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Summary
Research Conducted: Apple (Malus × domestica) has com-
mercial and nutritional value, but breeding constraints of tree
crops limit varietal improvement. Marker-assisted selection
minimizes these drawbacks, but breeders lack applications
for targeting fruit phytochemicals. To understand genotype-
phytochemical associations in apples, we have developed a high-
throughput integration strategy for genomic and multi-platform
metabolomics data.
Methods: 124 apple genotypes, including members of three
pedigree-connected breeding families alongside diverse culti-
vars and wild selections, were genotyped and phenotyped.
Metabolite genome-wide association studies (mGWAS) were
conducted with 10,000 single nucleotide polymorphisms and
phenotypic data acquired via LC-MS and 1H NMR untar-
geted metabolomics. Putative metabolite quantitative trait loci
(mQTL) were then validated via pedigree-based analyses (PBA).
Key Results: Using our developed method, 519, 726, and 177
putative mQTL were detected in LC-MS positive and negative
ionization modes and NMR, respectively. mQTL were indicated
on each chromosome, with hotspots on linkage groups 16 and
17. A chlorogenic acid mQTL was discovered on chromosome
17 via mGWAS and validated with a two-step PBA, enabling
discovery of novel candidate gene-metabolite relationships.
Main Conclusion: Complementary data from three
metabolomics approaches and dual genomics analyses in-
creased confidence in validity of compound annotation and
mQTL detection. Our platform demonstrates the utility of
multi-omics integration to advance data-driven, phytochemical-
based plant breeding.
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Introduction
Apples (Malus × domestica Borkh.) are eaten throughout the
world and the most consumed fruit in the US (USDA Eco-
nomic Research Service, 2017). Barriers to apple breeding,
including long juvenile period, self-incompatibility, and het-
erozygous genomes, necessitate a breeding cycle based on
marker-assisted selection to make efficient progress by allow-
ing breeders to choose parents with high heritability for de-

sirable traits and implement early-seedling selection. Traits
important in apple breeding, such as nutrition, flavor, texture,
disease resistance, and post-harvest quality, are collective
phenotypes largely impacted by the phytochemical makeup
of apple fruits (Boyer |& Liu, 2004; Pérez |& Sanz, 2008;
Hyson, 2011; Sun et al., 2017; Vondráková et al., 2020).
However, metabolite-based breeding strategies for apple im-
provement are lacking.

To determine genetic regions associated with phenotypic
traits in apple, including metabolite abundance, quantitative
trait loci (QTL) mapping has traditionally been performed
with bi-parental families (Dunemann et al., 2009; Chagné et
al., 2012; Khan et al., 2012; Verdu et al., 2014; Gutierrez et
al., 2018; Christeller et al., 2019). However, due to the heav-
ily heterozygous nature of the apple genome and diversity
available in wild and cultivated species, bi-parental popula-
tions hamper characterization of possible alleles. Selection
based on information about two to four alleles present in a
bi-parental population then leads to loss of efficiency and ge-
netic erosion when other genotypes are ignored (van de Weg
et al., 2004). Loci that are characterized in one mapping
population are commonly not transferrable to other families.
Furthermore, analysis using segregating bi-parental popula-
tions is often impractical due to the long juvenile period that
would stretch the production of segregating populations to
many decades. As a result, it is necessary to move beyond
bi-parental populations in apple trait loci analysis (Peace et
al., 2019).

Generating a metabolite-based apple breeding strategy re-
quires us to develop our foundational understanding of (1)
the phytochemical profiles that exist in apple germplasm
and (2) the genetics underlying this variability. Global
phytochemical assessment via untargeted metabolomics ap-
proaches can be obtained by using high-resolution mass spec-
trometry (MS) as well as nuclear magnetic resonance (NMR)
spectroscopy analyses. Genetic data can be gathered with
single nucleotide polymorphism (SNP) arrays to character-
ize genotypes of chosen apple varieties. The larger chal-
lenge comes with (3) the integration of the genomic and
metabolomic datasets to determine the genotype-metabolite
relationships that are the basis of marker development. Mov-
ing from analyzing genetic control of a few traits to the thou-
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sands of phenotypes contained in a metabolomics dataset, re-
quires a high-throughput pipeline tailored to perennial crops,
such as apple.
To this end, we have developed a scheme for integrating SNP
array data with multi-platform, untargeted metabolomics
datasets to identify metabolite QTL (mQTL) in breeding-
relevant apple germplasm (Fig. 1). The method uses metabo-
lite genome-wide association studies (mGWAS) to detect pu-
tative mQTL. To reduce false positives and identify mQTL
with robust signal across available apple germplasm, three
mGWAS iterations are conducted for three nested population
sets, each adding more complexity: (1) three sets of pro-
genies, (2) progenies plus pedigree-related individuals, and
(3) progenies, pedigree-related individuals, and additional
heritage and wild selections. mQTL have to be detected
in each of these three groupings to protect against spurious
correlations. Three separate, complementary metabolomics
platforms, MS in positive and negative ionization modes
and NMR, are used to aid in mQTL detection and facili-
tate metabolomic feature identification. Metabolites of inter-
est are then passed to a more rigorous pedigree-based analy-
sis (PBA) for mQTL validation through linkage analysis and
identity-by-descent (IBD). Findings are then contextualized
according to the current annotated apple genome.

Fig. 1. Our platform for detecting metabolite quantitative trait loci (mQTL) is based
on integrating SNP array data and multi-platform metabolomics via metabolite
genome-wide association studies (mGWAS) then confirming mQTL for metabolites
of interest with pedigree-based analyses (PBA).

Materials and Methods
Apple Germplasm. Apple genotypes (n=124) were chosen
for the study based on the expected diversity of their genetic
and metabolic profiles, as well as commercial interest. Three
sets of experimental progenies from a grower participatory
breeding program, including ‘Honeycrisp’ × ‘Fuji’ (HC×FJ,
n=28), ‘Goldrush’ × ‘Sweet 16’ (GR×S16, n=28), and ‘Hon-
eycrisp’ × ‘MSH 10-1’ (HC×M10, n=19), with varied fla-
vor and texture profiles were selected along with 23 mem-
bers of their pedigree-connected families (Sup. Fig. S1).
These three families (n=98) include commercial and heritage

apple varieties, M. floribunda Siebold ex Van Houtte, and
advanced selections. Wild accessions (n=11) from Central
Asian M. niedzwetzkyana (Dieck) Langenf and M. sieversii
(Lebed) Roem along with additional apples (n=15) with traits
of breeding interest were also included to capture the wide
variety of apple germplasm. All apples and metadata includ-
ing collection location, date, and harvest-to-storage protocol
can be found in Sup. Table S1 and Methods S1.

Genotypic Information. DNA extraction from leaf tis-
sue was carried out using the Omega E-Z 96 Plant DNA
Kit (Omega Bio-tek, Inc. Norcross, GA, USA). Samples
were then genotyped at Michigan State University using
an apple 20K Infinium® SNP array (Bianco et al., 2014).
SNP calling and filtering was performed using GenomeS-
tudio version 2.0.4 (Illumina Inc., San Diego, CA, USA;
http://www.illumina.com). Marker order was determined by
integrating markers with the apple integrated genetic linkage
map (iGLMap) (Di Pierro et al., 2016).
Pedigree relationships were verified using 1,648 SNPs in
FRANz 2.0 (Riester et al., 2009), as in Fresnedo-Ramírez
et al. (2015). SNPs were filtered based on a minor allele
frequency (MAF) minimum of 0.10 and missingness of less
than 1%. Parentage was corrected for accessions with high
posterior probability (>0.95) of distinct parentage.
Less stringent filtering was applied to the marker dataset
to determine SNPs to use for mGWAS. Markers were first
matched to those included in the iGLMap, giving 15,260
SNPs. These were then filtered for minimum MAF > 0.05
and missingness of 5%. This resulted in 10,294 polymor-
phic, genome-wide markers to be used for mGWAS analyses
(Sup. Table S2).
A third set of parameters were used to filter markers to be
used in PBA. Markers were kept with MAF > 0.07 and miss-
ingness less than 10% in the pedigree members in order to
yield the maximum number of informative markers that also
matched with those represented in the iGLMap. The mark-
ers were analyzed in FlexQTL™ v.099130 at the Ohio Su-
percomputer Center (Ohio Supercomputer Center, 1987) to
check for double recombinations and an excessive number of
genotyping inconsistencies. Markers were removed with >3
genotyping inconsistencies as well as any obvious double re-
combinants, resulting in a final set of 6,034 markers for use
in the PBA routines.

Metabolomic Phenotyping. Methanolic extracts were pre-
pared for each apple selection and subsequently analyzed via
ultra-high performance liquid chromatography-quadrupole
time-of-flight mass spectrometry (UHPLC-QTOF-MS) in
both electrospray ionization (ESI) positive (+) and negative
(-) modes as well as 1D 1H NMR experiments on a 700.13
MHz instrument. LC-MS raw spectral data was deconvo-
luted using MZmine2.51 (Pluskal et al., 2010). Pooled qual-
ity control (QC) samples were used to confirm data qual-
ity. Process blank analyses allowed detection and removal
of any residues or contamination with compounds from ma-
terials used in the extractions. NMR spectra were base-
line and phase corrected and adjusted to trimethylsilylpro-
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pionic acid (δ=0) using the Topspin software package pro-
vided by Brüker Biospin. NMR spectral post-processing was
performed using R package mrbin v1.2.9001 (Klein, 2020).
Complete details on extraction, sample analysis, and data
processing are available in Sup. Methods S2-S4 and Tables
S3-S5.
Remaining features from LC-MS and NMR analyses were
log2-transformed then analyzed in R 3.6.2 (R Development
Core Team, 2008). Unsupervised principal components
analyses (PCA) were conducted for each of the three final
metabolomics datasets: LC-MS (+), LC-MS (-), and NMR.

Feature identification. Data-dependent UHPLC-QTOF-
MS/MS experiments were performed on pooled QC samples
in both ionization modes to obtain fragmentation data for
putative identity generation via library searches within the
Global Natural Products (GNPS) platform (Wang et al.,
2016) as well as the Human Metabolome Database (HMDB)
(Wishart et al., 2018). Additional information can be found
in Sup. Methods S5-S6.
A chlorogenic acid authentic standard was purchased for tar-
geted MS/MS analysis. Resultant spectra from the standard
were compared with the accurate mass, retention time, and
fragmentation pattern of the peak of interest in a pooled QC
sample. The standard was also used in spike experiments an-
alyzed via 1D and 2D NMR to confirm peak identities in the
NMR spectra.

Omics Integration for mQTL Detection.

Metabolite genome-wide association studies (mGWAS). To
integrate genomics and metabolomics data for mQTL de-
tection, mGWAS analyses were conducted in which each
metabolomic feature (n=10,325) was considered a pheno-
type and was examined for association with each SNP
(n=10,294). Because of the large number of phenotypes,
individual model optimization was not possible, so gener-
alized strategies for analyses were developed. Within each
genomics-metabolomics platform combination, three sepa-
rate analyses of certain apple genotypes were conducted: pro-
genies only (Progeny, n=75), progenies plus pedigree-related
individuals (Pedigree, n=98), and a full, diverse analysis of
all individuals for which genomics and metabolomics data
were collected (Diverse, n=124).
We developed a workflow to assess SNP-feature associations
within three population sets (Fig. 2b) for each of the three
metabolomics datasets (LC-MS (+), LC-MS (-), and NMR)
(Fig. 2). This resulted in a total of nine multivariate sets of
mGWAS analyses (Fig. 2a) performed using the R package
rrBLUP v4.6.1 (Endelman, 2011). In order to model known
pedigree and realized genetic relatedness, R package AGH-
matrix v1.0.2 (Amadeu et al., 2016) was used to generate
an H matrix (Legarra et al., 2009), which combines theoret-
ical additive relatedness estimations based on pedigree con-
nections with realized genomic relatedness estimations from

Fig. 2. Workflow for integration of one metabolomics dataset with genomics data. This workflow was applied to each of the three metabolomics datasets. Three separate
mGWAS analyses (a) with different subsets of individuals (b) were conducted in order to detect real SNP-feature associations present across diverse germplasm and in
segregating progeny. This was achieved by filtering results of each for strong signal (c) and then comparing the results from the three populations (d). Features represented
in the intersection (e) were extracted for further analysis and identification. This resulted in a corresponding collection of overlapping significant features (f) for each of the
three metabolomic datasets.
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molecular markers (Sup. Tables S11-S12). To correct for ad-
ditional structure within the populations analyzed, PCA scree
plots of SNP data were examined to determine the appropri-
ate number of principal components to include in the analyses
(Progeny: 3, Pedigree: 6, Diverse: 10) (Sup. Fig. S2). Unix
batch scripts containing R code were executed at the Ohio
Supercomputer Center (Ohio Supercomputer Center, 1987).
From each of the nine mGWAS versions, results for separate
chromosomes were collated to produce a single data frame of
-log10(P) values for each pairwise SNP-feature association,
resulting in nine unique SNP-by-feature data frames – three
per metabolomics platform.
SNP-feature associations were filtered for significance with -
log10(P) threshold (Fig. 2c). For LC-MS (+) and (-) datasets,
a threshold of ≥ 4 (P<.0001) was used for the progeny re-
sults and≥ 5 (P<.00001) for the pedigree and diverse results.
A ≥ 4 filter was used for each of three populations of NMR
analyses due to the fewer comparisons relative to the LC-MS
datasets. Values were not subjected to a multiple test correc-
tion, but significance thresholds displayed on all Manhattan
plots correspond to P = .05 with a false discovery rate (FDR)
correction for that feature.
From the significance-filtered mGWAS results, sets of fea-
tures were compared via Venn diagrams (Progeny ∩ Pedigree
∩ Diverse) (Fig. 2d). The intersection (Progeny ∪ Pedigree
∪ Diverse) was then extracted (Fig. 2e). This process re-
sulted in three core datasets, one per metabolomics platform,
of -log10(P) values for features significantly associated with
at least one SNP in each population set (Fig. 2f). The fea-
tures in these core datasets were then considered as having
putative mQTL.
To advance with these three sets of putative mQTL, addi-
tional approaches for broad data visualization were adopted,
enabling the focus of further analyses. To investigate the dis-
tribution of these mQTL within each chromosome, a com-
posite map of mQTL across the genome using all three
metabolomic platforms was created. Additionally, to under-
stand if many disparate SNPs were eliciting signal or if a few
SNPs were associated with many metabolomic features, plots
were constructed to visualize the number of significantly as-
sociated features per SNP within each chromosome.
As an illustrative example of the mGWAS workflow, a
significant feature from each metabolomics platform was
identified as chlorogenic acid (5-caffeoylquinic acid), and
the phenotypic measurements were used as inputs in the
PBA pipeline. This metabolite of the phenylpropanoid
biosynthesis pathway had significant associations across the
three metabolomics datasets and strong putative identifica-
tion based on an MS/MS database match, which was con-
firmed by comparison with an authentic standard in both
MS/MS and 1D and 2D NMR experiments.

Pedigree-based Analysis (PBA). Pedigree-based analyses
(PBA) under a Bayesian framework were conducted using
FlexQTL™ version 0.99130 for Linux (Bink 2002; Bink et
al. 2002) (Sup. Methods S7). The PBA method incorpo-
rated pedigree relationships, genotype calls (Sup. Table S9),
genetic linkage information in the form of genetic distances

(recombination between markers) based on the iGLMap (Di
Pierro et al., 2016), and log2-transformed metabolite abun-
dance data. The 98 pedigree-related individuals were used in
this analysis performed using a model that estimated additive
and dominance effects within the pedigree. Each genome-
wide analysis was performed in triplicate, using at least
50,000 iterations in the Markov chain Monte Carlo (MCMC)
procedure, with 1,000 burn-in iterations, sampling each 50th

chain to yield 1,000 effective samples for statistical analyses.
The measurements for chlorogenic acid from each of the
metabolomics datasets were analyzed for linkage separately.
For NMR, chlorogenic acid signal is represented by several
bins, so the bin with the highest -log10(P) value from the
mGWAS, 2.15-2.14 ppm, was chosen for analysis. mQTL
signals were considered positive when twice the natural log
of the Bayes factor (2ln(BF)) was found to be 2-5, strong
when 5-10, and decisive at >10. Narrow sense heritability
was calculated by dividing the phenotypic variance by the
sum of the weighted additive genetic variance and the sam-
ple residual variance. Subsequently, targeted IBD analysis
was performed in FlexQTL™ to distinguish haplotypes and
genotype (i.e., QQ, Qq, or qq) the mQTL region to estimate
breeding values. Here, the mQTL was divided into bins of
1 cM, and the probability that a given locus contained a ge-
netic component influencing chlorogenic acid abundance was
measured via PBA in FlexQTL™.
In order to contextualize the presence of a chlorogenic acid
mQTL, the characterized apple genome (GDDH13v1.1) was
examined in the area surrounding the mQTL (Daccord et al.,
2017; Jung et al., 2019). Genes encoding enzymes connected
with chlorogenic acid production were noted.

Results
Pedigree Confirmed and Revised. Analysis of adherence
to expected pedigree relationships indicated 18 individuals
with disparate parentage. Due to phenotypic interest, six of
these remained in the mGWAS under the Diverse category
but were not considered part of the pedigree if both parents
were unknown (Sup. Table S1). Additionally, the traditional
lineage of the advanced selection ‘Co-op 17’ was revised to
include ‘Crandall’ as a progenitor.

Metabolomic Profiling Demonstrates Apple
Metabolome Variety. Data processing of untargeted
metabolomic analyses of the apple extracts resulted in 4,866
molecular features for LC-MS (+), 4,703 for LC-MS (-), and
756 bins for NMR (Sup. Tables S6-S8). No samples were
found to be outliers when examining boxplots of each sample
(Sup. Fig. S3). Good data quality was indicated for LC-MS
experiments due to tight clustering of regularly injected
pooled QCs when each ionization mode was examined
separately via PCA (Sup. Fig. S4).
PCA showed metabolomic variation across genotypes in all
metabolomic datasets (Sup. Fig. S5). The spread of points
between the classifications of progeny, pedigree-connected,
and other diverse selections confirmed that the apples se-
lected for this study have metabolic variety.
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Fig. 3. (a) The total counts of metabolomic features with SNP associations above significance thresholds for each population set in each metabolomics platform. The features
were then compared within each metabolomics dataset to extract the intersection: a list of those that were significant in all three populations. Corresponding Venn diagrams
for (b) LC-MS (+), (c) LC-MS (-), and (d) NMR metabolomic features are shown with the intersection containing the number of features that passed on for further analysis.

mGWAS Pipeline for Prioritization. The nine result matri-
ces from the mGWAS analyses (Sup. Tables S13-S21) were
filtered for significance (Fig. 3a). Then, extracting the inter-
section of the significant associations for the three population
sets within each metabolomics dataset resulted in 519 LC-
MS (+), 726 LC-MS (-), and 177 NMR features with putative
mQTL (Fig. 3b-d). These features are listed in Sup. Table
S22. Potential mQTL from the three metabolomics platforms
were discovered on each of the 17 chromosomes (Fig. 4). An
even distribution of mQTL across the 17 chromosomes would
indicate 5.9% would be present per chromosome. We iden-
tified linkage group (LG) 16 as a hotspot because 54-60%
of the mQTL detected per metabolomic approach (LC-MS
(+) 284, LC-MS (-) 443, NMR 95) are located there. Link-
age group 17 had an over-representation of mQTL as well:
LC-MS (+) 97, LC-MS (-) 131, and NMR 7. LC-MS ap-
proaches provided more signals for mQTL on LG 17 com-
pared to NMR – 18-19% of total mQTL versus 4% for NMR.

Simultaneous visual assessment of genomic areas that housed
significantly associated SNPs using the three metabolomics
datasets was achieved by creating a composite mQTL chro-
mosome map (Fig. 5). Here, hotspots on the top of LG
16 and bottom of 17 are easily visible. Certain areas of
the genome elicited mQTL signals for compounds in each
of the metabolomic datasets (e.g., top of LG 16 and bottom
of 17). Others were only significantly associated with one
(e.g., middle of LG 13) or two of the metabolomics tech-
niques (e.g., top of LGs 2 and 3). Supplementary Figs. S6
and S7 detail the number of features significantly associated
with each SNP in LG 16 and 17, respectively. Clear regions
of fruit phytochemical control were evident, as a set of SNPs Fig. 4. Bar plots showing the number of putative mQTL detected per chromosome

via mGWAS for each metabolomics platform.
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DRAFTFig. 5. Composite mQTL chromosome map of the 17 apple chromosomes. Horizontal lines indicate the locations of each SNP found to have a significant association with at
least one metabolomic feature in the filtered and intersected mGWAS results. Lines are colored based on the origin of the metabolomic feature.

on the top of LG 16 were significantly associated with hun-
dreds of features across the three analysis methods. Particu-
larly, three SNPs (13681, 13685, and 13675) maintained top
positions for LC-MS (+), (-), and NMR (SNP name refer-
ence is available in Sup. S10). Similarly, on LG 17, a large
number of signals clustered towards the bottom of the chro-
mosome. Once again, parallel results were seen across each
metabolomic approach with top ranked SNPs being 15109,
15123, and 15133.

Chlorogenic Acid mQTL Proposed by mGWAS
Pipeline and Validated with Two-Step PBA. The pipeline
described was able to discover the relationship between
chlorogenic acid and an mQTL on LG 17. Data-dependent
MS/MS analyses were mined for features of final signif-
icance from the mGWAS analyses. This analysis yielded
spectral matches to chlorogenic acid in GNPS (Wang et
al., 2016) for both LC-MS (+) and (-). Identity was con-
firmed for peaks in both LC-MS and NMR datasets using
authentic standards—a Level 1 annotation according to the
Metabolomics Standard Initiative (Sumner et al., 2007).
Manhattan plots of mGWAS results for the chlorogenic
acid features each showed significant signals (FDR-corrected
P<.05) on LG 17 along with a suggestive signal on LG 3 (Fig.
6). SNP 15109 (Chr17:27,490,016) was indicated as the most
significant locus in the LG 17 signal from the mGWAS (Fig.
7b).
The findings from the genome-wide PBA in FlexQTL™ are

Fig. 6. Manhattan plots of chlorogenic acid phenotypic measurements from LC-
MS (+), (-), and NMR. Alternating colors were used to help delineate neighboring
chromosomes. The dashed line indicates an FDR-corrected q-value equivalent to
P =.05.
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listed in Fig. 7a. Both LC-MS (+) and (-) showed one mQTL
for chlorogenic acid. The Bayes factors (2ln(BF)) for repli-
cate FlexQTL™ routines for both MS ionization modes in-
dicated a range of strong (5-10) to decisive (>10) evidence
for one mQTL. The results from NMR consistently detected
a positive (2-5) mQTL on LG 17 that neared strong evidence
for one mQTL. Additionally, a positive signal for LG 3 was
detected in one replicate of the NMR routines. In all other
PBA runs for chlorogenic acid, the signal on LG 3 fell just
short of the positive delineation. The table further outlines a
consistent genetic interval for the chlorogenic mQTL on LG
17 from 15-72 cM (Fig. 7a-b). Additionally, narrow sense
heritability was high for each metabolomic dataset with an
overall range of 0.45-0.80.

The targeted PBA of this long region narrowed the mQTL to
a locus of 4 cM (54-58 cM; Fig. 7b) using IBD and posterior
probabilities from MCMC. This region fell between mark-
ers 15060 and 15086 (Chr17:26,433,748..26,920,509), corre-
sponding to a physical distance of 487 kb at the bottom of LG
17. The probability of the region containing components in-
fluencing chlorogenic acid abundance was above 0.61. In that
locus, haplotypes were constructed based on polymorphic
markers (15065, 15068, 15076, 15079, 15080, and 15082)
in the progenies. For each apple variety, genotypes for these
markers were assembled alongside the observed abundance
for chlorogenic acid measured via LC-MS (+) and two out-
puts from FlexQTL™: the estimated breeding value (additive
+ dominance effects) and the most probable mQTL genotype
(i.e., QQ, Qq, qq) (Sup. Tables S23-S24). An excerpt is pre-
sented here to illustrate the patterns observable between hap-
lotype, chlorogenic acid abundance, and breeding value (Fig.
7c). Fig 7d illustrates the dominance effect for the chloro-
genic acid mQTL.

Linkage group 17 houses seven genes encoding four enzymes
from the phenylpropanoid pathway: three cinnamyl alcohol
dehydrogenase (CAD) isozymes, cinnamoyl-CoA reductase
(CCR), two shikimate O-hydroxycinnamoyl-CoA transferase
(HCT) isozymes, and 4-coumarate-CoA ligase (Daccord et
al., 2017; Jung et al., 2019) (Fig 7b; Sup. Table S25).

Our pipeline demonstrates the feasibility and benefits of
multi-omic integration in apple. Genomic and metabolomic
datasets were leveraged simultaneously to gain insight into
genetic control of metabolite production in fruits. The novel
workflow was developed to prioritize putative genotype-
phenotype associations characterized by mGWAS for final
analysis via genome-wide and targeted PBA to progress to-
wards understanding relationships between genetic compo-
nents and metabolite abundance.

Discussion
Detecting mQTL in Breeding-Relevant Germplasm by
Combining mGWAS and PBA. To overcome the limita-
tions of QTL mapping in bi-parental population (Table 1),
a PBA approach has been implemented to analyze breeding
germplasm (Bink et al., 2014; Fresnedo-Ramírez et al., 2015,
2016; Guan et al., 2015; Cai et al., 2017). The PBA ap-
proach analyzes several pedigree-connected families, taking
advantage of IBD (Bink et al., 2014), a principle based on
knowledge of haplotype inheritance over generations. It eval-
uates alleles of recent progenies based on alleles of founding
cultivars (van de Weg et al., 2004). Important breeding par-
ents and progeny make up the pedigree-related families, so
QTL are evaluated in a more breeding-relevant context than
in bi-parental populations. This allows evaluation of individ-
uals from a variety of genetic and even environmental back-
grounds because samples are taken from existing breeding
programs.
PBA would be the most powerful method for mQTL de-
tection in the pedigree-connected population studied here;
however, due to the intensive nature of the routines, the
10,000 metabolomic features could not all be realistically an-
alyzed via this method with the current tools available and the
Bayesian approach used by FlexQTL™. Thus, novel, high-
throughput prioritization schemes to determine features of in-
terest were developed to bridge the gap between metabolomic
analysis and PBA. The scheme was based on less computa-
tionally intensive mGWAS applied across the nested popu-
lation sets (Progeny, Pedigree, Diverse), which could act as

Population Type Phytochemical Analysis

Study Bi-Parental Breeding Targeted Untargeted

Khan et al., 2012. J Exp Bot. × LC-MS (-)
Chagné et al., 2012. BMC Plant Biol. × Polyphenols
Verdu et al., 2014. PLoS ONE. × Polyphenols
Guan et al., 2015. Mol Breeding. PBA Sugars
Gutierrez et al., 2018. Tree Genet Genomes. × Dihydrochalcones
McClure et al., 2019. Hortic Res. mGWAS Polyphenol

Christeller et al., 2019. Sci Rep. × Pentacyclic
Triterpenes

Bilbrey et al., 2021. Reported here. mGWAS
& PBA

LC-MS (+/-)
& NMR

Table 1. Comparison of genotype-metabolite integration studies in apple. If a breeding-relevant collection of apples was used, the analysis type is indicated as a metabolite
genome-wide association study (mGWAS) or pedigree-based analysis (PBA).
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a filter, selecting the most important metabolites for analysis
using PBA.
Our rationale for dividing the germplasm into three sets was
adopted based on the assumption that genetic segregation of
metabolite production should have clearest patterns in the
progenies. In the mGWAS analyses, the addition of some
accessions that are phenotypic outliers, without any consid-
eration of their relationship to the breeding program, would
likely lead to detection of spurious genotype-phenotype re-
lationships (Alvarez Prado et al., 2019). Therefore, marker-
metabolite associations that retain signal across all three it-
erations of the analysis should be robust across a wide vari-
ety of apple germplasm, as represented by the individuals in
this study. The advantage of this approach is generalized ap-
plicability of marker-metabolite associations in a wide range
of breeding germplasm. Furthermore, this approach reduces
false positive SNP-feature associations, as detection across
each population is required to remain in the analysis.
While mGWAS alone is useful to understand the genomic ar-
chitecture for a phenotype (Korte Farlow, 2013), it does not
capture the inheritance of each allele through a pedigree de-
spite utilization of a kinship matrix and principal components
to correct models. Additionally, our mGWAS analyses in-
cluded individuals outside the three pedigree-connected fam-
ilies, so the pedigree relationships were only relevant to the
portion of the analyses involving individuals related to the
breeding progenies. Thus, for estimation of genetic param-
eters, such as variance explained by an mQTL for a specific
phytochemical, and to track the IBD probability of alleles
across the pedigree, the Bayesian PBA in FlexQTL™ pro-
vides additional information by generating values for addi-
tive and dominance effects. It also enables the construction
of haplotypes for further exploration of the polymorphisms
in the mQTL regions to narrow down candidate markers for
marker-assisted selection.

Benefits of Omics Integration and Using Multiple
Metabolomics Approaches. The composite mQTL chro-
mosome map (Fig. 5) displays both genomic areas of in-
terest and SNPs associated across the metabolomic datasets,
demonstrating the advantage of applying high-resolution MS
and NMR together. This diagram is the first of its kind. Loci
with signal across all three metabolomic approaches provide
additional confidence in mQTL. Three significant associa-
tions also provide chemical information – that those metabo-
lites are observable via both MS ionization modes as well
as via NMR. These data suggest that metabolites significant
across all three datasets exist in sufficient concentration (>1
µmol/L) to be observed via NMR, which is the least sensi-
tive approach. For example, at the bottom of LG 17, mQTL
that are associated with features across the three datasets are
visible. The location of the NMR bin (i.e., chemical shift)
provides additional structural information about the metabo-
lite expressing that peak. This enables the narrowing down of
potential metabolite classes, as shown in Sup. Fig. S8, and
limits the number of theoretical formulas matching the ac-
curate mass, aiding in the metabolite identification process.
This is particularly valuable as metabolite identification is

the major bottleneck of metabolomics studies (da Silva et al.,
2015).

Conversely, at the tops of LGs 2 and 3, there are many sig-
nificant mQTL found across the two MS datasets. It is likely
that these features are present in concentrations too low (<1
µmol/L) to be well-characterized by NMR. The presence in
one LC-MS ionization mode (and absence in the other) can
also provide useful structural information, as certain com-
pounds are more or less likely to gain or lose a proton. Our
finding of more significant features from the LC-MS (-) pri-
oritization than from LC-MS (+), despite the positive mode
dataset having more features, is consistent with increased
analyte ionization in positive mode and increased sensitiv-
ity in negative mode (Antignac et al., 2005). In the case
of apple, this difference might be explained by the fact that
flavonoids, a diverse class of compounds, tend to ionize bet-
ter in negative mode than positive (López-Fernández et al.,
2020). If the chosen apple varieties represent a high diver-
sity of flavonoids, this could account for more significant fea-
tures passing the thresholds for LC-MS (-). Similarly, areas
displaying significance for NMR data only could indicate an
area controlling abundant compounds that do not ionize well
using MS or are not well-retained on the column in reversed-
phase LC and are therefore preferentially analyzed by NMR,
such as sugars and other very polar analytes. Though NMR
is an inherently less sensitive approach than MS, our work
demonstrates the complementarity of using both techniques.

These observations were important clues to strengthen confi-
dence in understanding the classes of compounds being con-
trolled by certain areas of the apple genome. A great ad-
vantage of this approach was also to see that parallel results
in mQTL detection were evident across mGWAS analyses.
This increases confidence in detection of truly significant
SNP-feature associations as opposed to chance results from
multiple comparisons. These conclusions further strengthen
the utility multi-omic integration provides toward additional
leverage for compound identification, as well as confidence
in results.

mQTL Hotspot on Linkage Group 16. The mQTL hotspot
on the top of LG 16 is consistent with results from mQTL
mapping studies by Khan, Chibon, et al. (2012) and Chagné,
Krieger, et al. (2012) as well as the mGWAS in McClure et
al. (2019). This consistency in findings confers confidence in
the validity of our approach for mQTL detection using untar-
geted metabolomics data in a breeding-relevant population.
Without complete compound identification, we can infer that
this hotspot contains genetic elements that exert control over
production of polyphenols. This is possible due to the in-
nate characteristic of NMR that chemical shift (ppm) is deter-
mined by compound structure and therefore chemical class.
The NMR bins associated with the SNPs in the hotspot region
are located from 8-6 ppm (Sup. Fig. S8), indicating that they
represent compounds that contain aromatic hydrogens, likely
phenolics and aromatic amino acids (Eisenmann et al. 2016;
Iaccarino et al. 2019).
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mQTL Hotspot on Linkage Group 17 including Chloro-
genic Acid. Chromosome 17 has not been noted as partic-
ularly remarkable in previous apple genomics studies, so an
over-representation of mQTL on this linkage group led us
to investigate further. The LC-MS features, (+) 97 and (-
) 131, significantly associated with SNPs on LG 17 were
cross-referenced with features from data-dependent MS/MS
that were identified by spectral library matches in GNPS. The
comparisons for both ionization modes yielded chlorogenic
acid as one such match. Furthermore, five of the seven NMR
bins (7.1-7.09, 6.33-6.32, 2.17-2.16, 2.15-2.14, and 2.14-
2.13 ppm) with putative mQTL on LG 17 showed chemical
shift distribution and multiplicity expected for chlorogenic
acid as detailed in HMDB (Wishart et al., 2018). With con-
sistency across metabolomic datasets, as visualized by Man-
hattan plots (Fig. 6) for these LC-MS and NMR features,
we chose chlorogenic acid to be further evaluated via PBA
for mQTL validation. Furthermore, chlorogenic acid was se-
lected because its consumption is associated with decreased
risk of chronic health concerns such as: diabetes, cancer, in-
flammation, and obesity (Tajik et al., 2017).

Previous studies have identified an mQTL on the bottom of
LG 17 for chlorogenic acid (Chagné et al., 2012; Khan et
al., 2012; Verdu et al., 2014; McClure et al., 2019). Three
of these studies were based on bi-parental mapping popula-
tions (Chagné et al., 2012; Khan et al., 2012; Verdu et al.,
2014). A strong but non-significant signal was detected for
chlorogenic acid in a breeding-relevant population using mG-
WAS (McClure et al., 2019). The stronger mQTL signal
we observed could be due to the specific breeding-relevant
germplasm used for this study. Another reason for more sen-
sitive detection of mQTL in our mGWAS may be attributed
to the core of pedigree-connected individuals chosen for the
study that enabled an informative kinship matrix to be in-
cluded in the model. This suggests, although it is important
to use breeding-relevant germplasm in mQTL analysis, hav-
ing sets of progenies and their pedigree-related individuals
strengthens the capability of detection surpassing that of a
bi-parental mapping population.

To contextualize the presence of mQTL, genomic recharac-
terization is needed, but existing knowledge of genes and
their encoded enzymes associated with pertinent biochemi-
cal pathways can be investigated. The mQTL region detected
by the genome-wide PBA along the majority of LG 17 was
found to contain seven such genes encoding four enzymes:
three CAD isozymes, CCR, two HCT isozymes, and 4CL
(Fig. 7b). Of these, the HCT gene was also hypothesized
to be a candidate gene for the chlorogenic acid mQTL previ-
ously identified in two mapping populations: ‘Royal Gala’ ×
‘Braeburn’ and a cross of two French cider apples (Chagné et
al., 2012; Verdu et al., 2014). This enzyme acts in the phenyl-
propanoid pathway to transfer quinic acid and shikimic acid
to and from molecules upstream of chlorogenic acid (Clif-
ford et al., 2017). However, the other genes have not been
previously noted as candidate genes for any chlorogenic acid
mQTL in apple. Down-regulation of CAD, 4CL, and CCR
results in reduced lignin content with simultaneous increased

abundance of upstream metabolites, such as chlorogenic acid
(Anterola Lewis, 2002). Thus, these genes are highly likely
to be important to chlorogenic accumulation in apple fruit.
Furthermore, after conducting the targeted PBA, the smaller
mQTL region (Chr17:26,433,748..26,920,509) was 159 kb
from CCR, which encodes first committed enzyme of the
monolignol biosynthetic pathway, a branch off of the general
phenylpropanoid pathway (Lacombe et al., 1997). Specif-
ically, down-regulating CCR in tomato (Solanum lycop-
ersicum L.) decreased lignin biosynthesis, leaving more
coumaroyl-CoA esters for use in phenolic compound synthe-
sis (van der Rest et al., 2006). This proof-of-concept exam-
ple using chlorogenic acid allowed us to uncover previously
known relationships, like HCT, as well as discover new gene-
metabolite relationships, such as with CCR, CAD, and 4CL,
in apple.
The same investigative process can be applied to elucidate
genetic control of additional compounds. The smaller num-
ber of significantly associated features in the NMR dataset
indicates that the bulk of the compounds with mQTL for
LG 17 are not abundant enough to be detected via NMR
metabolomics or mQTL detection is hampered by the na-
ture of binning in NMR, where signal is diluted and dis-
tributed across multiple chemical shifts. Therefore, addi-
tional scrutiny of our significant features in LC-MS and
cross-referencing with GNPS spectral matches may yield
more features with LG 17 mQTL that are primed for identifi-
cation and further validation via PBA. The majority of other
features with putative mQTL on LG 17 co-located with the
chlorogenic acid mQTL identified via mGWAS (Fig. S7).
These findings suggested that the cluster of mQTL detected
near the bottom of LG 17 might be metabolically related to
chlorogenic acid. This leads to additional hypotheses for
the putative identification of other polyphenols with appar-
ent mQTL, such as caffeic acid, co-located at this same lo-
cus. This hypothesis is supported by the previously identified
mQTL for quercetin-3-O-rutinoside along the entirety of LG
17 (Chagné et al., 2012) and flavonols on the lower half of 17
(Verdu et al., 2014).

Conclusions and Future Prospects. This study provides
a pipeline for high-throughput processing and integration
of genomic and metabolomic datasets in diverse, breeding-
relevant apple germplasm. The genomic and metabolomic
variety in the selected apples led to detection of mQTL across
the apple genome. The use of three parallel metabolomic
approaches offered complementary interpretation of results
that increased confidence in compound identification and
detection of significant mQTL through mGWAS and PBA.
This workflow enabled detection of 519, 726, and 177 pu-
tative mQTL in LC-MS (+), (-), and NMR datasets, respec-
tively. Furthermore, chlorogenic acid represented a proof-
of-concept example that this approach was able to character-
ize and detect consistent mQTL via mGWAS and two-step
PBA for metabolites relevant to breeding for quality traits,
such as nutrition (Tajik et al., 2017). The mQTL region was
interrogated to determine candidate genes related to chloro-
genic acid biosynthesis, including previously hypothesized
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HCT and three genes (CAD, CCR, and 4CL) newly associ-
ated with an mQTL for chlorogenic acid production in apple.
The data is ripe for additional investigation into feature iden-
tities and areas of the apple genome that deserve to be rechar-
acterized for a better understanding of what genes or reg-
ulatory elements are present. Subsequently, markers could
be developed for mQTL if the compounds are of interest for
breeding purposes. Additional study of SNP-feature associ-
ations not investigated here could be conducted in the future
and likely yield interesting and applicable results. Metabo-
lites or SNPs of interest a priori could also be investigated in
the data generated in this study. Apple QTL for larger scale
phenotypes, such as disease resistance, sweetness, or acid-
ity, could now be compared with mQTL to discern if certain
metabolites may contribute to the collective phenotype.
The pipeline could be extended to other tree crops and
could be adapted for use with other perennial and annual
crops, as well. Platforms that provide feasible assessment
of genotype-metabolite relationships are imperative as crop
research moves towards metabolome-based increased nutri-
tion, disease resistance, post-harvest quality, and consumer-
likability. This is especially important in perennial tree crops,
such as apple, which will rely upon marker-assisted breeding
to overcome a long breeding cycle and accomplish marked
advances to parallel or ideally influence consumer desires and
needs.
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