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Motivation: The transcriptomic diversity of the hundreds of cell
types in the human body can be analysed in unprecedented de-
tail using single cell (SC) technologies. Though clustering of cel-
lular transcriptomes is the default technique for defining cell
types and subtypes, single cell clustering can be strongly influ-
enced by technical variation. In fact, the prevalent unsupervised
clustering algorithms can cluster cells by technical, rather than
biological, variation.
Results: Compared to de novo (unsupervised) clustering meth-
ods, we demonstrate using multiple benchmarks that supervised
clustering, which uses reference transcriptomes as a guide, is ro-
bust to batch effects. To leverage the advantages of supervised
clustering, we present RCA2, a new, scalable, and broadly ap-
plicable version of our RCA algorithm. RCA2 provides a user-
friendly framework for supervised clustering and downstream
analysis of large scRNA-seq data sets. RCA2 can be seam-
lessly incorporated into existing algorithmic pipelines. It in-
corporates various new reference panels for human and mouse,
supports generation of custom panels and uses efficient graph-
based clustering and sparse data structures to ensure scalabil-
ity. We demonstrate the applicability of RCA2 on SC data
from human bone marrow, healthy PBMCs and PBMCs from
COVID-19 patients. Importantly, RCA2 facilitates cell-type-
specific QC, which we show is essential for accurate clustering
of SC data from heterogeneous tissues. In the era of cohort-
scale SC analysis, supervised clustering methods such as RCA2
will facilitate unified analysis of diverse SC datasets.
Availability: RCA2 is implemented in R and is available at
github.com/prabhakarlab/RCAv2
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Introduction
Since its first usage in 2009 (1), single cell (SC) RNA se-
quencing (scRNA-seq) has quickly become the method of
choice for profiling gene expression in complex samples (2).
Due to the unprecedented resolution of scRNA-seq data, cell-
type-specific analysis of gene expression can now be per-
formed easily and at low cost. SCTs are well-suited to char-
acterize heterogeneous biological specimens, e.g. tumors (3).
Clustering is an essential step in SC data analysis, since each

cell cluster in transcriptome space represents a distinct cell
type or state. There are two established paradigms to ad-
dress the SC clustering problem: [i] unsupervised (de novo)
clustering (4) and [ii] supervised approaches that use refer-
ence data sets to either cluster cells or to classify cells into
cell types (5, 6). The graph-based clustering methods SEU-
RAT (7) and SCANPY (8) are among the most prevalent de
novo clustering approaches.
However, SC clustering is a challenging algorithmic prob-
lem: 1) cells may cluster by technical variation and batch
effects rather than biological properties (4), 2) scRNA-seq
data tend to be noisy, primarily due to sampling noise and
3) the gene expression matrix can be very large, since mod-
ern datasets commonly include > 100,000 cells. Conse-
quently, different algorithms can return highly divergent clus-
terings, i.e. partitions of cells into clusters, of the same input
dataset (9). Moreover, de novo clustering requires an error-
prone, time-consuming manual step of assigning cell clusters
to cell types (annotation) based on subjective evaluation of
the expression of literature marker genes. Supervised clus-
tering and supervised cell type annotation algorithms have
been developed to address these limitations (6).
Previously, we proposed Reference Component Analysis
(RCA) for supervised clustering of scRNA-seq data guided
by a panel of reference transcriptomes (5). Unlike methods
such as SINGLER (10) or SCMATCH (11), the aim of RCA is
not cell type annotation. Rather, RCA was designed to clus-
ter cells in the space of reference transcriptome projections.
As we show below, this reference-based clustering approach
is applicable even in situations where the dataset contains cell
states not present in the reference panel. To the best of our
knowledge, RCA is the only supervised clustering algorithm
for scRNA-seq data. However, the original version of RCA
cannot scale to datasets larger than 20,000cells on a high-
end laptop, used only a single reference panel, did not imple-
ment differential expression and Gene Ontology (GO) enrich-
ment analysis, was benchmarked on only a single Smart-seq
dataset and could not be easily integrated into existing data
analysis workflows.
To fully leverage the merits of supervised clustering, we
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present RCA2, a new implementation of reference-based
clustering that addresses the above limitations. We show the
unique advantages of RCA2 by analyzing diverse scRNA-
seq data sets and show that supervised clustering can detect
novel disease/condition-specific cell states. Importantly, we
demonstrate that supervised clustering using RCA2 is excep-
tionally robust against batch effects on large scRNA-seq data
sets, rendering it the method of choice for the joint analysis
of heterogeneous cohort-scale datasets.

MATERIALS AND METHODS
Projection to a reference. Given a reference data set R
containing n cell types and G marker genes as well as a
query data set Q containing i scs and C genes, we determine
a marker gene setM by intersecting G and C:

M= G ∩C. (1)

The reference matrixR′ and setQ′ are generated by extract-
ing the gene setM fromR andQ, respectively. Next, RCA2
computes the correlation (default: Pearson(r)) between R′

and Q′ yielding a reference projection P for i scs to n cell
types:

P = r(R′,Q′). (2)

The projection matrix P is modified according to

P = |P|4 ·sign(P). (3)

P is scaled to zero mean and unit variance. All matrices
are represented as sparse matrix R objects. The projection
is computed using the fastcor package (12). P can be visual-
ized as a 2D and 3D UMAP.

Clustering and interpreting the projection. RCA2 offers
three clustering algorithms: i) hierarchical clustering using
the memory efficient fastcluster (13) package, ii) shared-
nearest neighbour (SNN) clustering using dbscan (14) and
iii) graph based clustering using the Louvain algorithm (7).
The depth to cut the dendrogram in hierarchical clustering
is a parameter (default 1). The SNN algorithm used in db-
scan has three parameters: k (neighborhood size of the SNN
graph), eps (two cells are only reachable from each other if
they share at least eps nearest cells) and min− pts (mini-
mum number of nearest neighbours for a cell to be consid-
ered a core cell). To guide the users choice on parameters
for graph based clustering, a 3D figure illustrating how the
final number of clusters depends to the used parameters can
be generated. The Louvain algorithm requires only the reso-
lution parameter. A line-plot illustrating how the resolution
influences the number of identified clusters can be generated.
As input, all clustering methods use either a distance matrix
D computed from P according to

D = 1− r(P), (4)

where r(P) is the cell-to-cell similarity using correlation
(Pearson(default in this manuscript), Spearman or Kendal)
as a metric in the cell type space or an embedding of cells in

PC space computed on the reference projection (not available
with hierarchical clustering). The clustering result is visual-
ized in a heatmap, including quality control (QC) metrics:
number of detected genes (NODG), the percentage of mito-
chondrial genes (pMito) and the number of unique molecular
identifiers (NUMI). Reference cell types with a low variance
across all query cells are not shown.

Reference panels. RCA2 includes ten human reference
panels as well as two mouse reference panels (Sup. Section
1). Multiple panels can be used for reference projections si-
multaneously. Furthermore, RCA2 provides users with the
option to generate their own reference panel: the buildRefer-
encePanel function considers a bulk gene expression matrix
(genes as rows and replicates as columns) of raw counts and
returns a reference panel that can be used with RCA2. Details
are provided in Sup. Section 2.1.

Annotation of cell types. RCA2 implements cell type as-
signment at the SC level following a strategy inspired by SIN-
GLER (Sup. Section 2.2). To annotate cell types on the clus-
ter level, we consider the cell type composition for each clus-
ter based on the SC cell type assignment described above. If
the cell type distribution within a cluster is heterogeneous and
the proportion of the major cell type is below a user defined
threshold (default 50%), the cluster is labelled as Unknown.

Cluster specific quality control. Quality of scRNA-seq
data is usually assessed using NODG, nUMI and pMito met-
rics. RCA2 provides cluster-specific QC, allowing to impose
upper/lower bounds on QC metrics for each cluster indepen-
dently.

Differentially expressed gene computation and enrich-
ment analysis. Differentially expressed genes (DEGs) are
calculated between clusters, either in a 1 vs. all (default) or a
pairwise fashion using a modified version of SEURAT’s DEG
calling function. We incorporated a mean expression thresh-
old, which is either a user defined value or automatically de-
termined as a trimmed mean excluding the top n (default: 5)
genes with the highest expression. Gene’s with a cluster spe-
cific expression below the threshold are not considered for
the DE test. DEGs computed in this way are used to perform
enrichment analysis of GeneOntology (GO) terms or KEGG
Pathways, for which RCA2 incorporates the CLUSTERPRO-
FILER R-package (15). Details are provided in Sup. Section
2.3.

Considered scRNA-seq data sets and data process-
ing.

10X PBMC data sets. We downloaded scRNA-seq data of
5025 PBMCs generated using Chromium SC 3′ Reagent
Kits v3 from 10X (single-cell-gene-expression/datasets/
3.0.2/5k_pbmc_protein_v3). In total, 4249 cells passed QC
(Sup. Table 1). The data set was projected against the
Novosthern reference panel comprised of 15 hematopoi-
etic cell types (16) (Sup. Sec. 1).The resolution pa-
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rameter used for Louvain clustering was determined us-
ing a grid-search with a step-size of 0.05. DEGs be-
tween clusters are computed in a pairwise-manner us-
ing the parameters:min.pct= 0.5, logfc.threshold= 0.5 and
p_val_adj≤ 0.05. GO terms were computed using CLUS-
TERPROFILER utilising the org.Hs.eg.db database, and a q-
value threshold of 0.05.

CITE-seq PBMC data sets. A Drop-Seq data set with
29,929 genes profiled in 7,985 cells and 10 antibod-
ies was obtained from (17). A 10x CITE-seq data
set with 7,865 cells profiled on 33,538 genes and
17 antibodies was obtained from 10x (single-cell-
gene-expression/datasets/3.0.0/pbmc_10k_protein_v3).
Both data sets were processed using SEURAT. To
obtain a ground truth, we clustered cells in antibody-
derived tags (ADT) space. ADT data was normal-
ized using the centered log ratio transformation (sati-
jalab.org/seurat/v3.2/multimodal_vignette.html). All PCs
were selected for clustering using Louvain clustering. Since
the Drop-Seq data did not include a control for antibody
detection, clusters exhibiting noisy antibody detection or
those clusters not representing known immune cell type
signature (16, 18) were removed. In the 10x data, clusters
showing IgG1, IgG2a or IgG2b and clusters showing
promiscuous antibody expression were discarded. After QC
(Sup. Table 1), the Drop-Seq and 10x datasets contained
5,925 and 6,744 cells, respectively. The Drop-Seq and 10x
data sets were next merged with respect to their common
genes (13,267). Using SEURAT’s FindMarker function, we
computed batch specific marker genes for each ADT cluster
in the merged data set using the parameters: min.pct= 0.5,
logfc.threshold= 1.5 and p_val_adj≤ 0.05. GO terms for
batch specific clusters are computed using CLUSTERPRO-
FILER utilising the org.Hs.eg.db database, and a q-value
threshold of 0.05.

Rheumatoid arthritis scRNA-seq data set. The scRNA-seq
data set of 10,001 cells from Rheumatoid Arthritis (RA) sam-
ples, obtained from (19), was processed using SEURAT. Cells
were filtered based on the QC criteria provided in Sup. Table
1. This data was generated using CEL-Seq2 (20) after sort-
ing for B cells (CD45+CD3-CD19+), T cells (CD45+CD3+),
monocytes (CD45+CD14+), and stromal fibroblasts (CD45-
CD31-PDPN+) from synovial tissues of ultrasound-guided
biopsies or joint replacements of RA patients. Cell type an-
notation based on the authors cell sorting strategy is used as
a ground truth.

Bone-marrow scRNA-seq data set. We obtained eight human
bone marrow (BM) specimens from STEMCELL technolo-
gies and generated ten scRNA-seq data sets using the 10X
5’scRNA-seq protocol (see Sup. Section 2.4) by separating
the cells into CD34+ and CD34- cell fractions followed by
sequencing on a HiSeq4000. Preprocessing was done us-
ing the 10X CellRanger pipeline (3.0.1) using the hg38 ref-
erence genome resulting in a data set comprised of 45,363
cells, capturing 24,206 genes. Considering only an initial re-

quirement of at least 1,000 nUMI, and a pMito rate between
2.5% and 10%, we projected the data against RCA’s global
panel obtaining a classification into major groups (resolution
0.1) to perform cluster specific QC (Sup. Table 2). Final
cell types were identified upon QC using a resolution of 0.5.
Doublets were removed using DOUBLETFINDER (21). DOU-
BLETFINDER was run separately on the CD34+ and CD34-
populations using 20 PCs and a pNN value of 0.25 as well
as pk values of 0.005 and 0.01, respectively. The obtained
pANN values were merged to rank cells based on their dou-
blet neighbourhood. A pANN threshold was derived consid-
ering both the expected number of doublets (≈ 1,560) and by
examining the proportion of possible doublets in each cluster.

COVID-19 PBMCs. A Seurat object with scRNA-seq data
studied by (22) was obtained from the COVID-19 Cell At-
las (covid19cellatlas.org). All 44,721 cells were projected
against the global, Monaco, Novershtern, and CITE-seq
panel and clustered using the Louvain algorithm (resolution
1.3). Clusters were annotated according to reference projec-
tion profiles and marker gene expression. Marker genes for
each subset of developing neutrophils are computed using the
following DEG parameters: min.pct= 0.25, logfc.threshold=
1, and p_val_adj≤ 0.05. Sub-clustering and cell embed-
ding of CD14 monocytes, intermediate monocytes, CD16
monocytes, myeloid dendritic cells (mDC), myelocytes, neu-
trophils and plasmablasts was conducted using SEURAT. The
union set of pair-wise DEGs between these cell types was
used as feature genes for PCA. DEGs were determined us-
ing the parameters: min.pct= 0.25, logfc.threshold= 1.5, and
p_val_adj≤ 0.05. For downstream clustering we used 18 PCs
and annotated clusters using marker genes.

AML dataset. The AML data scRNA-seq data set 809653 was
obtained from the zenodo archive of (23) at 10.5281/zen-
odo.3345981. No additional QC was performed. The data
was projected using RCA2s Multi Panel Projection function
with default parameters. The data was clustered using hierar-
chical clustering at deep split 1.

Methods used for batch effect benchmarking. To
benchmark the batch effect robustness of RCA2, we con-
sidered Seurat, Scran (24), Scanpy, SEURAT with CCA,
MNNCorrect (25) and Scanorama (26). Seurat (with and
without CCA) (3.2) was used as recommended in its doc-
umentation (satijalab.org/seurat/vignettes.html). For Scran
(1.18.1), we followed the tutorial from bioconductor (bio-
conductor.org/packages/ release/bioc/html/scran.html).
Highly variable genes are used as features (FDR
≤ 0.05) and the walktrap community detection algo-
rithm was used for clustering. We used MNNCor-
rect (batchelor R package (1.6)) according to biocon-
ductor.org/packages/release/bioc/html/batchelor.html.
Furthermore, we used Scanpy (1.5.1)
(scanpy.readthedocs.io/en/stable/) and Scanorama (1.6)
(nbisweden.github.io/workshop-scRNAseq). We also exploit
SCTransform (27) to normalize data before analyzing it with
Seurat or Seurat with CCA.
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Silhouette Index for quantifying batch effect. The Sil-
houette Index (SI) of a cell measures how similar a cell is
to other cells within its own cluster, relative to cells in other
clusters (28). We compute SI S(x) for each cell x in the DE
gene-space defined by CITE-Seq antibody tags:

S(x) = o(x)−w(x)
max(o(x),w(x)) , (5)

where o(x) is the smallest mean between-cluster distance and
w(x) is the mean within-cluster distance for cell x defined as

o(x) = min
cz 6=cx

1
|cz|

∑
y∈cz

d(x,y),w(x) = 1
|cx|−1

∑
y∈cx,x 6=y

d(x,y),

(6)
where we use Euclidean distance to compute the distance
d(x,y) between cell x and cell y, cx ∈ C is the cluster as-
signed to cell x and |cx| is the size of that cluster. We obtain
the average SI for each cluster by averaging the SI values over
all cells in that cluster. Thereby, each cell type is given equal
weight in the final SI score.
For SEURAT, SEURAT INTEGRATION (CCA), SCRAN, MN-
NCORRECT and SCANPY, cell-cell distances are calculated
in principal component (PC) space considering the top 20
PCs. For SCANORAMA, the dimensionality was fixed to 100,
as recommended by the authors. For RCA, cell-cell distances
were calculated in the reference projection space.

Implementation and Availability. RCA2 is freely available
at www.github.com/prabhakarlab/RCAv2. It is extensively
tested with R versions ≥ 3.6 on Windows, Linux and Mac
devices. Scripts to create the main figures and RDS files with
R objects for the batch effect benchmarking, the 10X PBMC
data, the BM use case and the COVID-19 data are available
at Zenodo (10.5281/zenodo.4021967). Fastq files for the BM
data are available upon request.

Results
RCA2 is a comprehensive software solution for super-
vised clustering and analysis of scRNA-seq data. The
RCA2 workflow is shown in Fig.1. As input, RCA2 takes ei-
ther raw or pre-processed scRNA-seq data and facilitates QC
either as a single operation on all cells or in a cluster-specific
manner (Sup. Fig. 1, 2).
While the first release of RCA provided one reference
panel only, RCA2 includes twelve panels, for instance a
microarray-based human cord blood cell panel with 15 im-
mune cell types (16), one related RNA-seq panel with 28 hu-
man immune cell types (18), a panel based on CITE-seq data
containing 34 primary human cell types (29), one human pri-
mary cell type panel based on ENCODE (30) RNA-seq data
containing 97 cell types and a mouse ENCODE panel with
15 cell types. A list of all panels is provided in Sup. Section
1. Also, RCA2 offers means for de-novo panel generation
from user-provided transcriptomes (Sup. Sec. 2.4). Unlike
the original RCA software, RCA2 allows SC data to be pro-
jected against several reference panels at the same time and

offers a significant speed up of several folds in computing the
projection (Fig. 2a, Sup. Sec. 2.5).
Rising cell numbers cause memory consumption to rise,
hence RCA2 uses a memory-efficient implementation of hi-
erarchical clustering (31) and provides two graph-based clus-
tering methods as an alternative: SNN clustering (DBSCAN)
and Louvain clustering as used in SEURAT. The latter two
are not only faster than hierarchical clustering, but also re-
quire less memory (O(nk) vs O(n2), where n is the num-
ber of cells and k is the number of nearest neighbours; Fig.
2b (Sup. Sec. 2.5). To aid in parameter selection RCA2
provides visualizations on how parameter settings influence
cluster numbers (Sup. Fig. 3, 4). These modifications render
RCA2 to be applicable even to datasets comprising millions
of cells. Note that unlike other SC clustering frameworks,
RCA utilizes the reference projection to cluster cells in a cell
type space instead of a high-dimensional gene-space. Clus-
tering results can be visualised as a heatmap and as 2D as
well as 3D UMAPs (Sup. Fig. 5, 6). Compared to the pre-
vious visualization, RCA2 shows additional QC information
(NODG, nUMI, pMito) and removes cell types not showing
significant variation in the correlation score to facilitate data
interpretation and outlier detection.
To complement the functionality of RCA2, we incorporated
SINGLER/SCMATCH like assignment of cell types to individ-
ual cells (10, 11). Exploiting RCA2’S clustering algorithms,
we also allow annotation on the cluster level (see Methods).
For further biological interpretation RCA2 identifies DEG in
either a 1 vs all or a pairwise scheme. DEGs are visualized
in heatmaps following the established SEURAT color scheme
(Sup. Fig. 7) and can be used as input for a GO-Term (32)
enrichment and KEGG pathway (33) analysis, providing bio-
logical insights on clusters beyond lists of marker genes (Sup.
Fig. 8).

Supervised clustering is robust to batch effects. On of
the major advantages of supervised clustering is its ability to
reduce the contribution of unwanted variation, which mani-
fests in the form of noise or technical variation. This is cru-
cial in the prevention of batch effects. By projecting sc data
onto a reference panel of purified transcriptomes, supervised
clustering is able to preserve only the cell type-specific varia-
tion and ignore variation from other sources. This is based on
the concept shown in Sup. Fig. 9, i.e. the batch effect expres-
sion signature will be orthogonal to the signature of cell type
marker genes, because any two randomly selected vectors are
orthogonal in a high dimensional space.
We benchmarked RCA2s robustness to batch effects by
comparing its performance against several other commonly
used scRNA-seq clustering algorithms: SEURAT, SEURAT
WITH SCTRANSFORM, MULTICCA, MULTICCA WITH
SCTRANSFORM, SCRAN, SCANPY, MNN CORRECT and
SCANORAMA.
The benchmarking relies on SI values to determine clustering
quality with respect to batches and cell types (28). A robust
method has a low SI in separating batches and a high SI in
separating cell types.
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Rheumatoid arthritis (RA) data set benchmarking. We use a
RA data sets comprised of 5,829 sorted cells generated by
(19). They detected plate-specific batch effects while cluster-
ing cells using the SEURAT package, which were more pro-
nounced in some plates as compared to others. RCA2 con-
siderably outperforms the other tested algorithms in terms of
cell type separation (Fig. 3a) but also in terms of batch ro-
bustness. While data from different plates is readily merged
together (Fig. 3b) cells cluster well according to their de-
termined cell type (Fig. 3c). We observed that using SC-
TRANSFORM in the SEURAT INTEGRATION workflow wors-
ened both separation by batch and separation by cell type.

Cite-seq data set benchmarking. Next, we considered PBMC
CITE-seq data sequenced using (a) Drop-Seq and (b) 10X
Chromium that were analysed together as a single dataset.

CITE-Seq data contains both the antibody signature of cells
and their transcriptomic profile. Thus it provides the capabil-
ity of defining a ground truth to an scRNA-seq dataset using
antibody-derived tags (ADTs). We used SEURAT to cluster
SCs in the antibody space in each of the CITE-seq datasets
and used the unique ADT signature of each cluster to anno-
tate them (Sup. Fig. 10) (Methods).
Benchmarking on the CITE-Seq data showed that SEURAT
INTEGRATED, MNN CORRECT and SCANORAMA success-
fully reduced batch effects, similar to RCA2. However, that
was achieved at the cost of worsening cell type separation
(Fig.3d). SEURAT (Sup. Fig. S11), SCRAN and SCANPY
produced clustering results significantly affected by proto-
col, with SCANPY performing the best of these unsupervised
clustering methods without explicit batch correction in terms
of cell type separation. RCA2 is among the top method in
terms of batch robustness (Fig.3e) and has the best SI value
for cell types leading to a crisper separation of cell types
(Fig.3f).
Using ADT-tags of the CITE-seq data, we are able to char-
acterize the batch not only from a technical perspective using
the SI, but also from a biological point of view: we computed
the set of DEGs that characterizes the sc capture protocol
batch within each ADT cluster (Fig.4a, Sup. Table 3). While
the majority of DEGs are ribosomal genes, we also find sev-
eral genes that are both cell type and batch specific markers,
such as H3F3A, IGKC, IFI30, or IGLC2. The latter three
are related to immune reaction and gamma-interferon signal-
ing. Another interesting gene that is associated to the batch
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Fig. 3. a) Silhouette Index (SI) measuring separation of cells in RA data by plate and cell type. b-c) UMAP visualization of RCA2 clustering of RA data colored by b) plate
and c) cell type. d) SI measuring separation of cells in CITE-Seq data by protocol and cell type. e-f) UMAP visualization of RCA2 clustering of CITE-Seq data colored by e)
protocol and f) cell type.

is FOS, which has been associated to several molecular pro-
cesses and has been linked to cancer progression (34). As it
is known that the expression of FOS can be easily changed by
external stimuli (35), it might be more likely that, in our data
set, the observed differences in FOS expression are of techni-
cal instead of biological nature. Indeed, the RCA2 projection,
shown in Fig. 4b, is not affected by any of the DEGs linked
to the batch effects and is supporting the antibody based clus-
tering well. The latter is also backed up by the expression of
the genes targeted by the antibodies (Sup. Fig. 12).
To characterize the genes defining the observed batch fur-
ther, we investigated their GO term enrichment separately for
genes expressed in the 10X batch (Sup. Fig. 14) and the
Drop-seq batch (Sup. Fig. 15). All of the observed GO terms
can be exclusively explained by the difference in sequenc-
ing protocol and therefore potentially misguide down-stream
analysis, if less robust clustering methods are used.
We investigated this hypothesis by computing cluster specific
marker genes for clusters identified with various scRNA-seq
pipelines, using the same parameters and settings. We com-
pared those method specific DEG to the set of batch specific
DEGs, shown in Fig.4a, using an Upset plot (Sup. Fig. 15).
Indeed, RCA2 shows the lowest overlap between cluster spe-
cific marker genes and the set of batch DEG compared to the
other methods, underlining the robustness of RCA2 towards
batch effects further.

Use-case on 10X PBMC data set comprising 5000
cells. We obtained a 10X dataset containing 5025 Peripheral
blood mono nuclear cells (PBMCs) from a healthy donor. We
imported the CellRanger output directly into RCA, consider-
ing cells with an UMI count ≥ 100.
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Fig. 4. a) Expression of DEG computed for sequencing protocol batch within ADT
clusters. b) Reference projection of the CITE-seq data against RCA2’s global panel.

Upon QC using RCA2’s QC functionality (Sup. Fig. 15, Sup.
Table 1), the scRNA-seq data is projected against a new, man-
ually curated reference panel of immune cell types, based on
purified populations of human hematopoietic cells (16). We
utilized the integration of Louvain graph based clustering al-
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gorithm into RCA2 to cluster the data using a resolution of
0.1, which leads to a sensible separation of cells in terms of
the projection heatmap (Sup. Fig. 16) as well as in the re-
sulting number of clusters (Sup. Fig. 4). We obtained nine
clusters forming four disconnected islands in a UMAP based
on the cell to cell type correlation space obtained by the ref-
erence projection (Sup. Fig. 17a).
RCA’s automated cluster annotation function determines cell
types, shown in Sup. Fig. 17b. While the B-cell cluster
(red) is very distinct from all remaining clusters, T and natu-
ral killer cells form a continuum (blue, brown, yellow, green).
Monocytes (turquiose) and non-classical monocytes (black)
appear to be well separated within a major myeloid clus-
ter. In close proximity in UMAP space, small populations of
myeloid (pink) and plasmacytoid (magenta) dendritic cells
were identified. While the automatically determined labels
agree with the projection heatmap shown in Sup. Fig. 17a,
this can be expected by the design of RCA2 and the projec-
tion step. Therefore, we use canonical marker genes, which
are used for instance also in the SEURAT tutorial, to verify
cell types. As shown in Sup. Fig. 17c-j, the abundance of
the various marker genes corresponds well to the identified
clusters.
To further characterize the clusters, we compute DEGs in a
pair-wise manner (Sup. Fig. 7b). Sup. Table 4 lists all identi-
fied DEGs. As shown in Sup. Fig. 18, we obtain several sig-
nificant terms in GO term analysis using these DE genes for
the natural killer cell cluster including cytolysis, cell killing
and cellular defense response. These are well matching to the
expected biological function of natural killer cells. Also, for
the naive CD4 T-cell cluster we obtain sensible terms such as
adaptive immune response, immune response-activating cell
surface receptor signaling pathways, and activation of im-
mune response (Sup. Fig. 19).
This example illustrates that RCA2 allows a hassle-free anal-
ysis to characterize clusters with minimal manual efforts. The
example can be reproduced by following the online tutorial
on our github page.

Cluster specific quality control is essential to retain
high-quality cells in complex data sets. Here, we con-
sider four human bone marrow specimens separated into
CD34+ and CD34- fractions (Methods). Clustering the
RCA2 reference projection using Louvain clustering with a
resolution of 0.1, we find ten clusters representing major cell
types (Sup. Fig. 20). With RCA’s cluster specific QC func-
tion, we observed that the various cell types included in the
dataset do require different QC thresholds (Sup. Fig. 21)
For instance, the average NODG for the lymphoid popula-
tion, e.g. B or T cells, is around 1,000, while the NODG
of progenitor cells can be up to three fold higher. Similarly,
the percentage of mitochondrial reads shows different distri-
butions. While it has low standard deviation for Pro-B cells,
it values spread out widely e.g. for Classical Monocytes. As
indicated by the color code in Fig. 5a, cluster agnostic thresh-
olds (Sup. Fig. 22) would result in a substantial loss of cells,
which is quantified for the final clusters in Fig. 5b and clearly
illustrates the importance of a (major) cell type specific QC.

Final cell type specific QC thresholds are listed in Sup. Tab.
2.
Upon QC on the level of major cell types, we used RCA2
to define cell types on a more detailed level. Using Louvain
clustering, we found the most convincing clustering in terms
of the projection heatmap using a resolution of 0.5. Doublets
have been removed at this stage with DOUBLETFINDER (21)
using the 0.97 quantile of all pANN values as a threshold,
resulting in the identification and removal of 906 doublets
(Sup. Fig. 23). Final cell type annotations, based on projec-
tion scores (Sup. Fig. 24) and backed up with DEGs (Sup.
Fig. 25, Sup. Table 5) as well as canonical markers (Sup.
Fig. 26), are indicated in the UMAP representation of the
RCA2 projection shown in Fig. 5c.
We separated the bone marrow data into two populations us-
ing magnetic bead selection as cells that are either positive or
negative for the progenitor marker CD34 (36). As shown in
Sup. Fig. 27, the RCA2 reference projection based UMAP
of the scRNA-seq data shows distinct levels of CD34 FACS
labels. These match well to the identified cell types shown in
Fig. 5c.
For example, hematopoietic stem/progenitor clusters
(HSPC), i.e. HSC/MPP, LyP-1, ERP, MEP, MyP-1 and MyP-
2, representing progenitor populations are almost completely
composed of cells with a CD34+ FACS label, while clusters
such as B cells or Classical Monocytes, that are composed of
differentiated cells are enriched for cells with a CD34- label
(Sup. Fig. 28a). However, we note that some clusters like
naive T cells and non-classical monocytes also had a small
contribution of 10− 15% from cells labelled as CD34+
cells by our MACS sorting strategy. This is not unexpected
because our workflow for purifying HSPCs lacks a prior
conventional lineage-depletion (lin-) step.CD34+ popula-
tions within the bone marrow are known to be heterogeneous
and lin- CD34+ populations were shown to mainly harbour
stem cell activity (37). Hence, our MACS sorting strategy is
expected to deliver false positives in the form of cells that are
retained in the CD34+ magnetic columns but are in reality
differentiated cells. However, RCA2 is able to identify such
lineage+CD34+ cells and clusters them correctly based on
their transcriptome. Thus, RCA2 offers a more precise
in-silico alternative to the conventional lineage-depletion
step for HSPC studies. Compared to an analysis with Seurat
using default parameters (Sup. Fig. 28b), RCA2 achieves
a better purity: In 10.05% of RCA2 clusters, the impurity
is > 20%, compared to 19.05% using Seurat. The validity
of our approach is also supported by the fact that cell type
proportions are in agreement with earlier studies (Sup. Fig.
29).
This example illustrates the ability of RCA2 to seamlessly
derive meaningful annotations and dimensionality reductions
even in highly complex datasets where cells are placed in a
continuum and the reference set might not contain exactly
matching cell types.

RCA2 clusters PBMCs from COVID-19 patients more
robustly than de-novo approaches. Using scRNA-seq
PBMC data obtained from seven COVID-19 patients and six
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healthy donors, Wilk et al. reported a developing neutrophil
(DN) population that seemingly showed a phenotypic rela-
tion with plasmablasts in dimensionality reduction (22). Wilk
et al. hypothesized a lymphocyte-to-granulocyte differentia-
tion process to be associated with severe COVID-19 infec-
tion. However, as raised by (38), this UMAP based interpre-
tation contradicts the principle cell lineage fate. By project-
ing all of 44,721 cells analyzed by Wilk et al. to immune
reference panels in RCA2, we identified that a large portion
of cells were actually low quality cells or potential doublets
(Fig.6a).

We identified 32 clusters using graph-based clustering (res-
olution 1.3) on the reference projection of all 44,721 cells
(Sup.Fig. 30, 31a). Seven clusters (darkorange, darkred,
green, greenyellow, lightcyan and lightgreen) exhibit am-
biguous projection profiles showing high correlations with
multiple cell types from distinct lineages, suggesting that
these cells are either of low quality or doublets (Sup. Fig.
31b). Additional marker gene profiling coupled with a
NODG comparison supported this hypothesis (Sup. Fig.
31c,d). For instance, clusters darkred and darkorange had
high correlations with monocytes and T cells, respectively
(Sup. Fig. 31b). However, both of them also showed high
transcriptomic correlations with red blood cells (RBC), im-
plying that these cells could be contaminated by RBC (Sup.
Fig. 31b). We observed high expression levels of RBC genes,
such as GYPA and HBB, in these two clusters (Sup. Fig. 31c)
and significantly lower NODG of these two clusters compar-
ing to monocytes and T cells respectively (Sup. Fig. 31d).

Next, we pinpointed the location of the 206 developing neu-
trophils (DN) annotated by Wilk et al. within our RCA2
UMAP, and found these cells to be a mixture of different
cell types (Fig. 6b). Similar to the initial SingleR annota-
tion for the DN cluster made by Wilk et al., 131 cells were

positioned within the Myelocyte & Neu group, which consis-
tently showed high expression of premature neutrophil gran-
ule genes in our RCA2 analysis (Sup. Fig. 32a). The re-
maining 75 cells were either low quality/doublets (32 cells)
or other cell types (Sup. Fig. 32b). Particularly, 29 DN were
annotated as CD14 monocytes by RCA. In order to ascer-
tain that the RCA2 approach did correctly cluster and anno-
tate these DN, we compared the RCA2 reference projection
profiles and feature genes between the 131 and 29 DN an-
notated as myelocytes and CD14 monocytes in the RCA2
analysis respectively (Sup. Fig.32c,d). Indeed, the former
131 DN showed high correlation with the transcriptome ref-
erence of myelocytes, while the latter 29 DN were highly
correlated with CD14 monocytes with high expression of the
marker genes such as CD14 and CD300E (39)) (Sup. Fig.
32d). Therefore, RCA2 has precisely segregated these DN
into their real cell types.

Interestingly, we did not observe the phenotypic relation
by dimensionality reduction between RCA-annotated mye-
locytes and plasmablasts as described by Wilk et al. (Fig.6a).
In order to assess the transcriptomic similarity between
myeloid-derived myelocytes and lymphoid-derived plas-
mablasts, we charted the UMAP embedding and compared
the DEGs across these cell types (Fig.6c). As comparison
control, we also included myeloid-derived monocytes and
DCs in the analysis (Fig.6c). As expected, myelocytes and
plasmablasts did not form a differentiation bridge between
them, and a clear difference at the gene-expression level were
characterized between these two cell types (Fig.6c-e). Pre-
sumably, the initial findings of the differentiation bridge be-
tween DN and plasmablasts by Wilk et al. could be due to
the presence of low-quality cells and doublets. Indeed, after
removing these sub-optimal cells and applying the same anal-
ysis pipeline used by the authors, we observed distinct sep-
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Fig. 6. a) UMAP shows the RCA2 clustering of cells from the COVID-19 study by
Wilk et al. b) The location of developing neutrophils annotated by Wilk et al. are
marked as red dots in the RCA2 UMAP. c) UMAP represents the sub-clustering of
CD14 monocytes, CD16 monocytes, myelocytes, neutrophils, and plasmablasts us-
ing an unsupervised approach. d) Bubble plot shows the marker gene expression
levels across the identified cell types from c. Bubble size indicates expression per-
centage for each cell type, while color intensity represents scaled expression levels.
e) Heatmap shows the expression profiles of cell-specific genes across the iden-
tified cell types from c. f) UMAP plot shows the cell clustering using the analysis
pipeline by Wilk et al. after removing low-quality cells and doublets.

aration between DN and plasmablasts (Fig.6f). Altogether,
RCA2 has provided a more precise clustering and UMAP vi-
sualization of PBMCs from this COVID-19 study.

Reference based clustering is able to capture disease
states of cells. To address a prevalent misconception that
supervised clustering algorithms are unable to identify novel
cell types and cell states, we used RCA2 to project and to
cluster two publicly available data sets: one Acute Myeloid
Leukemia (AML) data set (23) as well as the already intro-
duced Covid-19 dataset (22). Note that no additional QC was
performed and data is used as provided by the authors. We
refer to the Methods section for further processing details.
As shown in Fig. 7a, we observe that PBMCs from the Covid-
19 data occur both in condition specific and in shared neigh-
bourhoods. This is an expected behaviour and corresponds
well to the original findings of (22). Upon clustering the
data in RCA, we obtained 28 clusters. As shown in Sup. Fig.
33a, several clusters are depleted for cells from Covid-19 pa-
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Fig. 7. a) UMAP embedding of a reference projection for the Covid-19 PBMC data
set from (22). b) UMAP embedding of a reference projection for the AML dataset
809653 from (23). AML and control cells are well separated in reference space.

tients, whereas five clusters are composed of more than 75%
of cells from Covid-19 patients, despite no disease specific
reference cell types are included in our panels.
For the AML data set we obtain a clearer picture. According
to the authors classification of cells, AML and healthy cells
separate almost perfectly in the RCA2 projection although no
AML samples are included in the reference panels (Fig.7b.).
This separation is also reflected in the cluster composition
plot (Sup. Fig. 33b).

DISCUSSION AND CONCLUSIONS
Although de novo clustering is currently the predominant
strategy to cluster scRNA-seq data, it does have some dis-
advantages, the most important of which is vulnerability to
batch effects. Consequently, de novo clustering necessitates
use of explicit batch-effect correction (4). However, one fun-
damental problem with batch correction is that it cannot dis-
tinguish between technical variation and genuine biological
differences. Hence, when batch and biology are confounded,
there is a risk of erroneously suppressing biological varia-
tion. Since reference-based methods can mitigate this prob-
lem, mapping of SCs to a reference atlas has recently been
identified as one of the grand challenges in the SC field (40).
RCA2 directly addresses this challenge.
Indeed, our benchmarking of batch effect robustness sup-
ports the above expectation. In two independent benchmarks,
RCA2 was the best performer in clustering cells by cell type
rather than batch, even without explicit batch correction (Fig.
3,4). Consistently with this finding, DEGs between clusters
reflected cell type identity in the case of RCA2, but batch
effects in the case of de novo clustering. Importantly, in ad-
dition to being robust to batch effects, RCA2 is able to detect
cell types and states not present in the reference panel (Fig.
5,7). This capability of RCA2 implies that novel cell states
could potentially be discriminated even when projected onto
reference transcriptomes.
One inter-operability advantage of RCA2 is that count ma-
trices from Seurat can be imported. In return, RCA2 re-
sults can be incorporated into a Seurat object. In terms of
scalability, RCA2 is a key improvement over the initial re-
lease: RCA2 memory usage grows linearly with the number
of cells, unlike the quadratic scaling of RCA (Fig. 2). Also,
execution time is over ten-fold faster on large datasets. In ad-

Schmidt et al. | RCA2 bioRχiv | 9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.431527doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431527
http://creativecommons.org/licenses/by-nc/4.0/


DRAFT

dition, RCA2 incorporates multiple new reference panels for
human and mouse and also supports generation of new pan-
els from user-supplied transcriptome data. RCA2 also pro-
vides multiple features for data visualization and interpreta-
tion, such as generation of editable (ggplot2) figures, KEGG
and GO enrichment analysis (Fig. 1). Lastly, RCA2 sim-
plifies cluster-specific QC, which is essential for discarding
low-quality cells and doublets in SC data from heterogeneous
samples (Fig. 5).
QC can have a severe effect on clustering, particularly de
novo clustering. Indeed, our re-analysis of a recently pub-
lished COVID-19 dataset showed that known cell type mark-
ers showed clear cluster-specific expression only after QC us-
ing RCA2 (Fig. 6d). In contrast, reference-based clustering
using RCA2 was robust to the presence of low-quality cells
and doublets (Sup. Fig. 31). Importantly, the "developing
neutrophils" identified as plasmablast-derived in the previous
study formed a novel cluster after QC that was clearly distinct
from plasmablasts.
Overall, we demonstrated that reference-based cluster-
ing of scRNA-seq data has unique advantages and pro-
vides a complementary strategy to widely-used unsuper-
vised approaches. RCA2, which is freely available on
github (https://github.com/prabhakarlab/RCAv2), provides
the single-cell community with a robust, scalable and easy-
to-use R-package that can be easily integrated into existing
workflows to leverage these advantages. We will continue to
maintain and enhance RCA2, for example by expanding the
set of reference panels and by adding more clustering strate-
gies downstream of reference projection. Given the potential
of reference-based methods for SC data analysis, we believe
that such methods may in future also prove useful in analyz-
ing multi-modal SC data.
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