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Abstract

During the last decade, a consensus has emerged that the stochastic triggering of an
excitable system drives pseudopod formation and subsequent migration of amoeboid
cells. The presence of chemoattractant stimuli alters the threshold for triggering this
activity and can bias the direction of migration. Though noise plays an important role
in these behaviors, mathematical models have typically ignored its origin and merely
introduced it as an external signal into a series of reaction-diffusion equations. Here we
consider a more realistic description based on a reaction-diffusion master equation
formalism to implement these networks. In this scheme, noise arises naturally from a
stochastic description of the various reaction and diffusion terms. Working on a
three-dimensional geometry in which separate compartments are divided into a
tetrahedral mesh, we implement a modular description of the system, consisting of
G-protein coupled receptor signaling (GPCR), a local excitation-global inhibition
mechanism (LEGI), and signal transduction excitable network (STEN). Our models
implement detailed biochemical descriptions whenever this information is available, such
as in the GPCR and G-protein interactions. In contrast, where the biochemical entities
are less certain, such as the LEGI mechanism, we consider various possible schemes and
highlight the differences between them. Our stimulations show that even when the
LEGI mechanism displays perfect adaptation in terms of the mean level of proteins, the
variance shows a dose-dependence. This differs between the various models considered,
suggesting a possible means for determining experimentally among the various potential
networks. Overall, our simulations recreate temporal and spatial patterns observed
experimentally in both wild-type and perturbed cells, providing further evidence for the
excitable system paradigm. Moreover, because of the overall importance and ubiquity of
the modules we consider, including GPCR signaling and adaptation, our results will be
of interest beyond the field of directed migration.

Author summary

Though the term noise usually carries negative connotations, it can also contribute 1

positively to the characteristic dynamics of a system. In biological systems, where noise 2

arises from the stochastic interactions between molecules, its study is usually confined 3

to genetic regulatory systems in which copy numbers are small and fluctuations large. 4

However, noise can have important roles when the number of signaling molecules is 5

large. The extension of pseudopods and the subsequent motion of amoeboid cells arises 6

from the noise-induced trigger of an excitable system. Chemoattractant signals bias this 7
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triggering thereby directing cell motion. To date, this paradigm has not been tested by 8

mathematical models that account accurately for the noise that arises in the 9

corresponding reactions. In this study, we employ a reaction-diffusion master equation 10

approach to investigate the effects of noise. Using a modular approach and a 11

three-dimensional cell model with specific subdomains attributed to the cell membrane 12

and cortex, we explore the spatiotemporal dynamics of the system. Our simulations 13

recreate many experimentally-observed cell behaviors thereby supporting the 14

biased-excitable hypothesis. 15

Introduction 16

How cells sense and interpret external chemoattractant cues and use this information to 17

direct cell movement is one of the most fundamental processes of biology. Unicellular 18

organisms rely on this mechanism to seek nutrients and survive. In multicellular 19

organisms, it is a fundamental process during embryonic development [1, 2] as well as 20

responsible for the proper operation of the mammalian immune system [3,4]. Perversely, 21

it is through the development of directed cell migration that cancer cells become 22

metastatic [5–7]. 23

Mathematical models have been fundamental in elucidating the mechanisms that 24

cells use to direct the cell migration [8–10]. There is a broad consensus that cells such 25

as the social amoeba Dictyostelium discoideum and mammalian neutrophils sense the 26

chemoattractant gradient through a local excitation, global inhibition (LEGI) 27

mechanism based on an incoherent feedforward loop motif that was originally proposed 28

to explain perfect adaptation [11–13]. By incorporating different diffusion properties on 29

the signal components, the mechanism senses static spatial gradients without 30

movement [12,13]. 31

In response to a spatially uniform stimulus, cells display an initial transient response 32

in which Ras and downstream PI(3,4,5)P3 and F-actin activities increase and decrease 33

several times, before eventually returning close to the pre-stimulus basal states, resulting 34

in “near-perfect” adaptation. Signaling motifs responsible for perfect adaptation fall 35

into one of two broad classes: a negative feedback (NFB) loop with a buffering node, or 36

an incoherent feedforward (IFF) loop with a proportioner node [14]. In Dictyostelium, 37

experimental evidence favors the presence of IFF-based adaptation [12,15–17]. The 38

LEGI mechanism, a form of IFF, assumes the existence of a fast local excitor and a slow 39

globally diffusive inhibitor. The productions of the excitor and the inhibitor are 40

independently driven by the receptor occupancy [13]. A local response regulator, which 41

is activated by the excitor and inhibited by the inhibitor, drives downstream signals. 42

LEGI mechanisms explain gradient sensing but do not account for several aspects of 43

the chemotactic cells, including the ability to move in the absence of external cues. 44

Excitable systems recreate many of the observed properties of randomly migrating 45

cells [18–23] including the stereotypic nature of pseudopods during migration, as well as 46

the spatial pattern of activities exhibited by both signaling and cytoskeletal elements in 47

cells [24, 25]. Recently, LEGI mechanisms have been coupled to an excitable system to 48

explain how a cell’s ability to migrate randomly can be steered in the direction of the 49

external gradient [17,22]. When combined with a memory-like ability to polarize the 50

chemotactic machinery, these models account for nearly all the observed behavior of 51

chemotaxing cells [22, 26]. Most mathematical models of chemoattractant signaling have 52

adopted a variant of the FitzHugh-Nagumo (FHN) model of neuronal 53

excitability [27,28]. These models, however, suffer from limitations because of the 54

phenomenological aspect of the model. For example, using reaction terms in polynomial 55

form as in the FHN model does not permit direct biological interpretability. Moreover, 56

system states, which would typically represent concentrations, are not constrained to be 57
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nonnegative [19–22,29]. 58

Though the LEGI mechanism successfully explains the temporal and spatial 59

responses to chemoattractant in Dictyostelium [15–17,30], little attention has been paid 60

to the effect of noise on the LEGI mechanism. Moreover, in the excitable paradigm, the 61

ability to generate random protrusions, as seen in unstimulated migrating cells, relies on 62

stochastic fluctuations triggering the excitable system. A proper account of these 63

fluctuations is vital, however, as it their relative size that determines whether the 64

external signal directs movement properly. In practice, noise arises as an intrinsic 65

feature of the stochastic nature of the biochemical reactions and depends on the state of 66

the dynamical system [31,32]. To our knowledge, however, all existing computational 67

models use partial differential equations and generate these fluctuations by injecting 68

noise as an additional input into these differential equations. 69

To overcome the aforementioned limitations, here we present a new model of the 70

biological signaling mechanism that regulates motility. Specifically, to account for the 71

noise accurately we eschew the partial-differential equation approach and instead 72

incorporate the reaction-diffusion processes into the URDME (Unstructured Reaction 73

Diffusion Master Equation) software [33]. This methodology does not make a priori 74

assumptions on the size of the stochastic perturbations; instead, the fluctuations are 75

inherent in the underlying chemical master equation. Hence, the noise is controlled by 76

number of the molecules of the reacting species. Moreover, we consider a realistic 77

geometry consisting of a three-dimensional cell with membrane and cortex elements. 78

Finally, we use detailed biochemical models of the receptor dynamics, LEGI and 79

excitable modules and verify the sufficiency of these three interconnected networks in 80

explaining the spatiotemporal dynamics of chemotactic signaling. 81

Methods 82

Overall system architecture 83

For the present study we have divided the signaling pathways that drive the observed 84

excitable Ras dynamics in Dictyostelium cells into three signaling subsystems (Fig. 1A): 85

1) The G-protein coupled receptor (GPCR) subsystem is responsible for sensing 86

chemoattractants. 2) The receptor occupancy information from GPCR is passed down 87

to the Local Excitation and Global Inhibition (LEGI) mechanism which is responsible 88

for adaptation in the presence of a global stimulus as well as interpreting directional 89

cues when cells are in a chemoattractant gradient. 3) The Signal Transduction Excitable 90

Network (STEN), accounts for the features of the excitable behavior, including 91

all-or-nothing responses, refractory periods and wave propagation, and provides a 92

characteristic response both in the presence or absence of chemoattractant signals. We 93

have excluded downstream networks that directly influence the actin dynamics. The 94

output of our system could readily be coupled to the cytoskeletal signaling network but 95

that would likely necessitate numerous additional entities, including elements with a 96

large number of molecules (e.g., ∼108 molecules of actin [34]) leading to a presently 97

unmanageable computational burden for these stochastic simulations. 98

Geometry 99

We used a stationary hemispherical structure of radius 5µm to capture the general 100

shape of adherent amoeboid cells devoid of any cytoskeletal components (as if treated 101

with Latrunculin) (Fig. 1B). Because most of the species known to be involved in 102

generating the spatial patterns are either membrane-bound, or in the cytoskeletal 103

cortex, we focus on these areas of the cell. We do not incorporate nodes for the cytosol 104
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Fig 1. Model schematic and simulation domain. (A) Reaction scheme adopted
in the present study involves a receptor module describing GPCR (G-Protein Coupled
Receptor) dynamics, a LEGI (Local Excitation and Global Inhibition) module that
provides adaptation and directional sensing, and a STEN (Signal Transduction
Excitable Network) that describes the excitable behavior of the cell. (B) Isometric (left)
and cross-sectional side view (right) of the hemispherical simulation domain of radius
5µm and thickness of 200 nm. The outer surface is the membrane and the interior of
the shell is the cortex.(C) Frequency distribution of all the nodal volumes (black),
membrane nodes (red) and cortex nodes (gray).

but consider this a sink from some molecules can move in and out of. We assumed that 105

the cortex is 200 nm thick and discretized a shell of this thickness into nodes resulting 106

from an unstructured tetrahedral mesh. The allowable minimum and maximum 107

distances between the nodes were set at 100 and 300 nm, respectively. Overall, this gave 108

rise to 5,500 nodes and 16,469 tetrahedral elements with volume distribution 109

26.8 ± 4.6 × 10−4 µm (mean±std. dev.). Because a coarser mesh affects the smoothness 110

of diffusion, a finer mesh would be preferred, but this increases the simulation cost 111

considerably and would become a major constraining factor as the number of 112

biochemical elements in the model grew (S1 FigA–D). For this reason, we compromised 113

by choosing a medium size mesh so that, in an element of average size, a single molecule 114

corresponds to a concentration of approximately 60 nM. The nodal volumes obtained 115

from the dual of the tetrahedral mesh has a leptokurtic distribution with parameters: 116

80.1 ± 16.3 × 10−4 µm (mean±std. dev.). The nodes on the surface are denoted as the 117

membrane nodes whereas the others are assigned as cortex nodes (Fig. 1C). The volume 118

distributions of cortex and membrane nodes were similar, with means of 8.4 × 10−3µm 119

and 7.7 × 10−3 µm, respectively. The mean subtracted distributions failed to reject the 120

null hypothesis using a Mann-Whitney-Wilcoxon test, indicating that the two size 121

distributions are not significantly different. The distributions of membranes nodes at 122

the basal and apical surfaces were also similar, with mean volumes of 7.3× 10−3 µm and 123

7.9 × 10−3 µm, respectively. 124

Results 125

GPCR signaling module 126

The initiation of chemotaxis in Dictyostelium involves binding of chemoattractant 127

molecules (ligand) to surface-bound G-protein coupled receptor (GPCR) molecules. In 128

the present study, we focused on cAR1 as the major receptor for cAMP. The 129

heterogeneous 3’,5’-cyclic adenosine monophosphate (cAMP) binding in Dictyostelium 130

has been modeled using three states indicating different levels of affinities [35]. For 131

simplicity, we ignored the sequential binding dynamics and followed the classification of 132

GPCRs on the basis of affinity only. The three states of unoccupied GPCRs have high 133

(H), low (L) and slow (S) binding affinity with respect to extracellular cAMP [35]. The 134

corresponding occupied receptor states are labeled H:C, L:C and S:C, respectively. 135

Interaction of cAR1 with cAMP also results in the desensitization of receptors due to 136

phosphorylation [36,37]. Despite any notable loss in the binding sites, a 3–5-fold 137

decrease in the binding affinity of the low affinity class (L) has been reported [36]. This 138

motivated us to consider additional phosphorylated receptor states: PH, PL, and 139

respective occupied states: PH:C, PL:C. Our complete receptor model consists of 10 140

reacting species and 26 reactions in total (Fig. 2A). The detailed reactions and 141

parameter values in mesoscopic form are listed in Table 1. 142
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Fig 2. GPCR signaling. (A) Detailed schematic of the different states of the
G-protein coupled receptor (GPCR) and cAMP binding. Unoccupied receptors exist in
high (H) and low (L) affinities, and a third slow (S) binding state. Occupied receptors
are denoted H:C, L:C and S:C. Phosphorylated states are denoted by a superscript P.
(B) Dose response curve. The circled numbers denote different concentration levels of
cAMP corresponding to (1) low (4%), (2) mid (50%) and (3) high (100%) levels of
R.O.(C) Steady-state R.O. in response to different concentrations of cAMP.(D)
Distribution of nodes based on R.O. for mid (light red) and saturating (red) cAMP
doses.(E,F) Temporal profile of number of total occupied receptors
(H:C+L:C+S:C+PH:C+PL:C) at a single random node (E) and in the cell (F) for low
(black) and saturating (red) doses of cAMP.(G) Temporal profile of total free (black)
and occupied (red) receptors in a cell in response to application and removal of the high
dose of cAMP. The shaded regions denote the respective standard deviations (n = 10
independent simulations in which the parameter values are allowed to vary according to
the distributions of 1).

To study the system response to different levels of cAMP, we mapped the 143

relationship between the dose of the cAMP (in terms of the total number of molecules 144

of cAMP experienced by the cell) and receptor occupancy (R.O.) (Fig. 2B). We 145

considered three different cAMP doses corresponding to low (4%), mid (50%, EC50) 146

and high (100%, saturating dose) levels of R.O.. The respective profiles at the basal 147

surface show little variation at the two cAMP concentration extremes, but considerably 148

more heterogeneity (skewness = 0.04) at the mid-point (Fig. 2C,D). In this case, the 149

individual nodes displayed an approximately normal distribution, but some nodes 150

(n = 4) had as few as 10% or as high as 85% R.O. (n = 2). With higher cAMP 151

concentrations, the distribution became more skewed (skewness = −1.77), but there 152

was a small number of nodes (n = 18) with as little as 90% R.O. (Fig. 2D). 153

In the presence of cAMP, the free GPCR states get converted to the respective 154

occupied states, among which the occupied low affinity receptors (L:C) form the greater 155

population (S2 FigA,B). The phosphorylated states showed slower dynamics 156

(t1/2 = 198 s) compared to the unphosphorylated states (t1/2 ∼ 10 s). As might be 157

expected from a mostly Poisson process (average Fano factor = 0.95, S2 FigC) the 158

absolute value of the temporal fluctuations at individual nodes increased with increasing 159

cAMP concentrations but the fluctuations in the fraction of occupied receptors 160

decreased (Fig. 2E). These trends held when considering fluctuations in the sum of all 161

nodes, though the relative noise became smaller (Fig. 2F). Furthermore, we looked into 162

the heterogeneity in terms of the mean occupied receptor states among nodes for a 163

range of doses of cAMP. We observed that the relative internodal noise in the system 164

decreases with the increasing dose of cAMP and eventually approaches a Poisson 165

distribution (average Fano factor = 0.85) for the saturating dose of cAMP from the 166

initial sub-Poissonian distribution (S2 FigD,E). In a population of cells, the number of 167

receptors and other signaling molecules differs from cell to cell. To examine this 168

heterogeneity, we simulated receptor occupancy in models in which the cells had varying 169

number of receptors as well as allowing the parameters to vary (Fig. 2G, S1 File). We 170

observed differences (std. dev. ∼2.5% at the saturating dose, and ∼10% during initial 171

decay phase following removal of stimulus) in the receptor occupancy level among cells 172

when subjected to the same cAMP dose. 173

Lastly, because of the computational burden of dealing with the large number of 174

states and reactions, we considered the possibility that GPCR binding could be 175

represented by a reduced-order model that could capture the essential spatiotemporal 176

dynamics as well as most of the noise characteristics of the full model. To this end, we 177

used a model consisting of one free (R) and a single occupied (R:C) state (S2 FigF) and 178

varied the parameters of the reduced model so as to minimize the error between the 179
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temporal response of the full and reduced systems. The responses matched closely with 180

only small differences during the initial decay phase following the removal of the 181

stimulus (S2 FigG,H). Importantly, the noise characteristics were also similar over a 182

wide range of cAMP doses; for example, at a saturating dose of cAMP, the standard 183

deviation of the full order was 4.58 molecules compared to 4.59 for the reduced-order 184

model. (S2 FigC,E). This finding suggests that there is little error in using the more 185

computationally efficient reduced-order model in lieu of the detailed one. 186

LEGI module 187

Though the LEGI mechanism successfully explains the temporal and spatial responses to 188

chemoattractant in Dictyostelium [15–17,30], little attention has been paid to the effect 189

of noise on the LEGI mechanism. Moreover, there are a number of possible ways of 190

implementing LEGI, several of which we considered. In Dictyostelium, chemoattractant 191

signaling depends on the presence of G-proteins. G-proteins form a heterotrimer, 192

consisting of α (we focused on Gα2, which mediates cAMP signaling downstream of the 193

cAR1 receptor [39,40], β and γ subunits. Whereas these subunits are together in an 194

unoccupied receptor, the α2 and βγ subunits dissociate upon stimulation at which time 195

the latter are free to signal to down-stream elements. This dissociation is persistent [40]. 196

The Gβγ works upstream of Ras and is crucial in chemotaxis [41, 42]. The Ras response, 197

as well as downstream signals, display properties of excitable systems, including a 198

refractory period [24], an all-or-nothing threshold [43], and wave propagation [44–47]. 199

At the same time, near perfect adaptation is observed in the activated Ras response [16]. 200

This suggests that adaptation happens upstream of Ras and, as the response of Gβγ is 201

persistent during cAMP stimulation, we treated this as the excitation process in the 202

LEGI module (Fig. 3A). The parameters for the Gβγ dynamics were chosen (Table 2) to 203

match experimentally measured half-times of dissociation (on application of a saturating 204

stimulus) and reassociation (on removal of stimulus) of the Gα2 and Gβγ subunits [17]. 205

Table 2. Parameters for G-Protein Dynamics. The parameter values are
estimated to match the half times of dissociation (t1/2,diss.) and reassociation (t1/2,reass.)
from [17]

ntot,G-Protein

ntot,GPCR

Sl. No. Reaction Propensity Parameter 0.1 0.2 0.5 1 2 3 4 5 Unit

1 Gα2βγ−→Gβγ+ Gα2 kE0[Gα2βγ ] kE0 7.56 6.11 4.36 3.63 2.91 2.18 2.02 1.77 ×10−7 s−1

2. Gα2βγ+ (RL)† −→Gβγ+ Gα2 kE [Gα2βγ ][RL] kE 2.8 2.3 1.6 1.3 1.1 0.81 0.75 0.66 ×10−2 µM−1s−1

3. Gα2+Gβγ−→Gα2βγ k−E [Gα2][Gβγ ] k−E 14.6 11.8 8.4 5.0 3.5 3.0 2.8 2.75 ×10−2 µM−1s−1

t1/2,diss. 3.21 3.16 3.05 3.19 3.14 3.29 3.12 3.00 s

t1/2,reass. 30.02 30.01 30.45 32.52 32.79 30.19 30.83 30.49 s

† RL = H:C + L:C + S:C + PH:C + PL:C.

We simulated the system and looked at the dissociated subunits and observed a 206

highly nonlinear relationship between the response curves of receptor occupancy and the 207

dissociated G-protein (S3 FigA). The fraction of dissociated G-proteins decreased as the 208

total number of G-proteins increased (S3 FigA); however, as a function of the maximal 209

response, it was independent of the total number of G-proteins reaching 50% 210

dissociation at ∼23% R.O. (S3 FigB) , indicating the existence of “spare receptors” in 211

the system [48]. Additionally, we observed that fluctuations (mean coefficient of 212

variation) in the G-protein response decreased with higher total number of G-proteins 213

(S3 FigC). We chose the total G-proteins to be three times the total number of receptors 214
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Fig 3. Response of the LEGI mechanism to global stimulation. (A) LEGI
scheme involves a local activator (Gβγ) and global inhibitor (I?). Their interaction
creates a response regulator (RR) which positively affects the conversion of RasGDP to
RasGTP. (B) The regulation of RR can be realized either through a Difference scheme
(top) or through a Ratio scheme (bottom). Both involve basal and Gβγ-dependent
production of RR. Whereas inactivation is mediated by I? through an intermediate X in
the difference scheme, in the ratio scheme it depends on both basal and I?-dependent
terms. (C) LEGI with Antithetic Integral Feedback (LEGI-AIF). In this scheme, Gβγ

and I? create intermediates (X and Y, respectively) that annihilate each other. The RR
is created by Y and catalyzes the production of X. (D) Temporal dynamics of
components of the different LEGI schemes. The top panel shows nodal average profiles
of Gβγ(green) and I? (red) in response to a staircase profile of cAMP stimulus: 0–2 min:
0% R.O.; 2–8 min: 4% R.O.; 8–12 min: 100% R.O. The bottom panels show the
corresponding RR profile for the different schemes. The shaded regions denote standard
deviations among all nodes from a single simulation. (E) Basal surface profile of Gβγ

(green), I? (red) and RR (blue) from different schemes at the time points indicated. (F)
Effect of concentrations of cAMP (in terms of % R.O.) on peak amplitude (red),
steady-state amplitude (blue), peak time (orange) and adaptation time (green) of the
nodal average profile of RR for different schemes. The solid lines and the shaded regions
show the respective mean and standard deviations (n = 10 independent simulations as
in Fig. 2G).

as for the higher values there was not difference in the relative fluctuation level. 215

Unlike the excitation process, inhibition is G-protein independent [17] in 216

Dictyostelium. To account for this, we assumed an inhibitor existing in both active (I?) 217

and inactive (I) forms. The diffusion constants for the inhibitor states were assumed 218

high (a number typical of cytosolic entities [47]) to satisfy LEGI requirements that the 219

global inhibitor have higher diffusivity than the local Gα2βγ and Gβγ . To account for a 220

possible multistep translocation to and from the membrane, we made the inhibitor 221

dynamics slow compared to those of Gβγ . 222

The interaction of the excitor Gβγ and the activated inhibitor jointly regulate a 223

response regulator, RR, whose action can be modeled using either a difference or a ratio 224

scheme, depending on how the activation and inhibition processes regulate it (Fig. 3B, 225

S3 FigB–D). In the difference scheme, basal and Gβγ-dependent activation together 226

with I?-mediated deactivation of RR through an intermediate lead to a steady-state RR 227

concentration that is an affine (linear plus a constant) function of the difference 228

between Gβγ and I? (Suppl. S3 FigC, S1 File). An alternative realization, the ratio 229

scheme, involves Gβγ-dependent activation and I?-dependent inactivation of RR along 230

with independent basal activation/inactivation and leads to a steady-state of RR that is 231

proportional to the ratio of affine functions of the Gβγ to I?) (S3 FigD, S1 File). As 232

there are a number of potential biochemical elements that could serve as the response 233

regulator, we considered both schemes. We implemented these schemes explicitly, using 234

the corresponding reactions, as well as implicitly, using a quasi-steady-state 235

approximation of the reactions. By ignoring the transient dynamics, the implicit 236

formulations served to reduce the computational burden of explicitly simulating these 237

systems (S1 File). 238

One of the possible limitations of the adaptive networks described above is the 239

sensitivity of the adaptation to noise, resulting in variances that do not adapt, but 240

depend on the stimulus level [49]. As a third alternative, we adopted the Antithetic 241

Integral Feedback (AIF) model [50] by making some of the terms local and global, and 242

then compared its performance with the two schemes described above (Fig. 3B). Here, 243

Gβγ and I?) create intermediates that annihilate each other. One intermediate activates 244
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RR which, in turn, catalyzes the production of the other. The detailed reactions and 245

parameter values of all the three LEGI schemes are listed in Table 3. 246

Simulating the combined GPCR and LEGI modules 247

To analyze the adaptation characteristics of proposed LEGI networks, we applied 248

patially uniform increasing concentrations of cAMP starting from no stimulus, (0% R.O.; 249

0-2 min) rising to a low dose (4% R.O.; 2-8 min) and finally reaching a saturating dose 250

(100% R.O., 8-12 min). These simulations were done in models that allowed for varying 251

internal concentrations and parameter values so as to capture cellular heterogeneity. As 252

expected, both Gβγ and I? rose with the latter showing a slower response (Fig. 3D,E; 253

Fig S4A,B). In all variants considered, the initial responses depended on the stimulus 254

level; i.e., the peak amplitude (red) increased and the peak time (orange) decreased 255

with %R.O. (Fig. 3F). In all three networks, the mean nodal response regulator activity 256

returned to prestimulus levels (blue in Fig. 3F). However, the steady-state variance 257

showed a stimulus-level dependency that increased for the difference scheme, decreased 258

slightly for the ratio scheme, and was smallest and fairly constant for the AIF scheme 259

(blue in Fig. 3F). The adaptation (settling) times in all three schemes decreased 260

monotonically as a function of %R.O., in agreement with published experimental 261

data [16], with the AIF scheme showing the least sensitivity (green in Fig. 3F). Unlike 262

the difference and ratio schemes, the temporal profile of the LEGI-AIF showed some 263

oscillatory behavior during the adaptation at high levels of R.O.. The variance in the 264

peak amplitude of the initial response for the ratio scheme was higher than for the 265

difference scheme. The lower coefficient of variation in the peak response profile of the 266

difference scheme provides more certainty of response to change of stimulus than the 267

ratio scheme. Upon removal of the stimulus, the difference scheme returned to the basal 268

level more quickly than to the ratio scheme (S4 FigC,D). For the rest of study, we used 269

the implicit difference scheme of LEGI to avoid unnecessary repetition. 270

We next simulated the response to a gradient generated by releasing 271

chemoattractant from a micropipette. To this end, we imposed a stationary 3D 272

Gaussian profile centered around an edge point at the basal plane and considered both 273

the apical and basal (Fig. 4A) and perimeter responses (Fig. 4B; S1 File). Following 274

imposition of the gradient, free Gβγ rose quickly at the front where %R.O. was highest; 275

at the rear the rise was slower (Fig. 4C). In contrast, the inhibitor rose more slowly and 276

was fairly uniform around the perimeter of the cell, owing to the relatively high 277

diffusion (Fig. 4C,D). The resultant response regulator rose sharply at the front and 278

dropped below the basal level at the rear (Fig. 4C,D). Note that the steady-state level 279

of the response regulator at the front was lower than the peak, as the level of the 280

inhibitor increased, but still displayed levels above basal. To examine the role of 281

diffusion in these patterns, we varied the inhibitor diffusion over a wide range (S5 Fig). 282

Increasing the ratio of inhibitor-to-Gβγ diffusion resulted in greater differences in the 283

response regulator between front and back. The mean difference between RR molecules 284

between front and back doubled for a 10-fold difference in diffusion coefficients. 285

At steady state, the linear profiles of local entities such as R.O. and Gβγ displayed 286

gradients that were more diffused on the top surface than on the basal surface 287

(Fig. 4E–G). In contrast, the inhibitor profile was relatively flat along the length of the 288

cell, though random variations were apparent. The resultant response regulator profile 289

showed a gradient and was higher/lower at the front/rear relative to the basal level. We 290

repeated the simulations for a shallower gradient and observed similar behavior, with a 291

smaller degree of localization and slower response in RR (S6 Fig). 292
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Fig 4. Steep gradient sensing by LEGI difference scheme. (A) Schematic
showing the diameter at the bottom surface (red) and a semicircular arc on the curved
surface (blue) connecting front and back of the cell with respect to the needle position
(light blue dot). (B) Circular cross sections of the hemispherical domain at z = 1 (a)
and z = 2µm (b). The front (closest to needle) and back of the cell is marked as 0 and
180◦, respectively. (C) Temporal profiles of Gβγ (green), I? (red) and RR (blue) at cell
front (0◦, darker shade) and back (180◦, lighter shade). The solid lines and the shaded
regions show the respective mean and standard deviations (n = 10 independent
simulations as in Fig. 2G). (D–G) Spatial response of the system for receptor occupancy
(R.O.), Gβγ , I? and response regulator (RR). The kymographs (D) are based on the
maximal projection of the hemispherical domain (nodes between a and b) of panel B.
The white dashed line indicates the time instant when cAMP gradient was applied.
Panel E shows the spatial profiles at the basal and apical surfaces at t = 3 min. Panel G
shows the spatial profiles along the lines marked in pane A. Lines denote mean and the
shaded regions standard deviations (n = 5 independent simulations as in Fig. 2G).
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Signal Transduction Excitable Network (STEN) module 293

Dictyostelium cells have two excitable systems that work in tandem: a fast 294

cytoskeleton-based network, and a slower signaling network that drives the cytoskeletal 295

system [24,25,44]. As we are modeling cells lacking an intact cytoskeleton, we focused 296

on the latter. Our proposed STEN consists of five species: RasGDP, RasGTP, activated 297

and inactivated protein kinase B substrates (PKB*s and PKBs, respectively), and 298

membrane phosphatidylinositol bisphosphate (PIP2), which represents contributions 299

from both PI(3,4)P2 and PI(4,5)P2 (Fig. 5A). 300

Fig 5. Response of STEN to global stimulus. (A) Schematic of STEN showing
the entities: RasGTP, RasGDP, PIP2, PKBs, PKB*s and their interactions. Green
arrows denote positive feedback whereas, orange arrows complete the negative feedback
on RasGTP. (B) Temporal profiles of RasGTP (green), PIP2 (red) and PKB*s (blue) at
a random node that has fired spontaneously. (C–E) Spatiotemporal profiles of RasGTP
(green) and PIP2 (red) of the membrane showing wave-traveling (C), splitting (D) and
annihilation (E). (F) Response to a spatially uniform dose of cAMP. Shown are the
global RasGTP response (left), various component at a single random node (center) and
the spatiotemporal profile at the basal surface of the cell (right). The yellow arrowheads
denote wave initiation sites. Colors are as in panels B–E. The shaded region in the left
panel is the standard deviation as in Fig. 4D (n = 10). (G) Basal subtracted normalized
RR (RR, left) and RasGTP (right) responses to short (2 s, blue) and long (30 s, red)
stimuli. The solid lines and the shaded regions are as in panel F (n = 10). (H) RasGTP
response to the two short pulses (2 s) of spatially uniform stimuli with variable delays.
Left: temporal mean nodal profile of RasGTP (n = 10). Right: plot of normalized peak
of the second response to the first versus the delay between the stimuli.

In our scheme, RasGTP acts as the activator of the excitable system and serves as a 301

front marker of the cell. Recent experiments have demonstrated that lowering PI(4,5)P2 302

results in increased Ras activity [43]. Similarly, lowering PI(3,4)P2 increased Ras 303

activity through the regulation of RasGAP2 and RapGAP3 [51]. Thus, we incorporated 304

the PIP2-mediated hydrolysis of RasGTP to RasGDP into the model. This closes a 305

positive feedback loop that is formed through mutual inhibition between RasGTP and 306

PIP2. 307

A slower, negative feedback loop is achieved through the RasGTP-mediated 308

activation of PKBs. This activation is achieved partly by having PH-domain containing 309

PKBA translocate to the membrane to bind to PI(3,4,5)P3, as well as TorC2-mediated 310

phosphorylation of PKBR1 [52]. This negative feedback loop is closed as activated 311

PKBs (PKB*s) negatively regulate RasGTP. There are two proposed mechanisms of 312

negative feedback: 1) controlling the localization of the Sca1/RasGEF/PP2A complex 313

on the plasma membrane through phosphorylation of Sca1; 2) phosphorylation and 314

activation of PI5K which increases PIP2 [53, 54]. As we do not specifically model 315

PI(3,4,5)P3, we implemented this loop with PKBs being activated directly by RasGTP, 316

with a slower time scale to account for the omitted intermediate steps (e.g., PI3K 317

activation, PI(3,4,5)P3 formation and PKB translocation and subsequent 318

phosphorylation) and that some reactions involve cytosolic species, compared to the 319

mutually inhibitory positive feedback loop. 320

Finally, we coupled this excitable network to the LEGI in two ways. First, through 321

an RR-dependent term that converts RasGDP to RasGTP, consistent with the 322

possibility that the RR is a RasGEF or activates a RasGEF. Second, we also included a 323

term to account for the activation of Phospholipase C (PLC) by Gα2 which leads to 324

PI(4,5)P2 hydrolysis [55]. Table 4 lists the detailed reaction terms and parameter values. 325
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Combining the GPCR, LEGI, and STEN modules 326

We first simulated our model in the absence of any stimulus. We observed characteristic 327

excitable behavior (Fig. 5B,C). When viewing a single node, RasGTP and PIP2 showed 328

mutually exclusive behavior, in which the number of molecules at any one time of one 329

species dominated the other. For example, when PIP2 dominated, there was 330

approximated 40 molecules of PIP2 compared to approximately one molecule of 331

RasGTP (Fig. 5B, t = 30 s). The transition to a state in which RasGTP dominated 332

(∼25 molecules of RasGTP vs. ∼0-2 molecules of PIP2) was rapid. In contrast, the 333

number of PKB*s molecules varied considerably less, ranging from ∼40 to ∼60 with 334

slow increases happening after the node transition to a high RasGTP state (Fig. 5B, 335

t = 60 s). When viewed across the surface of the cells, we observed wave activity 336

(Fig. 5C,S7 FigA,B,S1 Video). The cell was typically in a back state in which high PIP2 337

levels dominated. However, when stochastic perturbations led to a spot of high RasGTP 338

activity, a wave of activation swept across the cell, moving between the basal and apical 339

surfaces. This eventually extinguished and the cell returned to its basal back state. 340

Interestingly, after the RasGTP wave went through a region, the subsequent PIP2 341

recovery was actually higher than before the wave, indicating an overshoot of the basal 342

level (c.f. the PIP2 intensity between the first and last panels in Fig. 5C, S7 FigA 343

(bottom)). The elevated PIP2 regions played an important role in the steering of waves. 344

Whenever a traveling wave encountered a region of supra-basal PIP2 on its path, it 345

moved around this region which often resulted in the splitting of the wave (Fig. 5D, S2 346

Video). Generally, wave splits were rare because of the small size of the cell relative to 347

the wave. This is consistent with experimental findings which have prompted 348

experimentalists studying waves to consider giant fused cells [44, 46]. Consistent with 349

properties of excitable waves, when two wave fronts met, they annihilated (Fig. 5E, S3 350

Video). The annihilation time for wave collisions depended on the time scale and 351

relative diffusivity of RasGTP and PKB*s. 352

Response to stimulation 353

We simulated the response of our model to a spatially uniform stimulation using 354

saturating dose of cAMP (100% R.O., Fig. 5F, S4 Video). After an initial delay of 2–3 355

seconds, we observed multiple wave initiations (arrowheads in Fig. 5F) and wave 356

spreading. The waves eventually spanned the whole cell at which time (∼8–9 s) total 357

Ras activity peaked. The activity died down as the RR level returned to the 358

pre-stimulus condition. The experimentally observed response of cells is quite similar 359

following short or long pulses of chemoattractant stimulation, consistent with the notion 360

that the underlying signaling network is excitable [7, 24]. To test this in our model, we 361

repeatedly applied short (2 s) and long (30 s) global stimuli to models with varying 362

parameter values and compared the respective RR and RasGTP responses (Fig. 5G). 363

The response profiles were nearly indistinguishable, with both peaking about 7–8 s after 364

the application of the stimulus, followed by a return to the pre-stimulus level. They 365

only differed in the final phase in which the response to the short stimulus reached its 366

steady-state faster (∼20 vs. 30 s). Interestingly, the RasGTP response was only 367

noticeable after ∼2 s at which time the short stimulus had already been removed. This 368

is consistent with excitable systems which reach a point of no return following 369

stimulation. When the stimulus remained present beyond the time taken for the 370

excitable system to return to its basal state (> 60 s), we observed a smaller and more 371

patchy second wave of activity (S7 FigC–F). This second peak of the response is due to 372

the partially adapted state of the LEGI module which is due to the adaptation time 373

being longer than the duration of a pulse from the excitable system; it has been seen 374

experimentally both with signaling [56] and cytoskeletal biosensors [57]. 375
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Cells displays refractory periods following stimulation during which further 376

excitation fails to trigger a response, or diminished in intensity [7, 24]. We applied a 377

series of double pulses, each of duration 2 s with variable delays (10–90 s) and compared 378

the peak of the second response to the first response (Fig. 5H, left panel). For short 379

delays (< 10 s) there was no distinct second response. However, as we increased the 380

time delay, we observed an increase in the peak amplitude of the second response. After 381

a sufficiently long delay (80 s), the second peak almost matched the first peak with a 382

50% recovery occurring at ∼50 s. (Fig. 5H, right panel). 383

When stimulated by a gradient, cells display persistent high levels of activity at the 384

side of the cell facing the chemoattractant source. We simulated these experiments by 385

introducing a gradient of receptor occupancy across the cell. RasGTP showed a 386

localized persistent patch of high activity facing the side with highest receptor 387

occupancy (Fig. 6A, S5 Video). We also simulated two experiments in which the spatial 388

gradient was combined with a temporal stimulus. In the first, we introduced a gradient 389

and waited until the cell displayed a spatial response; we then removed it for a variable 390

time, before finally reintroducing it [58]. The crescent disappeared following removal of 391

the stimulus but did not return to its full strength until the delay was ∼60 s (Fig. 6B, 392

S6 Video), matching our previous observations in the double pulse experiment. In the 393

second simulation, we applied a large global stimulus following the establishment of a 394

crescent in response to a gradient, and then removed all cAMP. In this case, the global 395

stimulus elicited a response everywhere (Fig. 6C, S7 Video). These simulations show the 396

complex interactions of spatial and temporal components of coupled LEGI and STEN 397

systems. 398

Fig 6. Gradient sensing by STEN. (A–C) Response to temporal and gradient
stimuli. Shown are the temporal profiles of RasGTP (green), PIP2 (red), PKBs*(blue),
Gα2 (teal), Gβγ(orange) and basal subtracted normalized RR (RR, cyan) at single
nodes at the front and back of the cell. The kymographs (right) show RasGTP (green)
and PIP2 (red). Solid white line denotes when the gradient was applied, and the dashed
line shows the needle position (front). Whereas Panel A shows the response to a single
gradient, B and C show the response to two gradient stimuli with a delay of 60 s (B)
and to a gradient stimulation followed by a global one (C).

Effect of lowering threshold 399

Recent experiments in which the activity and motility of the cell were altered suggest 400

that these came about through changes in the threshold of the excitable signaling 401

system. Our model allows to test some of these perturbations. We first considered 402

lowering PIP2 levels by adding an extra degradation term, so as to recreate 403

experiments in which the phosphatase Inp54p is brought synthetically to the cell 404

membrane [7, 44]. In this case we saw elevated levels of activity and the cell commenced 405

periodic whole-cell increases in activity similar to what have been observed 406

experimentally (Fig. 7A). Similar, though less acute increases in activity were seen in 407

simulations in which PKB*s levels in the cell were lowered through a reduction in the 408

RasGTP-mediated activation rate (Fig. 7B). In this case, bursts of wave initiations were 409

observed, but the resulting waves did not cover the whole cell surface. 410

Experiments have also demonstrated that mechanical contacts can trigger excitable 411

behavior [59–61]. Finally, we considered the possibility that the threshold was 412

differentially regulated by mechanical contact with the substrate, with a lower threshold 413

at the basal surface than at the apical surface. To take this into account, we assumed 414

that the PKBs-mediated inhibition of RasGTP was different between the basal and 415

apical surfaces, with lower inhibition at the former (Fig. 7C). In these simulations we 416
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Fig 7. Effect of threshold on STEN dynamics. (A,B) The kymographs show the
effect of lowering the STEN threshold by inhibiting PIP2(A) and PKB*s (B) as denoted
in the schematics. The white lines indicate the time at which the respective species were
lowered. (C) Schematic for incorporating the differential threshold between top and
bottom surface of the cell through altering the PKB*s mediated inhibition on RasGTP.
(D) Increased threshold restricts the wave activities at the basal surface and the waves
were not allowed to travel to the apical surface. (E) Higher threshold on the apical
surface made small waves with fewer number of wave initiations.

observed frequent wave initiations at the basal surface, but these waves were quickly 417

extinguished when they reached the apical surface (Fig. 7D). At the apical surface we 418

rarely saw any de novo waves, and when they did appear, they did not spread like the 419

basal counterpart and were extinguished rapidly (Fig. 7E). 420

Discussion 421

Mathematical models have been a popular means of understanding how cells move in 422

response to chemoattractant stimuli. These models have taken a modular view of the 423

overall signaling network, breaking the overall system down into simpler functional 424

blocks [62]. In doing so, most models have focused on a specific set of experimental 425

observations, such as receptor-ligand interactions [35], adaptation [13,16,63], 426

amplification [64], wave propagation [65–67], excitability [25, 47, 68], or polarity [69–71], 427

by concentrating on a specific functional block sometimes ignoring its connection to the 428

overall network. Part of this problem is a lack of experimental data as most 429

experimental papers focus on specific aspects of the chemotactic behavior. Here, we 430

have proposed an integrated model that takes the receptor-ligand binding to PKBs, 431

which have been shown to be a link to the cytoskeletal network. Where the experiments 432

do not offer single out a unique alternative, we have presented various possibilities and 433

simulated scenarios that could be used to distinguish among them. Our model recreates 434

most of the observed responses, including adaptation to persistent global stimuli 435

(Fig. 5C–G), presence of secondary peaks (S7 FigC–F, [72]), spatially localized 436

responses to gradients (Fig. 5H–I) along with the typical excitable behaviors such as 437

wave annihilation and refractory period. 438

Because of the importance of noise-induced transitions in triggering the signal 439

transduction excitable network, thereby allowing unstimulated cells to move randomly, 440

our modeling approach has emphasized the role of noise. While the role of stochastic 441

fluctuations in patterning cellular responses is now firmly appreciated, most of these 442

studies consider molecules and species that exist in relatively small numbers [31,32]. 443

Our simulations here demonstrate, however, that even in signaling system that consist 444

of biochemical species with high numbers, noise can play an important role in regulating 445

cell physiology. The stochastic framework that we used to simulate our model does not 446

require an artificial injection of noise. Instead, noise is a natural consequence of the 447

stochastic description of the reaction-diffusion equations. In this stochastic setting, the 448

LEGI mechanism adapts perfectly as in the deterministic setting, as long as we focus on 449

the mean level of activity (Fig 3D, S4A,B). However, we showed that the variance in the 450

response increases as a function of the stimulus strength (Fig. 3F) and that the size of 451

this increase depends on the particular way that the LEGI is implemented. The increase 452

in the variance observed could account for chemokinesis, the increased speed of random 453

migration seen following a uniform chemokine stimulus in neutrophils [73]. Moreover, 454

because the different implementations of the LEGI mechanism have distinctive noise 455

patterns, our results suggest a way of elucidating the precise nature of the adaptation 456
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mechanism experimentally. 457

The biased-excitable network hypothesis suggests that chemoattractant stimulation 458

leads to a signal that lowers the threshold of activation of the STEN, and various 459

models and experiments support this view. However, how cells display a persistent 460

crescent of front-markers towards the source of a chemoattractant gradient remains an 461

open question [74]. Simulations of cells stimulated by gradients of chemoattractant show 462

that the RR activity remains high at the cell front and is suppressed elsewhere. One 463

would expect that the resultant spatially localized lowered threshold would trigger 464

activity that would travel away from their point of origin. Further activity would be 465

possible, after the delay imposed by the refractory period. To explain this, we modified 466

the STEN dynamics such that, following stimulation, the system undergoes an 467

excitable-to-bistable transition (S7 FigG,H). In this case, a persistent, elevated level of 468

RR leads to a new “high” state of activity in the STEN, and persistent crescents were 469

observed. Though our implementation is similar to the wave pinning scheme used to 470

explain persistent polarization [75], it differs due to the fact that our system is only in 471

the bistable region in the presence of a persistent high stimulus. 472

Our simulations show the power of having an excitable system at the heart of the 473

chemotactic signaling system. This threshold becomes the most important parameter 474

shaping the cellular response, dictating overall activity and eventually, migratory 475

modes [43]. Increased number of wave initiations as well as more wave spreading is 476

often associated with lowering of the threshold, whereas increase in the threshold 477

corresponds to opposite effect. The threshold in the chemotactic signaling network can 478

be altered in several ways and not all the alterations have the same effect on the system 479

behavior. Theoretically weakening of the all the inhibitory pathways or strengthening 480

the catalytic pathways acting on RasGTP can result lowering of threshold. 481

Experimentally, several pharmacological/genetic perturbations have been used to study 482

this effect of alteration in Dictyostelium cells [43, 44, 76]. Recent publications suggested 483

of possible existence of a number of mechanical feedbacks on the leading edge 484

protrusion [59,77] and hence on the system threshold. Cao et al. reported that the 485

basal surface waves are mostly restricted at the bottom surface unless the threshold of 486

the system is lowered [60]. In that case, on reaching the bottom boundary the basal 487

surface waves starts travelling upwards long the apical surface. 488

Finally, while our study has centered on chemoattractant signaling, we note that 489

various components, such as GPCR signaling, the presence of feedforward adaptive 490

mechanisms, and biochemical excitability are concepts that extend well beyond the 491

realm of cell migration. For example, a recent report suggests that stochastic effects 492

may play an important role in rhodopsin signaling [78]. Thus, our study provides a 493

means for analyzing the effect of noise in these systems and could help to understand 494

more complex interactions in these other settings. 495

Supporting information 496

S1 Fig. Effect of mesh refinement. (A) Total number of nodes (in logarithmic 497

scale) for different values of Hmax (maximum allowable distance between nodes). Hmin 498

(minimum allowable distance between nodes) was chosen to be 1/3 of the respective 499

Hmax value. The red dot shows the mesh size adopted for the present study whereas the 500

gray dots are used for the comparison in (C). (B) Plot of simulation time (in 501

logarithmic scale) for different values of Hmax corresponds to a one second simulation of 502

a diffusion process involving a single entity. Colors are same as in (A). (C) Comparison 503

of the simulation output (basal surface profile) of a diffusion process involving single 504

entity at t = 1 s using fine, medium and coarse meshes as indicated by the Hmax values. 505

(D) Plot of simulation time (in logarithmic scale) for different values of Hmax 506
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corresponding to a one second simulation of GPCR and LEGI modules combined, in the 507

absence of cAMP. Colors are same as in (A). 508

S2 Fig. Temporal response of different full- and reduced-order receptor 509

states. (A) Temporal responses of free (H,L,S), occupied (H:C,L:C,S:C), free 510

phosphorylated (PH,PL) and occupied phosphorylated (PH:C,PL:C) states of the 511

receptors, in absence and presence of a saturating dose of cAMP. The gray boxes denote 512

the time segments used to compute steady-state concentration of different entities in 513

(B). (B) Relative steady-state amount of different receptor states in absence (top) and 514

presence (bottom) of cAMP. (C) Mean Fano factor of the temporal fluctuations among 515

nodes for full-( blue solid) and reduced-order (red dashed) modules in response to 516

varying cAMP levels (% R.O.). (D) Plot of total number of occupied receptors at nodes. 517

Solid line and shaded region show the mean and the standard deviation respectively. (E) 518

Comparison between internode noise characteristics of full- (solid) and reduced-order 519

(dashed) modules in terms of the coefficient of variation (blue) and Fano factor (red). 520

(F) Schematic of a 2-state reduced order model of receptors containing single 521

unoccupied (R) and occupied (R:C) states. (G,H) Comparison between global responses 522

of full- (blue solid) and reduced-order (red dashed) receptor modules in presence and 523

absence of cAMP. The region where the two responses differ is denoted by the gray box 524

in (G), which is zoomed into in (H). 525

S3 Fig. G-Protein response and LEGI signaling. (A) Dissociated G-protein 526

response (%) to varying degree of receptor occupancy (% R.O.) with different total 527

number of G-protein molecules (represented by different colors and denoted as a ratio to 528

the total receptors molecules). (B) G-protein responses of (A) normalized to respective 529

maximum values. The inset shows a zoomed-in version of a smaller section of the plot. 530

Colors are same as in (A). (C) Coefficient of variation as a function of %R.O.. Colors 531

are same as in (A). (D) Schematic of implicit LEGI mechanisms. (E,F) Comparison 532

between implicit (left) and explicit (right) schemes of difference (C) and ratio (bottom) 533

mechanism. Explicit mechanism involves the detailed reactions involving activator Gβγ , 534

inhibitor: I* and response regulator: RR, whereas the implicit schemes use the 535

steady-state expression of RR directly in the model ignoring the transient dynamics. 536

(G) Effect of concentrations of cAMP (in terms of % R.O.) on steady-state amplitude 537

(blue), peak amplitude (red), adaptation time (green) and peak time (orange) of the 538

nodal average profile of RR in the ratio mechanism for different basal 539

activation/inactivation rate. The solid lines and the shaded regions show the respective 540

mean and standard deviations (n = 10 independent simulations in which the parameter 541

values were varied according to the distributions of Table 3). 542

S4 Fig. Temporal response of LEGI mechanisms. (A,B) Temporal nodal 543

profiles of Gβγ(green), I? (red) and RR (blue) in response to a staircase profile of cAMP 544

for the difference (A) and ratio (B) mechanisms. (C,D) Temporal average (C) and 545

individual (D) nodal profiles of Gβγ (green), I? (red) and RR (blue) in response to the 546

application and withdrawal of stimulus for difference (center) and ratio (bottom) 547

mechanisms. The shaded regions in (C) denote standard deviations among all nodes 548

from a single simulation. 549

S5 Fig. Effect of diffusion of LEGI inhibitor during gradient stimulation. 550

(A,B,C) Temporal difference (between front and back of the cell) profiles of Gβγ (A), I? 551

(B) and response regulator (C, scaled) for different relative diffusive strengths of LEGI 552

inhibitor, I?. The gray boxes denote the time segments used to generate the average 553

values of the individual profiles for (D). (D) Plot showing steady-state temporal average 554
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values of the difference profiles Gβγ (green), I? (red) and response regulator (blue) for 555

different relative diffusive strengths of I? (in logarithmic scale). Mean±SEM is shown 556

(n = 5 independent simulations in which the parameter values are allowed to vary 557

according to the distributions of Table 3). 558

S6 Fig. Shallow gradient sensing by LEGI difference scheme. (A) Schematic 559

showing the diameter at the bottom surface (red) and a semicircular arc on the curved 560

surface (blue) connecting front and back of the cell with respect to the needle position 561

(light blue dot). (B) Circular cross sections of the hemispherical domain at z = 1 (a) 562

and z = 2µm (b). The front (closest to needle) and back of the cell is marked as 0 and 563

180◦, respectively. (C) Temporal profile of Gβγ (green), I? (red) and RR (blue) at cell 564

front (0◦, darker shade) and back (180◦, lighter shade). The solid lines and the shaded 565

regions show the respective mean and standard deviations (n = 10 independent 566

simulations in which the parameter values are allowed to vary according to the 567

distributions of Table 3) (D-G) Spatial response of the system for receptor occupancy 568

(R.O.), Gβγ , I? and response regulator (RR). The kymographs (D) are based on the 569

maximal projection of the hemispherical domain (nodes between a and b) of panel B. 570

The white dashed line indicates the time instant when cAMP gradient was applied. 571

Panel E shows the spatial profiles at the basal and apical surfaces at t = 3 min. Panel G 572

shows the spatial profiles along the lines marked in panel A. Lines denote mean and the 573

shaded regions standard deviations (n = 5 independent simulations in which the 574

parameter values are allowed to vary according to the distributions of Table 3). 575

S7 Fig. STEN dynamics. (A) Spatiotemporal profiles of RasGTP-PKB*s 576

(green-blue, top) and PIP2-PKB*s (red-blue, bottom) on the basal surface showing 577

wave-traveling. The regions bounded by white dashed lines show the membrane regions 578

with high RasGTP. (B) The Color-coded overlays show the progression of waves as a 579

function of time and computation of the wave speed. (C) The nodal responses of 580

RasGTP (green), PIP2 (red) and PKBs* (blue) at three random membrane nodes in 581

presence of a global cAMP stimulus. (D) Basal surface profile of RasGTP (green) and 582

PIP2 (red) in presence of a global stimulus at the time points indicated. (E,F) 583

Normalized global response of RasGTP (D) and the corresponding kymograph in 584

response to a sustained, spatially uniform cAMP dose. (G) Illustration showing how an 585

excitable-to-bistable transition could occur. Shown are hypothetical nullclines for 586

RasGTP (green) and PKB*s (blue) for a deterministic, two-state model for the 587

excitable system. The darker and the lighter green shade represent the corresponding 588

RasGTP nullcline in the excitable and bistable regimes, respectively. (H) Illustration 589

showing the effect of a gradient stimulus. The dashed line represents the 590

RasGTP-nullcline in the absence of a stimulus. The darker and the lighter green shade 591

represent the RasGTP nullclines at the front and back of the cell, respectively, when 592

subjected to cAMP gradient. The scale bars in (A,B,D) represents 2µm. 593

S1 File. Supplementary methods. 594

S2 File. MATLAB implementation. Matlab scrips used for simulating the 595

various models. The codes will be made available on acceptance. 596

S1 Video. Wave traveling. Movie showing various views of the wave traveling. 597

Corresponds to Fig. 5C. 598

S2 Video. Wave splitting. Movie showing various views of the wave splitting. 599

Corresponds to Fig. 5D. 600
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S3 Video. Wave annihilation. Movie showing various views of the wave 601

annihilation. Corresponds to Fig. 5E. 602

S4 Video. Global stimulus. Movie showing various views of the response to a 603

global chemoattractant stimulus. Corresponds to Fig. 5F. 604

S5 Video. Gradient stimulus. Movie showing various views of the response to a 605

gradient chemoattractant stimulus. Corresponds to Fig. 6A. 606

S6 Video. Response to a successive application of gradient stimulii 607

Corresponds to Fig. 6B. 608

S7 Video. Response to a gradient stimulation followed by a global 609

stimulation Corresponds to Fig. 6C. 610
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