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Abstract  
Gene expression alterations occur in all mouse tissues during aging, but recent works highlight 

minor rather than major dysregulation amplitude for most genes, questioning whether 

differentially expressed genes on their own provide deep insight into aging biology. To clarify 

this issue, we have combined differential gene expression with weighted gene correlation 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

network analysis (WGCNA) to identify expression signatures accounting for the pairwise 

relations between gene expression profiles and the cumulative effect of genes with small fold-

changes during aging in the brain, heart, liver, skeletal muscle, and pancreas of C57BL/6 mice. 

Functional enrichment analysis of the overlap of genes identified in both approaches showed 

that immunity-related responses, mitochondrial energy metabolism, tissue regeneration and 

detoxification are prominently altered in the brain, heart, muscle, and liver, respectively, 

reflecting an age-related global loss of tissue function. While data showed little overlap among 

the age-dysregulated genes between tissues, aging triggered common biological processes in 

distinct tissues, particularly proteostasis-related pathways, which we highlight as important 

features of murine tissue physiological aging.  

Introduction 
Gene expression alterations occurring throughout the lifespan have been described for a 

multitude of species, organs, and cell types [1–10]. The most commonly reported age-related 

dysregulations involve the immune system [9,11–13] where inflammatory response genes are 

upregulated even in the absence of pathogen infection [5,6,9,11,14–19]. Energy metabolism, 

redox homeostasis, and mitochondrial function alterations are also frequently observed in age-

related studies [6,9,11,15–18,20], particularly the downregulation of genes encoding 

mitochondrial ribosomal proteins and components of the electron transport chain [5,11,14–

16,18], protein synthesis machinery [5,11,17],  developmental and cell differentiation genes 

[9,11,19], and extracellular matrix components [6,14–16]. Up-regulated genes are associated 

with the stress response and DNA repair [5,6,9,11,14,16–18], RNA processing [11,12,17] and 

cell cycle arrest [5,16,21]. Despite this, the existence of specific genetic signatures of aging 

continue to be a matter of debate as gene regulation is mostly tissue-specific [5–7,15,20,22–

25], but also because there is focus on comparisons between young and old individuals 

without much consideration of the dynamics of gene expression throughout the lifespan. 
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Nonetheless, there is some evidence in humans and animal models shedding light on these 

dynamics.  As an example, a marked shift in mRNA and microRNA expression (namely in 

regulators of genes involved in nervous system development and function, neurological 

diseases, and cell-cell signaling) has been reported to occur at around age 20 in the human 

prefrontal cortex [26,27]. Less striking alterations are reported in the same brain region 

between 30-60 years [27,28], entailing genes related to the synapse, fatty acid metabolism, 

purine nucleotide binding, ubiquitin proteolysis, channel activity, translation, DNA damage 

response, transcriptional activation, and neuronal function [29]. Late middle-age and early old-

age shifts have also been described in human peripheral blood leukocytes for genes involved in 

cancer, hematological and immunological diseases, cell-mediated immune response and 

signaling pathways [30], and in the human brain and muscle for both coding and non-coding 

RNAs pertaining to longevity pathways [31].  

In animal models, similar findings have been reported. In a study across 11 rat organs, the 

most frequent changes in gene expression occurred at around 6 and 21 months [32], proposed 

to be equivalent to middle-age in humans [33]. In a similar study across 17 mouse tissues, shift 

points of gene expression trajectories have been identified at around 6 months for 

extracellular matrix genes, 10 months for mitochondrial genes, 12 months for genes encoding 

heat shock proteins, and at around 15 months for immune response genes [6]. Nonetheless, 

evidence also suggests tissue-specific turning points in gene expression profiles [6,20,34]. For 

example, immune response gene expression was found to change in the mouse kidney 

between 13 and 20 months, in line with the previously described organismal trend, whereas in 

the spleen and lung this shift occurs later in life, at around 26 months [34]. 

However, the previous studies have mainly focused on differential gene expression to 

characterize the aging transcriptome and ignored the pairwise relationships between gene 

expression profiles, which may underlie commonly altered pathways and regulatory 
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mechanisms with age. The cumulative effect of co-expressed genes with small fold-changes 

has also been disregarded, as most of these studies usually select genes with at least two-fold 

expression changes. Therefore, in this work, we combined differential gene expression 

profiling with weighted gene correlation network analysis of publicly available mouse RNA 

sequencing (RNA-Seq) data (GSE132040) [6,35,36] in order to: 1) identify clusters of genes 

significantly correlated with aging in different mouse tissues, 2) establish their trajectories 

from mature adulthood to old age, 3) identify the time point of the shift in gene expression 

profile, and 4) evaluate the biological processes (BPs) associated with the gene dysregulations. 

The data showed tissue-specific age-related alterations and highlighted gene expression in the 

pancreas as being largely unaffected across the lifespan. We also found that genes involved in 

lipid metabolism start to be differentially expressed relatively early and continue to exhibit 

altered expression until old age. Different onsets of gene dysregulation were identified, 

demonstrating an asynchronous impairment of gene expression with age. Gene Ontology (GO) 

biological processes’ over-representation analysis revealed immunity-related responses, 

mitochondrial energy metabolism, regeneration, and detoxification as the most prominently 

altered processes in the brain, heart, muscle and liver, respectively, which may reflect the 

global loss of organ function, confirming previous reports. Despite little overlap in age-

dysregulated genes between tissues, a comparison at the level of dysregulated processes 

revealed inter-tissue commonalities, such as alterations in proteostasis-associated processes. 

We propose that the genes involved in these processes are important players of murine 

physiological aging, especially in the muscle, brain, and liver.    

Results  

Modest tissue-specific  changes in gene expression are observed  across 

the lifespan 
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In this study we used a publicly available transcriptomic dataset of aging mice, from which we 

selected a subset of samples from the brain, heart, muscle, liver, and pancreas, from 3 to 27 

month-old male and female mice (see Methods – Dataset characterization). 

In order to obtain a global characterization of the mouse aging transcriptome and, in 

particular, to understand which of the main known sources of genetic variation (tissue, age, 

and sex) is responsible for the highest percentage of sample segregation, we performed a 

principal component analysis (PCA) of all samples based on variance stabilizing transformation 

(VST)-normalized read counts. Principal components were calculated based on the 500 most 

variable genes as they are expected to capture the greatest variability between samples (see 

Methods - Differential gene expression analysis). We observed that, based on VST-normalized 

gene expression values, samples tend to cluster by tissue, which is in line with previous 

observations [5–7,15,20,22–24,37], and the reason why all subsequent analyses were 

performed on each tissue separately (Figure 1A). Additionally, we focused on samples from the 

brain, heart, muscle, liver, and pancreas, as these tissues are associated with and well-

characterized in age-related diseases [38–42]. When considering gene expression variation in 

each tissue independently, we observed that sex, rather than age, is responsible for most of 

the between-sample variability and adjusted for its effect on gene expression by adding it as a 

co-variable in the model (Supplemental Figure S1; see Methods – Differential gene expression 

analysis).   

As a first approach to establish age-regulated genes, we performed differential expression 

between each lifespan time point (6, 9, 12, 15, 18, 21, 24 and 27 months) relative to the 

reference time point (3 months) on a total of 50735 genes (post-filtering, see Methods – 

Differential gene expression analysis) and selected the differentially expressed genes (DEGs) in 

each pairwise comparison, and for each tissue. Next, to obtain a global view of the amplitude 

of gene expression dysregulation of each tissue with aging, we calculated the percentage of 
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DEGs across the lifespan, considering each tissue’s total number of DEGs as the sum of the 

DEGs in each time point relative to the 3-month age reference, and keeping only unique gene 

IDs. We identified a total of 684, 1051, 1623, 2233, and 277 differentially expressed genes in 

the brain (1.3%), heart (2.1%), liver (3.2%), muscle (4.4%), and pancreas (0.5%), respectively 

(Figure 1B). These results highlight the pancreas and muscle with the lowest and the highest 

number of genes changing their expression with age, respectively. Although age-related 

transcriptomic alterations are globally modest in number, this is in agreement with past 

literature for a variety of tissues and animal models [recently reviewed in 17]. When 

considering the amplitude of tissue-specific DEGs per time point, we observed a global trend of 

increasing transcriptomic changes with increasing age, with an onset at the shift from middle- 

to old-age (15 to 18 months) (Figure 1C). In addition to the amplitude of gene expression 

dysregulation, we also evaluated the magnitude of these alterations. In general, up-regulated 

genes exhibit a wider range of fold-changes (FC) than the down-regulated genes (Figure 1D). 

Interestingly, most of the genes in the muscle exhibited very low FCs, failing to reach the 

commonly accepted threshold of double expression (log2 fold-change (log2FC) = 1; FC = 2), 

whereas in the pancreas, the majority of genes consistently more than doubled their 

expression in each time point when compared to the 3 months (Figure 1D, upper panel). 

Accordingly, most of down-regulated genes in the muscle exhibited a less than two-fold 

decrease in expression, while the reduction in the expression of most pancreas DEGs was more 

than half (Figure 1D, lower panel). Biotype assessment of the DEGs in each tissue and time 

point based on the Ensembl classification (see Methods – Differential gene expression analysis) 

showed that dysregulation mainly occurs at the protein coding level (Figure 1E). Nonetheless, 

changes in the expression of long non-coding RNAs may be of relevance, especially in the 

brain, liver, and pancreas (Figure 1E). 

We then asked whether the DEGs found in each time point were specific to that comparison or 

if they were present in other time points, i.e., if they were pervasive throughout aging. The 
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data showed that the vast majority of the DEGs were dysregulated in half or less of the lifespan 

only (Figure 1F, “4 time points or less”). We also identified the genes that were differentially 

expressed in the highest number of lifespan time points in each tissue and considered them to 

be “Top DEGs” (TDEGs) as they were dysregulated throughout most of the lifespan (Figure 1E; 

Table 1; Supplemental File S1). The muscle and the pancreas stood out from the rest of the 

tissues by exhibiting the highest (16) and the smallest (1) number of pervasively dysregulated 

genes, respectively. Moreover, each tissue exhibited a different set of the TDEGs, suggesting 

that the age-related gene expression dysregulation is mainly tissue-specific (Table 1).  

Different subsets of co-expressed genes exhibit specific age-related 

trajectories  

As a second approach to defining age-regulated genes, we performed weighted gene 

correlation network analysis (WGCNA) to explore the co-expression patterns of gene 

expression over time. Similar to the differential expression analysis, WGCNA was performed on 

each tissue independently, with each tissue’s co-expression network comprising a variable 

number of modules of positively correlated genes (Supplemental File S2).  

To select the most interesting modules for the aging process, we followed a two-step 

approach. First, for each module, the corresponding gene expression profiles were 

summarized into a representative - module eigengene (ME; see Methods - Identification of 

significantly age-associated modules, hub genes, and DEG-module-hub overlapping genes) - 

and this illustrative profile was correlated with aging. All modules with a significant (false 

discovery rate (FDR) < 0.05) and at least moderate (≥ 0.4) correlations between their ME and 

age were selected. The brain exhibited 4 modules significantly correlated with age (3 positive 

and 1 negative); the heart and the muscle both showed only 1 module negatively correlated 

with age; the liver displayed 5 modules negatively correlated with age and 4 modules with 
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positive correlation; and the pancreas did not have any modules significantly correlated with 

age and was not considered in further analyses (Figure 2A).  

Next, the gene significance (GS) and module membership (MM) measures were analyzed. GS 

refers to the absolute value of individual correlations of genes to the trait of interest, whereas 

MM relates to the individual correlations of genes to the ME. High correlations between these 

two measures are indicative of genes that are highly significant for aging being as well highly 

important to the module. Modules exhibiting significant (p-value < 0.05) and at least moderate 

MM-GS correlations (≥ 0.4) were selected. From the 4 previously selected modules in the 

brain, only 2 exhibited significant MM-GS correlations (Midnightblue and Royalblue modules); 

in the heart and muscle, the single selected modules also displayed significant MM-GS 

correlations (Brown module in both tissues); and in the liver, from the 9 pre-selected modules, 

4 passed the MM-GS correlation criteria (Salmon, Lightgreen, Lightcyan and Grey60 modules) 

(Figure 2B; Supplemental File S2). These selected clusters of genes can be considered the most 

relevant to the aging process. 

In order to evaluate each module’s age-related gene expression, we plotted a heatmap of VST-

normalized expression values of the genes belonging to the module, accompanied by a bar 

plot representing the ME expression profile. This visualization allowed us to better understand 

the behavior of the age-related genes, as well as to identify the lifespan periods where shifts in 

expression occur. The brain showed an increasing trend in gene expression with age in both 

modules, the difference being the onset of expression change. In the Midnightblue module 

(bicor = 0.86; p-value = 3e-13), the shift from under- to over-expression occurs around the 

transition from middle- to old-age (15 to 18 months), while in the Royalblue module (bicor = 

0.59; p-value = 3e-04) this transition is less defined, but probably occurring later in life, within 

old-age (18 to 21 months) (Figure 2C, upper left panels). The heart and the muscle both 

exhibited decreasing trends in expression with increasing age; however, the shift points take 
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place in different periods. In the heart (bicor = -0.58; p-value = 2e-04), the transition from 

over- to under expression happened at old-age (18 to 21 months), while in the muscle (bicor = 

-0.69; p-value = 2e-06), it happened earlier in life, at middle-age (9 to 12 months) (Figure 2C, 

upper right panels). In the liver, 3 modules exhibited decreasing trends in expression 

throughout life (Lightgreen, Grey60 and Salmon), whereas only one has an increasing trend 

(Lightcyan). In the liver’s Lightcyan module (bicor = 0.54; p-value = 5e-04), gene expression 

starts to increase around the early middle-life (9 to 12 months); while in the Lightgreen (bicor 

= -0.68; p-value = 3e-06), Grey60 (bicor = -0.82; p-value = 3e-10) and Salmon (bicor = -0.61; p-

value = 5e-05) modules, gene expression starts to decrease in the transition from mature 

adulthood to middle-life (6 to 9 months), within middle-age (12 to 15 months) and in the 

transition from middle- to old-age (15 to 18 months), respectively (Figure 2C, lower panels).  

Furthermore, in each module, we identified the genes with the highest MM and GS – Hub 

genes - as they are important elements of the module, as well as the most significantly 

associated with the trait (see Methods - Identification of significantly age-associated modules, 

hub genes, and DEG-module-hub overlapping genes; Figure 2D and Supplemental File S2). 

Altered genes and biological networks provide tissue-specific markers of 

aging 

In order to integrate the results from the two described approaches for finding age-

dysregulated genes, we intersected the resulting gene lists and evaluated their functional 

implications. For each tissue, we first aggregated the DEGs from each pairwise comparison into 

a single gene set comprising all genes found to be differentially expressed in each time point 

against the 3-month reference. We then compared this gene set with the other gene sets of 

interest (TDEGs, Module genes, and Hub genes) and selected for functional analysis the 

intersection of, at least, the DEGs and the Hub genes (Figure 3; Supplemental File S3). As 
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expected, all TDEGs overlapped with the DEGs, and all Hub genes overlapped with the Module 

genes. 

In the brain Midnightblue module, 36 genes were selected for further analyses, from which 33 

resulted from the DEGs-Module-Hub intersection, and 3 resulted from the same intersection 

with an additional layer of TDEGs (Figure 3; Supplemental File S3). As for the rest of the 

modules, the selected genes resulted exclusively from the DEGs-Module-Hub intersection: 16, 

78, 95, 2, 4, 9, and 6 genes from the brain Royalblue, heart Brown, muscle Brown, and liver 

Lightcyan, Lightgreen, Grey60 and Salmon modules, respectively (Figure 3; Supplemental File 

S3). All overlapping genes present the same direction of dysregulation in both approaches 

(Supplemental File S3). 

To better understand the functions underlying these signature gene lists, we performed an 

enrichment analysis on GO BPs and selected the ones with an FDR adjusted p-value of less 

than 0.05 (see Methods - Functional characterization of DEG-module-hub genes’ overlap; 

Supplemental Figure S2 and Supplemental File S4). To deal with the large number of significant 

BPs exhibited by some modules and to provide a clear picture of how they and their associated 

genes relate to each other, we constructed a network of these results, with nodes 

representing GO terms and edges depicting gene overlap (see Methods - Network visualization 

of functionally enriched terms). After having constructed the network, we addressed GO term 

redundancy by clustering together nodes based on gene overlap similarity and then assigning 

automatically created labels from the most frequent words in the cluster, as well as words 

adjacent to the most represented ones (see Methods - Network visualization of functionally 

enriched terms; Supplemental File S4). To further simplify the visualization, we created a 

summary network based on the generated clusters, where all the nodes belonging to the same 

cluster collapsed into a meta-node and all the edges connecting the different clusters collapsed 
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into meta-edges as well [43] (Supplemental Figure S2; Supplemental File S4). Selected results 

are present in Table 2. 

Immune response processes and stem cell development are upregulated in the aging 

brain  

GO enrichment analysis of the overlap of the brain DEGs with the Midnightblue module genes 

identified 224 significantly over-represented BPs, allocated into 9 meta-nodes (Supplemental 

Figure S2A – Brain Midnightblue module; Supplemental File S4). The largest meta-node is 

involved in antigen-mediated immunity and comprises 132 GO terms, thus representing more 

than half of all significant processes observed for this set (Table 2 – Brain Midnightblue 

module; Supplemental File S4).  The genes present in this group exhibit increased expression 

with increasing age, shifting from down- to up-regulation around the transition from middle to 

old age (15-18 months; Figure 2C – Brain Midnightblue module; Table 2 – Brain Midnightblue 

module). Among the genes identified within this cluster, several encode for Major 

Histocompatibility Complex I (MHCI) proteins, such as in the case of H2-T23 (H-2 class I 

histocompatibility antigen D-37 alpha chain), H2-D1 (histocompatibility 2, D region locus 1), 

H2-K1 (histocompatibility 2, K1, K region) and B2m (beta 2 microglobulin) (Table 2 – Brain 

Midnightblue module; Supplemental File S4).  

Furthermore, 25 processes related to stem cell development were also found to be 

significantly enriched in the aging brain, this time regarding the gene set resulting from the 

intersection of brain DEGs and the Royalblue module genes (Table 2 – Brain Royalblue module; 

Supplemental File S4). This meta-node (Supplemental Figure S2A – Brain Royalblue module) 

includes genes whose expression also tend to increase throughout aging but the shift from 

down- to up-regulation occurs later in life, within old age (18-21 months; Figure 2C – Brain 

Royalblue module; Table 2 – Brain Royalblue module). Among these clusters’ genes, we 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

highlight Bmp7 (bone morphogenetic protein 7), and Cdh1 (cadherin 1) (Table 2- Brain 

Royalblue module; Supplemental File S4). 

Decline of cardiac energy metabolism with age 

In the heart, we identified 12 clusters of similar GO terms (Supplemental Figure S2B – Heart 

Brown module), comprising 133 significantly enriched GO BPs based on the intersection 

between the heart DEGs and the heart Brown module genes, from which approximately two-

thirds (n = 88) are directly related to energy production (Table 2 – Heart Brown module; 

Supplemental File S4). The genes found to be involved in these processes exhibit decreased 

expression along the lifespan, with the transition from up- to down-regulation occurring late in 

life (18-21 months; Figure 2C – Heart Brown module; Table 2 – Heart Brown module). These 

genes include Pdha1 and Pdhb (pyruvate dehydrogenase E1 alpha 1 and pyruvate 

dehydrogenase (lipoamide) beta, respectively), Dlat (dihydrolipoamide S-acetyltransferase (E2 

component of pyruvate dehydrogenase complex)), Pdk2 (pyruvate dehydrogenase kinase, 

isoenzyme 2), Acsl1 (acyl-CoA synthetase long-chain family member 1), and Acaa2 (acetyl-

Coenzyme A acyltransferase 2 (mitochondrial 3-oxoacyl-Coenzyme A thiolase)) (Table 2 – Heart 

Brown module; Supplemental File S4).  

Immune and regeneration processes are altered in the muscle of aged mice 

Over-representation analysis of GO terms in the gene set obtained from the overlap of the 

muscle DEGs and the muscle Brown module genes resulted in a highly interconnected network 

of 334 BPs organized into 22 meta-nodes (Supplemental Figure S2C – Muscle Brown module; 

Supplemental File S4). The largest cluster comprises 66 GO terms and includes genes related to 

antigen processing and immunity (Table 2 –Muscle Brown module; Supplemental File S4). 

Moreover, muscle regeneration processes were also enriched in the aging muscle (Table 2 – 

Muscle Brown module: Supplemental File S4). The genes present in this set also exhibit 
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decreased expression with increasing age, shifting from up- to down-regulation relatively early 

in the lifespan, within middle age (9-12 months; Figure 2C – Muscle Brown module; Table 2 – 

Muscle Brown module). Among these genes, we highlight Igf1 (insulin-like growth factor 1), 

Anxa1 and Anxa2 (Annexin A1 and A2), and Lrp1 (low density lipoprotein receptor-related 

protein 1), highly relevant in the context of aging and longevity studies (Table 2 – Muscle 

Brown module; Supplemental File S4).  

Liver aging is characterized by a global dysregulation of hepatic function 

In the liver, a total of 113 BPs were identified as being significantly enriched among the gene 

lists resulting from the overlap of the liver DEGs and module genes (Table 2; Supplemental File 

S4). In the DEG-Lightcyan module gene set, 44 enriched GO terms were allocated into 2 meta-

nodes, with the largest (n = 40) relating to fatty acid metabolism and the smallest (n = 4) to 

hepatic fibrosis regulation (Supplemental Figure S2D – Liver Lightcyan module; Table 2 – Liver 

Ligthcyan module; Supplemental File S4). The genes involved in these processes – Fasn (fatty 

acid synthetase) and Pstpip2 (proline-serine-threonine phosphatase-interacting protein 2) – 

exhibit increased expression throughout the lifespan, with the shift from down- to up-

regulation occurring within middle age (9-12 months; Figure 2C – Liver Lightcyan module; 

Table 2 – Liver Lightcyan module). Regarding the DEG-Lightgreen module gene overlap, 2 

clusters of processes were identified related to immune function, among which we highlight 

one meta-node comprising 7 interferon-gamma protein signaling-related GO terms 

(Supplemental Figure S2D – Liver Lightgreen module; Table 2 – Liver Lightgreen module; 

Supplemental File S4). The identified genes within these clusters include Dnaja3 (DnaJ heat 

shock protein family (Hsp40)) and present a decreased trend in expression with increasing age, 

shifting from up- to down-regulation around the transition from mature adulthood to middle 

age (6-9 months; Figure 2C – Liver Lightgreen module; Table 2 – Liver Lightgreen module). 

Furthermore, GO term enrichment analysis in the gene list obtained from the intersection of 
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the liver DEGs and the Grey60 module genes resulted in 2 meta-nodes, comprising processes 

regarding the activation of immune responses (Supplemental Figure S2D – Liver Grey60 

module; Table 2 – Liver Grey60 module; Supplemental File S4). The genes involved in these 

processes include C6, C8b, C9 (complement components 6, 8 beta polypeptide, and 9), and 

Cdh1 and also exhibit decreased expression throughout the lifespan, with the shift from up- to 

down-regulation occurring within middle age (9-12 months; Figure 2C – Liver Grey60 module; 

Table 2 – Liver Grey60 module). Finally, in the DEG-Salmon module gene overlap, we identified 

18 significantly enriched GO BPs, allocated into 3 clusters (Supplemental Figure S2D – Liver 

Salmon module). Among these clusters, we highlight the one related to xenobiotic 

detoxification (n = 8) (Table 2 – Liver Salmon module; Supplemental File S4) The gene involved 

in these processes – Abcg2 (ATP binding cassette subfamily G member 2 (Junior blood group)) - 

exhibits decreased expression across aging, transitioning from up- to down-regulation in the 

transition from middle to old age (15-18 months; Figure 2C – Liver Salmon module; Table 2 – 

Liver Grey60 module). 

Similar biological processes are altered with aging among tissues 

So far, the evidence pointed to a greater contribution of tissue type, rather than age, to gene 

expression variation between the samples and, for that reason, all the analyses were 

performed in each tissue independently. In fact, very few genes that were found to be key 

players of aging are shared between tissues, in a maximum of two organs simultaneously 

(Brain:Muscle - 8, Brain:Liver - 1, Heart:Liver - 1; Figure 4 - right panel; Supplemental File S3). 

Nonetheless, when we compared the significantly enriched GO terms between each tissue, we 

found a much higher overlap than that observed at the gene level (Figure 4 - left panel; 

Supplemental File S5). The highest number of shared BPs (65) was observed between the brain 

and the muscle, followed by 19 processes shared between the heart and the liver. The brain, 

the muscle and the liver exhibited 12 GO terms in common, while the muscle and the liver 
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shared 7 BPs, and the brain and the liver displayed 6 processes in common. Finally, the brain, 

the heart and the liver, presented only 1 BP in common, as was the case of the muscle and the 

heart (Figure 4 – left panel; Supplemental File S5). As described above, we organized the 

obtained GO terms in summary networks (Supplemental Figure S3; Supplemental File S5) and 

organized the selected results into a table (Table 3). 

Protein clearance and degradation processes are compromised in the aging brain, 

muscle and liver  

The muscle and the brain share 65 GO biological processes clustered into 12 meta-nodes 

(Supplemental Figure S3 – Muscle:Brain; Supplemental File S5). In line with what we observed 

at the tissue-level, immune processes are overly represented in the intersection of GO terms 

between these two tissues (38 out of 65 BPs, approx.58%; Supplemental File S5). Among the 

other identified shared processes, we highlight the clearance of Amyloid-β (Aβ) by receptor-

mediated endocytosis (Table 3 – Muscle:Brain; Supplemental File S5). In the muscle, the genes 

involved in the two processes comprising this meta-node exhibit a decreasing trend of 

expression across the lifespan, transitioning from up- to down-regulation within middle age (9-

12 months; Figure 2C – Muscle Brown module; Table 3 – Muscle:Brain). Conversely, in the 

brain, the genes implicated in these processes are increasingly expressed with aging, with the 

shift from down- to up-regulation occurring slightly later in life, marking the transition from 

middle- to old-age (15-18 months; Figure 2C – Brain Midnightblue module; Table 3 – 

Muscle:Brain).  

In the network representing the overlapping processes between the muscle and the liver, each 

of the 7 shared BPs constituted a single meta-node (Supplemental Figure S3 – Muscle:Liver; 

Supplemental File S5). Interestingly, 3 out of the 7 BPs are also related to proteostasis (Table 3 

– Muscle:Liver; Supplemental File S5), an observation in line with the findings from the 

Muscle:Brain overlap. Furthermore, the genes implicated in these processes exhibit decreased 
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expression in both tissues, with the shift from up- to down-regulation occurring around or 

within middle age (6-9 and 12-15 months in the liver and 9-12 months in the muscle; Figure 2C 

– Muscle Brown and Liver Lightgreen and Grey60 modules; Table 3 – Muscle:Liver). The 

muscle, the brain and the liver exhibit 12 shared GO terms grouped together in three different 

meta-nodes (Supplemental Figure S3 – Muscle:Brain:Liver; Supplemental File S5).  Similarly to 

the Muscle:Brain overlap, immunity-related pathways are largely over-represented in this 

overlap as well, with their associated meta-node comprising 83% of all shared BPs (10 out of 

12 BPs; Supplemental File S5). Among the other two clusters of BPs, we highlight the 

regulation of peptidase activity (Table 3 – Muscle:Brain:Liver; Supplemental File S5), as it is in 

line with the Muscle:Brain and Muscle:Liver results. The brain is the only tissue exhibiting 

increased expression throughout life of genes involved in this process, however the expression 

shift occurs the latest, in the transition from middle- to old age (15-18 months; Figure 2C – 

Brain Midnightblue module; Table 3 – Muscle:Brain:Liver). Both the muscle and the liver 

exhibit decreased gene expression associated with this process, shifting within middle age (9- 

12 and 12-15 months, respectively; Figure 2C – Muscle Brown and Liver Grey60 modules; Table 

3 – Muscle:Brain:Liver).  

Dysregulation of organic acid metabolism across the lifespan is shared by the brain, 

the heart and the liver   

Unsurprisingly, the commonly affected BPs with aging in the heart and the liver are related to 

metabolism, with the 19 identified shared processes allocated into 2 clusters related to purine 

and glycerol ether metabolism (Supplemental Figure S3 – Heart:Liver; Supplemental File S5). 

Notably, the GO terms related to purine metabolism represent 89% of all shared BPs (17 out of 

19 BPs; Table 3 – Heart:Liver; Supplemental File S5) and the genes comprised by this meta-

node in the heart display decreased expression with increasing age, whereas the liver genes 

involved in the same processes exhibit increased expression (Figure 2C – Heart Brown and 
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Liver Lightcyan modules; Table 3 – Heart:Liver). Moreover, the shifts in regulation occur late in 

life in the heart, within old age, whereas in the liver they are observed earlier, within middle 

age (18-21 and 9-12 months, respectively; Figure 2C – Heart Brown and Liver Lightcyan 

modules; Table 3 – Heart:Liver). Intersecting biological processes identified in the liver and the 

brain resulted in 6 shared GO terms, clustered into 3 meta-nodes (Supplemental Figure S3 – 

Brain:Liver), with the largest cluster comprising approximately 67% of all BPs (4 out of 6) and 

relating to the biosynthesis of organic acids (Table 3 – Brain:Liver; Supplemental File S5). In 

both tissues, the genes involved in these processes are increasingly expressed with aging, 

however shifting from down- to up-regulation at different lifespan time points (18-21 and 9-12 

months in the brain and the liver, respectively; Figure 2C – Brain Royalblue and Liver Lightcyan 

modules; Table 3 – Brain:Liver).  The overlap of processes between the brain, the heart and 

liver consists of a single BP and meta-node related to fatty acid metabolism (Supplemental 

Figure S3 – Brain:Heart:Liver; Table 3 – Brain:Heart:Liver; Supplemental File S5). The genes 

involved in this process display an increasing trend of expression throughout the lifespan in 

both the brain and the liver, however with very different onsets of expression change (9-12 

and 18-21 months in the liver and brain, respectively; Figure 2C – Brain Royalblue and Liver 

Lightcyan modules; Table 3 – Brain:Heart:Liver). Conversely, the genes involved in this process 

in the heart have decreased expression, transitioning from up- to down-regulation within old-

age (18-21 months; Figure 2C – Heart Brown module; Table 3 – Brain:Heart:Liver). 

Age affects the expression of genes involved in mitochondrial membrane potential in 

the heart and the muscle 

The single age-related dysregulated process in common between the muscle and the heart is 

related to mitochondrial activity, particularly to the regulation of membrane potential 

(Supplemental Figure S3 – Muscle:Heart; Table 3 – Muscle:Heart; Supplemental File S5). 

Notably, even though both tissues exhibit the same decreasing trend in the expression of 
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genes related to this process, in the muscle the transition from up- to down-regulation occurs 

much earlier in life than in the heart (9-12 and 18-21 months, respectively; Figure 2C – Muscle 

Brown and Heart Brown modules; Table 3 – Muscle:Heart).  

Discussion  

In this work, we provide an in-depth characterization of the age-associated alterations in gene 

expression throughout the murine lifespan. More specifically, we employed two approaches to 

identify genes central to the aging process with a higher degree of certainty. First, we 

performed differential gene expression profiling between each lifespan time point (6, 9, 12, 15, 

18, 21, 24 and 27 months) relative to the reference time point (3 months) and selected the 

DEGs in each pairwise comparison. Then, the network-based approach allowed us to establish 

tissue-specific clusters of co-expressed genes that significantly correlated with increasing age. 

By integrating the results of these two methodologies, we were able to establish gene 

expression signatures of aging with greater confidence, and because we did not apply any fold-

change threshold in the selection of DEGs, these signatures include genes whose expression 

change is small but potentially relevant at the proteome level.  

Among the selected tissues, we found that there are modest tissue-specific changes in gene 

expression, and of those that we studied, the pancreas was the only tissue that appears to be 

largely unaffected by aging, a finding that was corroborated both by the low yield of DEGs and 

by the absence of significantly age-associated gene co-expression modules. Unsurprisingly, the 

observed gene expression alterations across the lifespan generally reflect loss of tissue 

function and homeostasis (Supplemental Discussion). However, lipid transport and metabolism 

may also play an important role in organismal aging with at least one TDEG related to these 

processes being identified in 4 of the 5 studied tissues (Supplemental Discussion). Moreover, 
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different tissues exhibit diverse onsets of gene expression dysregulation, thus evincing an 

asynchronous age-related dysregulation of gene expression, in line with recent findings [6,20].  

Although very little commonalities in age-related dysregulation were observed at the gene-

level, we realized that the studied tissues could be grouped accordingly by shared biological 

processes affected by aging. The brain, heart and liver share age-related dysregulation of 

processes related to the metabolism of organic acids, namely fatty acids, while the heart and 

muscle share dysregulation of mitochondrial membrane potential (Supplemental Discussion).  

Interestingly, the aging brain, muscle and liver share dysregulation of processes related to 

protein clearance and degradation mechanisms, among others. It is well known that 

proteostasis decline is a hallmark of aging [44], leading to proteome imbalances and 

contributing to protein aggregation, including amyloid-like aggregates,  in both muscle and the 

brain [45–48]. As a result, age-related protein aggregates also increase the risk for Aβ 

aggregation, a pathological hallmark in Alzheimer´s disease (AD) [45–48]. In our observations, 

age-related dysregulation in the clearance of Aβ by receptor-mediated endocytosis is shared 

by the brain and the muscle. In the brain, complement component 3 (C3) has been reported to 

mediate the phagocytosis and clearance of insoluble Aβ by microglial cells in C57BL/6 mice 

[49]. However, another study reported decreased levels of Aβ internalization in microglia from 

aged mice when compared to younger individuals [50]. Taken together, our observations of 

increased expression of C3 during physiological aging in the brain may reflect an initial 

compensatory increase in phagocytic clearance of Aβ in response to the physiological 

accumulation of these peptides, most likely followed by a decrease in this capacity due to the 

overburden of cytotoxic aggregates.  

Notably, Aβ aggregates have been implicated in age-related protein conformational diseases in 

other tissues, such as the skeletal muscle [51,52]. Sporadic inclusion-body myositis (s-IBM) is a 

degenerative muscle disease for which age is a major risk factor and it features progressive 
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muscle-fiber degeneration which is characterized by the accumulation of multiple misfolded 

protein aggregates including Aβ peptides [reviewed in 52].  We found the expression of some 

genes involved in Aβ clearance by receptor-mediated endocytosis to decrease around mid-life 

in this tissue, including that of C3, Fcgr2b (Fc receptor, IgG, low affinity IIb) and Lrp1. These 

genes have already been described as important players of Aβ internalization in the brain by 

glial cells and macrophages [53,54], which suggests that the accumulation of Aβ in old age in 

skeletal muscle may be preceded by the middle-age down-regulation of Aβ internalization 

most likely by resident macrophages.  

Moreover, both proteasomal and autophagy–lysosomal pathways may also be particularly 

dysregulated with age in these tissues, as we observed increased expression of Psmb8 

(proteasome (prosome, macropain) subunit, beta type 8 (large multifunctional peptidase 7)) 

and Ctsd (cathepsin D) in the brain, and decreased expression of Igf1, Ctsh (cathepsin H), and 

Dap (death-associated protein) in the muscle, and of Dnaja3 and Fbxo8 (F-box protein 8) in the 

liver. In the brain, the proteasome subunit Psmb8 and the lysosomal protease Ctsd are both 

involved in maintaining proteostasis, as essential players in proteasomal and autophagic 

activities, respectively [55,56]. Psmb8 is critical for immunoproteasome assembly and is 

upregulated in long-lived primate species and human fibroblasts [55]. The immunoproteasome 

is also involved in protein degradation, especially in neurodegenerative diseases such as Lewy 

Body Dementia (LBD) and AD, where there is also elevated expression of Psmb8 [57,58]. 

Heightened proteasomal subunit expression, as we observe with Psmb8 in the brain, can lead 

to the formation of dysfunctional proteasome complexes with altered activity, stimulating a 

compensatory response to cope with defective proteasome function and altered proteostasis 

[58]. In line with the results seen in long-lived primate species, augmented expression of 

proteasome subunits has also been shown to extend lifespan in worms and yeast [59]. 

Interestingly, the observed trajectory of expression of Psmb8 and Ctsd during brain aging, 

shifting from down- to upregulation around the transition from middle to old age, indicates 
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that immunoproteasome and autophagy may be active in later stages of the mouse lifespan in 

this tissue.  

Moreover, in the muscle, Igf1 inhibition has been shown to increase lysosomal proteolysis in 

this tissue [60,61], which, together with our observation of decreased expression of this gene 

across the murine lifespan, may indicate that lysosomal proteolysis is heightened with age in 

mice. As for Ctsh, despite not being largely studied in the skeletal muscle, its age-associated 

downregulation reported by us may indicate that cathepsin H-mediated protein degradation 

also declines with age, as this gene encodes for a lysosomal cysteine protease recently 

implicated in mediating degradation leading to liver fibrosis [62]. Moreover, DAP1, the protein 

encoded by the human orthology of Dap, was found to negatively regulate autophagy [63], 

while lower expression of Dap has also been linked with alterations in regulation of apoptosis 

and autophagy, resulting in poor clinical outcomes in human cancers [64,65]. In summary, 

these findings suggest an age-related autophagy dysregulation in the aging muscle.  

Lastly, despite the lack of evidence regarding the role of Dnaja3 in the aging liver, this gene 

encodes a DNAJ/Hsp40 family member, a chaperone/cochaperone complex known to govern 

the refolding of newly synthesized as well as damaged proteins, targeting ubiquitinated 

unfolded and/or misfolded proteins for proteasomal degradation [66]. Additionally, Fbxo8 

encodes for a member of the F-box protein family that are part of the ubiquitin E3 ligase SKP1-

cullin-F-box (SCF) complex which recognize and recruit target proteins for ubiquitination and 

degradation by the proteasome [67]. Notably, we found the decrease in expression of these 

genes to occur relatively early in the lifespan, starting to be observed in the transition from 

mature adulthood to middle age, around 30-42.5 human years [33]. These observations 

suggest an early decline in ubiquitination and degradation of unfolded, misfolded and/or 

damaged proteins in the aging liver and are in line with previous reports of ER chaperone 

activity in aged mouse livers [68,69].  
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Interestingly, serpin family genes are altered in all three tissues, with the downregulation of 

Serpinf1 (serine (or cysteine) peptidase inhibitor, clade F, member 1) and Serping1 (serine (or 

cysteine) peptidase inhibitor, clade F, member 1) in the muscle and Serpina3n (serine (or 

cysteine) peptidase inhibitor, clade A, member 3N) in the brain contrasting with the 

upregulation of Serpina3k (serine (or cysteine) peptidase inhibitor, clade A, member 3K) in the 

liver. Serpins are a family of serine (or cysteine) protease inhibitors involved in several 

biological functions including homeostasis control [70].  Notably, Serpina3n has been linked 

with increased immune response activity, is upregulated in aging astrocytes throughout the 

brain [71] and has also been implicated in AD [addressed in 72]. In addition, Serpina3n mRNA 

and protein levels are upregulated in a Prion disease mouse model [73]. In the muscle, both 

Serpinf1 and Serping1 are involved in muscle growth and function through regulation of Akt 

and FoxO signaling pathways [74–76], while in the liver Serpina3k has been described as an 

inhibitor of tissue kallikrein (TK) proteolytic activity, and a modulator of inflammation in the 

murine liver [77]. Subsequent reports should look to elucidate the mechanisms involved in the 

age-related expression alterations of serpin-associated genes in these tissues, particularly in 

the muscle and liver.  

This work opens new research avenues as it highlights many unexplored genes and 

mechanisms in the context of healthy aging and temporally contextualizes gene expression 

alterations. We identified tissue-specific key players of aging and addressed the functional 

implications of their age-related alterations. We further identified groups of tissues based on 

shared age-affected processes, potentially uncovering tissue axes of common age-related 

functional dysregulation. We found that proteostasis impairment is a common feature of aging 

in the brain, muscle, and liver. Because these alterations occur at a transcriptional level and 

protein abundances can be post-transcriptionally regulated, we are currently working on 

integrating these results with translatomic and proteomic data to comprehensively understand 

this phenomenon and successfully promote healthy aging strategies.  
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Methods 
Dataset characterization 

The mouse bulk RNA-Seq data used in this study was made publicly available by the Tabula 

Muris Consortium [6,35], and is deposited in NCBI’s Gene Expression Omnibus (GEO) under the 

GEO Series accession number GSE132040 [36]. The original dataset consists of transcriptomic 

data from 17 male and female mouse tissues across 10 time points (1, 3, 6, 9, 12, 15, 18, 21, 

24, and 27 months). For this study, we excluded the 1-month-old samples to avoid the 

influence of developmental genes [33], and selected the brain, heart, muscle, liver, and 

pancreas for further analysis (Supplemental File S6). The RNA extraction, cDNA library 

preparation, RNA sequencing, read quality control, pre-processing and alignment, 

transcriptome reconstruction, and expression quantification steps are reported elsewhere 

[6,36,78].  

Differential gene expression analysis 

Samples with library size smaller than 4.000.000 reads across all genes were discarded, as 

described in Schaum et al. [6] (Supplemental File S6). Outlier samples were identified based on 

the sample network approach [79,80] and excluded if their standardized connectivities (z.K) 

were more than 2 standard deviations away from the mean z.K (Supplemental File S6; 

Supplemental Figure S4).  

Gene symbols were associated with Ensembl biotype annotations (release 99) [81] using the R 

package biomaRt (v. 2.44.0) [82,83]. Differential expression analysis was carried out using 

DESeq2 (v. 1.28.1) [84] with ‘Age’ as the variable of interest (3-month time point as reference 

level) and ‘Sex’ as a co-variable (Supplemental Figure S1). Low count genes were pre-filtered 

and only genes with total read count higher than 10 were kept. Read count data was 
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normalized and transformed with DESeq2’s estimateSizeFactors and vst functions [85]. PCAs of 

all original 17 tissues based on the 500 genes with highest row-wise variance (i.e., across all 

samples) was performed to identify the highest contributing sources of variance. Since samples 

segregate mainly by tissue (Figure 1A), all subsequent analyses were conducted separately for 

the brain, heart, liver, muscle, and pancreas (see Methods - Dataset characterization). 

DEGs were obtained by comparing every time point against the 3-month reference expression 

level. The Approximate Posterior Estimation for generalized linear model method (apeglm) 

[86]  was used to estimate shrunken log2 fold-changes (log2FC). Genes with s-values [87,88] 

smaller than 0.005 were identified as significantly differentially expressed [89].  ‘Top DEGs’ 

(TDEGs) functional annotation was performed using the AmiGO2 webtool [90] (Supplemental 

File S1). 

Gene co-expression network construction and module construction 

The WGCNA R package (v. 1.69) [91] was used to construct co-expression networks for the 

VST-normalized expression data (see Methods – Differential gene expression analysis). 

Additionally, in order to parallel the use of sex as a co-variable in the differential expression 

analysis, the normalized expression values were adjusted for this effect using the 

removeBatchEffect function from the Limma R package (v. 3.44.3) [92]. Moreover, due to the 

large size of the datasets, an automatic block-wise network construction and module detection 

approach was chosen [93]. 

First, genes with zero variance across all samples were flagged and excluded. Then, for each 

filtered dataset a correlation matrix was calculated based on biweight midcorrelation (bicor) 

values and raised to specific soft thresholding powers (�; brain: 8; heart: 10; liver: 7; muscle: 6; 

pancreas: 7; Supplemental Figure S5). In the cases where the scale-free topology fit index 

failed to reach values above 0.8, the soft-threshold power was chosen based on the number of 
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samples [94]. The resultant signed adjacency matrices were used to compute measures of 

topological overlap between each pair of genes, present in Topological Overlap Matrices 

(TOM). Next, genes in each dataset were hierarchical clustered (average linkage method) 

based on topological overlap dissimilarity (1- TOM). Modules of co-expressed genes were 

constructed accounting for a minimum size of 50 genes, a dendrogram branch merge cut 

height of 0.15, and default module detection sensitivity (deepsplit = 2) for all datasets except 

for the liver (deepsplit = 4). 

Identification of age-associated modules, hub genes, and DEG-module-

hub overlapping genes 

An initial selection of modules was based on the association of each module eigengene (ME) 

with aging. ME is the first principal component of the expression matrix of a module and is 

usually considered to be the most representative gene expression profile of that group of 

correlated genes. The association between a given module and the trait of interest was 

calculated using bicor values. All modules whose ME displays a significant (FDR adjusted p-

values < 0.05), moderate or higher (≥ 0.4) correlation with age were selected for subsequent 

analyses. Next, for each of the selected modules, module membership (MM) and gene 

significance (GS) measures were calculated. MM results from correlating the expression of 

individual genes to the ME, whereas GS corresponds to the absolute value of the correlation 

between individual genes and the trait of interest. Similar to the previous step, only modules 

with moderate or higher (≥ 0.4) and significant (p-values < 0.05) correlations were considered 

to be relevant. Lastly, for each selected module, genes with individual GS > 0.2 and MM > 0.8 

were considered to be the most functionally important, i.e. hub genes (as seen in [95–97]). The 

R package UpSetR (v. 1.4.0) [98] was used to calculate and visualize the overlap between the 

DEGs, module genes, and hub genes. 
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Functional characterization of DEG-module-hub genes’ overlap 

To functionally characterize the gene lists corresponding to the intersection of DEG, module, 

and hub genes per tissue, we performed over-representation analysis of GO BPs using the R 

package clusterProfiler (v. 3.16.0) [99]. Because this package requires NCBI’s Entrez Gene IDs 

as input, we converted gene symbols into EntrezIDs with the org.Mm.eg.db R package (v. 

3.11.4) [100]. GO terms with an FDR adjusted p-value less than 0.05 were selected for 

subsequent analyses. 

Network visualization of functionally enriched terms 

Network visualization of the enriched GO terms used the enrichmentMap plugin (v. 3.3.0) 

[101] of Cytoscape (v. 3.8.0) [102], with nodes representing GO terms, and edges depicting 

similarity scores based on the number of genes in common between nodes. To construct our 

networks, we set an edge similarity cutoff of 0.7. GO term redundancy was addressed with the 

AutoAnnotate (v. 1.3.3) [43], clusterMaker2 (v. 1.3.1) [103], and WordCloud (v. 3.1.3) [104]. 

Similar GO terms were clustered together using the Markov Clustering Algorithm (MCL), also 

with an edge similarity cutoff of 0.7, and cluster labels were created with the default label 

algorithm Adjacent Words, with 4 maximum words per label and an adjacent word bonus of 8.  

Abbreviations  

Abcg2: ATP binding cassette subfamily G member 2 (Junior blood group) 

Acaa2: acetyl-Coenzyme A acyltransferase 2 (mitochondrial 3-oxoacyl-Coenzyme A thiolase) 

Acsl1: acyl-CoA synthetase long-chain family member 1 

AD: Alzheimer´s Disease 
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Anxa1: Annexin A1 

Anxa2: Annexin A2  

Apeglm: Approximate Posterior Estimation for generalized linear model method  

Aβ: Amyloid-β 

B2m: beta 2 microglobulin 

Bicor: Biweight Midcorrelation  

Bmp7: bone morphogenetic protein 7 

BP: Biological Process 

C3: complement component 3 

C6: complement component 6 

C8b: complement component 8 beta polypeptide 

C9: complement component 9 

Cdh1: cadherin 1 

Ctsd: cathepsin D 

Ctsh: cathepsin H 

Dap: death-associated protein 

DEG: Differentially Expressed Gene 
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Dlat: dihydrolipoamide S-acetyltransferase (E2 component of pyruvate dehydrogenase 

complex)  

Dnaja3: DnaJ heat shock protein family (Hsp40)  

Fasn: fatty acid synthetase 

Fbxo8: F-box protein 8 

FC: Fold-change 

Fcgr2b: Fc receptor, IgG, low affinity IIb 

FDR: False Discovery Rate 

GEO: Gene Expression Omnibus 

GO: Gene Ontology 

GS: Gene Significance 

H2-D1: histocompatibility 2, D region locus 1 

H2-K1: histocompatibility 2, K1, K region 

H2-T23: H-2 class I histocompatibility antigen D-37 alpha chain 

Igf1: insulin-like growth factor 1 

LBD: Lewy Body Dementia 

log2FC: log2 Fold-change 

Lrp1: low density lipoprotein receptor-related protein 1 
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ME: Module Eigengene 

MHCI: Major Histocompatibility Complex I 

MM: Module Membership 

PCA: Principal Component Analysis 

Pdha1: pyruvate dehydrogenase E1 alpha 1 

Pdhb: pyruvate dehydrogenase (lipoamide) beta 

Pdk2: pyruvate dehydrogenase kinase, isoenzyme 2 

Psmb8: proteasome (prosome, macropain) subunit, beta type 8 (large multifunctional 

peptidase 7) 

Pstpip2: proline-serine-threonine phosphatase-interacting protein 2 

RNA-Seq: RNA Sequencing 

Serpina3k: serine (or cysteine) peptidase inhibitor, clade A, member 3K 

Serpina3n: serine (or cysteine) peptidase inhibitor, clade A, member 3N 

Serpinf1: serine (or cysteine) peptidase inhibitor, clade F, member 1 

Serping1: serine (or cysteine) peptidase inhibitor, clade F, member 1 

s-IBM: Sporadic Inclusion-body Myositis  

TDEG: Top Differentially Expressed Gene 

TK: tissue kallikrein 
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TOM: Topological Overlap Matrices 

VST: Variance Stabilizing Transformation 

WGCNA: Weighted Gene Correlation Network Analysis 

z.K: Standardized Connectivity 

 

Author Contributions  

M.F. carried out the RNASeq data analysis and the gene network analysis, participated in the 

definition of the questions and wrote the paper; S.F. wrote and corrected the paper; M.P. and 

A.R. developed pipelines for data analysis; A.N. and A.R.S. corrected the paper; A.J.R., N.S. and 

G.M. contributed to the definition of the experimental work plan; and M.A.S.S. coordinated 

the overall project, defined the questions and defined the work plan, wrote and corrected the 

paper. 

Acknowledgments  

We are most thankful to the University of Aveiro Genome Medicine Laboratory and Institute of 

Biomedicine - iBiMED for supporting this work. 

Conflicts of Interest 

The authors declare no conflicts of interest. 

Funding 

This work was supported by the Portuguese Foundation for Science and Technology (FCT) and 

FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE 2020, 

Operational Programme for Competitiveness and Internationalization (POCI) (GenomePT POCI-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

 

01-0145-FEDER-022184; POCI-01-0145-FEDER-016428-PAC MEDPERSYST; POCI-01-0145-

FEDER-029843) and by Centro 2020 program, Portugal 2020 and European Regional 

Development Fund (pAGE Integrated project Centro-01-0145-FEDER-000003; MEDISIS 

CENTRO-01-0246-FEDER-000018). The iBiMED research unit is supported by the Portuguese 

Foundation of Science and Technology (FCT) (UID/BIM/04501/2020). SF and MF are directly 

supported by FCT grants (SFRH/BD/148323/2019 and SFRH/BD/131736/2017). 

References 
1.  Lee JS, Ward WO, Ren H, Vallanat B, Darlington GJ, Han ES, Laguna JC, DeFord JH, 

Papaconstantinou J, Selman C, Corton JC. Meta-analysis of gene expression in the mouse liver 
reveals biomarkers associated with inflammation increased early during aging. Mech Ageing Dev 
[Internet]. Elsevier Ireland Ltd; 2012; 133: 467–78. Available from: 
http://dx.doi.org/10.1016/j.mad.2012.05.006 

2.  Voutetakis K, Chatziioannou A, Gonos ES, Trougakos IP. Comparative Meta-Analysis of 
Transcriptomics Data during Cellular Senescence and In Vivo Tissue Ageing. 2015 [cited 2020 Jul 
13]; . Available from: http://dx.doi.org/10.1155/2015/732914 

3.  Benayoun BA, Pollina EA, Singh PP, Mahmoudi S, Harel I, Casey KM, Dulken BW, Kundaje A, 
Brunet A. Remodeling of epigenome and transcriptome landscapes with aging in mice reveals 
widespread induction of inflammatory responses. Genome Res. Cold Spring Harbor Laboratory 
Press; 2019; 29: 697–709.  

4.  Clark D, Brazina S, Yang F, Hu D, Hsieh CL, Niemi EC, Miclau T, Nakamura MC, Marcucio R. Age-
related changes to macrophages are detrimental to fracture healing in mice. Aging Cell. 
Blackwell Publishing Ltd; 2020; 19.  

5.  Zahn JM, Poosala S, Owen AB, Ingram DK, Lustig A, Carter A, Weeraratna AT, Taub DD, Gorospe 
M, Mazan-Mamczarz K, Lakatta EG, Boheler KR, Xu X, et al. AGEMAP: A gene expression 
database for aging in mice. PLoS Genet. 2007; 3: 2326–37.  

6.  Schaum N, Lehallier B, Hahn O, Pálovics R, Hosseinzadeh S, Lee SE, Sit R, Lee DP, Losada PM, 
Zardeneta ME, Fehlmann T, Webber JT, Mcgeever A, et al. Ageing hallmarks exhibit organ-
specific temporal signatures. Nature. 2020; .  

7.  Glass D, Viñuela A, Davies MN, Ramasamy A, Parts L, Knowles D, Brown AA, Hedman ÅK, Small 
KS, Buil A, Grundberg E, Nica AC, Nestle FO, et al. Gene expression changes with age in skin, 
adipose tissue, blood and brain [Internet]. 2013. Available from: 
http://genomebiology.com/2013/14/7/R75 

8.  Bakken TE, Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A, Dalley RA, Royall JJ, Lemon T, 
Shapouri S, Aiona K, Arnold J, et al. A comprehensive transcriptional map of primate brain 
development. Nature [Internet]. Nature Publishing Group; 2016 [cited 2020 Jul 6]; 535: 367–75. 
Available from: /pmc/articles/PMC5325728/?report=abstract 

9.  Palmer D, Fabris F, Doherty A, Freitas AA, Magalhães JP de. Ageing Transcriptome Meta-Analysis 
Reveals Similarities Between Key Mammalian Tissues. bioRxiv [Internet]. 2019 [cited 2020 Jun 
30]; : 815381. Available from: http://dx.doi.org/10.1101/815381 

10.  Merienne N, Meunier C, Schneider A, Seguin J, Nair SS, Rocher AB, Le Gras S, Keime C, Faull R, 
Pellerin L, Chatton JY, Neri C, Merienne K, et al. Cell-Type-Specific Gene Expression Profiling in 
Adult Mouse Brain Reveals Normal and Disease-State Signatures. Cell Rep. Elsevier B.V.; 2019; 
26: 2477-2493.e9.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 

11.  Frenk S, Houseley J. Gene expression hallmarks of cellular ageing. Biogerontology [Internet]. 
2018 [cited 2020 Jun 30]; 19: 547–66. Available from: https://doi.org/10.1007/s10522-018-
9750-z 

12.  Harries LW, Hernandez D, Henley W, Wood A, Holly AC, Bradley-Smith RM, Yaghootkar H, Dutta 
A, Murray A, Frayling TM, Guralnik JM, Bandinelli S, Singleton A, et al. Human aging is 
characterized by focused changes in gene expression and deregulation of alternative splicing. 
Aging Cell. 2011; 10: 868–78.  

13.  Zhou X, Zhen X, Liu Y, Cui Z, Yue Z, Xu A, Han J. Identification of Key Modules, Hub Genes, and 
Noncoding RNAs in Chronic Rhinosinusitis with Nasal Polyps by Weighted Gene Coexpression 
Network Analysis. Biomed Res Int. Hindawi Limited; 2020; 2020: 1–20.  

14.  Cellerino A, Ori A. What have we learned on aging from omics studies? Seminars in Cell and 
Developmental Biology. Elsevier Ltd; 2017. p. 177–89.  

15.  Gomez-Verjan JC, Vazquez-Martinez ER, Rivero-Segura NA, Medina-Campos RH. The RNA world 
of human ageing. Hum Genet [Internet]. Springer Berlin Heidelberg; 2018; 137: 865–79. 
Available from: http://dx.doi.org/10.1007/s00439-018-1955-3 

16.  de Magalhães JP, Curado J, Church GM. Meta-analysis of age-related gene expression profiles 
identifies common signatures of aging. Bioinformatics. 2009; 25: 875–81.  

17.  Stegeman R, Weake VM. Transcriptional Signatures of Aging. Journal of Molecular Biology. 2017. 
p. 2427–37.  

18.  Anisimova AS, Meerson MB, Gerashchenko M V., Kulakovskiy I V., Dmitriev SE, Gladyshev VN. 
Multi-faceted deregulation of gene expression and protein synthesis with age. bioRxiv. 2020; : 
2020.01.19.911404.  

19.  Aramillo Irizar P, Schäuble S, Esser D, Groth M, Frahm C, Priebe S, Baumgart M, Hartmann N, 
Marthandan S, Menzel U, Müller J, Schmidt S, Ast V, et al. Transcriptomic alterations during 
ageing reflect the shift from cancer to degenerative diseases in the elderly. Nat Commun 
[Internet]. Nature Publishing Group; 2018 [cited 2020 Jul 6]; 9. Available from: 
/pmc/articles/PMC5790807/?report=abstract 

20.  Srivastava A, Barth E, Ermolaeva MA, Guenther M, Frahm C, Marz M, Witte OW. Tissue-specific 
Gene Expression Changes Are Associated with Aging in Mice. Genomics Proteomics 
Bioinformatics. Elsevier BV; 2020; .  

21.  Aramillo Irizar P, Schäuble S, Esser D, Groth M, Frahm C, Priebe S, Baumgart M, Hartmann N, 
Marthandan S, Menzel U, Müller J, Schmidt S, Ast V, et al. Transcriptomic alterations during 
ageing reflect the shift from cancer to degenerative diseases in the elderly. Nat Commun 
[Internet]. 2018 [cited 2020 May 27]; 9. Available from: 
www.nature.com/naturecommunications 

22.  Ori A, Toyama BH, Harris MS, Bock T, Iskar M, Bork P, Ingolia NT, Hetzer MW, Beck M. Integrated 
Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old 
Rats. Cell Syst [Internet]. Cell Press; 2015 [cited 2020 Jul 13]; 1: 224–37. Available from: 
http://dx.doi.org/10.1016/j.cels.2015.08.012 

23.  Zhou Q, Wan Q, Jiang Y, Liu J, Qiang L, Sun L. A Landscape of Murine Long Non-Coding RNAs 
Reveals the Leading Transcriptome Alterations in Adipose Tissue during Aging. Cell Rep 
[Internet]. ElsevierCompany.; 2020; 31: 107694. Available from: 
https://doi.org/10.1016/j.celrep.2020.107694 

24.  Fu C, Hickey M, Morrison M, McCarter R, Han ES. Tissue specific and non-specific changes in 
gene expression by aging and by early stage CR. Mech Ageing Dev [Internet]. NIH Public Access; 
2006 [cited 2020 Jul 14]; 127: 905–16. Available from: 
/pmc/articles/PMC1764499/?report=abstract 

25.  Melis JPM, Jonker MJ, Vijg J, Hoeijmakers JHJ, Breit TM, van Steeg H. Aging on a different scale - 
chronological versus pathology-related aging. Aging (Albany NY) [Internet]. Impact Journals LLC; 
2013 [cited 2020 Jul 7]; 5: 782–8. Available from: /pmc/articles/PMC3838780/?report=abstract 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

 

26.  Beveridge NJ, Santarelli DM, Wang X, Tooney PA, Webster MJ, Weickert CS, Cairns MJ. 
Maturation of the human dorsolateral prefrontal cortex coincides with a dynamic shift in 
MicroRNA expression. Schizophr Bull. 2014; 40: 399–409.  

27.  Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT, Colantuoni EA, Elkahloun AG, Herman 
MM, Weinberger DR, Kleinman JE. Temporal dynamics and genetic control of transcription in the 
human prefrontal cortex. Nature [Internet]. NIH Public Access; 2011 [cited 2020 Jul 7]; 478: 519–
23. Available from: /pmc/articles/PMC3510670/?report=abstract 

28.  Erraji-Benchekroun L, Underwood MD, Arango V, Galfalvy H, Pavlidis P, Smyrniotopoulos P, 
Mann JJ, Sibille E. Molecular aging in human prefrontal cortex is selective and continuous 
throughout adult life. Biol Psychiatry. 2005; 57: 549–58.  

29.  Cao K, Ryvkin P, Hwang YC, Johnson FB, Wang LS. Analysis of Nonlinear Gene Expression 
Progression Reveals Extensive Pathway and Age-Specific Transitions in Aging Human Brains. 
PLoS One [Internet]. Public Library of Science; 2013 [cited 2020 Jul 7]; 8: 74578. Available from: 
/pmc/articles/PMC3789733/?report=abstract 

30.  Irizar H, Goñi J, Alzualde A, Castillo-Triviño T, Olascoaga J, de Munain AL, Otaegui D. Age gene 
expression and coexpression progressive signatures in peripheral blood leukocytes. Exp Gerontol 
[Internet]. Elsevier B.V.; 2015; 72: 50–6. Available from: 
http://dx.doi.org/10.1016/j.exger.2015.09.003 

31.  Timmons JA, Volmar CH, Crossland H, Phillips BE, Sood S, Janczura KJ, Törmäkangas T, Kujala 
UM, Kraus WE, Atherton PJ, Wahlestedt C. Longevity-related molecular pathways are subject to 
midlife “switch” in humans. Aging Cell [Internet]. Blackwell Publishing Ltd; 2019 [cited 2020 Jul 
6]; 18. Available from: /pmc/articles/PMC6612641/?report=abstract 

32.  Yu Y, Fuscoe JC, Zhao C, Guo C, Jia M, Qing T, Bannon DI, Lancashire L, Bao W, Du T, Luo H, Su Z, 
Jones WD, et al. A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental 
stages. Nat Commun [Internet]. Nature Publishing Group; 2014 [cited 2020 Jul 13]; 5: 3230. 
Available from: /pmc/articles/PMC3926002/?report=abstract 

33.  When are mice considered old? [Internet]. [cited 2020 Jul 21]. Available from: 
https://www.jax.org/news-and-insights/jax-blog/2017/november/when-are-mice-considered-
old 

34.  Jonker MJ, Melis JP, Kuiper R V, van der Hoeven T V, Wackers PFK, Robinson J, van der Horst GT, 
Dollé MET, Vijg J, Breit TM, Hoeijmakers JH, Van Steeg H. Life spanning murine gene expression 
profiles in relation to chronological and pathological aging in multiple organs. Aging Cell. 2013; 
12: 901–9.  

35.  Schaum N, Karkanias J, Neff NF, May AP, Quake SR, Wyss-Coray T, Darmanis S, Batson J, 
Botvinnik O, Chen MB, Chen S, Green F, Jones RC, et al. Single-cell transcriptomics of 20 mouse 
organs creates a Tabula Muris. Nature [Internet]. Nature Publishing Group; 2018 [cited 2020 Jul 
2]; 562: 367–72. Available from: /pmc/articles/PMC6642641/?report=abstract 

36.  GEO Accession viewer [Internet]. [cited 2020 Oct 15]. Available from: 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132040 

37.  Melis JPM, Jonker MJ, Vijg J, Hoeijmakers JHJ, Breit TM, van Steeg H. Aging on a different scale - 
chronological versus pathology-related aging. Aging (Albany NY). Impact Journals LLC; 2013; 5: 
782–8.  

38.  Peters R. Ageing and the brain [Internet]. Postgraduate Medical Journal. BMJ Publishing Group; 
2006 [cited 2020 Oct 12]. p. 84–8. Available from: /pmc/articles/PMC2596698/?report=abstract 

39.  Kim IH, Kisseleva T, Brenner DA. Aging and liver disease [Internet]. Current Opinion in 
Gastroenterology. Lippincott Williams and Wilkins; 2015 [cited 2020 Oct 12]. p. 184–91. 
Available from: /pmc/articles/PMC4736713/?report=abstract 

40.  Steenman M, Lande G. Cardiac aging and heart disease in humans [Internet]. Biophysical 
Reviews. Springer Verlag; 2017 [cited 2020 Oct 12]. p. 131–7. Available from: 
/pmc/articles/PMC5418492/?report=abstract 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 

 

41.  Löhr J -M., Panic N, Vujasinovic M, Verbeke CS. The ageing pancreas: a systematic review of the 
evidence and analysis of the consequences. J Intern Med [Internet]. Blackwell Publishing Ltd; 
2018 [cited 2020 Oct 12]; 283: 446–60. Available from: 
https://onlinelibrary.wiley.com/doi/abs/10.1111/joim.12745 

42.  Larsson L, Degens H, Li M, Salviati L, Lee Y Il, Thompson W, Kirkland JL, Sandri M. Sarcopenia: 
Aging-related loss of muscle mass and function. Physiol Rev [Internet]. American Physiological 
Society; 2019 [cited 2020 Oct 12]; 99: 427–511. Available from: 
/pmc/articles/PMC6442923/?report=abstract 

43.  Kucera M, Isserlin R, Arkhangorodsky A, Bader GD. AutoAnnotate: A Cytoscape app for 
summarizing networks with semantic annotations [version 1; referees: 2 approved]. 
F1000Research [Internet]. Faculty of 1000 Ltd; 2016 [cited 2020 Jul 2]; 5. Available from: 
/pmc/articles/PMC5082607/?report=abstract 

44.  López-otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of Aging. Cell. 2013; 
153: 1194–217.  

45.  Walther DM, Kasturi P, Zheng M, Pinkert S, Vecchi G, Ciryam P, Morimoto RI, Dobson CM, 
Vendruscolo M, Mann M, Hartl FU. Widespread proteome remodeling and aggregation in aging 
C. elegans. Cell. Elsevier Inc.; 2015; 161: 919–32.  

46.  David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C. Widespread protein 
aggregation as an inherent part of aging in C. elegans. Ahringer J, editor. PLoS Biol. 2010; 8.  

47.  Hamer G, Matilainen O, Holmberg CI. A photoconvertible reporter of the ubiquitin-proteasome 
system in vivo. Nat Methods. 2010; 7: 473–8.  

48.  Groh N, Bühler A, Huang C, Li KW, van Nierop P, Smit AB, Fändrich M, Baumann F, David DC. 
Age-dependent protein aggregation initiates amyloid-β aggregation. Front Aging Neurosci. 2017; 
9: 1–11.  

49.  Fu H, Liu BIN, Frost JL, Hong S, Jin M, Ostaszewski B, Shankar GM, Costantino IM, Carroll MC, 
Mayadas TN, Lemere CA. Complement Component C3 and Complement Receptor Type 3 
Contribute to the Phagocytosis and Clearance of Fibrillar A b by Microglia. 2012; 1003: 993–
1003.  

50.  Njie  e. MG, Boelen E, Stassen FR, Steinbusch HWM, Borchelt DR, Streit WJ. Ex vivo cultures of 
microglia from young and aged rodent brain reveal age-related changes in microglial function. 
Neurobiol Aging [Internet]. Elsevier Inc.; 2012 [cited 2020 Oct 6]; 33: 195.e1-195.e12. Available 
from: /pmc/articles/PMC4162517/?report=abstract 

51.  Chen X, Miller N, Afghah Z, Geiger J. Development of AD-Like Pathology in Skeletal Muscle. J 
Park Dis Alzheimer’s Dis [Internet]. Avens Publishing Group; 2019 [cited 2020 Oct 5]; 6: 1–10. 
Available from: /pmc/articles/PMC7079679/?report=abstract 

52.  Askanas V, Engel WK, Nogalska A. Sporadic inclusion-body myositis: A degenerative muscle 
disease associated with aging, impaired muscle protein homeostasis and abnormal mitophagy. 
Biochim Biophys Acta - Mol Basis Dis. Elsevier; 2015; 1852: 633–43.  

53.  Ries M, Sastre M. Mechanisms of Aβ clearance and degradation by glial cells [Internet]. Frontiers 
in Aging Neuroscience. Frontiers Media S.A.; 2016 [cited 2020 Oct 5]. p. 160. Available from: 
www.frontiersin.org 

54.  Sagare AP, Deane R, Zlokovic B V. Low-density lipoprotein receptor-related protein 1: A 
physiological Aβ homeostatic mechanism with multiple therapeutic opportunities. Pharmacol 
Ther. 2012; 136: 94–105.  

55.  Pickering AM, Lehr M, Miller RA. Lifespan of mice and primates correlates with 
immunoproteasome expression. J Clin Invest. 2015; 125: 2059–68.  

56.  Marques ARA, Di Spiezio A, Thießen N, Schmidt L, Grötzinger J, Lüllmann-Rauch R, Damme M, 
Storck SE, Pietrzik CU, Fogh J, Bär J, Mikhaylova M, Glatzel M, et al. Enzyme replacement therapy 
with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

 

neuronal ceroid lipofuscinosis. Autophagy. Taylor & Francis; 2020; 16: 811–25.  

57.  Mishto M, Bellavista E, Santoro A, Stolzing A, Ligorio C, Nacmias B, Spazzafumo L, Chiappelli M, 
Licastro F, Sorbi S, Pession A, Ohm T, Grune T, et al. Immunoproteasome and LMP2 
polymorphism in aged and Alzheimer’s disease brains. Neurobiol Aging. 2006; 27: 54–66.  

58.  Ding Q, Zhu H. Upregulation of PSMB8 and cathepsins in the human brains of dementia with 
Lewy bodies. Neurosci Lett. Elsevier; 2018; 678: 131–7.  

59.  Vilchez D, Morantte I, Liu Z, Douglas PM, Merkwirth C, Rodrigues APC, Manning G, Dillin A. RPN-
6 determines C. elegans longevity under proteotoxic stress conditions. Nature. Nature Publishing 
Group; 2012; 489: 263–8.  

60.  Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL. FoxO3 
Coordinately Activates Protein Degradation by the Autophagic/Lysosomal and Proteasomal 
Pathways in Atrophying Muscle Cells. Cell Metab. 2007; 6: 472–83.  

61.  Timmer LT, Hoogaars WMH, Jaspers RT. The Role of IGF-1 Signaling in Skeletal Muscle Atrophy. 
Advances in Experimental Medicine and Biology. 2018. p. 109–37.  

62.  Yang C, Zhu L, Kang Q, Lee HK, Li D, Chung ACK, Cai Z. Chronic exposure to tetrabromodiphenyl 
ether (BDE-47) aggravates hepatic steatosis and liver fibrosis in diet-induced obese mice. J 
Hazard Mater. Elsevier; 2019; 378: 120766.  

63.  Koren I, Reem E, Kimchi A. DAP1, a Novel Substrate of mTOR, Negatively Regulates Autophagy. 
Curr Biol. Elsevier Ltd; 2010; 20: 1093–8.  

64.  Wazir U, Jiang WG, Sharma AK, Mokbel K. The mRNA expression of DAP1 in human breast 
cancer: correlation with clinicopathological parameters. Cancer Genomics Proteomics. 2012; 9: 
199–201.  

65.  Jia Y, Ye L, Ji K, Toms AM, Davies ML, Ruge F, Ji J, Hargest R, Jiang WG. Death associated protein 
1 is correlated with the clinical outcome of patients with colorectal cancer and has a role in the 
regulation of cell death. Oncol Rep. 2014; 31: 175–82.  

66.  Craig EA, Marszalek J. How Do J-Proteins Get Hsp70 to Do So Many Different Things? Trends 
Biochem Sci. Elsevier Ltd; 2017; 42: 355–68.  

67.  Hermand D. F-box proteins: More than baits for the SCF? Cell Div. 2006; 1: 1–6.  

68.  Rabek JP, Boylston WH, Papaconstantinou J. Carbonylation of ER chaperone proteins in aged 
mouse liver. Biochem Biophys Res Commun. 2003; 305: 566–72.  

69.  Nuss JE, Choksi KB, DeFord JH, Papaconstantinou J. Decreased enzyme activities of chaperones 
PDI and BiP in aged mouse livers. Biochem Biophys Res Commun [Internet]. NIH Public Access; 
2008 [cited 2021 Feb 10]; 365: 355–61. Available from: /pmc/articles/PMC2238339/ 

70.  Lucas A, Yaron JR, Zhang L, Ambadapadi S. Overview of Serpins and Their Roles in Biological 
Systems. In: Lucas A, editor. Serpins: Methods and Protocols, Methods in Molecular Biology. 
Springer Science+Business Media, LLC, part of Springer Nature 2018; 2018. p. 267–74.  

71.  Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ. The Aging Astrocyte Transcriptome from 
Multiple Regions of the Mouse Brain. Cell Rep [Internet]. 2018 [cited 2020 May 27]; 22: 269–85. 
Available from: https://doi.org/10.1016/j.celrep.2017.12.039. 

72.  Aslam MS, Yuan L. Serpina3n: Potential drug and challenges, mini review. J Drug Target 
[Internet]. Taylor & Francis; 2020; 28: 368–78. Available from: 
https://doi.org/10.1080/1061186X.2019.1693576 

73.  Vanni S, Moda F, Zattoni M, Bistaffa E, De Cecco E, Rossi M, Giaccone G, Tagliavini F, Haïk S, 
Deslys JP, Zanusso G, Ironside JW, Ferrer I, et al. Differential overexpression of SERPINA3 in 
human prion diseases. Sci Rep [Internet]. Nature Publishing Group; 2017 [cited 2020 Oct 8]; 7: 
1–13. Available from: www.nature.com/scientificreports/ 

74.  Ho TC, Chiang YP, Chuang CK, Chen SL, Hsieh JW, Lan YW, Tsao YP. PEDF-derived peptide 
promotes skeletal muscle regeneration through its mitogenic effect on muscle progenitor cells. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 

 

Am J Physiol - Cell Physiol [Internet]. American Physiological Society; 2015 [cited 2020 Oct 9]; 
309: C159–68. Available from: /pmc/articles/PMC4525084/?report=abstract 

75.  Okada K, Naito AT, Higo T, Nakagawa A, Shibamoto M, Sakai T, Hashimoto A, Kuramoto Y, 
Sumida T, Nomura S, Ito M, Yamaguchi T, Oka T, et al. Wnt/β-catenin signaling contributes to 
skeletal myopathy in heart failure via direct interaction with forkhead box o. Circ Hear Fail 
[Internet]. Lippincott Williams and Wilkins; 2015 [cited 2020 Oct 9]; 8: 799–808. Available from: 
https://pubmed.ncbi.nlm.nih.gov/26038536/ 

76.  Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, Matsuda J, 
Aburatani H, Nishino I, Ezaki O. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal 
muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired 
glycemic control. J Biol Chem [Internet]. J Biol Chem; 2004 [cited 2020 Oct 9]; 279: 41114–23. 
Available from: https://pubmed.ncbi.nlm.nih.gov/15272020/ 

77.  Chai KX, Lull HS, Chao L. Tissue kallikrein-binding protein is a serpin_: I . Purification , 
characterization , and distribution in normotensive and spontaneously hypertensive rats Tissue 
Kallikrein-binding Protein Is a Serpin. 1990; .  

78.  Tabula Muris Consortium, Hosseinzadeh S. SmartSeq2 for HTP Generation of Bulk RNA Libraries 
V.1 [Internet]. 2019 [cited 2020 Aug 14]. Available from: 
https://dx.doi.org/10.17504/protocols.io.2uvgew6 

79.  Oldham MC, Langfelder P, Horvath S. Network methods for describing sample relationships in 
genomic datasets: application to Huntington’s disease. BMC Syst Biol [Internet]. BioMed Central; 
2012 [cited 2020 Jul 16]; 6: 63. Available from: 
http://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-6-63 

80.  Horvath S. Corrected R code from chapter 12 of the book [Internet]. [cited 2020 Aug 14]. 
Available from: http://pages.stat.wisc.edu/~yandell/statgen/ucla/WGCNA/wgcna.html 

81.  Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov 
AG, Bennett R, Bhai J, Billis K, Boddu S, et al. Ensembl 2020. Nucleic Acids Res [Internet]. Oxford 
University Press; 2020 [cited 2020 Oct 15]; 48: D682–8. Available from: 
https://academic.oup.com/nar/article/48/D1/D682/5613682 

82.  Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, Huber W. BioMart and 
Bioconductor: A powerful link between biological databases and microarray data analysis. 
Bioinformatics. 2005; 21: 3439–40.  

83.  Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic 
datasets with the R/ Bioconductor package biomaRt. Nat Protoc [Internet]. NIH Public Access; 
2009 [cited 2020 Aug 14]; 4: 1184–91. Available from: 
/pmc/articles/PMC3159387/?report=abstract 

84.  Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq 
data with DESeq2. Genome Biol [Internet]. 2014 [cited 2019 Nov 20]; 15: 550. Available from: 
http://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8 

85.  Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 
[Internet]. 2010 [cited 2020 Jan 20]; 11: R106. Available from: 
https://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-10-r106 

86.  Zhu Z, Jin Z, Deng Y, Wei L, Yuan X, Zhang M, Sun D. Co-expression Network Analysis Identifies 
Four Hub Genes Associated With Prognosis in Soft Tissue Sarcoma. Front Genet [Internet]. 
Frontiers Media SA; 2019 [cited 2020 Feb 18]; 10: 37. Available from: 
https://www.frontiersin.org/article/10.3389/fgene.2019.00037/full 

87.  Stephens M. False discovery rates: A new deal. Biostatistics [Internet]. Oxford University Press; 
2017 [cited 2020 Aug 14]; 18: 275–94. Available from: http://github.com/stephens999/ashr. 

88.  Analyzing RNA-seq data with DESeq2 [Internet]. [cited 2020 Aug 14]. Available from: 
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#extend
ed-section-on-shrinkage-estimators 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

89.  Effect size estimation with apeglm [Internet]. [cited 2020 Aug 14]. Available from: 
https://bioconductor.statistik.tu-
dortmund.de/packages/3.6/bioc/vignettes/apeglm/inst/doc/apeglm.html 

90.  Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, Lomax J, Mungall C, Hitz B, 
Balakrishnan R, Dolan M, Wood V, Hong E, et al. AmiGO: Online access to ontology and 
annotation data. Bioinformatics [Internet]. 2009 [cited 2020 Sep 15]; 25: 288–9. Available from: 
http://amigo.geneontology.org/amigo 

91.  Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC 
Bioinformatics [Internet]. BioMed Central; 2008 [cited 2020 Jul 2]; 9: 559. Available from: 
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-559 

92.  Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential 
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res [Internet]. 
Oxford University Press; 2015 [cited 2020 Sep 26]; 43: e47. Available from: 
https://academic.oup.com/nar/article/43/7/e47/2414268 

93.  Tutorials for WGCNA R package [Internet]. [cited 2020 Aug 14]. Available from: 
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/ind
ex.html 

94.  WGCNA package: Frequently Asked Questions [Internet]. [cited 2020 Aug 16]. Available from: 
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/faq.html 

95.  Liu Y, Gu H-Y, Zhu J, Niu Y-M, Zhang C, Guo G-L. Identification of Hub Genes and Key Pathways 
Associated With Bipolar Disorder Based on Weighted Gene Co-expression Network Analysis. 
Front Physiol [Internet]. Frontiers Media S.A.; 2019 [cited 2020 Sep 30]; 10: 1081. Available 
from: https://www.frontiersin.org/article/10.3389/fphys.2019.01081/full 

96.  Wang W, Jiang W, Hou L, Duan H, Wu Y, Xu C, Tan Q, Li S, Zhang D. Weighted gene co-expression 
network analysis of expression data of monozygotic twins identifies specific modules and hub 
genes related to BMI. BMC Genomics [Internet]. BioMed Central Ltd.; 2017 [cited 2020 Oct 15]; 
18. Available from: /pmc/articles/PMC5683603/?report=abstract 

97.  Yuan L, Chen L, Qian K, Qian G, Wu CL, Wang X, Xiao Y. Co-expression network analysis identified 
six hub genes in association with progression and prognosis in human clear cell renal cell 
carcinoma (ccRCC). Genomics Data. Elsevier Inc; 2017; 14: 132–40.  

98.  Conway JR, Lex A, Gehlenborg N. UpSetR: An R package for the visualization of intersecting sets 
and their properties. Bioinformatics [Internet]. 2017 [cited 2020 Aug 16]; 33: 2938–40. Available 
from: https://gehlenborglab.shinyapps.io/ 

99.  Yu G, Wang LG, Han Y, He QY. ClusterProfiler: An R package for comparing biological themes 
among gene clusters. Omi A J Integr Biol. 2012; 16: 284–7.  

100.  Marc Carlson. org.Mm.eg.db: Genome wide annotation for Mouse. R package version 3.8.2. 
[Internet]. Bioconductor. 2019 [cited 2020 Aug 17]. Available from: 
http://bioconductor.org/packages/release/data/annotation/html/org.Mm.eg.db.html 

101.  Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: A network-based method 
for gene-set enrichment visualization and interpretation. Ravasi T, editor. PLoS One [Internet]. 
Public Library of Science; 2010 [cited 2020 Jul 2]; 5: e13984. Available from: 
https://dx.plos.org/10.1371/journal.pone.0013984 

102.  Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 
Cytoscape: A software Environment for integrated models of biomolecular interaction networks. 
Genome Res [Internet]. Cold Spring Harbor Laboratory Press; 2003 [cited 2020 Jul 2]; 13: 2498–
504. Available from: /pmc/articles/PMC403769/?report=abstract 

103.  Morris JH, Apeltsin L, Newman AM, Baumbach J, Wittkop T, Su G, Bader GD, Ferrin TE. 
ClusterMaker: A multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics [Internet]. 
BioMed Central; 2011 [cited 2020 Aug 17]; 12: 436. Available from: 
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-436 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

 

104.  Oesper L, Merico D, Isserlin R, Bader GD. WordCloud: A Cytoscape plugin to create a visual 
semantic summary of networks. Source Code Biol Med [Internet]. BioMed Central; 2011 [cited 
2020 Aug 17]; 6: 7. Available from: /pmc/articles/PMC3083346/?report=abstract 

 

Figure Legends  

Figure 1. Whole-transcriptome characterization of different mouse tissues throughout the 

lifespan by pairwise differential expression analysis against a 3-month baseline. A) PCA of all 

tissues performed on VST-normalized read counts of the 500 most variable genes and colored 

by all known effects highlights type of tissue as the main contributor to sample segregation. B) 

Percentage of DEGs across the lifespan for the mouse brain, heart, liver, muscle, and pancreas, 

highlighting the last two tissues as the ones with higher and lower dysregulation, respectively. 

The displayed values correspond to the percentages of the total number of DEGs found in each 

tissue relative to the initial number of genes (50735). Total number of DEGs is the sum of the 

number of DEGs per pairwise comparison (differential expressed genes per time point against 

the 3-month baseline); in the case of duplicate gene IDs, only one was considered). C) Line plot 

depicting the amplitude of gene expression alterations across the lifespan for the selected 

tissues reveals a progressive increase in DEGs with increasing age. Line breaks correspond to 

the number of DEGs in each time point against the baseline (3 months). Positive values relate 

to up-regulated genes whereas negative values match up to down-regulated genes. D) 

Boxplots showing the distribution of log2FC values per tissue and time point (against 3-month 

baseline). The grey, dashed line represents log2FC = 1 and log2FC = -1 (fold-changes of 2 and 

0.5, respectively). log2FC > 1 indicates more than doubling the expression, whereas log2FC < -1 

points to half or less of the expression.  E) DEG biotype distribution per tissue and time point 

(against the 3-month baseline). Biotype nomenclature based on Ensembl annotation. F) 

Percentage of genes differentially expressed in over half of the evaluated lifespan (5, 6, 7, and 

8 time points) or in half (4 time points) or less (3, 2, and 1 time points). G) Trajectories across 

the lifespan of the TDEGs per tissue (brain: 7 time points; heart, liver, muscle, and pancreas: 8 

time points). 
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Figure 2. Weighted gene co-expression network analysis of the whole mouse transcriptome. 

A) Correlation between each module’s eigengene (ME) and age. Each tissue exhibits a variable 

number of modules of co-expressed genes (brain: 24; heart: 6; liver: 18; muscle: 6; pancreas: 

5), and unassigned genes are clustered together in the grey module (not shown). ME is the first 

principal component of the expression matrix of a module, thus being the most representative 

gene expression profile of that group of correlated genes. Cells are annotated with bicor values 

and corresponding FDR adjusted p-values (inside brackets). Red and blue cells depict positive 

and negative correlations, respectively. The intensity of color represents the degree of 

correlation. All modules whose ME’s correlation with age is significantly equal or higher than 

0.4 were considered (moderate correlation and above; FDR < 0.05; marked with *). B) 

Correlation between module membership (MM) and gene significance (GS) of the previously 

selected modules. MM is obtained by correlating the expression of individual genes to the ME, 

and GS corresponds to the absolute value of the correlation between individual genes and the 

trait of interest. Only modules with moderate or higher (≥ 0.4) and significant (p-value < 0.05) 

correlations were considered for subsequent analysis (marked with *). C) Gene expression 

profile of each module. The heatmaps (top) display the standardized expression (z-score) of 

individual genes (rows) per sample (columns), whereas the bar plots (below) represent the ME 

expression profile. Each bar of the bar plot corresponds to the same samples of the heatmap. 

Negative (positive) values of ME expression relate to the under-expression (over-expression) of 

genes in each module’s heatmap (green and red colors, respectively). D) Intramodular hub 

gene identification. For each module, genes with individual GS > 0.2 and MM > 0.8 were 

considered to be the most functionally important (inside grey rectangles).  

Figure 3. Gene overlap between DEGs, TDEGs, module genes, and hub genes. Bars represent 

intersection size and colored circles depict the gene sets involved. Genes in common at least in 

the DEG and hub gene sets were considered for further analysis (identified with *). 
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Figure 4. Overlap of genes and biological processes between the brain, heart, liver, and 

muscle. Upset plots depicting the gene overlap between DEGs, module genes, and hub genes 

per tissue (left), as well as the overlap of the enriched GO terms in the same tissues (rigth). 

Bars represent intersection size and colored circles depict the gene/GO term sets involved. 

Each tissue's gene list results from the intersection of DEGs, module, and hub genes. In tissues 

with more than one module (i.e. the brain and the liver), the gene list results from the 

combination of each module's intersection, and the GO term list results from the combination 

of each module's GO terms. GO terms in common at least in two tissues were considered for 

further analysis (identified with *). 
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Tables  

Table 1. DEG pervasiveness across the lifespan. Per tissue list of TDEGs, number of time points 

in which TDEGs were found to be differentially expressed and associated GO Biological 

Processes. All annotated processes were retrieved from the AmiGO2 webtool [90] 

(Supplemental File S1). 

Tissue 

Time 

points 

(no.) 

TDEGs (no. 

and 

direction) 

Genes involved GO Biological processes 

Brain 7 
8 Up 

4930522L14Rik, 

Abca8a, C4b, 

Ctss, Ifit3, 

Pcdhb9, Pcdhga2, 

Pcdhga7 

Transcription regulation: 4930522L14Rik 
Lipid transport:  Abca8a 
Immune system processes:  C4b, Ctss, Ifit3 

Cell adhesion:  Pcdhb9, Pcdhga7 

NA: Pcdhga2 

0 Down NA NA 

Heart 8 
5 Up 

Amy1, C1s1, 

Cdh4, Cds1, 

Scn4b 

Carbohydrate metabolism: Amy1 

Complement system activation: C1s1 

Cell adhesion: Cdh4 

Lipid metabolism: Cds1 
Cardiac action potential: Scn4b 

0 Down NA NA 

Liver 8 

4 Up 
Ar, Gnat1, Parp3, 

Zap70 

Transcription regulation: Ar 
Signal transduction: Gnat1 

DNA repair: Parp3 

Adaptive immune response: Zap70 

2 Down Aadac, Slc22a30 
Triglyceride metabolism: Aadac 
Anion transport: Slc22a30 

Muscle 8 

10 Up 

Actr3b, Aldh1a1, 

Fbxl4, Nek6, 

Pfkm, Plekhb1, 

Rasd2, Samd10, 

Slc15a5, Tmem37 

Actin filament organization: Actr3b 
Retinoid metabolism: Aldh1a1 

Ubiquitin-dependent protein catabolism: 
Fbxl4 

Cell cycle: Nek6 

Glycogen catabolism: Pfkm 

Cell differentiation: Plekhb1 

Signal transduction: Rasd2 
Protein transport: Slc15a5 

Ion transport: Tmem37 

NA: Samd10 

6 Down 
Ak3, Dnmt3a, 

Hacd1, Klhdc3, 

Nrep, Sspn 

Energy metabolism: Ak3 
DNA methylation: Dnmt3a 

Fatty acid metabolism: Hacd1 

Meiotic cell cycle:  Klhdc3 
TGF-β receptor signaling pathway:  Nrep 

NA: Sspn 

Pancreas 8 
1 Up 1810007D17Rik NA: 1810007D17Rik 

0 Down NA NA 

NA – not applicable/available 
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Table 2. Tissue-specific age-dysregulated functions. Relates to Supplemental Figure S2 and Supplemental File S4.  

Tissue 
Dysregulated 

function 
Related meta-node 

No. of 

nodes 
Selected genes  Module Regulation  Onset  

Brain 

 

 

Immune 

response 

 

antigen mediated regulation positive 

 

132 

 

B2m, H2-D1, H2-K1, H2-T23  
Midnightblue Increase 

Middle to old age 

(15-18 months) 

 

Neuronal 

development 

 

stem cell development regulation 

 

25 

 

Bmp7, Cdh1 
Royalbue Increase 

Old age 

(18-21 months) 

 

Heart 
Energy 

metabolism 

process pyruvate biosynthetic nucleoside 54 
Acaa2, Acsl1, Dlat, Pdha1, Pdhb, 

Pdk2  

Brown Decrease 
Old age 

(18-21 months) 
catabolic lipid fatty thermogenesis 22 Acaa2, Acsl1, Pdk2  

respiratory electron ATP synthesis 12 Dlat, Pdha1, Pdhb  

Muscle 

Immune 

response 

processing antigen response immune 66 Anxa1, Igf1, Lrp1 

Brown Decrease 
Middle age 

(9-12 months) 

peptide secretion coagulation negative 44 Anxa1, Anxa2, Igf1, Lrp1 

Muscle 

regeneration 

cell-substrate junction cell-matrix adhesion 25 Anxa1, Igf1, Lrp1 

positive regulation fibroblast proliferation 3 Anxa2, Igf1 

Liver 

 

Fatty acid 

metabolism 

 

organic biosynthetic process metabolic 

 

40 

 

Fasn 
 

Lightcyan 

 

Increase 

 

Middle age 

(9-12 months) 
 

Fibrosis 

regulation 

actin filament protein polymerization 4 Pstpip2 

 

Immune 

response  

 

interferon-gamma-mediated signaling pathway 

regulation 

 

7 

 

Dnaja3 

 

Lightgreen 

 

Decrease 

 

Adulthood to 

middle age 

(6-9 months) 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted F
ebruary 18, 2021. 

; 
https://doi.org/10.1101/2021.02.18.431793

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 

 

 

negative regulation protein transport 

 

29 

 

C9, Cdh1 
Grey60 Decrease 

Middle age 

(9-12 months) 
response immune activation pathway 13 C6, C8b, C9 

Xenobiotic 

detoxification 

 

process regulation intestinal absorption 
8 Abcg2 Salmon Decrease 

Middle to old age 

(15-18 months) 
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Table 3. Inter-tissue age-dysregulated functions. Relates to Supplemental Figure S3 and Supplemental File S5.  

Muscle, Brain and Liver 

Related function 
Meta-node 

annotation 

No. of 

nodes 

 

Genes 

involved – 

Muscle 

 

Genes 

involved - 

Brain 

Genes 

involved - 

Liver 

Regulation 

- Muscle 

Regulation 

- Brain 

Regulation 

- Liver 

Onset - 

Muscle 

Onset 

- Brain 

Onset 

- 

Liver 

 

Protein clearance and 

degradation 

 

 

 

amyloid-beta 

clearance receptor-

mediated 

endocytosis 

2 

Anxa2, C3, 

Fcgr2b, 

Lrp1, Mrc1 

B2m, C3, 

Itgb2 
NA Decrease Increase NA 

9 to 12 

mo. 

15 to 

18 mo. 
NA 

regulation peptidase 

activity 
1 

Ctsh, Dap, 

Ecm1, Igf1, 

Pi16, Rcn3, 

Serpinf1, 

Serping1, 

Timp2 

Ctsd, Ctsh, 

Psmb8, 

Serpina3n 

Cdh1, 

Serpina3k 
Decrease Increase Decrease 

9 to 12 

mo. 

15 to 

18 mo. 

12 to 

15 

mo. 

small GTPase 

mediated signal 

transduction 

1 

 

Col1a2, 

Col3a1, 

Cyth4, 

Dok2, Igf1, 

Lpar1, 

Myoc, 

Timp2 

NA 
Dnaja3, 

Fbxo8 
Decrease NA Decrease 

9 to 12 

mo. 
NA 

6 to 9 

mo. 

negative regulation 

of proteolysis 
1 

 

Ecm1, Igf1, 

Pi16, 

Serpinf1, 

Serping1, 

Timp2 

NA 
Cdh1, 

Serpina3k 
Decrease NA Decrease 

9 to 12 

mo. 
NA 

12 to 

15 

mo. 
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response to peptide 1 

 

Anxa1, 

Anxa5, 

Fcgr2b, 

Igf1, Lrp1, 

Mmp2, 

Pid1 

NA 
Serpina3k

, Rangap1 
Decrease NA Decrease 

9 to 12 

mo. 
NA 

12 to 

15 

mo. 

Brain, Heart and Liver 

Related function 
Meta-node 

annotation 

No. of 

nodes 

 

Genes 

involved - 

Brain 

Genes 

involved - 

Heart 

Genes 

involved - 

Liver 

Regulation 

- Brain 

Regulation 

- Heart 

Regulation 

- Liver 

Onset - 

Brain 

Onset 

- Heart 

Onset 

- 

Liver 

 

Organic acid 

metabolism 

metabolic process 

purine bisphosphate 
17 NA 

Acaa2, 

Acsl1, Adk, 

Ak1, 

Akr7a5, 

Atp5a1, 

Atp5b, 

Coq2, Coq9, 

Cox10, Cs, 

Dlat, Eno3, 

Isca1, 

Mccc2, 

Nfs1, 

Pdha1, 

Pdhb, Pdk2, 

Prdx3, 

Sucla2 

Fasn NA Decrease Increase NA 
18 to 

21 mo. 

9 to 

12 

mo. 

organic acid 

biosynthetic process 
4 

Aldh1a2, 

Cd74, 

Ptgds, 

Sphk1 

NA Fasn Increase NA Increase 
18 to 

21 mo. 
NA 

9 to 

12 

mo. 

fatty acid metabolic 

process 
1 

Cd74, 

Ptgds, 

 

Acaa1a, 
Fasn Increase Decrease Increase 

18 to 

21 mo. 

18 to 

21 mo. 

9 to 

12 
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Sphk1 Acaa2, 

Acadl, 

Acsl1, 

Adipor1, 

Auh, Cpt, 

Crat, Eci2, 

Ephx2, Etfb, 

Gnpat, 

Hadh, 

Pdk2, 

Ptges2 

mo. 

 

Muscle and Heart 

Related function 
Meta-node 

annotation 

 

No. of 

nodes 

Genes involved - Muscle Genes involved - Heart 
Regulation 

- Muscle 

Regulation 

- Heart 

Onset - 

Muscle 

Onset - 

Heart 

Mitochondrial 

membrane potential 

regulation of 

mitochondrial 

membrane potential 

 

1 Dcn, Myoc, Pid1 Got1, Ndufs1, Prdx3 Decrease Decrease 9 to 12 mo. 
18 to 21 

mo. 

NA – not applicable; mo. – months 
       

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted F
ebruary 18, 2021. 

; 
https://doi.org/10.1101/2021.02.18.431793

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431793doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431793
http://creativecommons.org/licenses/by-nc-nd/4.0/

