types I and type II 194 

IFN regulated while only 16 genes were determined to be regulated by all the three classes of 195 

IFNs (Figure 1D). The 16 genes are well-renowned interferon-stimulated genes (ISGs). Some 196 

direct antiviral effector ISGs (IFITs, MX1, OAS3, and OAS1.), as well as positive regulators 197 

(STAT1) of IFN response, are among the upregulated genes among these 16 ISGs, indicating 198 

an active innate antiviral response inside the cells upon SARS-CoV-2 infection. 199 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431825doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431825
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

 200 

Ranking of genes based on cumulative score revealed differentially expressed genes 201 

regulating immune response and inflammatory signaling in COVID-19 patients. 202 

Since proteome dictates the outcome in a cell, genes from the union of intersections that were 203 

reported at least in one of the proteomics studies were selected for further analysis. This gave 204 

a total of 46 genes that were intersecting in T-P (26), P-P (3), TT-TP (16), TP-PP (1), and TT-205 

TP-PP (1) overlaps (Figure 2A and 2B). A cumulative score for the 46 selected significantly 206 

upregulated genes was calculated using the sum of their log2 Fold-change values and ranked 207 

(Figure 2C). The enrichment of these 46 genes in each of the datasets where the expression is 208 

reported is shown in Figure 2B. Many of these genes are directly regulated by different classes 209 

of interferons. 15 genes are regulated by IFN-I, while 8 genes by IFN-II. 20 genes are regulated 210 

by both type-I and type-II IFNs, while only 2 genes by all the three types of IFNs (Figure 2D). 211 

Most of the IFITs and other ISGs that were earlier determined in our analysis to be regulated 212 

by all the three types IFNs are no more in the list since those ISGs were only reported 213 

upregulated at transcriptome level (only in T-T overlap) and hence were lost when the genes 214 

were filtered for their upregulation at the protein level, leaving behind only MX1 and OAS3 215 

(Figure 1C and 2D). The biological functions of the selected 46 genes were also investigated 216 

to understand their roles in COVID-19 pathophysiology. The pathways enriched were mainly 217 

related to innate immune response and defense against microbes along with inflammatory and 218 

immune signaling, neutrophil degranulation, and cellular response to TNF and interferon-219 

gamma (Figure 2E). Since these genes are significantly upregulated during the SARS-CoV-2 220 

infection, it is highly plausible that the hyperactive exaggerated immune response and 221 

inflammation leading to lung immunopathology maybe due to these unchecked responses 222 

(Figure 2E).  223 

Further, to understand the pathophysiology of COVID-19, the interactions of these 224 

genes with SARS-CoV-2 proteins were inspected by analyzing the publicly available 225 

interaction data (29). Host protein-protein interactions were retrieved from the STRING 226 

database and merged with the virus-host protein-protein interactions giving a discrete picture 227 

of how the viral proteins target various cellular processes during infection. Other than NAMPT, 228 

UQCRC2, and RAB5C, it was mainly ribosomal proteins that were primary interactors to the 229 

SARS-CoV-2 proteins (Figure 2F and 2G). Ribosomal proteins, along with a eukaryotic 230 

elongation factor, were targeted by four different viral proteins (Nsp1, Nsp8, Nsp9, and N 231 

proteins of SARS-CoV-2) which suggests that cellular translation machinery is one of the 232 
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critical processes that is likely hijacked by the virus for its multiplication (Figure 2F). The 233 

interactions with other proteins (NAMPT, UQCRC2, and RAB5C) also explain an approach 234 

taken by the virus via direct interaction with host proteins to partially take over the system and 235 

utilize its resources efficiently for its benefits (Figure 2G). These interactions may be one of 236 

the potential ways of evading intracellular immune responses and disrupting the cellular 237 

processes that lead to the clearance of the virus. A number of upregulated proteins were 238 

predicted to localize in the intracellular organelles like endoplasmic reticulum, mitochondria, 239 

Golgi complex, and endosomes (Figure S1A). A thorough analysis of the selected list of 46 240 

genes using Human Tissue Atlas revealed that they express in various types of cells of the 241 

respiratory tract and immune effector cells known to survey infection sites (Figure S1B). The 242 

relative expression levels show that genes associated with protein synthesis (ribosomal proteins 243 

and elongation factors) are highly expressed compared to any other genes and are enriched 244 

across all the tissues in the map (Figure S1B).  245 

 246 

Validation of selected upregulated genes in a cohort of COVID-19 patients. 247 

For further analysis using RT-qPCR, we selected all genes with a cumulative score greater than 248 

10. In addition to this, all genes belonging to the S100 family that came up within these 46 249 

genes were also selected since they are known markers of inflammation. TXN (Thioredoxin) 250 

was selected because it was at the center of the Venn diagram (Figure 2A) and hence present 251 

in significant intersections between overlaps comparing Proteome-Proteome, Transcriptome-252 

Transcriptome, and Proteome-Transcriptome. From a total of 64 patients, nasopharyngeal 253 

swabs of 16 positive-symptomatic, 16 positive-asymptomatic, 16 negative-symptomatic, and 254 

15 negative-asymptomatic were collected and total mRNA was isolated (Table 1). The 255 

upregulation of the selected genes among 46 genes was verified by RT-qPCR on the patient 256 

samples and expressed as log2 fold-change with respect to the negative asymptomatic group 257 

(Figure S2, Figure 3A). The heatmap depicts the enrichment of the selected genes in different 258 

patient samples (Figure 3A). We determined a direct correlation between the increasing viral 259 

load in COVID-19 patients and the upregulation of selected proteins as detected by the RT-260 

qPCR of viral envelope (E) gene and the log2 Fold-change of respective genes in the patient’s 261 

sample. The data shows that the Ct value for the E gene was negatively correlated with log2 262 

Fold-change of genes showing that viral load and disease severity are positively correlated 263 

(Figure S5). The upregulation of all the selected genes was found to be higher in positive 264 

symptomatic patients with a higher viral load than positive asymptomatic (Figure 3A and 265 

Figure S5). A comparative heatmap in Figure 3B gives an insight into the genes that are 266 
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COVID-19 specific markers, or markers for severity during SARS-CoV-2 infection, and those 267 

that are indicative of any general infection. While all the genes reported upregulated are a 268 

marker for infection (Figure 3B; NA-PS), only a few genes showed significant upregulation in 269 

a COVID-19 specific manner (Figure 3B; NS-PS). Other than S100A12 and KRT8, all other 270 

genes are significantly upregulated in symptomatic COVID-19 patients in contrast to 271 

asymptomatic COVID-19 patients and hence can be considered as prognostic markers. 272 

SERPINB3, ASS1, S100A6, and S100A9 also display a significant COVID-19-specific 273 

enrichment and hence, can be acknowledged as possible markers for prognosis of the disease 274 

(Figure 3B, NS-PS). 275 

To understand the influence of age and sex on the COVID-19 pathology we chose to study the 276 

reported upregulation of genes in patient’s samples by categorizing them based on age groups 277 

(30-40, 41-50, and 51-60) and gender (male and female) (Figure 3C, Figure 3D, Figure S3 and 278 

S4). The RT-qPCR analysis revealed that almost all the genes are induced in positive 279 

symptomatic patients. However, the S100 family of genes show upregulation in the case of 280 

positive symptomatic (at least 4-fold with respect to negative asymptomatic) and negative 281 

symptomatic (at least 1.9-fold with respect to negative asymptomatic where it is significant, 282 

Figure 4A) patients and it is independent of the age and sex of the patient indicating that they 283 

are common markers of infection (Figure 3A, 3C, and 3D).  Neutrophil defensin alpha 3 284 

(DEFA3) is interestingly upregulated in some of the positive symptomatic patients with no 285 

biases towards a specific age group or sex. DEFA3 is a small antimicrobial peptide that has 286 

been reported to display broad-spectrum antiviral activity (33-35). Hence, an upregulation 287 

during SARS-CoV-2 infection is not surprising. However, expression of DEFA3 remained 288 

undetermined in many of the patient’s samples, indicating a requirement of a larger sample size 289 

to confirm its importance for prognosis.  290 

 291 

S100 family transcripts are highly enriched in COVID-19 symptomatic patients. 292 

An upregulation of S100 proteins is reported by many studies as an indication of viral or 293 

bacterial infections (36). Interestingly, a large proportion of selected 46 DEGs include the S100 294 

family of proteins in our analyses (Figure 2B). S100A8, S100A9, S100A6, and S100P show a 295 

considerable enrichment in positive symptomatic patients in contrast to positive asymptomatic 296 

and negative symptomatic patient samples (Figure 4A). The extracellularly secreted S100 297 

proteins include S100A12, S100A8, and S100A9 (Figure S1A), all of which have been shown 298 

to serve as a danger signal and in regulating immune response (37). They activate NF-kB 299 
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signalling through RAGE and TLR4 pathways stimulating the cells to produce 300 

proinflammatory cytokines at the site of infection (37). It is no surprise that their enrichment 301 

in our analyses suggests that they are significantly upregulated in COVID-19 positive patients. 302 

An age-dependent upregulation of S100A6 among COVID-19 positive patients is very evident 303 

in the age group 41-50 (Figure 4B). A similar trend is observed for its upregulation independent 304 

of sex differences. S100A6 is significantly upregulated in positive symptomatic males as well 305 

as females (Figure 4C). For patients falling in the negative category, only S100A12, S100A9, 306 

and S100P show sex-based difference and all show age-based differences in 41-50 and 51-60 307 

age groups except for S100A6 which shows the significant lowering of gene expression in 308 

negative symptomatic patients falling in the 30-40 age group (Supplementary Figure 6A and 309 

B). The S100 family of proteins display considerable expression in macrophages and other 310 

immune-related cells in the tissue expression atlas indicating its involvement in inflammation 311 

and immune response across a broad range of pathogens (Figure S1B). 312 

 313 

DISCUSSION 314 

Application of high throughput OMICs technologies to understand systems level regulation of 315 

biological processes has become commonplace. A number of studies have analysed changes in 316 

global transcriptome and proteome in COVID-19 patient samples of various kinds. These 317 

studies have given overview of the cellular processes that are modulated during SARS-Co-V2 318 

infection, however translation of this knowledge into antiviral interventions requires validation 319 

and mechanistic studies. Meta-analysis of virus-host interaction Big Data is a useful approach 320 

to narrow down on key host factors involved in viral replication and pathogenesis (32, 38). 321 

Using this approach, we have performed an integrative analysis of published transcriptomics 322 

and proteomics data from COVID-19 positive nasal swab and BALF samples, to identify host 323 

factors involved in SARS-CoV-2 pathology and disease progression. In our analysis we 324 

focussed on genes which were represented in multiple orthogonal datasets, especially in 325 

proteomics data. This was done based on assumption that changes at RNA levels must also be 326 

manifested at the protein level to bring about phenotypic changes in the infected individuals 327 

during infection. Expression of the genes shortlisted through meta-analysis was tested in a 328 

cohort of nasal swab samples collected for COVID-19 diagnosis. This included samples from 329 

COVID-19 negative and positive, and within those two, samples from symptomatic and 330 

asymptomatic individuals. This was done to ensure identification of genes which are 331 

overexpressed in COVID-19 specific manner and those which indicate disease severity.  332 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431825doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431825
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

 333 

Previous meta-analysis studies by reusing BALF/PBMC/Whole blood transcriptomic data have 334 

extensively studied the immune and metabolic pathways that contribute to/counteract SARS-335 

CoV-2 infection (39, 40) and provided insights into therapy strategies such as the use of 336 

tocilizumab against IL-6 receptor (41). A meta-analysis study that integrates orthogonal 337 

datasets of proteomics, transcriptomics and interactomes have also narrowed down on multiple 338 

pathways that are associated with immune related functions (42). 339 

 340 

The cumulative ranking of shortlisted genes based on their upregulation showed SERPINB3 at 341 

the top (Figure 2C). SERPINB3 belongs to the serine protease inhibitor family and it inhibits 342 

papain-like cysteine proteases such as papain, cathepsin-S, -K, and –L, thus pointing towards 343 

a possible mechanism for hindering viral entry through cathepsin inhibition or prevent viral 344 

spread by interfering with proteolytic processing of Spike protein (43, 44). Furthermore, 345 

SERPINB3 has been shown to play an important role in attenuating TNF- α mediated apoptosis 346 

and exhibits an anti-chemotactic effect for natural killer (NK) cells (45), and thus may mitigate 347 

the host inflammatory immune response. Additionally, SERPINB3 upregulation was more 348 

prominent in positive symptomatic patients when compared to negative asymptomatic or 349 

positive asymptomatic category, confirming its utility as a COVID-19-specific disease severity 350 

marker (Figure 3B). Other notable SERPIN family members like SERPINB1 (which came up 351 

during our cumulative score ranking, Figure 2C) and SERPINE1 has been shown to restrict 352 

pathogenesis of influenza, the latter by preventing influenza A glycoprotein maturation (46, 353 

47). SERPINA1 deficiencies or mutations in populations were found to be associated with 354 

severe forms of COVID-19 and IL-6 to α1-antitrypsin (protein coded by SERPINA1) ratios 355 

positively correlated with disease severity and mortality (48, 49). Notably, several ribosomal 356 

proteins (RPs) emerged as highly upregulated proteins in the patient samples (RSP3A, RPL4, 357 

RPL5, RPL18, RPL13A, RPS4X, RPL7A, RPS9, and RPS3) as evident from the enriched GO 358 

term “peptide chain elongation”. Previous studies have shown that ribosomal proteins (RPs) 359 

are hijacked by different viruses during infection to activate IRES-mediated translation of viral 360 

proteins (50-57) . Besides an upregulation, RPs are also recorded to directly interact with viral 361 

proteins (50, 58, 59). Our inspection for possible interactions between the ribosomal proteins 362 

that came up in our list with the SARS-CoV-2 proteins revealed that nsp1, nsp8, nsp9 and 363 

nucleocapsid (N) proteins of SARS-CoV-2 directly interact with the host ribosomal proteins 364 

(Figure 3C). Considering these data, it is likely RPs in our list may be targeted by SARS-Co-365 

V2 proteins for selective translation of viral proteins.  366 
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 367 

Several genes shortlisted through our analysis play direct or indirect role in prepping the cell 368 

for combating the infection. The GO analyses showed, pathways like “antimicrobial humoral 369 

response”, “Response to interferon-gamma", “interferon alpha-beta signalling”, “granulocyte 370 

activation”, “response to interferon-alpha” “granulocyte chemotaxis”, neutrophil 371 

degranulation” to be highly enriched. Cornification is another significantly enriched pathway 372 

which has been reported to regulate expression of proteins involved in restructuring the cellular 373 

architecture like keratin proteins during viral infection (60-65). The viruses also exploit the 374 

cytoskeletal elements for their entry, assembly and exit of viral particles, thus explaining the 375 

enrichment of pathways like “plasma membrane bounded cell projection assembly”, 376 

“cytoskeleton-dependent intracellular transport”, “actin cytoskeleton organization” and 377 

“vesicle cytoskeletal trafficking” appearing in our analysis.  378 

 379 

From analysis of potential direct interactions between the viral and host proteins during 380 

infection based on published interactome data, UQCRC2 (Cytochrome b-c1 complex subunit 381 

2) was found to be interacting with 5 different SARS-CoV-2 proteins, orf7a, nsp7, nsp2, orf9c, 382 

and Membrane (M) (Figure 2G). We reasoned this unique finding as a mechanism of induction 383 

of oxidative mitochondrial dysfunction that affects ATP production (66, 67). UQCRC2 directly 384 

interacts with critical components of respiratory chain complexes II and IV that have been 385 

reported to be upregulated during viral infections, affecting ATP production in the infected 386 

cells that is utilized by the virus for its replication (66). Nicotinamide phosphoribosyl 387 

transferase (NAMPT), which catalyses a rate-limiting step in de novo NAD biosynthesis, was 388 

another cellular factor in our list , with potential interactions with SARS-Co-V2 M, Orf8 and 389 

Orf9c proteins (Fig 2G) (68-70). A recent finding on SARS-CoV-2 reports that the virus causes 390 

a downregulation of the de novo NAD biosynthetic pathway (71). This suggests that NAMPT, 391 

being an enzyme critical in de novo pathway, maybe a direct target for modulation which is 392 

evident in our analyses. 393 

 394 

A subset of upregulated proteins is secretory including S100A12, S100A8, S100A9, 395 

SERPINB3, DEFA3, LCN2 and TXN. LCN2, which came up in our study was previously 396 

shown to be an important biomarker for viral infection (72, 73), and was also reported to be 397 

upregulated in transcriptomic and proteomic studies in COVID-19 patients (74, 75). It has been 398 

shown that virus replication and inflammation goes down when thioredoxin reductase, a 399 

reducing agent of TXN is inhibited using auranofin, pointing towards the importance of redox 400 
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environment during SARS-CoV2 pathogenesis (76), akin to many inflammatory responses 401 

which are governed by the redox status of the cell (77). We observed upregulation of members 402 

of the S100 family of genes like S100A8, S100A9, S100A6, and S100P in severe COVID-19 403 

specific manner. It was reported that increased S100A8/A9 (calprotectin) levels in serum of 404 

COVID-19 patients has been correlated with severe forms of the disease (78, 79). These were 405 

also observed with increased incidence of neutrophil extracellular trap formation and clinical 406 

thrombosis in patients (80). Our findings also align with transcriptomic studies on lung tissue 407 

of fatal COVID-19 cases which report an upregulation in S100A12, S100A8, S100A9, and 408 

S100P in patients (81). Taken together S100 family of genes can be indicative of COVID-19 409 

infection and disease progression and can be considered as prognostic markers. 410 

 411 

Our comprehensive analyses of transcriptome and proteome data along with experimental 412 

validation of upregulated genes in COVID-19 cohort lead us to a set of host factors that have 413 

direct implications in the SARS-CoV-2 infection and associated diseases. The age and sex-414 

based differences in gene expression that we observed highlight the varied individual 415 

responses. Many previous studies have also noted the biases in COVID-19 outcomes among 416 

age and sex groups (82-85), drawing attention to their robustness of immune responses and 417 

overall physiology. Overall, our data suggests that S100A6, S100A9, S100A8, SERPINB3, 418 

TXN, and ASS1 exhibit upregulation with the disease severity and progression in COVID-19 419 

patients. However, an exhaustive investigation to dissect their direct roles and correlation with 420 

infection is required to certainly declare them as COVID-19 prognostic markers.  421 

 422 

Strikingly, we observed several cellular pathways and signalling cascades being directly 423 

targeted by SARS-CoV-2 through the understanding of transcriptome and proteome changes 424 

in bronchoalveolar lavage fluids (BALF) and nasopharyngeal swab samples from COVID-19 425 

positive symptomatic and asymptomatic patients. Our study discusses the ungrateful aspects 426 

of COVID-19 infection and host response at the site of infection. In any infection, knowledge 427 

of affected cellular signalling pathways opens the road to drug repurposing and novel 428 

therapeutic strategies. Drugs that target host factors rather than viral proteins help surpass the 429 

problem of high mutation rates of viruses that could reduce the efficacy of the latter. Studying 430 

enriched pathways and genes also provide insights into unique antiviral immune responses by 431 

the host or immune evasion strategies deployed by the virus. The findings of this study explore 432 

both these aspects and also look into the strategies shared by SARS-CoV-2 compared to other 433 

previously known viral infections. It reaffirms the need for integrated approaches for 434 
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investigating host-pathogen interactions as opposed to isolated pathways in a beautifully 435 

chaotic cell. 436 

 437 
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 658 

Figure 1: Meta-analysis pipeline for gene prioritisation and associate pathway analysis. 659 

A) Three proteomics and four transcriptomics datasets were chosen to obtain biomarkers for 660 

COVID-19 in humans. Genes/proteins that came up in these studies with a fold change greater 661 

than 1.5 and a q-value less than 0.05 (p-value less than 0.01 was taken in cases where q value 662 

is not provided) were subjected to pairwise overlap analysis. Genes that fall under significant 663 

intersections and represented in at least one proteomic dataset were sorted using cumulative 664 

scores to be experimentally verified. B) Triangular heatmap showing pairwise overlaps 665 

between transcriptomic and proteomic datasets. The number within each box denotes the 666 

number of genes that showed up between the corresponding intersections. The colour of a box 667 

denotes the significance of overlap. C) Gene ontology of all genes (567) in the significant 668 

intersections obtained during the overlap analysis plotted with the number of genes in each 669 
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term on the X-axis, proportion of genes enriched compared to the total number of genes in each 670 

term as the size of dots and the colour representing log10 p-adj value (q-value) of enrichment. 671 

D) Venn diagram showing the number of genes that are induced by Type I, II, or III interferons. 672 

The analysis was performed on Interferome v2.01 using the union of significant intersections 673 

(567) 674 
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 675 

Figure 2: Cumulative score ranking, pathway and interactome analysis of selected host 676 

factors. A) Venn diagram of genes obtained from significant intersections among proteomic 677 

or transcriptomic datasets after pairwise overlap analysis. B) Genes in the Venn diagram that 678 

were found in at least one proteomic dataset with their log2FC values in the datasets where they 679 

are present. Boxes coloured in white denote that the gene is not present in the particular dataset. 680 
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C) Genes arranged in descending order of cumulative scores obtained as a sum of log2FC 681 

values in the datasets where they are present. D) Venn diagram showing the number of 682 

interferon-induced genes performed using Interferome v2.01 for 46 selected genes. E) Gene 683 

ontology of 46 genes plotted with the number of genes in each term on the X-axis, the 684 

proportion of genes enriched compared to the total number of genes in each term as the size of 685 

dots and the colour representing log10 p-adj value (q-value) of enrichment. F, G) Virus-host 686 

protein-protein interactions among SARS-CoV2 proteins and significant genes in the overlap 687 

analysis that shows up in at least one proteomic dataset modelled using Cytoscape v3.8.0. A 688 

STRING interactome for the primary interactors of SARS-CoV-2 proteins was merged 689 

(confidence ≥0.999 for all the proteins and confidence ≥0.90 for NAMPT; max number of 690 

interactors = 10). Red: SARS-CoV-2 proteins, Green: Host proteins (primary interactor), blue: 691 

STRING interactors (other cellular proteins interacting with the primary interactors). 692 
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 693 

Figure 3: RT-qPCR validated expression profile of selected genes in different categories 694 

of COVID-19 cohort A) RT-qPCR was performed on RNA isolated from COVID-19 patients 695 

for 14 genes and average log2 Fold-change values (with respect to Negative Asymptomatic 696 

group) of PCR triplicates are shown in a heatmap. Each column represents a patient and 697 

clustering was performed for columns and within row slices. The bottom annotation shows the 698 

Ct value for the viral gene encoding Envelope (E) protein with a corresponding legend on the 699 

top. Black boxes denote ‘value unknown’. B) Differences between groups for each gene were 700 

computed using the Mann-Whitney rank-sum test (paired = FALSE) without averaging PCR 701 

replicates. The log10 (p-value) of comparisons is shown in the heatmap. The comparisons are 702 

Negative asymptomatic vs Positive symptomatic (NA-PS), Negative symptomatic vs Positive 703 

symptomatic (NS-PS), Positive asymptomatic vs Positive symptomatic (PA-PS). *P < 0.05; 704 
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**P < 0.01; ***P < 0.001; ****P < 0.0001; ns – not significant. C) log2 Fold-change values 705 

are grouped based on age groups 30-40, 41-50, and 51-60. Each row represents the average of 706 

log2 Fold-change values for patients falling into the particular age group and respective disease 707 

status. D) log2 Fold-change values are grouped according to sex. Each row represents the 708 

average of log2 Fold-change values for patients falling into the particular sex and respective 709 

disease status. 710 
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 712 

Figure 4: Expression profile of the S100 family of genes in different categories of COVID-713 

19 cohort. A) log2 Fold-change values are plotted as box plots for the S100 family of genes 714 

for patients who are Negative asymptomatic (NA), Negative symptomatic (NS), Positive 715 

asymptomatic (PA), and Positive symptomatic (PS) without averaging PCR replicates. B) Age-716 

wise and C) Sex-wise differences in gene expression among Positive asymptomatic (PA) and 717 

Positive symptomatic (PS) patients were plotted with the significance of the comparison 718 

between groups shown on the corresponding box. Differences between groups for each gene 719 
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were computed using the Mann-Whitney rank-sum test (paired = FALSE). *P < 0.05; **P < 720 

0.01; ***P < 0.001; ****P < 0.0001; ns – not significant. 721 
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Patient Status 

Number 

of 

patients 

Average 

age 

Number 

of males 

Number 

of 

females 

Number 

in the age 

group 30-

40 

Number 

in the age 

group 41-

50 

Number 

in the age 

group 51-

60 

Negative 

Asymptomatic 
16 43.9 8 8 5 6 5 

Negative 

Symptomatic 
16 41.7 12 4 9 4 3 

Positive 

Asymptomatic 
15 44.3 8 8 6 6 4 

Positive 

Symptomatic 
16 45 8 8 5 5 6 

 723 

Table 1: Summary of individual and different categories in the COVID-19 cohort used 724 

for RT-qPCR based validation analysis. All samples were collected from Bangalore Urban 725 

area for diagnostic purposes. 726 
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