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Abstract 14 

Coordination of individuals with diversity often requires sophisticated 15 

communications and high-order computational abilities. Microbial populations can 16 

exhibit diverse individualistic behaviors and yet can engage in collective 17 

migratory patterns with a spatially sorted arrangement of phenotypes following a 18 

self-generated attractant gradient. However, it’s unclear how individual bacteria 19 

without complex computational abilities can achieve the consistent group 20 

performance and determine their positions in the group while facing 21 

spatiotemporally dynamic stimuli. Here, we investigate the statistics of bacterial 22 

run-and-tumble trajectories during group migration. We discover that, despite of 23 

the constant migrating speed as a group, the individual drift velocity exhibits a 24 

spatially dependent structure that decreases from the back to the front of the 25 

group. The spatial modulation of individual stochastic behaviors constrains cells 26 

in the group, ensuring the coherent population movement with ordered patterns 27 

of phenotypes. These results reveal a simple computational principle for 28 

emergent collective behaviors from heterogeneous individuals. 29 

 30 
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Introduction 32 

 33 

Collective group migration as an important class of coordinated behaviors is 34 

ubiquitous in living systems, such as navigation, foraging, and range expansion 35 

(Krause, Ruxton et al., 2002, Partridge, 1982, Sumpter, 2010). In the presence of 36 

individual heterogeneity, the migrating group often exhibit spatially ordered 37 

arrangements of phenotypes (Krause et al., 2002, Parrish & Edelstein-Keshet, 38 

1999, Partridge, 1982, Sumpter, 2010). In animal group migration, individual 39 

behavioral abilities (e.g. directional-sensitive) would result social hierarchy, which 40 

further drives the spatial arrangement in coordinated group (Couzin, Krause et 41 

al., 2005). At the same time, the spatial arrangements can lead to different costs 42 

and benefits for the individuals participating in the group migration (Krause, 1994, 43 

Parrish & Edelstein-Keshet, 1999, Partridge, 1982). Participating individuals must 44 

follow disciplinary rules to organize themselves into coordinated patterns while 45 

on the move, which requires complex computational abilities to interact with the 46 

group and the environment (Couzin & Krause, 2003, Couzin, Krausew et al., 47 

2002, Vicsek & Zafeiris, 2012). Therefore, understanding how individuals of 48 

different phenotypes determine their group positions is an essential prerequisite 49 

to uncover the organization principles of collective populations.  50 

The chemotactic microbe, E. coli, provides a simple model to address the 51 

emergence of collective decision-making, as it can both exhibit individualistic 52 

behaviors (Dufour, Gillet et al., 2016, Frankel, Pontius et al., 2014, Kussell & 53 

Leibler, 2005, Waite, Frankel et al., 2016, Waite, Frankel et al., 2018) and 54 

collective migratory patterns (Adler, 1966a, Fu, Kato et al., 2018, Keller & Segel, 55 

1971, Wolfe & Berg, 1989). Individual cells perform run-and-tumble random 56 

motions by spontaneous switching the rotating direction of flagella (Berg, 2004, 57 

Berg & Brown, 1972). The cell can facilitate the chemotaxis pathway to control 58 

the switching frequency to bias in its favorable directions towards the 59 

chemoattractant gradient, where the efficiency to climb the gradient is defined as 60 

chemotactic ability (𝜒) (Celani & Vergassola, 2010, de Gennes, 2004, Dufour, Fu 61 

et al., 2014, Si, Wu et al., 2012). In addition, substantial phenotypic heterogeneity 62 

in chemotactic ability has been observed even for clonal bacterial population, 63 

which diversifies the chemotactic response of cells to identical signals (Spudich & 64 

Koshland, 1976, Waite et al., 2016, Waite et al., 2018). At the same time, despite 65 

of the stochastic solitary behavior and variations in phenotypic ability, E. coli 66 

population can migrate as a coherent group by following a self-generated 67 

attractant gradient (via consumption) (Adler, 1966a, Saragosti, Calvez et al., 68 

2011, Wolfe & Berg, 1989). The group moving at a constant speed form a stable 69 

pattern of phenotypes sorted by their chemotactic abilities (Fig 1A), so as to 70 

maintain phenotypic diversity in the coherent migratory group (Fu et al., 2018, 71 

Waite et al., 2018). Intriguingly, it’s believed that there are no direct 72 

communications among cells within such coordinated migration group (Cremer, 73 

Honda et al., 2019, Fu et al., 2018), and cells encounter highly dynamic external 74 

stimulus. How individuals with phenotypic and behavioral variations manage to 75 
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maintain the consistent group performance and determine their relative positions 76 

in the group is still a mystery. 77 

Here we analyzed bacterial trajectories in the chemotactic group migration using 78 

a microfluidic system that enables us to simultaneously characterize the 79 

quantitative properties of individual motions (see Materials and Methods). We 80 

discovered that in the collectively migratory group, the run-and-tumble motions of 81 

individual cells were spatially modulated to behave as mean-reverting processes 82 

relative to the group, i.e. cells effectively tend to revert its direction of runs 83 

towards the mean position of the group. The same rule of behavioral modulation 84 

applies to cells of different phenotypes to allow them migrate at a consistent 85 

average speed with an ordered spatial arrangement of phenotypes. By titrating 86 

the phenotypes with different chemo-receptor abundance, we further 87 

demonstrated that the mean-reversion rate of the behavioral modulation depends 88 

on the sensitivity response to the chemoattractant gradient. Therefore, although 89 

the high-order computational abilities are not available to the simple organisms, 90 

the spatial modulation of stochastic behaviors at the individual level enables 91 

novel decision-making capabilities at the population level.  92 
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Results 93 

 94 

Spatially ordered bacteria behavior. 95 

To directly investigate how bacteria with different chemotactic abilities determine 96 

their relative positions within the collective migration group via run-and-tumble 97 

random motions, we employed a Y-shape microfluidic device with a long channel 98 

of 20mm which allows us to generate a stable propagating band of bacteria as 99 

previously reported (Fu et al., 2018, Saragosti et al., 2011). Specifically, about 100 

1.5 × 104 E. coli wild type cells (strain RP437) were loaded into the device, and 101 

the medium used is M9 motility buffer supplemented with 200μM aspartate (Asp) 102 

as the only chemo-attractant in the system (Adler, 1966b, Fu et al., 2018). Under 103 

this condition, only one dense band of migrating bacteria can be spontaneously 104 

formed (Fu et al., 2018), after the cells were centrifuged to the tip of the long 105 

channel. To quantify the statistics of the single-cell motions within the dense 106 

traveling band, we premixed a small fraction of bacteria (strain JCY1) which 107 

constitutively expresses yellow fluorescent protein with the non-fluorescent wild 108 

type population (strain RP437) by 1:400. The trajectories of fluorescent cells 109 

were then recorded under 4X objective with a frame rate of 9 fps for 10 mins (see 110 

Materials and Methods and Fig S1). As the fluorescent labeled cells show the 111 

same behavior as the wild type ones (Fig S1D), we can consider the behavior of 112 

fluorescent cells as the representatives in the migrating group (Fu et al., 2018, 113 

Saragosti et al., 2011). 114 

As an important advantage of the experimental setup, we can trace the single 115 

cell motions within the dense band of group migration for long time (e.g. typical 116 

tracks are larger than 300 seconds) (Saragosti et al., 2011). Given the long 117 

trajectories of fluorescent bacteria, we first observed an overall trend of biased 118 

random motions of individual cells towards the group migration (Movie. S1). By 119 

analyzing the instantaneous velocity based on the trajectories of fluorescent 120 

bacteria projected to the group migration direction 𝑥𝑖(𝑡) , we found that the 121 

average instantaneous velocity of the entire group, 𝑉𝐺(𝑡) = 〈𝛥𝑥𝑖(𝑡)/𝛥𝑡〉 , kept 122 

constant over time, 𝑉𝐺~3.0 𝜇𝑚/𝑠, suggesting that the band of cells as a whole 123 

propagates at a constant speed (Fig S2). Consequently, in the moving coordinate 124 

(𝑧 = 𝑥 − 𝑉𝐺𝑡), the time-shifted cell density profiles 𝜌(𝑧) can be superimposed as 125 

an approximately invariant profile (Fig 1B). Furthermore, the average 126 

instantaneous velocity over the band profile, 𝑉𝐼(𝑧) = 〈𝛥𝑥𝑖(𝑧)/𝛥𝑡〉 , remained the 127 

same as the group velocity (𝑉𝐺 = 〈𝑉𝐺(𝑡)〉𝑡) along the density profile (Fig 1B). We 128 

also verified that these observations did not depend on the sampling time interval 129 

(Fig S2). Therefore, despite of stochastic motions on single cell level, bacterial 130 

population are able to migrate as a stable group (Adler, 1966a, Fu et al., 2018, 131 

Saragosti et al., 2011).  132 
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Next, to address how the collective group movement emerge from the stochastic 133 

solitary behavior, we analyzed the statistics of run-and-tumble events for 134 

individual bacteria. Specifically, after identifying all the run states of individual 135 

trajectories by a previously described computer assistant program (see Materials 136 

and Methods) (Dufour et al., 2016, Waite et al., 2016), we aligned all the time-137 

shifted runs by their starting positions in the moving coordinate with respect to 138 

the center of the group, and quantified the spatial distributions of the mean run 139 

duration 〈𝜏𝑅(𝑧)〉, as well as the mean run length 〈𝑙𝑅(𝑧)〉. We find that both 〈𝜏𝑅(𝑧)〉 140 

and 〈𝑙𝑅(𝑧)〉 increase from the back to the front of the moving group, while the 141 

mean tumble time 〈𝜏𝑇(𝑧)〉  is almost invariant (Fig 1C). Note that previous 142 

observations on the steady state profiles of population distribution exhibited that 143 

phenotypes with low tumble bias would spontaneously position themselves in the 144 

front of the migratory group (Fu et al., 2018). Besides the phenotypic distribution 145 

along the wave profile, the spatial structure of run length/duration can also be 146 

contributed by the modulation of bacterial behaviors in response to the 147 

chemoattractant gradient (Dufour et al., 2014, Long, Zucker et al., 2017, Shimizu, 148 

Tu et al., 2010). It’s unclear how the individual behaviors are dynamically 149 

modulated during the group migration.  150 

To answer this question, we first investigated sample runs initiated from the back 151 

(B), middle (M) and front (F) of the migration group. Qualitatively, the lengths of 152 

representative runs in the front are longer but distribute more uniformly in terms 153 

of the directionality, whereas the lengths of runs in the back are shorter but the 154 

directions of runs are more likely pointing towards the direction of group 155 

migration (Fig 1D). Quantitatively, the statistics of run lengths, as well as the run 156 

durations, display exponential distributions, suggesting that the switch between 157 

runs and tumbles follow Poisson process (Berg & Brown, 1972, Wang, Shi et al., 158 

2017) . Of those distributions, the means in the direction of group migration are 159 

longer than that of the opposite direction (Fig 1E and Fig S3A). Furthermore, by 160 

analyzing the angular distribution of the run length, we found that in the front of 161 

the group, the difference between the forward runs and backward runs became 162 

smaller despite increased mean values (Fig 1F). Moreover, we also observed 163 

that the reorientation angles after tumble events exhibited a decreasing trend 164 

along the wave profile (Fig S3E), suggesting a directional persistence towards 165 

the group migration as previously reported (Saragosti et al., 2011). All these 166 

results suggest that the bacteria in the back run more effectively towards the 167 

group migration than those in the front. 168 

To further quantify the efficiency of runs, we calculated the directional bias of run 169 

length and run duration, which are defined as the ratio of the net run 170 

length/duration in the direction of the group migration and run lengths/durations 171 

in all directions, 𝐵𝑙(𝑧) ≡
〈𝐿𝑅(𝑧)⋅𝑐𝑜𝑠 𝜃𝑅(𝑧)〉

〈𝐿𝑅(𝑧)〉
, and 𝐵𝜏(𝑧) ≡

〈𝜏𝑅(𝑧)⋅𝑐𝑜𝑠 𝜃𝑅(𝑧)〉

〈𝜏𝑅(𝑧)〉
, respectively, 172 

where 𝜃𝑅  is the angle between single runs and the migration direction. Both 173 

quantities are spatially modulated as they decreased by 3~4 folds from the back 174 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.17.431709doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.17.431709
http://creativecommons.org/licenses/by/4.0/


 

 

6 

 

to the front of the migration group (Fig 1G), quantitatively indicating how much 175 

more effectively the cells in the back behave than that in the front. As the tumble 176 

duration is almost constant along the band profile (Fig 1C), we hypothesized that 177 

the efficiency of runs would represent how fast that the cells climb the 178 

chemoattractant gradient, suggesting that the spatial modulation in the directional 179 

bias of runs enables cells in the back of the migration group to exhibit higher drift 180 

velocity though the mean run length of them is shorter. 181 

 182 
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Figure 1. Behavioral structure of individual bacteria in collective group 183 

migration.  184 

(A) Illustration of bacterial chemotactic group migration. Bacteria may form 185 

collective migrating group (green line) while consuming chemo-attractant 186 

collectively (brown line). Bacterial population of diverse phenotypes are sorted by 187 

their chemotactic abilities (increasing from light green to dark green) during 188 

collective migration following the self-generated attractant gradient (brown color). 189 

Meanwhile, as shown in the sample trajectories, individual cells perform run-and-190 

tumble random motions biased towards the group migration. (B) In the moving 191 

coordinate 𝑧 = 𝑥 − 𝑉𝐺𝑡 , the bacteria density profile 𝜌(𝑧)  is stable (black solid 192 

line). The width of the density profile is defined as 2 times the standard deviation 193 

of bacterial relative position (2𝜎, black dash line), represented by the black dash-194 

dotted line. The instantaneous velocity (𝑉𝐼(𝑧)) (blue solid line) is uniform and 195 

equals to the average group velocity 𝑉𝐺 (blue dash line). (C) The mean run length 196 
〈𝑙𝑅(𝑧)〉 (black solid line) and run time 〈𝜏𝑅(𝑧)〉 (blue solid line) increase from the 197 

back (left) to front (right) of the migration group, while the mean tumble time 198 
〈𝜏𝑇(𝑧)〉 slightly decreases (blue dash line). (D) Sample runs of bacteria from the 3 199 

regions. B, M, and F stands for the back, middle and front of the migration group, 200 

respectively. Regions were defined by black dashed lines in G. Trajectories of 201 

runs show that cells in the back of group tend to run forward, compared to cells in 202 

other regions. (E) The exponential distribution of forward run length (solid lines) 203 

and backward run length (dash lines) in 3 regions show that the difference of run 204 

length between forward and backward for cells in the back is larger than cells in 205 

other regions. (F) The mean run length in different directions, with the angular bin 206 

size of 15°, also show that cells in the back were better skewed to run forward. 207 

(G) The run length bias 𝐵𝑙(𝑧) =
〈𝑙𝑅(𝑧)⋅𝑐𝑜𝑠 𝜃𝑅(𝑧)〉

〈𝑙𝑅(𝑧)〉
 (black solid line) and the run time 208 

bias 𝐵𝜏(𝑧) =
〈𝜏𝑅(𝑧)⋅𝑐𝑜𝑠 𝜃𝑅(𝑧)〉

〈𝜏𝑅(𝑧)〉
 (blue solid line) both decreased from the back to the 209 

front of the migration group, which is also consistent with results shown in D-F. In 210 

panel B, C, G, shaded area represents s.e.m. of 3 biological replicates. The 211 

spatial bin size is 240𝜇𝑚. 212 

  213 
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Bacteria perform mean-reversion behavior as active particles in moving 214 

gradient. 215 

To verify our hypothesis, we examined the expected drift velocity along the band 216 

profile, which is defined as the average projection of run length on the migration 217 

direction over the average duration of runs and tumbles, 𝑉𝐷(𝑧) ≡
〈𝑙𝑅(𝑧)⋅𝑐𝑜𝑠 𝜃𝑅(𝑧)〉

〈𝜏𝑅(𝑧)+𝜏𝑇(𝑧)〉
 218 

(Dufour et al., 2014). Unlike the spatially-uniform instantaneous velocity 𝑉𝐼(𝑧), the 219 

expected drift velocity 𝑉𝐷(𝑧) decreases linearly from the back to the front of the 220 

migration group with a fitted linear slope of −𝑟 = −0.05 min−1  (Fig 2A). The 221 

negative slope of 𝑉𝐷(𝑧)  suggests a mean-reversion behavior of bacteria: the 222 

bacteria in the back of the migration group are expected to drift faster than the 223 

group (𝑉𝐷 > 𝑉𝐺), enabling the cells to catch up within the group, while the cells in 224 

the front are expected drift slower than the group (𝑉𝐷 < 𝑉𝐺), making the cells to 225 

slow down and fall back (Fig 2B). As another piece of evidence supporting the 226 

mean-reversion behavior, the time-shifted trajectories of cells relative to the 227 

group indicate that the cell motions perform sub-diffusive (Fig 2C), of which the 228 

mean square displacement (MSD) are constrained over time (Fig S3G). Thus, 229 

our observations indicate that the modulation of individual runs along the wave 230 

profile leads to the spatially-structured expected drift velocity, resulting an 231 

effective mean reversion process of cell motions.  232 

 233 
Figure 2. Mean-reversion behavior of individual bacteria relative to the 234 

group.  235 

(A) The expected drift velocity 𝑉𝐷 =
〈𝑙𝑅(𝑧)⋅𝑐𝑜𝑠 𝜃𝑅(𝑧)〉

〈𝜏𝑅(𝑧)+𝜏𝑇(𝑧)〉
 (black solid line) decreases 236 

from the back to the front of the migration group. The blue dash line is the linear 237 

fit of the quantified experimental data, i.e., 𝑉𝐷 ≈ −𝑟𝑧 + 𝑉𝐷0, with 𝑟 = 0.05𝑚𝑖𝑛−1 238 

and 𝑉𝐷0 = 0.17𝑚𝑚 ⋅ 𝑚𝑖𝑛−1 . 𝑉𝐷 crosses with the average group velocity 𝑉𝐺 (black 239 

dash line), which implies that bacteria perform mean-reversion motions, i.e. cells 240 

in the back catch up the group while cells in the front lay back. The 𝑉𝐷 curve and 241 

its linear fit was cut to present ~90% majority of cells (±1.65𝜎). (B) The time 242 

evolution of the average expected position (𝑧, solid lines) of cells starting from 243 

the back (light green), middle (green), and front (dark green) of the migration 244 

group (defined in Fig1. G). Shaded area represents s.e.m. of more than 450 cells 245 
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(see Methods). Analytically, the O-U type model predicts that 𝑧 = 𝐶0𝑒−𝑟𝑡 −246 
(𝑉𝐷0 − 𝑉𝐺)/𝑟 (dash lines), where 𝐶0  can be fitted by the starting position (see 247 

Supplementary text). (C) Representative examples of single-cell trajectories (3 248 

colors represent 3 different tracks) showed the reversion behavior of bacteria 249 

around their mean positions. 250 

 251 

To better understand how the spatial modulation of expected drift velocity 252 

emerges, we adopted a one-dimensional minimal model of bacterial behavior. 253 

The biased random motions of individual cells are described as an active 254 

Brownian particle in the low Reynolds number regime in the medium, following a 255 

Langevin type equation 𝑑𝑥𝑖 = 𝑉𝐷,𝑖𝑑𝑡 + 𝜖𝑑𝑊  (Berg, 2004). In the stochastic 256 

velocity is modelled by a Gaussian random force ϵdW  of which the variance 257 

ϵ depends on the effective diffusion coefficient of the cells (Rosen, 1973, Rosen, 258 

1974), while the deterministic velocity is the expected drifted velocity 𝑉𝐷 =259 

𝜒𝑔(𝑥, 𝑡) that depends on two key parameters (Celani & Vergassola, 2010, de 260 

Gennes, 2004, Dufour et al., 2014, Si et al., 2012): the cell chemotactic ability, 𝜒, 261 

and the perceived attractant gradient 𝑔(𝑥, 𝑡) (Eq. S3). To calculate the perceived 262 

attractant gradient, we considered the dynamics of attractant concentration 263 

𝑆(𝑥, 𝑡) as a diffusible small molecule that can be consumed by the cells (Eq. S2). 264 

Such stochastic description is equivalent to the classic Keller-Segel model (Keller 265 

& Segel, 1971, Rosen, 1973). For simplicity, we considered each cell has the 266 

same attractant consumption rate independent to the local cell density, and 267 

omitted the hydrodynamic forces and physical interactions among cells 268 

(Drescher, Dunkel et al., 2011, Fu et al., 2018, Saragosti et al., 2011). Using this 269 

particle-based model, 100,000 cells were simulated in one dimension. Starting 270 

with all cells in one end (𝑥𝑖 = 0) and homogenously distributed attractant field 271 

(𝑆(𝑥) = 𝑆0), a stable band of cells would spontaneously emerge by following a 272 

moving gradient of attractant that is generated by cell consumption for both 273 

single phenotype and multi-phenotypes (Fig S4). In the presence of diversity in 274 

cell chemotactic ability, the traveling band exhibits a sorted structure of 275 

phenotypes as previously observed (Fu et al., 2018). The self-generated 276 

perceived attractant gradient in the moving coordinate, 𝑔(𝑧), exhibits a stable 277 

profile that decreases from back to front. 278 

In the moving coordinate, the Langevin type equation writes: 𝑑𝑧𝑖 = 𝑉𝐷,𝑖𝑑𝑡 −279 

𝑉𝐺𝑑𝑡 + 𝜖𝑑𝑊. It tells us that the motion of each individual cell relative to the group 280 

migration can be considered as an active particle regulated by two ‘effective 281 

forces’: one generated by the decreasing trend of 𝑉𝐷 which pushes the cell to 282 

catch up the wave; and another generated by the moving gradient of 𝑉𝐺 which 283 

leaves the cell fall behind the wave. This mechanism constrains the random 284 

motions of cells, and enable cells with different phenotypes to form the spatially 285 

ordered structure spontaneously. Specifically, for cells with chemotactic ability χi, 286 
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the balance between the two ‘effective forces’ produces an effective potential 287 

well 𝑈(𝑧) ∝ ∫ 𝑉𝐷,𝑖(𝑧)𝑑𝑧
+∞

𝑧
  (Eq. S17).  288 

The simulation results (Fig S4F) show that the perceived gradient 𝑔(𝑧) is almost 289 

linear along the band profile. Thus, we further approximated 𝑔(𝑧) as a linear 290 

function of z around the peak position: 𝑔(𝑧) ≈ 𝑔0 + 𝑔1𝑧 with 𝑔1 < 0, which gives 291 

us an analogy that cells follow an Ornstein-Uhlenbeck (OU) type process in the 292 

moving coordinate 𝑑𝑧𝑖 = 𝜒𝑖𝑔1𝑧𝑑𝑡 + (𝜒𝑖𝑔0 − 𝑉𝐺)𝑑𝑡 + 𝜖𝑑𝑊 . Solving this equation, 293 

we obtained that cells perform mean reversion motions around the mean 294 

positions 𝑧0 = −
𝑔0

𝑔1
−

𝑉𝑔

𝜒𝑖|𝑔1|
 with the reversion rate 𝑟 = |

𝑑𝑉𝐷(𝑧)

𝑑𝑧
| = 𝜒𝑖|𝑔1| (see 295 

Supplementary text). As a result, the run-and-tumble random motions of cells are 296 

constrained in the potential well, of which the minimum (the same as the mean 297 

position of cells, 𝑧0 ) increases with the chemotactic ability of the cells 𝜒𝑖 . In 298 

addition, the standard deviation (𝜎 ) of spatial distributions of cells, given by 299 

𝜎 =
𝜖

√2𝜒𝑖|𝑔1|
, decreases with 𝜒𝑖.  300 

This analysis suggests that the spatial ordering of cells does not care how is the 301 

perceived moving gradient 𝑔(𝑧) is generated, as long as the slope of it 𝑔1 < 0 is 302 

negative. Thus, we deduced a non-consumable moving attractant field (𝑆(𝑧)) 303 

from the measured density profile 𝜌(𝑧) (Eq. S12), and simulated the behavior of 304 

cells following the Langevin type equation under this moving attractant field. As 305 

shown in Fig S5, cells with large enough 𝜒 follows the moving attractant field and 306 

are spatially sorted as predicted by the OU type model.  307 
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 308 

Figure 3. Agent-based simulations recapture the ordered structure of 309 

bacterial motions.  310 

(A) The expected drift velocity 𝑉𝐷(𝑧) of simulated bacteria decreases from the 311 

back to the front of the migration group, where the chemotactic ability χ ranges 312 

from 0.2 to 0.35 𝑚𝑚2 ⋅ 𝑚𝑖𝑛−1 , consistent with the experimental results shown in 313 

Fig. 2a. The intersections between 𝑉𝐷 curves with the preset group velocity 𝑉𝐺 314 

(black dashed line) shifts towards the back of the migration group as χ decreases 315 

(circles). Different colors of the lines and circles correspond to different 316 

chemotactic abilities χ  as shown in the legend. The same color-coding also 317 

applies to (B-D). (B) The reversion rate 𝑟𝑖 = |𝑑𝑉𝐷,𝑖(𝑧)/𝑑𝑧|  increases with the 318 

chemotactic ability. (C) The effective potential well calculated by 𝑈𝑖(𝑧) =319 

∫ 𝑉𝑑,𝑖(𝑧)𝑑𝑧
+∞

𝑧
. Positions of the potential minimum 𝑧𝑚𝑖𝑛 are marked as circles. As 320 

illustrated, for a lower chemotaxis ability χ, the potential well is shallower and zmin 321 

shifts towards the back part of the migration group. (D) The width of the density 322 

profile (measured by 2𝜎, see Fig. 1B) decreases with the reversion rate ri as well 323 

as the chemotaxis ability χi. The mean square displacement (MSD) of bacteria 324 

(insert, solid lines) is bounded to 2𝜎𝑖
2  (insert, dash lines) (see Supplementary 325 

text). In panel (A, C), curves were cut to present 90% majority of cells (𝑧𝑚𝑖𝑛 ±326 

1.65𝜎𝑖). More details of this simulation results were presented in Fig. S7. 327 

 328 
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Ordered effective potential wells for bacteria of different phenotypes. 329 

To consolidate the proposed mechanism underlying the emergence of spatial 330 

orders from the individual random motions, we further performed simulations for 331 

cells of various chemotactic abilities integrated with the chemotactic pathway and 332 

multi-flagella competition. Together with the attractant dynamics 𝑆(𝑥, 𝑡) described 333 

in Eq. S2, we performed stochastic simulations in three dimensions of a 334 

population with different chemotactic abilities 𝜒𝑖, where 𝜒𝑖 was varied by tuning 335 

the receptor gain 𝑁 (For details in Supplementary text)(Dufour et al., 2014, Jiang, 336 

Qi et al., 2010, Sneddon, Pontius et al., 2012). As the receptor gain only affects 337 

the amplification factor that a cell responds to the gradient, the variation of 338 

bacterial motility 𝜖 is unchanged. As a result, a dense band of migrating cells that 339 

follow a self-generated moving attractant chemoattractant gradient via 340 

consumption were recaptured as experiments (Fig S6). To better analysis the 341 

simulations, we then simplified the model by the assumption of a non-342 

consumable attractant profile 𝑆(𝑧) moving along the group migration direction 343 

(Fig S5A). Using this simplified model, we first checked that mean positions of 344 

density profiles of cells with different receptor gain 𝑁, as well as their peaks, were 345 

orderly aligned in respect to chemotactic ability 𝜒𝑖.   346 

As an important advantage of the agent-based simulations, the model allows us 347 

to analyze the single cell behavior during the ordered group migrations. For each 348 

phenotype 𝑖, the expected drift velocity 𝑉𝐷,𝑖(𝑧) decreases along the density profile 349 

(Fig 3A). Consistent with the ordered structure of density profiles, the intersection 350 

between 𝑉𝐷,𝑖(𝑧) and 𝑉𝐺  exhibits the same sorted order of chemotactic ability 𝜒𝑖 351 

(Fig S7). As the reversion rate 𝑟𝑖 = |
𝑑𝑉𝐷,𝑖(𝑧)

𝑑𝑧
| shows a positive correlation to 𝜒𝑖 , 352 

cells with lower receptor gain 𝑁  (resulting smaller 𝜒 ) experience a weaker 353 

reverting force towards centers (Fig 3B). Thus, the effective moving potential, 354 

𝑈𝑖(𝑧) , which constrains the cells round mean positions sorted by their 355 

chemotactic abilities, becomes flat for cells with lower chemotaxis ability 𝜒 (Fig 356 

3C) (Long, 2019). As a result, cells of each phenotype perform as sub-diffusion, 357 

of which the MSD along the migration coordinate relative to the group are 358 

bounded at the level negatively correlated to 𝜒 (Fig 3D). We further obtain similar 359 

results for populations of different 𝜒𝑖 through adaptation time 𝜏, or basal CheY 360 

protein level 𝑌𝑝0 which determines the basic tumble bias 𝑇𝐵0 (Dufour et al., 2014, 361 

Jiang et al., 2010, Sneddon et al., 2012) (Fig S8).  362 

To verify the model predictions on the individual behavior of different phenotypes, 363 

we experimentally measured the trajectories of cells with different chemotactic 364 

abilities during the group migration. Specifically, we altered the chemotaxis 365 

abilities of cells by titrating the expression level of Tar, which is under the control 366 

of a small molecule inducer aTc (Sourjik & Berg, 2004, Zheng, Ho et al., 2016) 367 

(see Materials and Methods and Fig 4A). The variations on the expression of Tar 368 

would lead different receptor gains in response to the Asp gradient (Adler, 1966b, 369 
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Adler, 1969, Tu, 2013), but the tumble bias and growth rate will not change (Fig 370 

S9). The tar-titrated cells labeled with yellow fluorescent protein (strain JCY20), 371 

were added into wild type population by the ratio of 1 in 400. Within the wild type 372 

population, 1 in 50 cells were labeled with red fluorescent protein (strain JCY2). 373 

As the tar-titrated strain is a small portion of the pre-mixed population, we can 374 

consider the density profile of the population is invariant to different inductions of 375 

tar. The premixed population can generate a collective group migration as the 376 

wild type population does (Fig S9). The trajectories of YFP labeled cells were 377 

tracked to represent the behavior of cells with different chemotactic abilities, 378 

while the profile of wild type cells with RFP was also measured to characterize 379 

the density distribution of the entire migratory population.  380 

By comparing the statistics of cells with different Tar expression levels, we found 381 

that the expected drift velocity 𝑉𝐷,𝑖(𝑧) followed the same decreasing pattern from 382 

back to front (Fig 4B). More importantly, as the Tar-level (chemotactic ability) 383 

increases, the slope of the decreasing pattern increases, which is consistent to 384 

the model prediction shown in Fig 3A. The intersections between 𝑉𝐷,𝑖(𝑧) and 𝑉𝐺, 385 

as well as the peak positions and mean positions of each tar-titrated density 386 

profiles (Fig 4C), shift toward the front as the chemotactic ability increases 387 

(measured by migration rate on agar plate (Cremer et al., 2019, Liu, Cremer et 388 

al., 2019)). The 𝑉𝐷 cross point is always behind the peak position and the mean 389 

position (Fig 4C), suggesting that cells are leaking behind. Moreover, the width of 390 

each tar-titrated density profile (defined by 2𝜎𝑖) decreases as the reversion rate ri 391 

increases (Fig 4D), consistent with the model results in Fig 3C. Thus, as the O-U 392 

type model predicts, the width of the density profile is controlled by the reversion 393 

rate determined by the chemotactic ability 𝜒𝑖.  394 
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 395 

Figure 4. Spatial ordered structure emerged from behavioral modulation of 396 

cells with different chemoreceptors.  397 

(A) Genetic circuit of the Tar titratable strain. In the experiments, the expression 398 

level of Tar (a chemo-attractant receptor protein) was titrated by the 399 

concentration of external inducer (aTc). The chemotactic ability χ of bacteria is 400 

then determined by the expression level of Tar (41). (B) The expected drift 401 

velocity 𝑉𝐷,𝑖(𝑧) of Tar titratable strain JCY20 (colored solid line) were spatially 402 

modulated. All of them decrease from the back to the front of the migration group 403 

and intersect with the group migration velocity 𝑉𝐺 ≈ 0.15𝑚𝑚/𝑚𝑖𝑛  (black dash 404 

line). The linear fits of 𝑉𝐷,𝑖(𝑧) (colored dash lines) intersect with VG at positions 405 

(circles) determined by the corresponding Tar expression level. Colors from dark 406 

to light green corresponds to inducer (aTc) concentration to be [1, 3, 6, 20] 𝑛𝑔/407 

𝑚𝐿. The black shaded area of 𝑉𝐺  represents s.d. of 4 experiments, while the 408 

colored shaded area of 𝑉𝐷  curves presents s.e.m. of counted runs. (C) In the 409 

experiment, the positions of 𝑉𝐷,𝑖(𝑧) - 𝑉𝐺  intersections (circles, illustrated in B), 410 

together with the peaks (stars, illustrated in the insert figure) and the average 411 

positions (diamond) of bacteria density profiles all shift towards the front of the 412 

migration group for strains with the higher Tar-expression level, which has a 413 

higher chemotactic ability and migrate faster on agar plates (x-axis, see Method 414 

& Fig. S9). The related density profiles (PDF) were shown in the insert plot and 415 

the color-coding of lines/symbols in both panel C and D is the same as that in B. 416 

(D) The width of density profiles (2𝜎) of Tar-titrated bacteria decreases with the 417 

reversion rate 𝑟.  418 
  419 
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Discussion 420 

In summary, coordinated behaviors with ordered spatial arrangements of 421 

phenotypes are abundant in a wide range of biological and human-engineered 422 

systems and are believed to involved elaborate control mechanisms. For animal 423 

migrations, it is challenging to characterize simultaneously the computational 424 

strategy and behavior at individual levels so as to avoid averaging out phenotypic 425 

diversity, and the emergent behavior at population level (Couzin et al., 2005, 426 

Couzin et al., 2002, Vicsek & Zafeiris, 2012). Using bacterial chemotactic 427 

migration as a model system, we demonstrate that individual bacteria can 428 

spatially modulate their stochastic behaviors to perform mean reversion random 429 

motions around centers sequentially aligned by their chemotactic abilities, 430 

enabling a constant migration speed and ordered spatial arrangement of 431 

phenotypes at the collective level. Individual cells harness their own chemotactic 432 

system, together with collective consumption of attractant, to achieve the 433 

behavioral modulation, such that system transits from solitary to collective 434 

behaviors. This strategy of self-organization does not require sophisticated 435 

communications (Curatolo, Zhou et al., 2020, Karig, Martini et al., 2018, Liu, Fu 436 

et al., 2011, Payne, Li et al., 2013) nor other hydrodynamic interactions (Chen, 437 

Liu et al., 2017, Drescher et al., 2011, Zhang, Be'er et al., 2010) among 438 

individuals.  439 

The behavior modulation depends on the chemotactic ability of individual, which 440 

is controlled by well determined chemotaxis related proteins. Amount them, we 441 

experimentally identified the abundance of the receptor protein Tar affects 442 

linearly the reversion rate and the width of dispersion. Simulation results 443 

suggests other key proteins that determines the basal tumble bias and the 444 

adaptation time may also affect the behavior modulation (Fig S8). 445 

In the migratory group, the same rule of behavioral modulation applies to cells 446 

with different phenotypes, such that the random motions of cells are bounded by 447 

moving potential wells whose basin are sequentially aligned. However, it is 448 

noteworthy that cells could skip the potential wells from the back (Long, 2019), 449 

resulting leakage of cells in the migratory group (Holz & Chen, 1978, 450 

Novickcohen & Segel, 1984, Scribner, Segel et al., 1974). Phenotypes with 451 

weaker chemotactic abilities locating at the back of the group, where the effective 452 

potential well is shallower (Fig 3C), have more chance left to skip. Thus, such 453 

collective migration selects bacteria with higher chemotactic abilities (Liu et al., 454 

2019). 455 

The simple computational principle of behavioral modulation to allocate different 456 

phenotypes in the collective group is likely not limited to sensing the self-457 

generated signal by consumption of attractant. Prominent example as trail-458 

following migration (Couzin & Krause, 2003, Helbing, Keltsch et al., 1997),  a 459 

typical class of collective behavior, a modified Langevin type model, where 460 
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individuals tracing the accumulated signal secreted by all participants (Eq. S20), 461 

can reproduce similar spatiotemporal dynamics of behavioral modulation as well 462 

as ordered arrangements of phenotypes in the migratory group (Fig S10). Thus, 463 

this mechanism of matching individual abilities by the signal strength might 464 

provide an explanation of how other higher organisms organize ordered 465 

structures during group migration.  466 

 467 

Table 1. Summary of quantities 468 

  469 

Quantities Definition Formulations 

𝑉𝐺  Group velocity 𝑉𝐺 = 〈
𝑑𝑥

𝑑𝑡
〉   

𝑧 Moving coordinate 𝑧 = 𝑥 − 𝑉𝐺𝑡  

𝑉𝐼(𝑧) Instantaneous velocity 𝑉𝐼(𝑧) = 〈
𝑑𝑥(𝑧)

𝑑𝑡
〉  

𝐵𝜏(𝑧) Run time bias 𝐵𝜏(𝑧) =
〈𝜏𝑅(𝑧)⋅𝑐𝑜𝑠 𝜃𝑅(𝑧)〉

〈𝜏𝑅(𝑧)〉
  

𝐵𝑙(𝑧) Run length bias 𝐵𝑙(𝑧) =
〈𝑙𝑅(𝑧)⋅𝑐𝑜𝑠 𝜃𝑅(𝑧)〉

〈𝑙𝑅(𝑧)〉
  

𝑉𝐷(𝑧) Expected drift velocity 𝑉𝐷(𝑧) =
〈𝐿𝑅(𝑧)⋅𝑐𝑜𝑠 𝜃𝑅(𝑧)〉

〈𝜏𝑅(𝑧)+𝜏𝑇(𝑧)〉
  

𝜌(𝑧) Cell density 𝜌(𝑧) =
∑𝑖(𝑧)

𝑎⋅𝛥𝑧
  

𝑆(𝑧) Chemo-attractant 

concentration 
−𝑉𝐺

𝑑𝑆

𝑑𝑧
= 𝐷𝑠

𝜕2𝑆

𝜕𝑧2 − 𝑘𝜌  

𝑔(𝑧) Perceived gradient 
𝑔(𝑧) =

𝑑 𝑙𝑛(
1+𝑆(𝑧)/𝐾𝑜𝑓𝑓

1+𝑆(𝑧)/𝐾𝑜𝑛
)

𝑑𝑧
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Materials and Methods 470 

Strains  471 

The wild type strain Escherichia coli (RP437) and its mutants used in this study 472 

were used in this study, where all plasmids were kindly provided by Dr. Chenli 473 

Liu. Specifically, the tar-titratable strain was constructed by recombineering 474 

according to a previous research (Zheng et al., 2016). Specifically, the DNA 475 

cassette of the Ptet-tetR-tar feedback loop was amplified and inserted into the 476 

chromosomal attB site by recombineering with the aid of plasmid pSim5. The tar 477 

gene at the native locus was seamlessly replaced with the aph gene by using the 478 

same recombineering protocol. To color-code the strains, we use plasmids with 479 

chloramphenicol resistant gene carrying YFP under constitutive promoter (for 480 

JCY1 strain) and pLambda drived mRFP1 plasmids maintained by kanamycin 481 

(For JCY2). To color-code tar-titratable strain (JCY20), a plasmid carrying YFP 482 

chloramphenicol resistant gene were transformed into constructedtar-titratable 483 

strain. 484 

Media and growth conditions 485 

For bacterial culture, the M9 supplemented medium was used. The preparation 486 

of the M9 supplemented medium follows the recipe in previous study (Fu et al., 487 

2018): 1×M9 salts, supplemented with 0.4% (v/v) glycerol, 0.1% (w/v) casamino 488 

acids, 1.0mM  magnesium sulfate, and 0.05% (w/v) polyvinylpyrrolidone-40. 489 

1×M9 salts were prepared to be 5×M9 salts stock solution: 33.9g ⋅ L−1 Na2HPO4, 490 

15g ⋅ L−1 KH2PO4, 2.5g ⋅ L−1 NaCl, 5.0g ⋅ L−1 NH4Cl.  491 

For migration experiments in the micro-channel, the M9 motility buffer was used. 492 

The recipe was: 1×M9 salts, supplemented with 0.4% (v/v) glycerol, 1.0mM 493 

magnesium sulfate, and 0.05% (w/v) polyvinylpyrrolidone-40, 0.1mM  EDTA, 494 

0.01mM Methionine, and supplemented with 200μM aspartic acid. 495 

For the migration rate measurements, the M9 amino acid medium with 0.2% 496 

(w/v) agar was used to prepare swim plate(Liu et al., 2019). The recipe was: 497 

1 × M9 salts, supplemented with 0.4% (v/v) glycerol, 1 × animo acid, 200μM 498 

aspartic acid, 1.0mM magnesium sulfate, and 0.05% (w/v) polyvinylpyrrolidone-499 

40. 1× animo acid were prepared to be 5× animo acid stock solution: 4mM 500 

alanine, 26mM  arginine (HCl), 0.5mM  cysteine ( HCl · H2O ), 3.3mM  glutamic 501 

acid(K salt), 3mM  glutamine, 4mM  glycine, 1mM  histidine ( HCl · H2O ), 2mM 502 

isoleucine, 4mM  leucine, 2mM  lysine, 1mM  methionine, 2mM  phenylalanine, 503 

2mM proline, 2mM threonine, 0.5mM tryptophane, 1mM tyrosine, 3mM valine. All 504 

experiments were carried out at 30 °C. Plasmids were maintained by 50 μg ⋅ mL−1 505 

kanamycin or 25 μg ⋅ mL−1 chloramphenicol.  506 

Sample preparation 507 
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The bacteria from frozen stock was streaked onto the standard Luria-Bertani (LB) 508 

agar plate with 2% (w/v) agar and cultured at 37°C overnight. 3-5 separate 509 

colonies were picked and inoculated in 2mL  M9 supplemented medium for 510 

overnight culture with corresponded antibiotics to maintain plasmids. The 511 

overnight culture was diluted by 1:100 into 2mL M9 supplemented medium the 512 

next morning. For Tar titration strains, related aTc were added in this step. When 513 

the culture OD600 reaches 0.2-0.25, it was then diluted into pre-warmed 15mL 514 

M9 supplemented medium so that the final OD600 was about 0.05 (Liu et al., 515 

2019, Zheng, Bai et al., 2020, Zheng et al., 2016). 516 

Bacteria were washed with the M9 motility buffer and were re-suspended in fresh 517 

M9 motility buffer to concentrate cell density at OD600 about 1.0. Then, the wild 518 

type strain and fluorescent strain were mixed with ratio of 400:1 before loaded in 519 

the microfluidic chamber (Fu et al., 2018, Saragosti et al., 2011). For Tar titration 520 

experiments, the wild type strain (RP437) was mixed with two fluorescent strains 521 

(JCY2 & JCY20) by 400:8:1. 522 

Microfabrication 523 

The microfluidic devices were fabricated with the same protocol and the same 524 

design as previous research (Bai, Gao et al., 2018, Fu et al., 2018), except that 525 

the capillary channel was designed longer than that of previous ones. The size of 526 

the main channel was 20mm × 0.6mm × 0.02mm and only one gate at the end of 527 

the channel was kept (Fig S1A). 528 

Band formation 529 

Sample of mixed cells with density OD600 ≈ 1.0  was gently loaded into the 530 

microfluidic device and then the device was spun for 15min at 3000𝑟𝑝𝑚 in an 531 

30 °C environmental room so that almost 1~1.5 ⋅ 105 cells were placed to the end 532 

of the channel. After spinning, the microfluidic device was placed on an inverted 533 

microscope (Nikon Ti-E) equipped with a custom environmental chamber set to 534 

50% humidity and 30 °C.  535 

Imaging 536 

The microscope and its automated stage were controlled by a custom MATLAB 537 

script via the μManager interface (Edelstein, Tsuchida et al., 2014, Fu et al., 538 

2018). A 4X objective (Nikon CFI Plan Fluor DL4X F, N.A. 0.13, W.D. 16.4 mm, 539 

PhL) was placed in the wave front and the fluorescent bacteria, seen as 540 

randomly picked samples of the migrating group, were captured continuously in 541 

10 mins until they leave the view. Time-lapsed images with YFP fluorescence of 542 

the migrating cells were acquired by a ZYLA 4.2MP Plus CL10 camera (2048 ×543 

2048 array of 6.5 × 6.5 𝜇𝑚 pixels) at 9 frames/s (fps) through. A LED illuminator 544 
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(0034R-X-Cite 110LED) and an EYFP block (Chroma 49003; Ex: ET500/X 20, 545 

Em: ET535/30 m) compose the lightening system.  546 

For the Tar titration experiments, the channel was first scanned with 10X 547 

objective (CFI Plan Fluor DL 10X A, N.A. 0.30, W.D. 15.2mm, PH-1) enlighten by 548 

a LED illuminator (0034R-X-Cite 110LED) through the RFP block (Chroma 549 

49005, Ex: ET545/X 30, Em: ET620/60 m) and EYFP block channels for 7 550 

neighbored views around the migration group. These images were further 551 

combined to 2 large pictures of the RFP fluorescent strains and YFP fluorescent 552 

strains. The channel was scanned twice, respectively before and after the 10 553 

mins tracking of fluorescent Tar titrated cells. 554 

Tracks extraction and state assignment  555 

The acquired movie was first analyzed with the U-track software package to 556 

identify bacteria and to get their trajectories (Jaqaman, Loerke et al., 2008). Then 557 

the tracks were labeled by run state and tumble state by a custom MATLAB 558 

package (Waite et al., 2016) using a previously described clustering algorithm 559 

(Dufour et al., 2016).  560 

Track analysis 561 

The group velocity VG was calculated by averaging the frame to frame velocity 562 

(𝑑𝑡 ≈ 0.11𝑠) over all tracks and all time. The cell number for the first frame over a 563 

spatial bin of Δx = 60μm and a channel section 𝑎 = 12000𝜇𝑚2 were calculated to 564 

get the density profile 𝜌(𝑥, 𝑡 = 0) =
∑𝑖(𝑥,𝑡)

𝑎⋅𝑑𝑥
. The peak position of the first frame 565 

(𝑥𝑝𝑒𝑎𝑘(𝑡 = 0)) was then determined by the maximum of 𝜌(𝑥, 𝑡 = 0). The position 566 

of each bacterium (𝑥𝑖(𝑡)) was transformed to moving coordinate position zi by the 567 

group velocity 𝑉𝐺 and origin of the axis on the density peak by 𝑧𝑖 = 𝑥𝑖(𝑡) − 𝑉𝐺𝑡 −568 

𝑥𝑝𝑒𝑎𝑘(𝑡 = 0). Given the relative position of each cell, we recalculated the density 569 

profile in moving coordinate 𝜌(𝑧) =
∑𝑖(𝑧)

𝑎⋅𝑑𝑥
. The width of the density profile was 570 

defined by two times the standard deviation of relative positions 2𝜎 =571 

2√
1

𝑛−1
∑ (𝑧𝑖 − 〈𝑧〉)2𝑛

𝑖=1  . The spatial distribution of the instantaneous velocities 572 

〈𝑉𝐼(𝑧)〉 were calculated by averaging the velocity in spatial bin of 𝛥𝑧 = 240𝜇𝑚. 573 

A tumble-run event is the minimal element of bacterial behavior. The typical 574 

spatial scale of a tumble-run event is about 20μm, which is much smaller than 575 

the spatial bin size chosen in this study (240μm). The spatial distributions of run 576 

time 〈𝜏𝑅(𝑧)〉 , tumble time 〈𝜏𝑇(𝑧)〉  and run length 〈𝑙𝑅(𝑧)〉  were calculated by 577 

averaging the related values of all the events with tumbling position (𝑧𝑇) located 578 

in each spatial bin (𝑧). As the displacement of tumble is small, the tumbling 579 

position is approximately the starting position of runs. For each tumble-run event, 580 
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we have the vector linking starting position and end position of the run. The 581 

running angle 𝜃𝑅  is then defined by the angle between run direction and the 582 

group migration direction. One can easily deduce all the other quantities with the 583 

formulations in Table 1. 584 

Growth rate and migration rate measurement 585 

Growth rates of Tar-titrated strains were calculated from exponential fitting 586 

(𝑅2 > 0.99) over measured curves of cell density (OD600) with respect to time. A 587 

250 mL flask with 20 mL M9 supplement medium were used. All measurements 588 

were performed in a vibrator of rotation rate of 150 rpm at 30℃. OD600 was 589 

measured by a spectrophotometer reader every 25 min. Each strain has been 590 

measured for at least three times.  591 

The semi-solid agar plate was illuminated from bottom by a circular white LED 592 

array with a light box as described previously (Liu et al., 2011, Liu et al., 2019, 593 

Wolfe & Berg, 1989) and was imaged at each 2 hours by a camera located on 594 

the top. As bacteria swimming in the plate forms ‘Adler ring’, we used the first 595 

maximal cell density from the edge to define the moving edge of bacterial 596 

chemotaxis. The migration rate was then calculated from a linear fit over the data 597 

of edge positions in respect to time (𝑅2 > 0.99). 598 

Models and simulations 599 

Details of the theoretical models and numerical simulations were presented in the 600 

appendix notes. In which, the Langevin equation was deduced and solved 601 

numerically with a particle-based simulation; the approximated OU type equation 602 

and its traveling wave solution was deduced; an agent-based simulation of 603 

bacterial with chemotaxis pathway was performed.  604 
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