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Abstract  

Epigenome-wide association studies (EWAS) often detect a large number of differentially methylated sites 

or regions, many are located in distal regulatory regions. To further prioritize these significant sites, there 

is a critical need to better understand the functional impact of CpG methylation. Recent studies 

demonstrated CpG methylation-dependent transcriptional regulation is a widespread phenomenon. Here we 

present MethReg, an R/Bioconductor package that analyzes matched DNA-methylation and gene-

expression data, along with external transcription factor (TF) binding information, to evaluate, prioritize, 

and annotate CpG sites with high regulatory potential. By simultaneous modeling three key elements that 

contribute to gene transcription (CpG methylation, target gene expression and TF activity), MethReg 

identifies TF-target gene associations that are present only in a subset of samples with high (or low)  

methylation levels at the CpG that influences TF activities, which can be missed in analyses that use all 

samples. Using real colorectal cancer and Alzheimer’s disease datasets, we show MethReg significantly 

enhances our understanding of the regulatory roles of DNA methylation in complex diseases. 
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Background 

DNA methylation is a widely studied epigenetic modification. Recent epigenome-wide association studies 

(EWAS) have identified numerous alterations in DNA methylation (DNAm) levels that are involved in 

many diseases such as various cancers [1-5] and neurodegenerative diseases [6-8]. Compared to genome-

wide association studies (GWAS) of genetic variants, EWAS often detect a larger number of significant 

differences, often thousands of differentially methylated CpG sites (DMS), which are significantly 

associated with a disease or phenotype. Many of these DMS are located far from genes, complicating the 

interpretation of their functionality [9, 10].  Therefore, there is a critical need to better understand the 

functional impact of these CpG methylations and to further prioritize the significant methylation changes.  

Transcription factors (TFs) are proteins that bind DNA and facilitate the transcription of DNA into 

RNA. A number of recent studies have observed that the binding of TFs onto DNA can be affected by DNA 

methylation, and in turn, DNA methylation can also be altered by proteins associated with TFs [11-15]. 

Using methylation-sensitive SELEX (systematic evolution of ligands by exponential enrichment), Yin et 

al. (2017) [16] classified 519 TFs into several categories: TFs whose binding strength increased, decreased, 

or was not affected by DNA methylation, as well as those not containing CpGs in their binding motifs.  

 Although a number of integrative analyses strategies [17-23] have been proposed to help assess the 

functional role of the DNA methylation changes in gene regulation, these methods typically integrate DNA 

methylation data with either gene expression [17-20] or TF binding data [21-23], but rarely both. For 

example, MethylMix [17] identifies CpGs that are predictive of transcription and then classifies the CpGs 

into different methylation states. Similarly, COHCAP [18] identifies a subset of CpGs within CpG islands 

that are most likely to regulate downstream gene expression. These methods which test the association 

between DNA methylation and target gene expression can be further improved by additionally 

incorporating information on TF activities.  

To determine whether TF regulatory activity is enhanced or reduced by significant CpGs in EWAS, the 

gold standard would be to perform ChIP-Seq experiments for all candidate TFs with binding sites close to 

the CpGs in parallel with bisulfite sequencing of DNA methylation changes and transcriptome assessment. 
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However, performing ChIP-Seq experiments on primary tissues is technically challenging because of the 

limited number of cells in some samples, the large number of TF to be tested, and the lack of availability 

for specific antibodies. Therefore, in practice, computational approaches are often used to prioritize disease 

relevant TFs in DNA methylation studies. For example, LOLA [21] (Locus Overlap Analysis) performs 

enrichment analysis to identify regulatory elements such as TFs with binding sites enriched in candidate 

genomic regions (e.g., DMRs). Alternatively, Goldmine [22] annotates individual CpGs by TFs with 

binding sites that overlap with the CpG. However, because the binding motifs for TFs are often non-specific 

for different members of a TF family, there are often many TFs with binding sites that overlap with a given 

CpG. Moreover, TF binding can also occur without affecting the transcription of any gene [24, 25]. 

Therefore, methods which analyze DNA methylation and TF binding sites (TFBS) data would also be 

greatly enhanced by additionally modeling target gene expression.   

To fill this critical gap in analytical methods and software for annotating and prioritizing DNA 

methylation changes identified in EWAS, here we present MethReg, an R/Bioconductor package that 

performs integrative modeling of three key components (DNA methylation, gene expression levels, TF) in 

gene regulation, to provide a more comprehensive functional assessment of CpG methylation in gene 

regulation. In particular, MethReg leverages information from external databases on TFBS, ChIP-seq 

experiments and TF-target interactions, performs both promoter and distal (enhancer) analyses, implements 

rigorous robust regression models, and can fully adjust for potential confounding effects such as copy 

number, age, and sex that are important in DNA methylation analysis. MethReg can be used either to 

evaluate the regulatory potentials of candidate regions identified in EWAS (in supervised analysis mode) 

or to search for methylation dependent TF regulatory processes in the entire genome (in unsupervised 

analysis mode).  

Using simulated datasets, we showed that by simultaneous modeling of three key elements (DNA 

methylation, target gene, and TF), MethReg significantly improves prioritization for true positive DNA 

methylation changes with regulatory roles in gene transcription when compared to models that include only 

two key elements. In addition, we also analyzed the TCGA colorectal datasets and the ROSMAP 
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Alzheimer’s dataset to show that MethReg was able to recover known biology, as well as nominate novel 

biologically meaningful DNA methylation-TF-target associations that influence transcription.  

 

Results  

An overview of the MethReg software  

To systematically search for CpG methylation with significant regulatory effects on gene expression by 

influencing TF activities, we developed MethReg. Figure 1 illustrates the workflow for MethReg. Given 

matched (methylation arrays) DNA methylation data and (RNA-seq) gene expression data, MethReg 

additionally incorporates TF binding information from ReMap2020 [26] or the JASPAR2020 [27] database, 

and optionally additional TF-target gene interaction databases (Supplementary Table 1), to perform both 

promoter and distal (enhancer) analysis. In the unsupervised mode, MethReg analyzes all CpGs on the 

Illumina arrays. In supervised mode, MethReg analyzes and prioritizes differentially methylated CpGs 

(DMS) identified in EWAS. There are three main steps: (1) create a dataset with triplets of CpGs, TFs 

which bind near the CpGs, and putative target genes; (2) for each CpG-TF-target gene triplet, apply 

integrative statistical models to DNA methylation, target gene expression, and TF activity values; and  (3) 

visualize and interpret results from statistical models to estimate the impact of DNA methylation on TF 

activity (synergistic effect of CpG methylation and TF on target gene), as well as to annotate the roles of 

TF and CpG methylation in regulating target gene expression. The results from the statistical models will 

allow us to identify a list of CpGs that work synergistically with TFs to influence target gene expression. 

Next, we discuss each of these analytical steps in detail. We will describe the analysis of TFs, but the 

methods and software tool are, in principle, also applicable to other types of chromatin proteins that 

crosstalk with DNA methylation. MethReg is an open-source R/Bioconductor package, available at 

https://bioconductor.org/packages/MethReg/.  

 

Creating CpG-TF-target gene triplet dataset 
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MethReg first links CpGs to TFs with binding sites within a window of user-specified distance (e.g., ± 250 

bp) using information from ReMap2020 [26] or JASPER2020 [27] database. The JASPER2020 [27] 

database includes curated transcription factor binding models, among which 637 are associated with human 

TFs with known DNA-binding profiles [28]. Similarly, the human atlas of the ReMap2020 database [25] 

contains regulatory regions for 1135 transcriptional regulators obtained using genome-wide DNA-binding 

experiments such as ChIP-seq. Next, in promoter analysis, CpGs located in promoter regions, defined as ± 

2 kb regions around the transcription start sites (TSS), are linked to target genes with promoters that overlap 

with the CpG. On the other hand, CpGs in the distal regions (i.e., > 2kb from TSS) are linked to a specific 

number of genes (e.g., 5 genes) upstream or downstream and within 1M bp of the CpG. The CpG-TF pairs 

are then combined with CpG-target pairs to create triplets of CpG-TF-target genes.  

 Alternatively, CpGs can also be linked to genes within 1M bp using regulon-based analysis. A TF 

regulon consists of all the transcriptional targets of the TF. MethReg obtains TF-target pairs from curated 

external regulon databases [29-31] (Supplementary Table 1). Combining the CpG-TF pairs with TF-target 

gene pairs, we then obtain a triplet dataset where each row contains identifiers for a CpG, a TF, and the 

target gene.  

 

Estimating regulatory effects of CpG methylation and TFs on target gene expression 

Given a CpG-TF-target gene triplet, we then query the matched DNA methylation and gene expression 

datasets to obtain DNA methylation, target gene, and TF gene expression (or activity) values and fit the 

following statistical model to data:  

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ~ 𝑇𝑇𝑇𝑇 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 × 𝑇𝑇𝑇𝑇         (Model 1) 

where target is log2 transformed target gene expression values, TF is log2 transformed TF gene expression 

values or estimated TF activity scores (see details in section “Modeling TF protein activities” below), and 

DNAm is DNA methylation beta-values.  

Note that Model 1 partitions the effects of DNA methylation and TF on target gene expression into 

three categories: the direct effect of TF (modeled by term TF), the direct effect of DNA methylation 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431696doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431696
http://creativecommons.org/licenses/by-nc-nd/4.0/


(modeled by term DNAm), and the synergistic effects of TF and DNA methylation (i.e., how the effect of 

TF on target gene expression is modified by DNA methylation; modeled by DNAm × TF interaction term).  

 For accurate statistical modeling, MethReg implements Model 1 by fitting a robust linear model which 

gives outlier gene expression values reduced weights [32]. Note that a key feature of Model 1 is that it 

provides more comprehensive modeling of gene regulation by incorporating the three components (TF 

activity, DNA methylation, target gene expression) simultaneously. In addition to Model 1 described above, 

which included DNAm as a continuous variable, we also considered another model that modeled 

methylation values as a binary variable. We also propose:   

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ~ 𝑇𝑇𝑇𝑇 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷.𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷.𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 × 𝑇𝑇𝑇𝑇       (Model 2) 

where DNAm.group is high or low. That is, for a given CpG, the samples with the highest DNA methylation 

levels (top 25%) have DNAm.group = “high”, and samples with lowest DNAm levels (bottom 25%) have 

DNAm.group = “low”. In this model, only samples with DNA methylation values in the first and last 

quartiles are considered. Note also that statistically, the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷.𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 × 𝑇𝑇𝑇𝑇 effect is estimated by 

comparing the magnitude of TF-target gene association in high methylation group versus the magnitude of 

the TF-target gene association in low methylation group.  

 

Modeling TF protein activities  

Given that TF gene expression might not accurately reflect TF protein activities, which involve additional 

complex processes (e.g. post-translational modifications, protein-protein/ligand interactions, and 

localization changes), MethReg implements an additional option to model TF activities via the VIPER 

(virtual Inference by enriched regulon analysis) [33] or GSVA [34] methods, so that the TF effects in Model 

1 and Model 2 described above can also be computed by replacing TF gene expression levels with estimated 

TF activities. Briefly, given RNA-seq data, these methods estimate the activity of a TF by performing a 

rank-based gene set enrichment analysis of its target genes (i.e., its regulon). MethReg can work with 

different regulon databases (Supplementary Table 1), such as those described Garcia-Alonso et al. (2019) 

[29], which were collected from four resources: manually curated databases, ChIP-seq binding 
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experimental data, prediction of TF binding motifs based on gene promoter sequences, or computational 

regulatory network analysis. The Genotype-Tissue Expression (GTEx) tissue-consensus regulons included 

1,077,121 TF–target candidate regulatory interactions between 1,402 TFs and 26,984 targets, and the pan-

cancer regulons included 636,753 TF–target candidate regulatory interactions between 1,412 TFs and 

26,939 targets. Garcia-Alonso et al. (2019) annotated each TF-target interaction with a five-level 

confidence score, with “A” indicating most reliable, supported by multiple lines of evidence, and “E” 

indicating least confidence, supported only by computational predictions. Benchmark experiments using 

three separate datasets showed the GTEx tissue-consensus regulons performed similarly to tissue-specific 

regulons computed from GTEx data of specific tissue type. Notably, MethReg also provides options for 

users to input alternative TF regulon databases (Supplementary Table 1) and TF activities computed using 

alternative software such as Lisa [35].  

 

Stage-wise method for controlling false discovery rate 

MethReg implements two alternative methods for controlling false discovery rates, using the conventional 

approach [36] or a stage-wise approach [37]. To help improve power in high-throughput experiments where 

multiple hypotheses are tested for each gene, van de Berge et al. (2017) [37] proposed a stage-wise approach 

in the context of gene splicing analysis. First, in the screening step, a global test is applied to each gene to 

test the null hypothesis that there is a differential change in any of the transcripts within the gene. Second, 

in the confirmation step, for the genes selected in the screening step, individual transcripts are then tested 

while controlling family-wise error rate (FWER). By aggregating effects from individual transcripts within 

a gene in the screening step, the stage-wise procedure was shown to have superior power compared with 

the conventional approach that tests all individual transcripts in one-step.  

In Model 1 and Model 2 described above, the synergistic activity of DNA methylation and TF is 

estimated by the interaction term DNAm × TF. Because the standard error of interaction effects is typically 

much larger than those for main effects, the conventional approach for controlling false discovery rate often 

results in low power for discovering interaction effects [37]. To this end, MethReg additionally implements 
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the stage-wise procedure for testing interactions by first aggregating all CpG-TF-target triplets associated 

with the same CpG as a group. In the screening step, MethReg tests the null hypothesis that any of the 

individual triplets mapped to a CpG has a significant DNAm × TF effect. In the confirmation step, MethReg 

tests all the triplets associated with significant CpGs selected in the screening step while controlling FWER 

as described in Van den Berge et al. (2017) [37].  

 

Visualizing and annotating roles of CpG and TF in gene transcription     

To visualize how DNA methylation and TFs work together to influence gene expression, MethReg 

generates a suite of figures. Figure 2 shows an example output figure of Model 2 applied to the TCGA 

colorectal cancer dataset (Online Methods). In the first row are figures for assessing direct pairwise TF-

target and DNA methylation-target associations. In the second row are figures for assessing TF-target gene 

expression, stratified by high or low DNA methylation levels. In the third row, we stratify by TF expression 

(or activity score) instead and plot gene expression against DNA methylation values, stratified by high or 

low TF expression (or activity) levels.  

 Note in Figure 2, without stratifying by DNA methylation, the overall TF-target effect (robust linear 

model P-value = 0.590) is not significant. In contrast, TF-target association is highly significant in samples 

with high methylation levels (robust linear model P-value = 0.001). Therefore, methylation at cg00328227 

plays an important role in regulating TF activity in this case. This example also demonstrates that by 

additionally modeling DNA methylation, we can nominate TF-target associations that might have been 

missed otherwise.  

Figure 3 shows the different biological scenarios where methylation and TF influences target gene 

expression synergistically. A TF repressor decreases transcription while a TF activator increases it, and the 

presence of methylation can either enhance or attenuate the binding affinity of the TF. For each triplet, 

MethReg annotates the role of TF on the target gene (repressor, activator, or dual) and how DNA 

methylation influences the TF (enhancing, attenuating, or invert).  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431696doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431696
http://creativecommons.org/licenses/by-nc-nd/4.0/


Simulation analysis  

We conducted a simulation study to compare the performance of 7 different approaches, including Model 

1 & Model 2 as well as the conventional approach of directly correlating TF and target gene expressions, 

to identify TF-target associations where TF activities are modulated by CpG methylation (Supplementary 

Figure 1). We considered the scenario where CpG methylation affects TF binding affinity, so that TF only 

affects target gene expression when methylation level is low. To assess the statistical properties of these 

different methods, we estimated and compared type I error rate, power, and area under receiver operating 

characteristics curves (AUC) for each method.  

More specifically, we simulated datasets for which target gene expression levels were dependent on TF 

expressions only in samples with low DNA methylation levels. We used 38 samples of TCGA COAD 

matched RNA-seq and DNA methylation data on chromosome 21 included in the MethReg R package as 

our input dataset, from which we randomly sampled TF gene expression and methylation expression levels. 

For each simulated triplet dataset, we randomly sampled one gene from RNA-seq dataset and one CpG site 

from methylation dataset to be our TF expression and DNA methylation expression. Next, target gene 

expression levels were simulated from negative binomial distributions as follows: the estimated median 

mean and variance over all genes in our input dataset were 𝜇𝜇0 = 10.59 and 𝜎𝜎2 = 16.90, respectively. 

Therefore, for target gene expressions, we assumed a negative binomial distribution with parameters 𝜇𝜇0 =

10.59 and 𝑘𝑘0 = 𝜇𝜇02/(𝜎𝜎2 − 𝜇𝜇0) = 17.78 for all samples except those with lowest DNA methylation levels 

in the first quartile. For the samples with low methylation levels in the first quartile, we generated target 

gene expression levels from negative binomial distribution (𝜇𝜇 = 𝜇𝜇0 + 𝛽𝛽 × TF gene expression, 𝑘𝑘 = 𝑘𝑘0), 

where 𝛽𝛽 = (0, 1, 2, … , 9) indicates different strengths of associations between TF and target gene 

expressions, corresponding to 10 different simulation scenarios. Therefore, by design of this simulation 

experiment, target gene expressions were associated with TF only when methylation levels were low. For 

each simulation scenario, we repeated this process 1,000 times to generate 1,000 triplets of TF, DNA 

methylation, and target gene expression levels.  
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Note that when 𝛽𝛽 = 0, target gene expressions were generated randomly from negative binomial 

distribution and did not depend on TF gene expression in the samples, so the 1,000 triplet datasets simulated 

under this simulation scenario (null triplets) allowed us to estimate type I error rates of different models. 

We compared sensitivity and specificities for identifying TF-target associations based on p-values from 7 

different approaches (Supplementary Figure 1):  

a) lm.cont: p-value for DNAm × TF term in linear model implementation of Model 1.  

b) lm.binary: p-value for DNAm.group × TF term in linear model implementation of Model 2.  

c) rlm.cont: p-value for DNAm × TF term in robust linear model implementation of Model 1.  

d) rlm.binary: p-value for DNAm.group × TF term in robust linear model implementation of 

Model 2.   

e) rlm.binary.en: p-value for DNAm.group × TF term in robust linear model implementation of 

Model 2, estimated from empirical null distribution [38] (see details in Methods).    

f) lm.main.tf: p-value for TF term in main effect model target gene expression ~ TF.   

g) spearman.corr.tf: p-value for spearman correlation between target gene expression and TF.  

Note that the last two methods lm.main.tf and spearman.corr.tf evaluate the conventional approach of 

directly correlating target gene expression with TF expression, without considering DNA methylation 

(Supplementary Figure 1). Also, in method e) rlm.binary.en, instead of the conventional approach which 

computes P-values by comparing test statistic for DNAm.group × TF  to t-distribution, this method 

estimates P-values for DNAm.group × TF effect using empirical null distribution [38], which is a normal 

distribution with empirically estimated mean 𝛿𝛿 and standard deviation 𝜎𝜎�. Efron (2010) [38] showed that in 

large-scale simultaneous testing situations (e.g., when many triplets are tested in an analysis), serious 

defects in the theoretical null distribution may become obvious, while empirical Bayes methods can provide 

much more realistic null distributions.  

The results showed that all methods had type I error rates close to 5%. In particular, the methods 

lm.main.tf, rlm.binary.en, and spearman.corr.tf had type I error rates below 5% (Supplementary Figure 2). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431696doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431696
http://creativecommons.org/licenses/by-nc-nd/4.0/


Among the methods, rlm.binary and rlm.binary.en had similar and the highest power across all simulation 

scenarios, while the main effect models that test association between target gene expression and TF 

expression using linear model (lm.main.tf) or Spearman correlation (spearman.corr.tf ) lacked power 

(Supplementary Figure 3).  

 Given the known status of CpG methylation’s role in association with target gene expression (i.e. true 

negative when 𝛽𝛽 = 0 and true positive when 𝛽𝛽 > 0), we next computed the area under the ROC curve 

(AUC) for each method. The receiver operating characteristic (ROC) curves show a trade-off between 

sensitivity and specificity as the significance cutoff is varied. AUC assesses the overall discriminative 

ability of the methods to determine whether a given methylation CpG is driving target gene expression over 

all possible cutoffs. The best performing methods with highest AUCs are methods rlm.binary (0.894), 

rlm.binary.en (0.882), and lm.binary (0.838), followed by p-values from models with continuous 

methylation levels, lm.cont (0.821) and rlm.cont (0.815) (Figure 4). Again, the main effect models 

lm.main.tf and spearman.corr.tf lacked sensitivity (i.e., power) therefore had the lowest AUCs at 0.631 and 

0.582, respectively.  

These simulation study results showed that the conventional approach of directly correlating gene 

expression with TF expression (lm.main.tf and spearman.corr.tf) lacked power for detecting TF activities 

on target gene expression when they are also modulated by DNA methylation. This is probably because 

without stratifying on DNA methylation levels, the main effect models detect TF-target gene associations 

averaged over all samples with various methylation levels. In contrast, the interaction terms in Model 1 & 

2 compare the magnitude of TF-target gene association in low methylation samples versus the magnitude 

of the association in high methylation samples.   

The results also indicated that the models that use a binary variable (low, high) to model methylation 

levels (rlm.binary, rlm.binary.en and lm.binary methods) performed best, probably because these models 

can reduce noise in data and thus can improve power. Among binary models, the robust linear model 
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rlm.binary and rlm.binary.en performed similarly and better than regular linear model lm.binary. Thus, we 

selected the rlm.binary model for our subsequent analyses.  

 

Case Study: analyses of TCGA COAD-READ datasets 

An unsupervised MethReg analysis 

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of 

cancer death in the United States [39]. CRC, like many other cancers, is characterized by global hypo-

methylation leading to oncogene activation, chromosomal instability, and locus-specific hyper-methylation 

which leads to silencing of tumor suppressor genes [40, 41]. In parallel, TFs also play instrumental roles in 

tumor development and metastasis [42-44]. Given the strong epigenetic basis of CRC, we next applied 

MethReg to the TCGA COAD-READ datasets, including 367 samples with matched DNA methylation, 

gene expression, and copy number alterations (CNAs). To account for potential confounding effects, we 

adjusted target gene expression values by CNA and tumor purity estimates [45] first, extracted the residuals, 

and then fitted the rlm.binary model to the residuals (see the “Methods” section for details).  

 We performed an unsupervised MethReg analysis, without selecting any CpGs a priori. First, we 

divided the CpGs into those in the promoter regions (within ± 2 kb regions around the transcription start 

sites (TSS)) or the distal regions (> 2kb from TSS). Next, we linked CpG sites in the promoter regions to 

genes with promoters that overlapped with them. On the other hand, CpG sites in the distal regions were 

linked to five genes upstream and five genes downstream within 1M bp. Alternatively, in the regulon-based 

approach, we also linked CpGs in either promoter or distal regions to genes regulated by TFs with binding 

sites close to the CpG (Figure 1). To more accurately model TF effects, we computed TF activity scores 

using the VIPER algorithm [33]. Stage-wise analysis using the rlm.binary model residual target gene 

expression ~ TF.activity + DNAm.group + DNAm.group × TF.activity was then applied to the triplet 

datasets to identify triplets with significant DNAm.group × TF.activity effect, in which CpGs had significant 

effects on target gene expression by influencing TF activities.  
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Stage-wise analysis results showed  the number of triplets with significant DNAm × TF.activity terms 

in the promoter, distal, and regulon-based analysis were 31, 52, and 47, respectively (Table 1, 

Supplementary Table S2 – S4). There was no overlap between the significant triplets obtained in these three 

analyses. Our results agreed well with the previous study in Wang et al. (2020) [30], which also observed 

only a small number of transcriptional regulations were mediated by DNA methylation. To additionally 

validate our findings, we compared the TFs in our significant triplets with the MeDReaders database [46], 

which manually curated information from human and mouse studies for 731 TFs which could bind to 

methylated DNA sequences. Our comparison showed that among the 18, 44, and 11 unique TFs identified 

in the promoter, distal, and regulon-based analyses, respectively, the majority of them were previously 

shown to interact with methylated DNA. More specifically, 12 (68%), 32 (73%), and 8 (73%) of the TFs 

from the promoter, distal and regulon-based analyses were previously shown to exhibit CpG methylation-

dependent DNA-binding activities using functional protein arrays [14] or systematic evolution of ligands 

by exponential enrichment (SELEX) [16] (Supplementary Tables S2-S4).    

Moreover, the TFs and target genes in the significant triplets identified by MethReg have also been 

previously associated with CRC. Figure 2 shows the most significant triplet among all the triplets 

considered in  promoter and distal analysis. In this example, the transcription factor NFATC2 represses the 

target gene HENMT1 in samples with high DNA methylation at cg00328227 but is relatively independent 

of target gene expression in samples with high DNA methylation. Therefore, DNA methylation enhances 

TF activities in this case. NFATC2 belongs to the NFAT family of transcription factors, which are known 

to regulate T cell activation and differentiation as immune cells invades the malignant tissues [47]. In 

particular, NFATC2 is a critical regulator in intestinal inflammation that promotes development of 

colorectal cancer, and expression levels of NFATC2 were found to be elevated in colorectal cancer patients 

[48, 49]. The MethReg prediction that NFATC2 represses HENMT1 is consistent with the recent study that 

demonstrated higher expression of HENMT1 is a favorable prognostic biomarker for colorectal cancer [50], 

and that NFATC2 is associated with tumor initiation and progression. The HENMT1 gene encodes a 

methyltransferase that adds a 2'-O-methyl group at the 3'-end of piRNAs and was previously shown to be 
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dysregulated in many cancers [51]. Our literature review showed the role of HENMT1 is not well 

understood in colorectal cancer. Therefore, this example also shows MethReg can nominate plausible TF 

functions and targets that can be further studied experimentally. In contrast, without stratifying on DNA 

methylation levels, the direct TF-target association was only modest (Spearman correlation = - 0.033, P-

value = 0.527). 

Supplementary Figure 4 shows an example in which DNA methylation attenuates TF activity. In 

samples with low methylation level at cg02816729, the transcription factor TEAD3 down regulates target 

gene SMOC2. On the other hand, TEAD3 activity is relatively independent of target gene expression in 

samples with high methylation level at the CpG. TEAD3 belongs to the family of TEAD transcription 

factors, which also play critical roles in tumor initiation and progression in multiple types of malignancies 

including gastric, colorectal, breast, and prostate cancers [52]. Higher expression of TEADs, as well as 

association with poor patient survival, have been observed in many cancers including CRC [52, 53]. On the 

other hand, the target gene SMOC2 was recently shown to be a favorable prognostic biomarker for better 

clinical outcomes in a large cohort of CRC patients [54]. Therefore, the MethReg prediction that 

transcription factor TEAD3 suppresses target gene SMOC2 is consistent with the oncogenic role of TEAD3 

and the favorable prognostic potential of SMOC2. Again, without stratifying on methylation levels, the TF-

target association in all samples is only modest (Spearman correlation = 0.07, P-value = 0.183).  

Interestingly, some of the TFs exhibited different modes of regulation depending on DNA methylation 

levels. In Supplementary Figure 5, the expression levels of target gene BAHCC1 is increased by 

transcription factor POU3F4 in low methylation samples (P-value = 6.42×10-4) but is decreased by POU3F4 

in high methylation samples (P-value = 1.31×10-4). Therefore, DNA methylation effectively increases the 

diversity of TF functions in this case. Without stratifying on DNA methylation, the TF-target association is 

not significant (Spearman correlation = 0.083, P-value = 0.112). POU3F4 belongs to the family of POU 

domain transcription factors, which are involved in different developmental processes and also recently 

found to be associated with the malignancy processes in different human tissues [55-59]. In addition, 
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expression levels of the target gene BAHCC1 were shown to be associated with survival times in different 

types of cancers such as melanoma [60], liver cancer [61] and pancreatic cancer [62].  

Among other transcription factors in the top 10 triplets (Table 2), SNAI1 is a zinc-finger protein 

involved with inducing the epithelial-mesenchymal transition (EMT) process during which tumor cells 

become invasive with increased apoptotic resistance [63-65]. The MEIS1 homeodomain protein is a tumor 

suppressor and was observed to be down-regulated in colorectal adenomas [66]. Similarly, ISL2 is also a 

tumor suppressor and ISL2 loss increased cell proliferation and enhanced tumor growth in pancreatic ductal 

adenocarcinoma cells [67]. ETV4 belongs to a subfamily of the ETS family with well-known oncogenic 

properties [68]. In particular, ETV4 is over-expressed in colorectal tumor samples and higher ETV4 

expression is associated with shorter patient survival time [69-75]. ZNF384 is a zinc finger protein that is 

found to be over-expressed in several cancers, including leukemia [76, 77], liver cancer [78], and colorectal 

cancer [79]. Finally, FOXL1 is an important regulator of the Wnt/APC/β-catenin pathway, which frequently 

activates event in gastrointestinal carcinogenesis [80-82]. Similarly, the target genes in the top 10 triplets 

have also been implicated previously in CRC and other cancers (Table 2). Moreover, among the significant 

triplets identified by MethReg, the majority of the CpGs, TFs, and target genes (78%, 79% and 75%, 

respectively) were also differentially methylated or differentially expressed between tumor and normal 

samples (Supplementary Tables 2-4). Taken together, these results demonstrated that MethReg is able to 

identify biologically meaningful signals from real multi-omics datasets. 

 

Comparative analysis of MethReg (in unsupervised mode) with alternative approaches 

Encouraged by the consistency of MethReg results with recent colorectal cancer literature, we next 

performed a comparative analysis of MethReg with several alternative approaches. As evidence from large-

scale analyses that a substantial number of TFs can interact with methylated DNA have only become 

available in recent years, few studies have analyzed DNA methylation, TF binding sites, and gene 

expression data simultaneously using large multi-omics datasets until the past year.  
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We considered a total of three alternative approaches: the recent studies by Wang et al. (2020) [30] and 

Liu et al. (2019) [83], as well as the conventional approach of directly correlating DNA methylation with 

gene expression. In Wang et al. (2020), a rewiring score constructed based on TF-target gene correlations 

in high and low methylation samples was proposed to identify methylation-sensitive TFs in different 

cancers using TCGA data. Similarly, using a conditional mutual information-based approach, Liu et al. 

(2019) identified CpG-TF-target triplets in which the TF-target regulation circuit is dependent on CpG 

methylation levels in different cancers using TCGA data. In both of these studies, sample permutations 

were used to estimate P-values for test statistics based on rewiring scores or conditional mutual information.  

Conceptually, compared to these previous studies, MethReg makes several distinct contributions: (1) 

MethReg analysis is comprehensive. While both previous works [30, 83] analyzed only promoter CpG 

methylation, MethReg analyzes methylation CpGs at both promoter and distal (enhancer) regions. The 

identification of distal regulatory elements is crucial as they are often not well defined. (2) MethReg 

analysis is flexible. In addition to the example databases we have described here, MethReg is capable of 

incorporating any user-specified ChIP-seq or regulons database (Supplementary Table 1), including those 

that are tissue- or disease-specific. The power and potential of MethReg grows as more knowledge on TF 

regulation becomes available. (3) MethReg analysis is rigorous.  Robust linear models are implemented to 

carefully model outlier samples in RNA-seq data. Further, with the permutation approaches used in the 

previous studies, it can be challenging to adjust for covariate information that is important for analyzing 

human datasets, for which confounding variables such as tumor purity are often significant contributors to 

both DNA methylation and gene expression. In contrast, MethReg’s regression-based approach makes it 

easy to adjust for potential confounding variables. (4) Most importantly, while previous studies provided 

analysis results for TCGA cancer datasets, until now no software has been made available to the research 

community. This study provides an open-source software, MethReg, which implements careful 

bioinformatics and statistical analysis, to make it possible for researchers to analyze datasets beyond TCGA. 

In addition to providing estimated individual and joint regulatory effects of CpG methylation and TFs, 
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MethReg also annotates the potential regulatory roles of TFs and CpG methylation, as well as providing a 

rich suite of figures for visualizing analytical results.  

Next, we performed a systematic comparison of MethReg analysis results and results from other 

approaches empirically using the TCGA COAD dataset. Because both previous studies analyzed TF gene 

expressions, we performed additional MethReg promoter analysis that model the TF effect based on TF 

gene expression, instead of TF activities. More specifically, to compare with results from Wang et al. 

(2020), which identified 3,244 TF-target gene pairs, we applied the robust linear model described above to 

the corresponding triplets (average promoter DNA methylation, TF gene expression, and target gene 

expression). Our results showed that for a majority (81.23%, n = 2613) of the significant TF-target pairs 

from Wang et al. (2020), the corresponding triplets also had significant DNAm × TF effect in the rlm.binary 

model from MethReg. Moreover, classification for promoter methylation effects on TFs in Wang et al. 

(2020) and MethReg agreed very well (kappa statistic = 0.975, P-value = 0) (Supplementary Table 5).  

 Similarly, we also fitted our rlm.binary model described above to the 47,029 triplets identified in Liu 

et al. (2020) for the TCGA COAD dataset. However, we observed less agreement between our significant 

results and those from Liu et al. (2019), as only 5,321 (11.3%) of the 47,029 triplets had significant DNAm 

x TF p-values by MethReg. The overlap between Liu et al. (2019) with Wang et al. (2020) was also very 

low, with only 8 TF-target associations identified by both studies. This discrepancy might be due to the 

differences in methodologies. The conditional mutual information approach used by Liu et al. (2019) 

detects any general associations which can be non-monotonic, while the robust linear model MethReg used 

and the rewiring score Wang et al. (2020) used mainly detects linear and monotonic associations in TF and 

target genes that are dependent on CpG methylation.  

 Finally, we compared MethReg promoter analysis results with the conventional approach of correlating 

methylation-target gene directly. More specifically, Spearman correlations were computed for each 

promoter CpG and target gene in the COAD-READ dataset. The correlation between rankings of P-values 

based on methylation-target gene correlation and DNAm × TF interaction effects in the MethReg model is   
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a significant but modest association (Spearman correlation = 0.0533, P-value = 2.2 × 10-16), indicating these 

two approaches are identifying many different CpGs. This is not surprising, however, because the MethReg 

model identifies CpG methylation that influences the target gene by regulating TF activities (Figure 5B), 

instead of influencing the target gene directly (Figure 5A).  

 While MethReg is not designed to identify direct methylation-target associations, it can be useful for 

identifying those methylation-target correlations likely driven by TF effects (Figure 5C). In this case, TF 

activities are associated with DNA methylation levels, and TF also regulates gene expression independently 

of DNA methylation (Fig 5C). In statistics, TF represents a confounding effect in the methylation-target 

gene association. For example, Supplementary Figure 6 shows an example from the analysis of triplets in 

Wang et al. (2020) described above, where the observed correlation between promoter DNA methylation 

and target gene expression is highly significant (Spearman correlation = 0.238, P-value = 4.79 × 10-5 , FDR 

= 2.81 × 10-4). However, the result of fitting the MethReg model indicated that for this triplet, neither DNAm 

nor DNAm × TF terms were significant (P-values = 0.395 and 0.477, respectively), but TF was highly 

significant (P-value = 5.75 × 10-5). Therefore, the target gene expression is likely driven mainly by the TF 

EBF1, a tumor suppressor with prognostic value for CRC [84], and not by DNA methylation, even though 

we observed a highly significant methylation-target gene expression association.   

 

Case study: analysis of ROSMAP Alzheimer’s disease dataset 

A supervised MethReg analysis 

In this section, we demonstrate supervised MethReg analysis using an Alzheimer’s disease (AD) dataset 

collected by the ROSMAP study [85]. In contrast to unsupervised analysis which tests triplets involving all 

CpGs, in a supervised analysis, we only test triplets involving differentially methylated CpG sites (DMS), 

typically obtained from EWAS studies. To study AD associated DNA methylation changes in the brain, we 

recently performed a meta-analysis of over 1,000 prefrontal cortex brain samples from four large brain 

studies [6, 86-88], and identified 3,751 significant CpGs at 5% FDR [89]. To help understand the regulatory 

roles of these DMS, we applied MethReg to analyze matched DNA methylation and gene expression 
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profiles measured on prefrontal cortex brain samples from 529 independent subjects in the ROSMAP 

dataset.  

 To illustrate the versatility of the MethReg analysis pipeline, we used alternative databases to analyze 

the ROSMAP dataset, compared to the analysis pipeline for the TCGA COAD-READ samples. More 

specifically, to map TF binding sites, instead of the JASPAR2020 database [30] here we used the ReMap 

database [26], which contains a large collection of regulatory regions obtained using genome-wide DNA-

binding experiments such as ChIP-seq. In particular, the ReMap human atlas included binding regions for 

1,135 transcriptional regulators. Also, to analyze these brain samples, instead of the pan-cancer regulons, 

we used the brain-specific TF regulons included in the ChEA3 [90] software website, along with TF activity 

scores estimated by Gene Set Variation Analysis (GSVA) [34].  

 More specifically, we first adjusted methylation and gene expression values separately by potential 

confounding effects, including age at death, sex, batch effects, and markers of different cell types. Next, 

we computed TF activities using GSVA method [34], which is an alternative method to VIPER [33] for 

computing enrichment scores of each TF, by comparing enrichment in target gene expressions for a TF (its 

regulons) with expression levels of background genes.  

 At 5% false discovery rate, MethReg identified 1, 20, and 103 triplets which included 1, 16, and 53 

unique TFs that interact with DMS to influence target gene expressions in promoter, distal, and regulon-

based analyses, respectively. A comparison with the MeDReaders database [46] shows more than half 

(58.6%, 41 out of 70) of these TFs were previously shown to interact with methylated DNA sequences 

(Supplementary Tables 6 and 7). In Table 3, many of the TFs and target genes in the top 10 triplets were 

previously implicated in AD pathology. For example, in the most significant triplet (Table 3, Supplementary 

Figure 7), the transcription factor SPI1 (PU.1) is a master regulator in the AD gene network [91, 92]. SPI1 

is critical for regulating the viability and function of microglia [93], which are resident immune cells of the 

brain. Microglia functions as primary mediators of neuroinflammation and phagocytoses amyloid-beta 

peptides accumulated in AD brains [94]. Using transgenic mouse models for AD, and comparing with gene-

level variations in recent human AD GWAS meta-analysis [95], Salih et al. (2019) [96] recently showed 
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the target gene LAPTM5 (lysosome-associated protein, transmembrane 5) belongs to an amyloid-responsive 

microglial gene network, and predicted LAPTM5 to be one of four new risk genes for AD. Moreover, 

LAPTM5 was also shown to be a member of human microglia network in AD in multiple gene expression 

studies [97, 98]. Intriguingly, SPI1 and LAPTM5 belonged to the same transcription co-expression network  

[96], and in mouse microglial-like BV-2 cells, results from ChIP-seq experiment showed SPI1 binds to the  

regulatory region of LAPTM5 [99], consistent with the MethReg prediction that LAPTM5 is regulated by 

SPI1. Interestingly, SPI1 appears to have dual roles in this case, depending on DNA methylation levels at 

cg17418085, which is located in the gene body of LAPTM5. More specifically, SPI1 upregulates the target 

gene LAPTM5 in samples with low methylation at cg17418085 but down-regulates the target gene when 

DNA methylation is high, suggesting DNA methylation and the TF might have compensatory mechanisms 

that control gene expression at this locus (Supplementary Figure 7).  

 The triplet cg08824847- NR3C1- PDHX is an example in which methylation at cg08824847 appears 

to enhance activation of the target gene PDHX by NR3C1 (Table 3, Supplementary Figure 8). NR3C1 is 

the glucocorticoid receptor (GR) which can act as a transcription factor that binds glucocorticoid responsive 

genes to activate their transcriptions, or as a regulator for other TFs. NR3C1 regulates downstream 

processes such as glycolysis [100] and was observed to be dysregulated in AD [101-103]. The target gene 

PDHX encodes the component X of the pyruvate dehydrogenase complex (PDH), which is involved in the 

regulation of mitochondrial activity and glucose metabolism in the brain that is critical for neuron survival 

[104, 105]. Low levels of cerebral glucose metabolism often proceed with the onset of Alzheimer’s Disease 

and have been proposed as a biomarker of AD risk [106-109]. Previously it was also shown that along with 

other regulators, glucocorticoids can regulate the efficacy of PDH [100, 110]. The MethReg prediction that 

methylation at cg08824847 enhances activation of PDHX by NR3C1 is consistent with these previous 

findings that demonstrated lower levels of PDHX in AD samples, and with results from our previous large 

meta-analysis of DNA methylation changes in AD, which discovered cg08824847 to be hypo-methylated 

in AD samples across all four analyzed brain samples cohorts and has a significant negative association 

with AD Braak stage even after multiple comparison correction [89].  
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 Among the other TFs in the top 10 triplets (Table 3), ESR1 is estrogen receptor alpha, one of two 

subtypes of estrogen receptor. Genetic polymorphisms of ESR1 have been associated with risk of 

developing cognitive impairment in older women [111-115], as well as faster cognitive decline in women 

AD patients [116]. Induced by chronic inflammation in AD, CEBPD is associated with microglia activation 

and migration [117, 118]. TCF12 is a member of the basic helix-loop-helix (bHLH) E-protein family and 

plays important roles in developmental processes such as neurogenesis, mesoderm formation, and cranial 

vault development. Recently, TCF12 was predicted to be affected by SNP rs10498633 [119], a top AD-

associated SNP identified in the IGAP AD meta-analysis study [120]. Moreover, TCF12 also belongs to a 

herpesvirus perturbed transcription factor regulatory network that is implicated in AD [121]. SRF is serum 

response factor, responsible for regulating the smooth muscle cells and blood flows in the brain, which are 

important for a blood vessel’s ability to remove amyloid beta peptides accumulated in AD. Compared with 

healthy individuals, SRF was found to be four times higher in AD patients [122, 123]. GABPa belongs to 

the ETS family of DNA-binding factors and is a master regulator of multiple important processes including 

cell cycle control, apoptosis, and differentiations. Using evolutionary analysis and ChIP-seq experiments, 

Perdomo-Sabogal et al. (2016) [124] linked GABPa to several brain disorders including AD, autism, and 

Parkinson’s disease. Finally, NFE2L2/NRF2 is another master regulator and regulates genes involved in 

response to oxidative stress and inflammation. Motivated by the encouraging therapeutic effect of NRF2 

on AD pathology in animal models and cultured human cells [125-127], modulation of NRF2 pathway has 

recently been proposed as a strategy for AD drug development [125]. Similarly, Table 3 shows the target 

genes in these top 10 triplets identified by MethReg are also highly relevant to Alzheimer’s disease. Taken 

together, these results demonstrated MethReg is also capable of identifying biologically meaningful 

regulatory effects of DNA methylation in other complex diseases, such as the AD brain DNA methylation 

data we used here, where association signals are expected to be much weaker than those observed in 

cancers.  

 

Comparative analysis of MethReg (in supervised mode) with alternative approaches 
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To compare the performance of MethReg in supervised mode with currently available alternative tools, we 

next analyzed the ROSMAP dataset using the ReMapEnrich R package [26], which identifies regulators 

with binding sites enriched in user supplied regions. Several other tools such as LOLA [21] and ChIP-

Enrich [128] perform similar analyses as ReMapEnrichR, but here we chose ReMapEnrichR because it 

uses the same ReMap database as MethReg for the ROSMAP dataset analysis. More specifically, for the 

ReMapEnrichR analysis, we also used the locations of the 3,751 AD-associated CpGs (these are the DMS) 

from previous AD meta-analysis as the input. The results showed that ReMapEnrich identified 143 TFs 

with binding sites enriched in the DMS, among which a substantial number (n = 28, 20%) were also 

identified by MethReg (Supplementary Table 8). These 28 TFs included many well-known regulators for 

AD such as TCF12, SPI1, NR3C1, CEBPB, GABPA and others. On the other hand, 115 and 32 TFs were 

uniquely identified by ReMapEnrich or MethReg, respectively.  

 Although many of these significant TFs have been previously implicated in AD pathology, their 

specific roles in transcription regulation and the identification of their targets in AD remain to be 

investigated. Notably, currently available tools such as ReMapEnrich only identify the TFs but do not 

consider CpGs or provide detailed information on the relevant target genes.  In contrast, MethReg fills this 

critical gap by nominating plausible TF-target associations that are mediated by DNA methylation. 

Therefore, MethReg analysis which leverages additional gene expression data and provides more 

comprehensive information on transcription regulation for the TFs complements existing approaches.  

 

Discussion 

To evaluate the role of DNA methylation in gene regulation, we developed the MethReg R package. 

MethReg provides a systematic approach to dissect the variations in gene transcription into three different 

modes of regulation, which are direct effects by methylation and TF individually, and the synergistic effect 

from both DNA methylation and TF. By additionally modeling DNA methylation variations, MethReg 

complements existing approaches that analyze TF and target gene expression alone. In doing so, MethReg 

uncovers TF-target gene relations that are present only in samples with high (or low) methylation levels at 
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the CpG that mediates TF activities. On the other hand, compared to approaches that analyze DNA 

methylation and TFBS data alone, MethReg analysis also reduces the noisiness in TF binding site 

predictions by additionally modeling target gene expression data. Compared to the conventional approach 

of directly correlating DNA methylation with gene expression, MethReg can be useful for identifying 

methylation-gene expression associations which are likely driven by TFs instead of methylation due to 

confounding effects by TFs. Computationally, MethReg is efficient. The unsupervised analysis of TCGA 

COAD-READ datasets which considered all CpGs on the Illumina array took 5, 37, and 14 minutes for the 

promoter, distal, and regulon-based analyses, respectively, using a single Linux machine with 64 GB of 

RAM memory and Intel Xeon W-2175 (2.50 GHz) CPUs with 4 cores for parallel computing 

(Supplementary Table 9).  

Because of current limitations in technology, directly measuring DNA methylation, TF binding and 

target gene expression in high throughput is still a difficult task, especially for a large cohort of primary 

tissue samples. Therefore, computational approaches are needed to prioritize regulatory elements in gene 

transcription. To this end, a main computational challenge is the accurate assessment of TF activities. Many 

integrative studies have used TF gene expression data, which are often widely available, as surrogate 

measurements for TF activities. However, the abundance of TF expression does not necessarily correspond 

to more TF binding events, which needs to be confirmed by cell type specific ChIP-Seq experiments. On 

the other hand, TF binding events are sometimes non-functional and might not lead to changes in gene 

expression [24, 25]. To this end, we implemented the option to model TF effects based on VIPER [33] or 

GSVA [34] estimated TF protein activities in MethReg. Both of these methods assume that collectively, 

the target genes of a TF represent an optimal reporter of its activity and estimate TF activity based on 

enrichment of its target genes expressions compared to background genes. Both VIPER and GSVA 

approaches have been widely used for modeling protein activities using gene expression datasets.  

While the motivation of MethReg is to rank significant and functional DNA methylation changes 

identified in EWAS, a useful by-product of this analysis is the identification of enhancers, which are often 

located several hundreds of kilobases (kb) away from the target gene, where TFs bind and interact with 
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DNA methylation to activate gene expression by looping DNA segments [129]. Growing evidence indicates 

that in addition to promoter methylation, DNA methylation at enhancers also plays an equally or more 

important role in activating gene expression [130]. Active cancer-specific enhancers are typically 

hypomethylated at CpG sites [10, 131, 132] in open chromatin regions free of nucleosomes [133, 134]. In 

many cases, hypermethylation of CpG sites can interfere with TF binding and lead to decreased enhancer 

activities in various cancers [9, 135]. It has been observed that TF activities often correlate with levels of 

demethylation at enhancer regions and subsequent target gene expressions [135-137]. 

Although recently many cis-regulatory regions have been identified using genomic and epigenomic 

data [136, 138], assigning these candidate enhancers to target genes on a genome-wide scale remains 

challenging and is currently an active area of research. A recent study [139] compared several published 

computational approaches for enhancer-gene linking using a collection of experimentally derived genomic 

interactions. It was shown that the best-performing method, TargetFinder [140], is only modestly better 

than the baseline distance-based approach, and the authors suggested further improvement in current 

computational methods in this area is needed. Although many of these computational methods leverage 

various information from histone marks, chromatin accessibility and interaction, TF binding models and 

gene expression levels, few if any also model DNA methylation at candidate enhancer regions. As many 

recent studies suggested substantial crosstalk between DNA methylation and other regulatory elements such 

as transcription factors [14, 16], we developed MethReg to specifically estimate and evaluate the regulatory 

potential of DNA methylation for interacting with candidate TFs at both promoter and distal regions. In 

particular, MethReg links target genes with CpGs in distal regions using two alternative approaches: linking 

to a fixed number of nearby genes or by using annotations in regulon databases (Figure 1). Indeed, among  

significant triplets identified in MethReg analysis of ROSMAP dataset, a substantial number of the CpGs 

(6 and 22 in distal and regulon-based analyses, respectively) were located in brain-specific enhancer regions 

annotated in the EnhancerAtlas 2.0 database [141] (Supplementary Tables 6-7). Notably, the power and 

potential of MethReg will also grow as more knowledge on TF regulatory activities are accumulated and 

new ChIP-seq and TF regulon databases become available.  
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 The aim of MethReg is to prioritize functional elements and to generate useful testable hypothesis for 

subsequent mechanistic studies. For the DNA methylation changes identified by MethReg which couple 

with TF activities, additional experimental studies are needed to determine whether the changes in 

methylation are causing or are caused by TF activities. Nevertheless, even if the DNA methylation changes 

are passive markers that accumulated as result of TF binding (or lack of binding), they can still be useful in 

the clinics as biomarkers. Currently, many of the large DNA methylation datasets are measured using 

methylation arrays because of their lower cost and the simplicity in benchwork and analysis. MethReg has 

been tested successfully on microarrays and can also be easily extended to analyze large cohorts of samples 

measured using high throughput sequencing such as WGBS or RRBS. In addition to transcription factors, 

MethReg can also be applied to analyze other types of chromatin proteins including histones which are 

known to crosstalk with DNA methylation [142-144]. Finally, MethReg can further be extended to 

incorporate TF-target associations based on spatial enhancer-gene linking when 3D chromatin and genetic 

interaction data on primary cells become available.   

 

Conclusions 

We have presented an integrative analysis and annotation software, MethReg, which has several critical 

roles. First, given the large number of DMS identified from EWAS, supervised MethReg analysis can be 

used to analyze CpG-TF-target gene triplets involving the DMS, to identify and prioritize important CpG 

methylations that influence target gene expressions by interacting with TFs that bind in proximity. Second, 

MethReg annotates CpG methylation and the TFs that bind in close proximity with their regulatory roles 

(i.e., activator or repressor TFs, DNA methylation that attenuate or enhance TF effects). Third, because 

some TFs affect target gene expression only in samples with high methylation levels (or only in samples 

with low methylation levels), MethReg can help uncover TF-target gene associations that are not obvious 

in an analysis that uses all samples. Finally, for a particular target gene, MethReg partitions the variances 

in gene regulation into direct impact by methylation, direct impact by TF, or joint impact of both 

methylation and TF, which allows MethReg to identify methylation-target gene associations that are likely 
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driven by TF instead of DNA methylation. Using two case studies in colorectal cancer and Alzheimer’s 

disease, we have shown the power of MethReg to uncover biologically relevant transcriptional regulation 

in both diseases which have vastly different biology. Open source software scripts, along with extensive 

documentation and example data for MethReg are freely available from the Bioconductor repository. We 

hope MethReg will empower researchers to gain a better understanding of the important regulatory roles of 

CpG methylation in many complex diseases.  

 

Methods 

Unsupervised MethReg analysis of TCGA COAD-READ samples  

Datasets  

Level 3 TCGA COAD and READ datasets, including genomic profiles in copy number alterations (CNAs; 

Gene Level Copy Number Scores), gene expressions (HTSeq - FPKM-UQ values from RNA-seq), and 

DNA methylation levels (beta values from 450k Illumina arrays) were downloaded from the NCI's 

Genomic Data Commons (GDC) using TCGAbiolinks R package (version 2.17.4) with functions 

GDCquery, GDCdownload, and GDCprepare [145]. These level 3 datasets were previously pre-processed 

and normalized as described in https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines. We included 

only primary tumors samples in our analysis. Tumor purity estimates were downloaded from 

Supplementary Data 1 of Aran D et al. (2015) [45]. We included 367 samples with DNA methylation, gene 

expression, and copy number alterations (CNAs) profiles. To compute TF activity scores, we used the pan-

cancer regulon database from Garcia-Alonso et al. (2019) [29], downloaded from 

https://github.com/saezlab/dorothea/tree/deprecated/data/TFregulons/consensus/Robjects_VIPERformat/p

ancancer 

 

Pre-processing data 

First, we removed genes and CpGs with little expression variations across samples. More specifically, from 

a total of 19,456 genes with matched DNA methylation, gene expression, and CNA values, we removed 
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2,315 genes with zero counts in more than 50% of the samples in RNA-seq data. For each CpG, we 

computed inter-quartile range (IQR) of the beta values and removed CpGs with IQR less than 0.2. In 

addition, to avoid confounding by TF effect (Figure 5C), we focused the analysis on those CpG-TF-target 

gene triplets where CpG was associated with the target gene (Wilcoxon test p-value less than 0.05), but was 

not associated with TF (Wilcoxon test p-value greater than 0.05).  

 Next, for each gene, the get_residuals function in MethReg was used to remove potential confounding 

effects in gene expression data by fitting a linear model which included log2 transformed gene expression 

as the outcome variable, and CNA and tumor purity estimates as predictor variables. The residuals obtained 

from this model were then used for subsequent analyses. To estimate TF activity scores, we used the VIPER 

algorithm [33], which is implemented in function run_viper in R package dorothea, along with the pan-

cancer regulons described above.   

 

Creating triplet datasets  

In the promoter analysis, the function create_triplet_distance_based with parameter target.method =  

"genes.promoter.overlap" were used to link CpGs in the promoter regions (within ± 2 kb regions around 

the transcription start sites (TSS)) to the corresponding target genes. Similarly, in distal analysis, the 

function create_triplet_distance_based with parameters target.method = "nearby.genes" and 

target.num.flanking.genes = 5 were used to link CpGs in the distal region (beyond ± 2 kb regions around 

the TSS) to five genes upstream and downstream of the CpG. Alternatively, in regulon-based analysis, the 

function create_triplet_regulon_based was used to link CpGs to the TF-target gene pairs in the pan-cancer 

regulons. In all three analyses, we obtained TF binding sites information from the JASPAR2020 [27] 

database and linked CpGs to TFs with binding sites within 250 bp distance using motifmatchr R package 

(version 1.10.0). The CpG-TF pairs were then combined with CpG-target gene pairs (promoter and distal 

analyses) or TF-target pairs (regulon-based analysis) to obtain CpG-TF-target triplets. In all analysis, we 

specified the parameter max.distance.region.target = 10^6   to obtain triplets for which the CpG is within 
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1M bp distance from the target gene. These analyses were performed using hg38 genome assembly 

coordinates.  

 

Statistical analysis  

Given CpG-TF-target gene triplets from “Creating triplet datasets” section, and DNA methylation, 

estimated TF activities, and residual gene expression data from “Pre-processing data” section, the function 

interaction_model was then used to fit robust linear statistical model residual.target.gene.expression ~ TF 

+ DNAm.group + DNAm.group × TF. Within the interaction_model function, the robust linear model 

analysis is implemented by rlm function from the MASS R package, with parameter psi = psi.bisquare 

(bisquare weighting) [146], which gives outlier gene expression values reduced weight. After p-values for 

the interaction term 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷.𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 × 𝑇𝑇𝑇𝑇 was computed for each triplet, we next performed stage-wise 

analysis by setting stage.wise.analysis = TRUE in interaction_model function. The stage-wise analysis in 

MethReg is implemented by calling stageRTx function of stageR R package [37]. For each CpG, we grouped 

all triplets associated with it and used the smallest p-value for DNAm.group × TF to represent the CpG. 

These smallest p-values for each CpG were then used to define values for pScreen in function stageRTx. 

The parameter pConfirmation was defined as 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷.𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 × 𝑇𝑇𝑇𝑇 p-values for each triplet. In the 

screening step, the null hypothesis that any of the individual triplets mapped to a CpG had a significant 

DNAm.group × TF effect was tested. In the confirmation step, all the triplets associated with significant 

CpGs selected in the screening step were tested while controlling FWER [37]. 

 

Annotating roles of TFs and effects of CpG methylations 

For triplets with significant DNAm.group × TF, we next annotated roles of TF and CpG methylations in 

gene regulation (Figure 3). To this end, the function stratified_model fits the robust linear model 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ~ 𝑇𝑇𝑇𝑇 in samples with high or low methylation levels at the relevant 

CpG separately, to obtain p-values for TF effect (pval.tf.high and pval.tf.low). Let the most significant p-
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value among the two p-values be pval.most.sig. A TF is annotated only if pval.most.sig < 0.001 (that is 

pval.tf.high < 0.001 or pval.tf.low < 0.001). If the estimated TF effect (i.e., slope) corresponding to the most 

significant p-value (pval.most.sig) is positive, the TF is annotated as an activator. If the estimated TF effect 

corresponding to pval.most.sig is negative, the TF is annotated as a repressor. To annotate CpG methylation 

effect, if pval.most.sig is from the model fitted to high methylation samples, the CpG is labeled as 

enhancing; otherwise the CpG is labeled as attenuating. If pval.tf.high < 0.001 and pval.tf.low < 0.001, and 

the TF effects (i.e., slopes) in high and low CpG methylation samples have opposite signs, then the TF is 

annotated to have dual roles and the CpG is labeled to have invert effect.  

 

Tumor vs. normal samples analysis 

For each significant triplet from the stageR analysis described above, we additionally assessed differential 

methylation of the CpGs and differential expressions of the TFs and target genes in tumor vs. normal 

samples. To this end, 21 adjacent normal samples with matched gene expression (HTSeq - FPKM-UQ 

values from RNA-seq) and DNA methylation levels (beta values from 450k Illumina arrays) were 

downloaded from NCI's Genomic Data Commons (GDC) using TCGAbiolinks R package (version 2.17.4) 

using functions GDCquery, GDCdownload and GDCprepare [145]. To assess the statistical significance of 

differential methylation levels at CpGs (or differential gene expression levels at TF and target genes) in 

tumor vs. normal samples, we used two-tailed Wilcoxon test. 

 

Simulation study  

The rlm.binary.en method estimates P-values for each triplet using empirical null distribution [38, 147], 

which is a normal distribution with empirically estimated mean 𝛿𝛿 and standard deviation 𝜎𝜎�. There are five 

steps:   

1) For each triplet, fit rlm.binary model to obtain t-statistic and degrees of freedom (df ) corresponding 

to DNAm.group × TF effect. 
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2) Convert the t-statistic to a z-score. For example, let 𝑡𝑡𝑖𝑖 be the t-statistic for triplet i, the corresponding 

z-score can be obtained by 𝑧𝑧𝑖𝑖 = Φ−1(𝐹𝐹𝑑𝑑(𝑡𝑡𝑖𝑖,𝑑𝑑𝑑𝑑)) where Φ and 𝐹𝐹𝑑𝑑 are distribution functions for 

standard normal distribution and t distribution with df degrees of freedom.  

3) Pool the z-scores for all triplets tested in an analysis and calculate their median value (m). Subtract 

m from the z-scores so that they have median of 0. 

4) Given the median-centered z-scores, use the locfdr package, estimate location (𝛿𝛿) and scale (𝜎𝜎�) 

parameters of the empirical null distribution. 

5) Calculate standardized z-scores, 𝑠𝑠𝑖𝑖 = (𝑧𝑧𝑖𝑖 − 𝑚𝑚 − 𝛿𝛿) / 𝜎𝜎�, and compute the P-value for each triplet as 

𝑝𝑝𝑖𝑖 = 1 −Φ(𝑠𝑠𝑖𝑖).  

 In triplets simulated under the scenario β = 0, target gene expressions did not depend on TF expression 

levels, so the genes simulated under this simulation scenario were the null triplets. Type I error rate for each 

model was computed as the number of triplets declared to be significant by the model when β = 0, divided 

by the total number of null triplets. P-values less than 0.05 for each method were considered to be 

significant. On the other hand, power was computed using triplets simulated under the scenarios where β = 

1, .., 9. For each of the 7 compared methods (Supplementary Figure 1), power was estimated as the number 

of triplets with P-values less than 0.05 for each compared method, divided by the total number of simulated 

triplets (i.e. 1,000). The pROC R package was used to compute area under ROC curves.  

 

Comparative analysis with alternative approaches 

For the comparison with Wang et al. (2020) [30], we downloaded data from the DMTDB database 

(http://bio-bigdata.hrbmu.edu.cn/DMTDB; accessed on June 5, 2020). The file “COAD_DMTD” contained 

3,244 COAD DNA methylation dependent TF-target gene pairs, where target gene expressions were 

regulated by the TF and average DNA methylation at promoter region (± 2k bp) of the target gene. For the 

comparison with promoter analysis results from Liu et al. (2019) [83], we downloaded promoter CpG 
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methylation-dependent TF-target associations from file “COAD.txt” in Supplementary Data S1 of Liu et 

al. (2019). We included 42,590 triplets with non-masked CpGs [148] in our analysis.  

 

Analysis of ROSMAP Alzheimer’s disease dataset 

Datasets  

The ROSMAP dataset, which included samples from the Religious Order Study (ROS) and the Memory 

and Aging Project (MAP) [85], included 529 samples with matched DNA methylation and gene expression 

data [6]. More specifically, normalized FPKM (Fragments Per Kilobase of transcript per Million mapped 

reads) gene expression values and Illumina HumanMethylation 450K beadchip files (.idat format) for the 

ROSMAP study were downloaded from the AMP-AD Knowledge Portal (Synapse ID: syn3388564). Brain-

specific regulons (file “brain.TFs.gmt”) were downloaded from ChEA3 software website 

https://maayanlab.cloud/chea3/ (accessed Oct 10, 2020).  

 

Pre-processing datasets 

DNA methylation pre-processing included the removal of CpG probes with detection P-value > 0.01 across 

all the samples in the cohort, and CpG probes in which a single nucleotide polymorphism (SNP) with minor 

allele frequency (MAF) ≥ 0.01 was present in the last 5 base pairs of the probe. The quality controlled 

methylation datasets were next subjected to the QN.BMIQ normalization procedure [149]. More 

specifically, we first applied quantile normalization as implemented in the lumi R package to remove 

systematic effects between samples. Next, we applied the β-mixture quantile normalization (BMIQ) 

procedure [150] as implemented in the wateRmelon R package [151] to normalize beta values of type 1 and 

type 2 design probes within the Illumina arrays. 

 Next, we removed confounding effects in DNA methylation data by fitting the model median 

methylation M value ~ neuron.proportions + batch + sample.plate array + ageAtDeath + sex and 

extracting residuals from this model, which are the methylation residuals. Similarly, we also removed 

potential confounding effects in RNA-seq data by fitting model log2 (normalized FPKM values + 1) ~ 
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ageAtDeath + sex + markers for cell types. The last term markers for cell types included multiple covariate 

variables to adjust for the multiple types of cells in the brain samples. More specifically, we estimated 

expression levels of genes that are specific for the main five cell types present in the CNS: ENO2 for 

neurons, GFAP for astrocytes, CD68 for microglia, OLIG2 for oligodendrocytes, and CD34 for endothelial 

cells, and included these as variables in the above linear regression model, as was done in a previous large 

study of AD samples [6]. The residuals extracted from this model are the gene expression residuals.  

 TF activities were calculated using the collection of brain-specific TF Regulons (downloaded from 

ChEA3 software website at https://maayanlab.cloud/chea3/assets/tflibs/brain.TFs.gmt) and gene 

expression residuals, using the R package GSVA (Gene Set Variation Analysis) with the following 

parameters: method = "gsva",  kcdf = "Gaussian", abs.ranking = TRUE,  min.sz = 5,  max.sz = Inf,  mx.diff = 

TRUE,  ssgsea.norm = TRUE. 

 

Creating triplet datasets  

For supervised MethReg analysis, we considered the 3,751 differently methylated CpGs associated with 

Braak stage identified in Zhang et al. (2020) [89]. First, these CpGs were filtered to remove probes with 

beta-values IQR < 0.03, resulting in 2,761 CpGs. For CpGs in the promoter regions, the function 

create_triplet_distance_based with parameters target.method =  "genes.promoter.overlap" was used to 

link each of the 1002 CpGs in promoter regions (within ± 2 kb regions around the TSS) to the target gene 

with promoter region that overlaps with the CpG. In distal analysis, the function 

create_triplet_distance_based with parameters target.method = "nearby.genes" and 

target.num.flanking.genes = 5 were used to link each of the 1,759 CpGs in distal regions (beyond ± 2 kb 

regions around TSS of the target genes) to five genes upstream and downstream of the CpG. Alternatively, 

in regulon-based analysis, the function create_triplet_regulon_based was used to link CpGs to the TF-

target gene pairs in the brain-specific regulons (downloaded from https://maayanlab.cloud/chea3/). In all 

three analyses, we obtained TF binding sites information from the REMAP2020 database and linked CpGs 
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to TFs with binding sites within 250 bp. The CpG-TF pairs were then combined with CpG-target gene pairs 

(promoter and distal analyses) or TF-target pairs (regulon-based analysis) to obtain CpG-TF-target triplets. 

In all analyses, we specified the parameter max.distance.region.target = 10^6   to obtain triplets for which 

the CpG is within 1M bp distance from the target gene. These analyses were performed using hg19 genome 

assembly coordinates. 

 

Overlap with cis-regulatory elements in enhancer database 

We assessed the overlap between regions in significant triplets (CpG location +/- 250bp) with enhancer 

regions in EnhancerAtlas 2.0 database [152]. The following brain/neuron specific tissues or cell lines for 

Homo sapiens (hg19) were considered: Astrocyte, hNCC, KELLY, BE2C, ESC_NPC, NGP, SK.N.MC, 

Cerebellum, Gliobla, SH.SY5Y, SK.N.SH_RA, T98G, Fetal_brain, U87, H54, SK.N.SH, SK.N.MC, 

NH.A, Macrophage, ESC_neuron. 
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Table 1 Stage-wise analysis results of TCGA COAD-READ datasets. The robust linear model target gene expression ~ TF activity + DNAm + DNAm x 
TF was used to analyze CpG-TF-target gene triplets. Shown are significant triplets at 5% overall FDR level, and the unique CpGs, TFs, and targets in 
these triplets.  
 

analysis unique triplets unique CpGs unique TFs unique targets 
Promoter analysis         
screening 165 49 56 42 
confirmation 31 29 18 25 

     
Distal analysis       
screening 2358 315 155 570 
confirmation 52 43 44 44 

     
Regulon-based analysis       
screening 78 23 19 19 
confirmation 47 18 11 6 
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Table 2 Top 10 most significant triplets identified by unsupervised MethReg analysis of TCGA COAD-READ samples. CRC = colorectal cancer.  

Triplet data Annotations DNAm x TF effect TF-target 
P-values for tumor vs. normal 

comparison  CRC literature 

ProbeID position TF 
target 
gene 

CpG-
target 
distance TF.role DNAm.effect Estimate P-value 

Adj.  
P-value Correlation P-value CpG TF target gene TF 

target 
gene 

      
  

                  

promoter analysis     
  

                  

cg00328227 
chr1: 

108661703 NFATC2 HENMT1 -176 Repressor Enhancing -0.663 0 0 -0.033 5.27E-01 3.19E-08 2.53E-01 8.23E-08 [47 ] [153] [49] [51] [50] 

cg25083481 
chr11: 

1034989 SNAI1 MUC6 1727 Activator Attenuating -0.413 1.77E-04 0 0.117 2.52E-02 8.98E-03 4.99E-10 1.97E-02 [154] [63, 65] [155]  

cg02816729 
chr6: 

168442419 TEAD3 SMOC2 1267 Repressor Attenuating 0.323 7.77E-05 0 0.07 1.83E-01 2.96E-02 3.47E-02 7.32E-01 [52]  [54] [156] 

cg12751565 
chr1: 

206946642 NFATC2 PIGR -175 Activator Enhancing 0.282 1.09E-09 0 0.315 8.67E-10 6.49E-03 2.53E-01 1.88E-11 [47 ] [153] [49]  [157]  

cg05503887 
chr11: 

34620378 MEIS1 EHF -713 Activator Attenuating -0.268 7.24E-05 0 0.347 1.10E-11 6.17E-01 1.84E-08 1.16E-02 [66]  [158]  

cg13542964 
chr4: 

10457043 ETV4 ZNF518B 381 Activator Enhancing 0.217 2.08E-04 0 0.023 6.59E-01 1.31E-06 1.32E-14 1.77E-02 [68, 72]  [159]  

                          

distal analysis                         

cg14043104 
chr13: 

74075149 ISL2 KLF12 -80092 Activator Attenuating -0.222 1.03E-04 0 0.232 7.60E-06 3.89E-02 3.96E-02 1.20E-03 [67]  [160]  

cg09217215 
chr11: 

31808034 ZNF384 PAX6 9925 Repressor Enhancing -0.398 6.90E-07 1.48E-04 -0.028 5.94E-01 7.64E-03 2.15E-01 1.68E-02 [76] [77] [161]  

cg11871337 
chrX: 

56991382 FOXL1 SPIN3 4443 Activator Attenuating -0.294 2.18E-07 2.68E-04 0.183 4.32E-04 7.26E-01 9.95E-01 8.21E-07 [80] [81] [162]  

cg04665204 
chr17: 

81453398 POU3F4 BAHCC1 57922 Dual Invert -0.37 6.80E-07 2.91E-04 0.083 1.12E-01 2.69E-05 1.47E-06 2.38E-02 [55] [59] [62] [61] 
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Table 3 Top 10 most significant triplets identified by supervised MethReg analysis of ROSMAP Alzheimer’s disease (AD) dataset.  

Triplet data Annotation DNAm x TF effect TF-target AD literature 

ProbeID position TF 
target 
gene 

CpG-target 
distance TF.role DNAm.effect Estimate P-value 

Adj. P-
value Correlation P-value TF target gene 

promoter analysis                         

cg17418085 
chr1: 

31229122 SPI1 LAPTM5 1,543 Dual Invert -7.177 7.36E-12 3.06E-07 -0.011 8.05E-01  [92, 93]  [96] 
                     

distance-based analysis                   

cg11556846 
chr2: 

200468728 ESR1 SATB2 -132,738 Dual Invert -7.266 3.03E-07 7.80E-03 -0.058 1.82E-01  [111, 113]  [163] [164] 

cg00153919 
chr16: 

88859944 CEBPD PIEZO1 -8,324 Repressor Enhancing -8.122 4.92E-07 9.14E-03 -0.044 3.10E-01  [117, 118]  [165] 

cg08824847 
chr11: 

35052388 NR3C1 PDHX 115,011 Activator Enhancing 4.383 6.13E-07 1.02E-02 0.06 1.66E-01 [101] [103]  [104, 105] 

cg08760493 
chr4: 

109994039 TCF12 SEC24B -360,887 Dual Invert 8.120 1.26E-06 1.49E-02 0.033 4.44E-01  [119, 120]  [166] 

cg05715492 
chr7: 

98991138 SRF ARPC1B 19,265 Repressor Attenuating 11.581 1.34E-06 1.49E-02 0.017 7.00E-01  [122]  [167] 

cg09316954 
chr16: 

67687754 TCF12 CARMIL2 8,931 Repressor Attenuating 8.376 2.28E-06 2.24E-02 -0.07 1.08E-01  [119, 120]  [168] 

cg21155834 
chr2: 

149282209 GABPA ORC4 -503,061 Activator Enhancing 6.407 2.75E-06 2.41E-02 0.045 2.98E-01 [124]   [169] 

cg13819552 
chr9: 

95799870 TCF12 ZNF484 -159,565 Activator Enhancing 7.989 2.92E-06 2.41E-02 0.039 3.71E-01  [119, 120]  [170] 

cg21535772 
chr2: 

171679906 NFE2L2 AC007405.4 52,282 Dual Invert 7.065 3.10E-06 2.41E-02 -0.026 5.47E-01 [125] [171]  [172] 
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Figure 3 Scenarios modeled by MethReg. 
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Figure 4 Receiver Operating Characteristics curves for different methods compared in simulation study. lm.binary = linear 
model implementation of Model 2; lm.cont = linear model implementation of Model 1; lm.main.tf = linear model 
gene expression ~ TF; rlm.binary = robust linear model implementation of Model 2; 

rlm.cont = robust linear model implementation of 
Model 1; spearman.corr.tf = Spearman correlation between gene expression and TF expression; Model 1: gene expression ~ TF 
+ DNAm+ TF*DNAm; Model 2: gene expression ~ TF + DNAm.group+ TF*DNAm.group
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Figure 5 Direct, indirect, and confounding e ects in gene regula n. 
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Supplementary Figure 1 Methods compared in simulation study.  
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Supplementary Figure 2 Type I error rates of different methods in simulated 
datasets. lm.binary = linear model implementation of Model 2; lm.cont = linear model 
implementation of Model 1; lm.main.tf = linear model gene expression ~ TF; rlm.binary 
= robust linear model implementation of Model 2; rlm.binary.en = same as rlm.binary 
model, except P-values were estimated using empirical null distribution; rlm.cont = robust 
linear model implementation of Model 1; spearman.corr.tf = Spearman correlation between 
gene expression and TF expression; Model 1: gene expression ~ TF + DNAm + TF*DNAm; 
Model 2: gene expression ~ TF + DNAm.group + TF*DNAm.group 
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Supplementary Figure 3 Power of different methods in simulation study. lm.binary = 
linear model implementation of Model 2; lm.cont = linear model implementation of Model 1; 
lm.main.tf = linear model gene expression ~ TF; rlm.binary = robust linear model 
implementation of Model 2; rlm.binary.en = same as rlm.binary model, except P-values were 
estimated using empirical null distribution; rlm.cont = robust linear model 
implementation of Model 1; spearman.corr.tf = Spearman correlation between gene 
expression and TF expression; Model 1: gene expression ~ TF + DNAm + TF*DNAm; Model 2: 
gene expression ~ TF + DNAm.group + TF*DNAm.group

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431696doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431696
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genome of reference

Region ID

Probe ID

Target gene ID

Target gene Symbol

TF gene ID

TF gene Symbol

TF role

DNAm effect

hg38

chr6:168442419−168442420

cg02816729

ENSG00000112562

SMOC2

ENSG00000007866

TEAD3

Repressor

Attenuating

Target ~ TF + 
DNAm Quant. Group +

 TF * DNAm Quant. Group

Direct effect of DNAm

Estimate

Direct effect of TF

P−Values

Synergistic effect
 of DNAm and TF

−1.02

−0.217

0.323

5.28e−12

0.000287

7.77e−05

Legend

rlm: robust linear model

rlm estimate = 0.036

rlm p−value = 0.253

−2

0

2

4

−2.5 0.0 2.5
TF TEAD3  activity

Ta
rg

et
 S

M
O

C
2

 re
si

du
al

s

Wilcoxon, p = 4e−10

−2

0

2

4

DNAm.low DNAm.high

Ta
rg

et
 S

M
O

C
2

 re
si

du
al

s

rlm estimate = −0.216

rlm p−value  = 3.192e−04
rlm estimate = 0.106

rlm p−value = 0.057

DNAm low quartile [0.072,0.178] DNAm high quartile [0.424,0.825]

−2.5 0.0 2.5 −2.5 0.0 2.5

−2

0

2

4

TF TEAD3  activity

Ta
rg

et
 S

M
O

C
2

 re
si

du
al

s

rlm estimate = −2.702

rlm p−value  = 1.608e−04

rlm estimate = −1.185
rlm p−value = 0.072

TF low quartile [−4.361,−1.121] TF high quartile [1.314,3.871]

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

−2

0

2

4

DNA methylation beta−value

Ta
rg

et
 S

M
O

C
2

 re
si

du
al

s

Supplementary Figure 4 An example of CpG methylation attenuating TF activities, from unsupervised MethReg 
analysis of TCGA COAD-READ samples. 
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Supplementary Figure 5 An example of TF with dual modes of regulations depending on CpG methylation levels, from 
unsupervised MethReg analysis of TCGA COAD-READ datasets. 
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Supplementary Figure 6  Example of confounding TF effect. The target gene expression is mainly driven by the TF 
EBF1, and not by DNA methylation, even though a highly significant methylation-target gene association was observed.  
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Supplementary Figure 7 An example of TF having dual regulatory roles depending on CpG methylation levels, from supervised 
MethReg analysis ROSMAP dataset.
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Supplementary Figure 8 An example of CpG methylation enhancing TF activities, from supervised MethReg analysis of ROSMAP 
dataset.
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