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Abstract 
Multimodal data is rapidly growing in many fields of science and engineering, including             
single-cell biology. We introduce MultiMAP, an approach for the dimensionality reduction and            
integration of multiple datasets. MultiMAP recovers a single manifold on which all of the data               
resides and then projects the data into a single low-dimensional space so as to preserve the                
structure of the manifold. MultiMAP is based on a framework of Riemannian geometry and              
algebraic topology, and generalizes the popular UMAP algorithm to the multimodal setting.            
MultiMAP can be used for visualization of multimodal data, and as an integration approach that               
enables joint analyses. MultiMAP has several advantages over existing integration strategies for            
single-cell data, including that MultiMAP can integrate any number of datasets, leverages            
features that are not present in all datasets (i.e. datasets can be of different dimensionalities), is                
not restricted to a linear mapping, can control the influence of each dataset on the embedding,                
and is extremely scalable to large datasets. We apply MultiMAP to the integration of a variety of                 
single-cell transcriptomics, chromatin accessibility, methylation, and spatial data, and show that           
it outperforms current approaches in preservation of high-dimensional structure, alignment of           
datasets, visual separation of clusters, transfer learning, and runtime. On a newly generated             
single-cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) and         
single-cell RNA-seq (scRNA-seq) dataset of the human thymus, we use MultiMAP to integrate             
cells along a temporal trajectory. This enables the quantitative comparison of transcription factor             
expression and binding site accessibility over the course of T cell differentiation, revealing             
patterns of transcription factor kinetics. 
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Introduction 

 
Multimodal data is rapidly growing in many fields of science and engineering, including             
single-cell biology. Emerging single-cell technologies are providing high-resolution        
measurements of different features of cellular identity, including single-cell assays for gene            
expression, protein abundance 1,2, chromatin accessibility3, DNA methylation 4, and spatial         
resolution 5. Large scale collaborations including the Human Cell Atlas international consortium6,7           
are generating an exponentially increasing amount of data of many biological tissues, using a              
myriad of technologies. Each technology provides a unique view of cellular biology and has              
different strengths and weaknesses. Integrating these measurements in the study of a single             
biological system will open avenues for more comprehensive study of cellular identity, cell-cell             
interactions, developmental dynamics, and tissue structure 8.  
 
The integration of multi-omic data poses several challenges. Different omics technologies           
measure distinct unmatched features with different underlying distributions and properties and           
hence produce data of different dimensionality. This makes it difficult to place data from different               
omics in the same feature space. Additionally, omics technologies can also have different noise              
and batch characteristics which are challenging to identify and correct. Further, as multi-omic             
data grows along two axes, the number of cells per omic and the number of omics per study,                  
integration strategies need to be extremely scalable. 
 
Most data integration methods project multiple measurements of information into a common            
low-dimensional representation to assemble multiple modalities into an integrated embedding          
space. Recently published methods employ different algorithms to project multiple datasets into            
an embedding space, including canonical correlation analysis (CCA)9, nonnegative matrix          
factorization (NMF)10 or variational autoencoders11. In the field of genomics, single-cell           
transcriptomics, as a well-established method, often serves as a common reference, facilitating            
the transfer of cell type annotation and data across multiple technologies and modalities. While              
these methods can be tremendously powerful, they require correspondence between the           
features profiled across omics technologies. Another limitation of many existing methods is they             
are challenged by scaling to large datasets.  
 
Here we introduce a method that overcomes all these limitations: MultiMAP, an approach for the               
dimensionality reduction and integration of multiple datasets. MultiMAP integrates data by           
constructing a non-linear manifold on which diverse high-dimensional data reside and then            
projecting the manifold and data into a shared low-dimensional space. In contrast to other              
integration strategies for single-cell data, MultiMAP can integrate any number of datasets, is not              
restricted to a linear mapping, leverages features that are not present in all datasets (i.e.               
datasets can be of different dimensionalities), can control the influence of each dataset on the               
embedding, and is effortlessly scalable to large datasets. The ability of MultiMAP to integrate              
datasets of different dimensionalities allows the strategy to leverage information that is not             

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.431421doi: bioRxiv preprint 

https://paperpile.com/c/bKPAQM/MAcp+GCZW
https://paperpile.com/c/bKPAQM/bzcX
https://paperpile.com/c/bKPAQM/rlPT
https://paperpile.com/c/bKPAQM/4lt8
https://paperpile.com/c/bKPAQM/LeI9+1Ca1
https://paperpile.com/c/bKPAQM/TMf5
https://paperpile.com/c/bKPAQM/G98d
https://paperpile.com/c/bKPAQM/ntbu
https://paperpile.com/c/bKPAQM/0doC
https://doi.org/10.1101/2021.02.16.431421


 

considered by methods that operate in a shared feature space. (e.g. MultiMAP can integrate the               
20,000-feature gene space of scRNAseq data together with a 100,000-feature peak space of             
scATACseq data).  
 
We apply MultiMAP to challenging synthetic multimodal data, and demonstrate its ability to             
integrate a wide range of single-cell omics datasets. Finally, we apply the approach to the study                
of T cell development with new scATACseq data from fetal thymi. We show that MultiMAP can                
co-embed datasets across different technologies and modalities, while at the same time            
preserving the structure of the data, even with extensive biological and technical differences.             
The resulting embedding and shared neighborhood graph (MultiGraph) can be used for            
simultaneous visualisation and integrative analysis of multiple datasets. With respect to single            
cell genomics data, this allows for standard analysis on the integrated data, such as cluster               
label transfer, joint clustering, and trajectory analysis. 
 

Results 
 
The MultiMAP Framework 
 
We introduce MultiMAP, an approach for the integration and dimensionality reduction of            
multimodal data based on a framework of Riemannian geometry and algebraic topology.            
MultiMAP takes as input any number of datasets of potentially differing dimensions. MultiMAP             
recovers geodesic distances on a single latent manifold on which all of the data is uniformly                
distributed. These distances are calculated between data points of the same dataset by             
normalizing distances with respect to a neighborhood distance specific to the dataset, and             
between data points of different datasets by normalizing distances between the data in a shared               
feature space with respect to a neighborhood parameter specific to the shared feature space.              
These distances are then used to construct a neighborhood graph (MultiGraph) on the manifold.              
Finally the data and manifold space are projected into a low-dimensional embedding space by              
minimizing the cross entropy of the graph in the embedding space with respect to the graph in                 
the manifold space. Integrated analysis can be performed on the embedding or the graph, and               
the embedding also provides an integrated visualization. The mathematical formulation of           
MultiMAP is elaborated in Supplementary Methods. 
 
In order to study MultiMAP in a controlled setting, we first applied it to two synthetic examples of                  
multimodal data (Methods). The first synthetic data consists of points sampled randomly from             
the canonical 3D “Swiss roll” surface and the 2D rectangle (Figure 2a). The dataset is               
considered multimodal data, because samples are drawn from different feature spaces but            
describe the same rectangular manifold. In addition, we are given the position along the              
manifold of 1% of the data. This synthetic setting illustrates that MultiMAP can integrate data in                
a nonlinear fashion and operate on datasets of different dimensionality, because data points             
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along a similar position on the manifold are near each other in the embedding (Figure 2b). The                 
MultiMAP embedding properly unrolls the Swiss Roll dataset, indicating that the projection is             
nonlinear. The embedding also appears to preserve aspects of both datasets; the data is curved               
and at the same time unrolled. 
 
The second synthetic data is based on the MNIST database 12, where handwritten images were              
split horizontally with thin overlap (Figure 2c; see Methods for details). The two datasets can be                
considered multimodal because they have different feature spaces but describe the same set of              
digit images. The purpose of this setting is to determine if MultiMAP can effectively leverage               
features unique to certain datasets. The thin overlapping region of the two halves is not enough                
information to create a good embedding of the data (Figure 2c). Many distinct digits are similar                
in this thin central sliver, and hence they cluster together in the feature space of this sliver.                 
Indeed, in a UMAP projection of the data in the shared feature space of this overlap, the                 
clusters of different digits are not as well separated as in the UMAP projections of each half                 
(Figure 2c).  
 
A multimodal integration strategy that effectively leverages all features would use the features             
unique to each half to separate different digits, and the shared space to bring the same digits                 
from each dataset close together (Figure 2d). We show that with MultiMAP the different              
modalities are well mixed in the embedding space and the digits cluster separately, despite              
mostly different feature spaces and noise being added to only the second dataset. This              
indicates that MultiMAP is leveraging the features unique to each dataset and is also robust to                
datasets with different noise.  
 
MultiMAP has weight parameters ωv which control the contribution of each dataset Xv to the final                
embedding. When a dataset’s weight is larger, its structure has a larger contribution to the               
MultiMAP embedding. When integrating the MNIST data, for different choices of ωv, the             
datasets remain well integrated in the embedding space (Extended Data Figure 1). 
 
 
MultiMAP integration of single-cell transcriptomics and chromatin accessibility 
 
Having shown that MultiMAP succeeds in integrating synthetic data, we apply the technique to              
real biological data. Epigenomic regulation underlies gene expression and cellular identity.           
Hence, integration of single-cell transcriptomics and epigenomics data provides an opportunity           
to investigate how epigenomic alterations regulate gene expression to determine and maintain            
cell identity. In addition, effective integration with transcriptomics data can improve the            
sensitivity and interpretability of the sparse scATAC-seq data. 
 
To assess MultiMAP’s ability to integrate transcriptomic and epigenomic data, we applied the             
approach to integrate our previously generated high-coverage scATAC-seq data of mouse           
splenocytes13 and generated corresponding single-cell transcriptomic profiles of the same          
tissue. The high coverage of the plate-based scATAC-seq data as well as the published cluster               
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annotations of the subpopulations served as a good ground truth example to validate our              
method. The analysis of the transcriptomics data revealed similar subpopulations to the            
published scATAC-seq dataset, in addition to two RNA-specific clusters: a subpopulation of B             
cells with higher expression of Interferon-Induced (Ifit) genes and a subpopulation of            
proliferating cells (Extended Data Figure 3a,b).  
 
MultiMAP effectively integrated the two datasets, using both gene activity scores and the cell              
type-specific epigenetic information outside of gene bodies. The different modalities are well            
mixed in the embedding space and cells annotated as the same type are close together,               
regardless of the modality (Figure 3a). Next, we jointly clustered cells from both datasets using               
the MultiGraph. This produced clusters with markers corresponding to known cell types13            
(Extended Data Figure 3c). The annotations produced by this joint clustering were generally             
consistent with independent annotations of each dataset (Figure 3c). Two of the clusters             
determined to be proliferating cells and B cells with upregulated Ifit genes were found only in the                 
scRNA-seq data, as expected (Figure 3a, Extended Data Figure 3b). In addition, the integration              
produced by MultiMAP is robust to different choices of the weight parameters (Extended Data              
Figure 1c).  
 
Further, we used the MultiGraph to directly predict the cell types of the scATAC-seq given the                
cell types of the scRNA-seq. Figure 3d shows the confusion matrix of the predictions, illustrating               
that cells were generally annotated correctly. This illustrates the ability of MultiMAP to leverage              
annotation efforts of one omic technology to inform those of another. Interestingly, a small              
subset of cells from scRNA-seq previously annotated as T cells is now clearly separated on the                
MultiMAP plot, and clusters close to the B cells. Doublet detection confirmed that this cluster is                
composed of doublet T/B cells. These doublets are spread throughout the UMAP plot of the               
scRNA-seq data, but are clearly distinct on the MultiMAP plot (Extended Data Figure 3). This               
illustrates the power of MultiMAP, as a visualization tool, and to reveal new populations of cells. 
 
Next, we applied MultiMAP to integration of multiple datasets from each data modality, to              
assess the ability to account for batch effects. For this purpose, we used recently published               
scRNA-seq and scATAC-seq data of human bone marrow and peripheral blood mononuclear            
cells14. This dataset consists of 16 experimental samples, representing different experimental           
batches. Another challenge is that cell types are not in discrete clusters but rather on more of a                  
continuum. MultiMAP is able to simultaneously correct batch effects and modality differences,            
integrating all 16 datasets into a consistent embedding (Figure 3e). The different modalities are              
well mixed in the embedding and cells of the same type are close together, regardless of                
modality or batch. The cell type annotations of all of the data were taken from the original                 
publication 14, so they provide a good ground truth and independent validation of MultiMAP.             
Additionally, MultiMAP is able to correct batch effects present in different omics technologies.             
Applying MultiMAP to just the scRNA-seq data produces embedding that properly integrates            
cells of the same type regardless of batch, and the same is true when MultiMAP is applied to                  
only the scATAC-seq data (Figure 3f). It is also evident in this figure that clusters with cell types                  
unique to a batch remain unmixed in the embedding. This indicates that MultiMAP is not forcing                
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incompatible data to integrate. This demonstrates that MultiMAP can integrate datasets even if             
they have extensive technical differences. 
 
MultiMAP integration of multiple modalities of mouse brain cells 
 
Recent advances in spatial sequencing technology enable the simultaneous measurement of           
gene expression and spatial locations of single-cells, facilitating the study of tissue structure 5.             
While these technologies provide spatial information, they often measure only a small fraction of              
the genes measured by scRNA-seq. Integration of spatial measurements and scRNA-seq has            
the potential to provide spatial context to scRNA-seq data as well as to reveal finer grained                
biological differences in the spatial data by leveraging the greater number of cells and genes               
present in scRNA-seq data. 
 
We applied MultiMAP to the integration of a Drop-seq scRNA-seq data of the mouse frontal               
cortex15 and STARmap in situ gene expression dataset16. Despite the differences between the             
two dataset in the number of measured genes (only 1020 in STARmap) and the number of cells                 
(71640 in Drop-seq versus 2137 in STARmap), our integrated analysis shows that MultiMAP             
successfully integrates the datasets. Clustering the integrated data using the MultiGraph           
produced clusters with markers corresponding to known cell types (Figure 4a,b). One of the              
clusters, the claustrum, was found only in the scRNA-seq data, as expected. Integration with              
MultiMAP also resulted in improved cluster annotation for both datasets. Further, L4 cells were              
initially not found in the scRNA-seq data. However, after integration, L4 cells can also be found                
in the scRNA-seq, as validated with markers (Figure 4b). These cells were previously annotated              
as L5. The excitatory L4 neurons were only present in the STARMap data, as the motor cortex                 
and prefrontal cortex that are part of the frontal cortex are considered to lack a layer 4 in mice 17.                   
However after the integration we also identified L4 cells in the scRNA-seq data previously              
annotated as L5 neurons (Figure 4a,c, Extended Data Figure 4). A similar population of              
pyramidal cells located between layers 3 and 5 were recently identified both with anatomical              
and single-cell studies 18,19. This was confirmed by expression of marker genes associated with              
L4, including Cux2 and Rorb (Extended Data Figure 4). This illustrates the power of MultiMAP to                
reveal new cell types.  
 
MultiMAP also improves visualization of the STARmap data. Compared to the UMAP            
embedding, the MultiMAP embedding of the STARmap data exhibits tighter cell type clusters             
and increased separation between cell types (Figure 4e). Before integration with MultiMAP,            
many of the cell types of the spatial data did not cluster separately and were visually hard to                  
distinguish. This improvement was measured by the average Silhouette score in the embedding             
space, which is significantly larger for MultiMAP (Figure 4e). 
 
The joint cluster annotation of each STARmap cell can be plotted at its known spatial location,                
allowing study of the spatial structure of the tissue (Figure 4d). The pyramidal neurons localize               
to layers 2-6 and oligodendrocytes localize to the layer below the cortex. The interneurons do               
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not appear to exhibit spatial organization. These observations are all consistent with the known              
spatial architecture of the mouse visual cortex16. 
 
To investigate the performance of MultiMAP on the integration of more than two modalities, we               
applied the approach to integrate recently published multi-omics datasets of the mouse primary             
motor cortex18 consisting of 9 separate datasets, including 7 single-cell or single-nucleus            
transcriptomics datasets, one single-nucleus chromatin accessibility, and one single-nucleus         
DNA methylation (snmC-seq). MultiMAP successfully co-embedded more than 600,000         
single-cell or -nucleus samples assayed by six molecular modalities and identified the            
previously published cell subpopulations. The MultiMAP embedding displays good mixing of           
clusters from different modalities when the clusters correspond to the same cell type. Cell type               
annotations were taken from the original publication of the data, so they provide a good ground                
truth and an independent validation of MultiMAP. We further see that cell types that exist in one                 
modality, but not in the others, are not falsely aligned in the embedding space. This indicates                
that MultiMAP is not forcing incompatible data to integrate. 
 
Benchmarking 
 
We assessed and benchmarked the performance of MultiMAP against several popular           
approaches for integrating single-cell multi-omics, including Seurat3 9, LIGER10 and Conos20. To           
this end, we used a variety of multi-omic data with published cell type annotations, including the                
transcriptomics and chromatin accessibility spleen data, scRNA-seq and STARmap of the visual            
cortex, and the multi-omics data of the primary cortex.  
 
These integration approaches differ in key regards, summarized in Figure 5d. We used a              
diversity of performance metrics to comprehensively compare MultiMAP with other approaches,           
including transfer accuracy, silhouette score, alignment, preservation of the structure, and           
runtime. With these metrics, we quantified the separation of the joint clusters, how well mixed               
the datasets were after integration and how well they preserved the structure in the original               
datasets to investigate whether the methods integrate populations across datasets without           
blending distinct populations together.  
 
For all datasets, MultiMAP achieves top or near top performance on all metrics (Figure 5a,b).               
The embeddings produced by MultiMAP prove superior for transferring cell type annotations            
between datasets, separating clusters of different cell populations, integrating datasets in a            
well-mixed manner, and capturing the high-dimensional structure of each dataset. Critically,           
MultiMAP is faster than all other benchmarked methods, and significantly faster than LIGER and              
Seurat3 (Figure 5c). Seurat3 and LIGER were not able to scale to the primary cortex data of                 
600k, producing out-of-memory errors despite access to 218 GB of RAM. 
 
 
MultiMAP reveals patterns of T cell maturation along a multi-omic trajectory 
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Single-cell transcriptomics has enabled reconstruction of developmental trajectories and the          
study of dynamic processes such as differentiation and reprogramming. Bulk RNA-seq and            
ATAC-seq data has further revealed regulatory events driving these processes21. However, joint            
analysis of single-cell expression and chromatin accessibility profiles along a time course            
trajectory would allow the study of dynamic chromatin regulation alongside gene expression and             
elucidate epigenomic drivers of transcriptional change 22,23.  
 
In order to investigate the potential of integrating multi-omic data along a common differentiation              
trajectory, we focused on T cell development in the thymus. The thymus is an organ essential                
for the maturation and selection of T cells. Precursor cells migrate from the fetal liver and bone                 
marrow to the thymus where they develop into different types of mature T cells24. We recently                
provided a comprehensive single-cell transcriptomics atlas of the human thymus during           
development, childhood, and adult life, and computationally predicted the trajectory of T cell             
development from early progenitors to mature T cells24. To expand on this and further              
investigate the gene regulatory mechanisms driving T cell development, we generated           
single-cell transcriptomics and chromatin accessibility data from a human fetal thymus sample            
at 10 weeks of gestation.  
 
Clustering of the scRNA-seq data revealed cell types identified in our recently published             
transcriptomic cell atlas of the thymus24, including several clusters of T cells across different              
stages of development, fibroblasts, endothelial cells, erythrocytes, thymic epithelial cells (TECs),           
NK and ILC3 cells, and macrophages and dendritic cells (Extended Data Figure 5). However,              
the sparsity scATAC-seq and the continuous nature of cell types along the maturation trajectory              
made it difficult to cluster the ATAC cells into different T cell types (Extended Data Figure 5).                 
However, when we integrated the scATAC-seq and scRNA-seq with MultiMAP, and then jointly             
clustered using the MultiGraph, we could identify clusters with markers that match published             
thymus cell types24 (Figure 6 a,b). Integration with MultiMAP allowed us to annotate the cell               
types of the scATAC-seq data. 
 
We then selected the T cell populations identified from the joint clustering and performed              
diffusion map pseudotime analysis using the alignment MultiMAP graph. The reconstructed           
development trajectory showed a continuous differentiation with the same trend as the            
published study, starting from early double negative (DN) CD4-CD8-, gradually progressing to            
double positive (DP) CD4+CD8+ cells, and then differentiating into single positive (SP) mature             
CD8+ or CD4+ T cells. Hallmark genes of T cell differentiation vary in pseudotime in a manner                 
consistent with 24 (Figure 6d). This consistency serves as validation of the pseudotime inference             
and the integration produced by MultiMAP. 
 
To identify transcription factors (TFs) that potentially regulate T cell development, we studied             
changes in TF expression and TF binding site accessibility along the differentiation trajectory.             
The top variable TFs/TF binding sites along the trajectory included many TFs that have been               
previously shown to be involved in T cell differentiation, including GATA3, SPI1, MEF2C, ERG,              
TCF3, TCF4, TFAP4, MYBL2, STAT1, NR4A2 and others21,24,25 (Figure 6e, Extended Data            
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Figure 6). The TFs that most varied in time were found to show changes in motif accessibility at                  
the transition between the late DN and early DP stage of differentiation 25. 
 
Moreover, our integrated trajectory allowed us to identify TFs where changes in motif             
accessibility and expression of the TF itself were closely coordinated, for example ZEB1, IRF1,              
REL, FOS and others, suggesting that these TFs actively regulate their target genes             
immediately and directly (Figure 6e). In contrast, for TFs such as ETS1, JUN etc., gene               
expression of the TF significantly precedes the accessibility of the corresponding TF binding             
sites, suggesting that additional regulatory mechanisms are potentially required for opening of            
the TF motifs. 

 
Discussion 

 
We have developed a novel approach for dimensionality reduction and integration of multimodal             
data, which is the first method to our knowledge that takes into account the full data sets, even                  
when they have different feature spaces MultiMAP embeds multiple datasets into a shared             
space to preserve both the manifold structure of each dataset independently, as well as in               
shared feature spaces, and enables visualization and streamlined downstream analyses.          
Crucially, our method can incorporate different types of features, such as gene expression and              
open chromatin peaks or intergenic methylation, and thus takes advantage of the full power of               
multi-omics data. Ignoring the features unique to one dataset as in existing methods, may              
eliminate important information, for instance distinguishing features of certain populations of           
cells in single cell genomics data. (And of course these omissions can yield an integrated               
embedding that does not distinctly cluster all populations.) An additional advantage of MultiMAP             
is that the influence of each dataset on the shared embedding can be modulated. This is useful                 
when integrating datasets of different qualities, or when aligning a query dataset to a reference               
dataset. Comparison with existing methods for integration shows that MultiMAP outperforms or            
has close to best performance in every aspect investigated. MultiMAP is a robust and effective               
method for the dimensionality reduction and integration of multimodal data. Importantly,           
MultiMAP is extremely fast and scalable to massive datasets. 
 
Using synthetic examples to illustrate the power of the method, we show that MultiMAP              
leverages the features unique to each dataset to effectively integrate and reduce the             
dimensionality of the data, and is also robust to data with noise. Throughout our applications of                
MultiMAP to diverse single-cell multi-omic data, we demonstrate that our method can facilitate             
integration across transcriptomic, epigenomic, and spatially resolved datasets, and derive          
biological insights jointly from multi-omic single-cell data. In addition, our method can align             
datasets across different technologies and modalities even with extensive biological and           
technical differences. Crucially, we show that MultiMAP is robust and able to integrate datasets              
with different clusters and cell populations, illustrating that MultiMAP is applicable even when its              
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central hypothesis is not strictly reflected by the data. The multimodal integration of three or               
more omics technologies opens many opportunities for the comprehensive study of tissues.  
 
MultiMAP facilitates integrative downstream analysis such as cluster label transfer and joint            
clustering across modalities, improving the sensitivity and interpretability compared to analyzing           
each dataset alone. We illustrate this with respect to sparse chromatin accessibility, and in situ               
technologies that measure hundreds of genes. Moreover, the integrated cell–cell distances           
graph can be used for joint pseudotime inference across different omics. On a newly generated               
single cell ATAC-seq and RNA-seq dataset of the human thymus, we show that MultiMAP can               
integrate cells across pseudotime, enabling the study of chromatin accessibility and TF binding             
over the course of T cell development. 
 
We note that our method is based on the hypothesis that multi-omics data are uniformly               
distributed on a latent manifold. We note that an hypothesis of this sort, about the distribution of                 
data in a latent space, is a central feature of many existing integration strategies. For example,                
CCA-based strategies including Seurat and Conos assume that the data reside in a             
maximally-correlated manner in a latent space which is a linear projection of the original data.               
While this kind of hypothesis generally holds true for data generated from the same tissue, there                
may be cases where this is not strictly the case. Yet in practice, we find that MultiMAP is highly                   
robust to datasets that depart from this central hypothesis, i.e in datasets with different clusters               
and cell populations. In a synthetic experiment, we use MultiMAP to integrate datasets with              
varying numbers of shared clusters (Extended Data Figure 2). We find that MultiMAP is able to                
effectively integrate datasets that have only 1 out of 10 clusters shared between them. The               
transfer accuracy, silhouette score, and structure score of the MultiMAP integration remains            
largely constant as the number of overlapping clusters is varied. We also find that MultiMAP is                
able to integrate several biological datasets that vary in cell type composition, including             
integration of single-cell data from human hematopoiesis (Figure 3) and mouse primary cortex             
(Figure 4). 
 
Perhaps the greatest potential lies in applying MultiMAP to datasets beyond those considered             
here. Integrative analysis with MultiMAP can be used to compare healthy and diseased states,              
and identify pathologic features, or to uncover cell-type specific responses to perturbations.            
Other examples include the integration of data across species to enable studying the evolution              
of cell states and identifying conserved cell types and regulatory programs. Along similar lines,              
the integration of in vivo with in vitro models such as organoids will reveal the quality or                 
faithfulness of cells in a dish relative to their native counterparts. Finally, given the rapid               
development of joint multimodal single cell genomics methods (e.g. CITEseq for protein and             
RNA, joint snRNA- and ATACseq), it is relevant to point out that MultiMAP can be applied to                 
multi-omic data acquired both from different cells as well as from the same cells.  
 
In summary, given the broad appeal of dimensionality reduction methods (e.g. PCA, tSNE,             
UMAP), and the growth of multimodal data in many areas of science and engineering, we               
anticipate that MultiMAP will find wide and diverse use. 
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Figures  
 
 

 
 
Figure 1. Schematic of MultiMAP.  a. MultiMAP takes any number of datasets, including those 
of differing dimensions, recovers geodesic distances on a single latent manifold on which all 
data lie, constructs a neighborhood graph (MultiGraph) on the manifold, and then projects the 
data into a single low-dimensional embedding. Integrated analysis and visualisation can be 
performed on the embedding or graph. Variables are discussed in Methods. Xi is dataset i, x j i  is 
a point in Xi , M is the shared manifold, B(xi 2) is a ball on M centered at xi 2, Xij  is the ambient 
space of M in the coordinate space with data containing points from datasets i and j, g ij  is the 
metric of M in the space Xij , μ  is the membership function of the fuzzy simplicial set on the 
manifold, ν is the membership function of the fuzzy simplicial set in the low-dimensional space. 

b.  In the field of cell atlas technologies, encompassing single cell genomics and spatial 
technologies, MultiMAP can be applied to integrate across different omics modalities, species, 
individuals, batches, and normal/perturbed states. 
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Figure 2. MultiMAP applied to synthetic data.  a. Data sampled from the 3D Swiss Roll (X1) 
and a 2D rectangle (X2). b.  Shared embedding of both datasets produced by MultiMAP. Color 
indicates position along the manifold (a,b). c. Left (X 1) and right (X2) halves of MNIST 
handwritten digit images with a 2 pixel wide shared region. Gaussian noise is added to the right 
half. UMAP projections of each half and the shared region. d. Shared embedding of both MNIST 
halves (including Gaussian noise introduced for the right half) produced by MultiMAP. Each 
color is a different handwritten digit (0-9 as shown in the key). This illustrates that MultiMAP 
leverages both shared and unshared features to integrate multimodal datasets. 
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Figure 3. MultiMAP integration of single-cell transcriptomics and chromatin accessibility. 
a. MultiMAP visualization of the integration of published scATAC-seq 13 and newly generated 
scRNA-seq data of the mouse spleen (n=1), colored by omic technology (left hand panel) and 
independent cell type annotations of each omic technology (right hand panel). b. Dot plot 
showing the z-score of the mean log-normalised gene expression and gene activity scores of 
known markers of each identified joint cluster. The top dot of each row shows the cells from the 
scRNA-seq data, and the bottom dot represents the cells from the scATAC-seq data. c. 
Riverplot showing correspondence between the joint clusters and the independent annotations 
of the scATACseq and scRNAseq data. d. Confusion matrix of label transfer from the scRNAseq 
to the scATACseq. e.  MultiMAP visualization of the integration of single-cell transcriptomics and 
chromatin accessibility of human bone marrow and peripheral blood mononuclear cells14 colored 
by omic technology (left hand panel) and by the published cell type annotation (right hand 
panel). f. UMAP (panels in top row) and MultiMAP (panels in bottom row) visualization of the 
scRNA-seq and scATAC-seq data colored by cluster annotation and batch, showing the 
effective batch correction of both modalities using MultiMAP. 
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Figure 4. MultiMAP integration of multiple modalities of mouse brain cell data. 
a. MultiMAP visualization of scRNA-seq 15 (n=2) and spatial STARmap 16 (n=2) data of the mouse 
brain, colored by omic technology and joint clusters identified with the MultiGraph. b. Dot plot 
showing mean log-normalised gene expression of known markers of each identified joint cluster. 
The top dot in each row represents cells from the scRNA-seq data, and the bottom dot 
represents cells from the scATAC-seq data. c. Riverplot showing correspondence between the 
joint clusters, and the independent annotations of the scATACseq and scRNAseq data. d. 
Spatial locations of the STARmap cell, colored by the joint clusters. e. UMAP and MultiMAP 
visualizations of the STARmap dataset. The silhouette score as employed here quantifies the 
separation of clusters, and the higher value for MultiMAP shows the better cluster separation as 
compared to UMAP. f. MultiMAP visualization of the integration of single-cell transcriptomics, 
chromatin accessibility, and DNA methylation of the mouse primary cortex, colored by omic 
technology and the published cell type annotation 18. 
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Figure 5. Benchmarking MultiMAP against current approaches. a. Embeddings returned by 
multi-omic integration methods on different datasets. X indicates that the method terminated 
due to an out-of-memory error (218 GB RAM). b. Comparison of each method in terms of 
transfer learning accuracy (“Transfer”), separation of cell type clusters as quantified by 
Silhouette coefficient (“Silhouette”), mixing of different datasets as measured by fraction of 
nearest neighbours that belong to a different dataset (“Alignment”), preservation of 
high-dimensional structure as measured by the Pearson correlation between distances in the 
high- and low-dimensional spaces  (“Structure”), and runtime. c. Wall-clock time of multi-omic 
integration methods on different sized datasets. Seurat3 and LIGER produced out-of-memory 
errors when run on 500,000 data points (218 GB RAM). d. Comparison of capabilities and 
properties of each method. “Mapping” refers to the nature of the mapping employed by the 
method; “Max no. datasets” refers to the upper limit in terms of numbers of datasets accepted 
by the method; “Scalable to large data” refers to allowing a total of over 500,000 cells; “Data-set 
specific features” is whether the integration method allows information that is not shared across 
datasets; and “Dataset influence on integration” is whether the user can modulate the weighting 
of a given dataset relative to the others during the integration. 
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Figure 6. Integration of scRNAseq and scATACseq data of human fetal thymus reveals 
transcriptional regulatory principles of T cell development  
a. MultiMAP visualization of scRNA-seq and scATAC-seq datasets of the human fetal thymus 
(n=1), colored by modality and joint clusters identified using the MultiGraph. b. Heatmap of gene 
expression and gene activity scores of key markers of the joint clusters identified using the 
MultiGraph. c. Inferred pseudotime using the MultiGraph recovers the T cell differentiation 
trajectory. Color indicates pseudotime from red (early, beginning) to blue (late, end). d. Heatmap 
of the gene expression and gene activity scores over pseudotime of genes known to be involved 
in T cell development. e. Smoothed heatmaps of the z-score of the gene expression and motif 
accessibility of the most variable transcription factors over pseudotime. The motif accessibilities 
of TFs that varied most in time show changes in accessibility at the transition between the late 
DN and early DP stage of differentiation. This includes TFs such as GATA3, ZEB1 for which the 
chromatin at the binding sites closes at that transition, and TFs for which the chromatin at the 
binding sites opens, such as E2F4, ETS1 and others. 
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Supplementary Figures 
 

 
 

Extended Data Figure 1. MultiMAP's weight parameter. a. UMAP projections of the two halves 
of the MNIST handwritten digit images. b. MultiMAP embeddings as the weight parameters are 
varied. Each color is a different handwritten digit (0-9). When ω1 is larger than ω2, the 
embedding more closely resembles the projection of only X1; when ω2 is larger than ω1, the 
embedding more closely resembles the projection of only X2. For different choices of ωv, the 
datasets are well integrated in the embedding space. c. MultiMAP integration with varied weight 
parameters of published scATAC-seq 13 and newly generated scRNA-seq data of the mouse 
spleen (n=1). 
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Extended Data Figure 2. MultiMAP integration with non-shared clusters . a. MultiMAP           
integration of the left and right halves of MNIST handwritten digit images with a 2 pixel wide                 
shared region. Gaussian noise is added to the right half. MultiMAP integration is performed with               
a varying number of digit clusters removed from the right dataset, so that the integration ranges                
from one shared cluster (10%) to all clusters shared (100%). b. Comparison of the MultiMAP               
integration of the modified MNIST dataset as the percent of clusters shared is varied -- in terms                 
of transfer learning accuracy (“Transfer”), separation of cell type clusters as quantified by             
Silhouette coefficient (“Silhouette”), and preservation of high-dimensional structure as measured          
by the Pearson correlation between distances in the high- and low-dimensional spaces            
(“Structure”) 
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Extended Data Figure 3. Mouse spleen scRNA-seq and scATAC-seq data. a . UMAP 
visualization of the mouse spleen scRNA-seq data (n=1) colored by the identified cell types. b. 
UMAP visualisation of expression levels of Ifit family genes associated with interferon response, 
upregulated in one specific B cell subpopulation, and the proliferation marker Mki67. c. 
MultiMAP visualization of the integrated scRNA-seq and scATAC-seq mouse spleen data (n=1) 
colored by the jointly identified clusters. d, e. UMAP (d) and MultiMAP (e) visualizations of the 
mouse spleen data showing cells identified as doublets (labelled “True”) using an independent 
pipeline (Scrublet). The MultiMAP visualisation leads to these artifactual data points being 
clustered in one group, highlighting the power of this method to visualise and separate data. 
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Extended Data Figure 4. Marker genes of the L4 cluster identified in the scRNA-seq and 
STARmap integration.  MultiMAP visualisation of log-transformed gene expression of markers 
associated with L4 neurons. The MultiMAP integration identified L4 cells in the scRNA-seq data 
previously annotated as L5 neurons. 
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Extended Data Figure 5. Fetal thymus scRNA-seq and scATAC-seq data. a. UMAP 
visualisation of the fetal thymus scRNA-seq data (n=1) colored by identified cell types shows the 
same cell types as previously published 24. b.  UMAP visualisation of the fetal thymus 
scATAC-seq data (n=1) colored by the identified cell types. c. Dot plot showing the z-score of 
the mean log-transformed expression level of marker genes. d. Dot plot showing the z-score of 
the mean log-transformed gene activity scores of marker genes, showing not very clear 
separation of T cells clusters in the scATAC-seq data. e. UMAP visualisation of log-transformed 
gene activity scores of markers for specific T cell subpopulations, showing that the scATAC-seq 
dataset does not separate well the T cell clusters. 
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Extended Data Figure 6. Chromatin accessibility of transcription factor binding sites .           
Smoothed heatmaps of the z-score of motif accessibility of the top 100 most variable              
transcription factor binding sites over pseudotime. The TF binding sites that varied most in time               
show changes in accessibility at the transition between the late DN and early DP stage of                
differentiation. 
 

Methods 
 
MultiMAP 
 
MultiMAP (Figure 1) is a new approach for the integration and dimensionality reduction of              
multimodal data based on a framework of Riemannian geometry and algebraic topology.            
MultiMAP takes as input any number of datasets of potentially differing dimensions. The             
datasets take the form Xi , i =1,2,..., with xj i ∈ RDi being the j’th point in dataset Xi . MultiMAP                   
recovers geodesic distances on a single latent manifold M on which all of the data is uniformly                 
distributed. The geodesic distances are calculated between data points of the same dataset by              
normalizing distances in each dataset’s ambient space Xii with respect to a neighborhood             
distance specific to the dataset, and between data points of different datasets by normalizing              
distances between the data in a shared ambient space Xij with respect to a neighborhood               
distance specific to the shared feature space. When integrating multi-omics data with MultiMAP,             
the ambient spaces are the PC components of each dataset’s full feature space and of the                
shared feature space(s). These neighborhood distances are the radius of a constant-radius ball             
B on M. These distances are then used to construct a neighborhood graph (MultiGraph) on the                
manifold. Finally the data and manifold space are projected into a low-dimensional embedding             
space by minimizing the cross entropy of the graph in the embedding space with respect to the                 
graph in the manifold space. Specifically, this optimization minimizes cross entropy of a fuzzy              
set–representation (ν, {xj i }) of the graph in the embedding space with respect to a fuzzy               
set–representation (μ, {xj i }) of the graph in the manifold space. Integrated analysis can be              
performed on the embedding or the graph, and the embedding also provides an integrated              
visualization. An extended description of MultiMAP, including mathematical background, is in           
the Supplementary information. 
 
Synthetic Data 
 
MultiMAP was applied to two synthetic examples of multimodal data, in order to study the               
technique in a controlled setting. 
 
The first synthetic setting is schematized in Figure 2a. This setting consists of one dataset (X1)                
of 10,000 points sampled randomly from the canonical 3D “Swiss roll” surface (generated with              
sklearn in Python), and a second dataset (X2) of 10,000 points sampled randomly from a 2D                
rectangle. The two datasets can be considered multimodal data because they have different             
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feature spaces but describe a similar rectangular manifold. In addition, we are given the position               
along the manifold of 1% of the data. Distances between data in the different datasets are                
calculated for 1% of the data as the absolute differences between these positions. These              
distances are supplied to MultiMAP. The purpose of this setting is to determine if MultiMAP can                
integrate data in a nonlinear fashion and operate on datasets of different dimensionality.  
 
The second synthetic setting is schematized in Figure 2c. This setting consists of two datasets               
based on the MNIST database 26 which comprises 70,000 28x28 pixel grayscale images of             
handwritten digits 0-9. The first dataset (X1) consists of the 28x15 pixel left half of each of                 
images flattened into a 420 dimensional vector. The second dataset (X2) consists of the 28x15               
pixel right half of each of 70,000 digit images, also flattened into a 420 dimensional vector.                
Added to the second dataset is Gaussian noise with a mean of zero and a standard deviation                 
equal to the maximum pixel value. The two halves overlap by a 28x2 pixel region. Distances                
between data in the different datasets are calculated in this shared space and supplied to               
MultiMAP. The two datasets can be considered multimodal because they have different feature             
spaces but describe a similar population of digit images. The purpose of this setting is to                
determine if MultiMAP can effectively leverage features unique to certain datasets. The thin             
overlapping region of the two halves is not enough information to create a good embedding of                
the data. Many distinct digits are similar in this thin central sliver, and hence they should cluster                 
together in the feature space of the two pixel overlap. Indeed, in a UMAP projection of the data                  
in the shared feature space of this overlap, the clusters of different digits are not as well                 
separated as in the UMAP projections of each half (Figure 2c). A multimodal integration strategy               
that effectively leverages all features would use the features unique to each half to separate               
different digits, and the shared space to bring the same digits from each dataset close together.  
 
Acquisition and processing of human fetal thymic tissue 
 
The tissue sample used for this study was obtained with written informed consent from the               
participant in accordance with the guidelines in The Declaration of Helsinki 2000. The human              
fetal tissue was obtained from the MRC/Wellcome Trust-funded Human Developmental Biology           
Resource (HDBR, http://www.hdbr.org) with appropriate maternal written consent and approval          
from the Newcastle and North Tyneside NHS Health Authority Joint Ethics Committee            
(08/H0906/21+5). HDBR is regulated by the UK Human Tissue Authority (HTA; www.hta.gov.uk)            
and operates in accordance with the relevant HTA Codes of Practice. 
 
The developmental age was estimated from measurements of foot length and heel-to-knee            
length, and compared against a standard growth chart27. A piece of skin was collected from               
every sample for Quantitative Fluorescence-Polymerase Chain Reaction analysis using markers          
for the sex chromosomes and the following autosomes: 13, 15, 16, 18, 21, 22. The sample was                 
of normal karyotype. 
 
The tissue was processed immediately after isolation using enzymatic digestion. Tissue was            
transferred to a sterile 10mm2 tissue culture dish and cut into <1mm3 segments before being               
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transferred to a 50mL conical tube. Tissues were digested with 1.6mg/mL collagenase type IV              
(Worthington) in RPMI (Sigma-Aldrich) supplemented with 10%(v/v) heat-inactivated fetal         
bovine serum (FBS; Gibco), 100U/mL penicillin (Sigma-Aldrich), 0.1mg/mL streptomycin         
(Sigma-Aldrich), and 2mM L-glutamine (Sigma-Aldrich) for 30 minutes at 37°C with intermittent            
shaking. Digested tissue was passed through a 100µm filter, and cells collected by             
centrifugation (500g for 5 minutes at 4°C). Cells were treated with 1X red blood cells (RBC lysis                 
buffer (eBioscience) for 5 minutes at room temperature and washed once with a flow buffer               
(PBS containing 5%(v/v) FBS and 2mM EDTA) prior to cell counting. For scATAC-seq, cells              
were taken forward for nuclei isolation following 10X Genomics guidelines. Briefly, cells were             
centrifuged (300g for 5 minutes), added the lysis buffer (Tris-HCl (pH 7.4) 10mM; NaCl 10Mm;               
MgCl2 3mM; Tween-20 0.1%; NP-40 0.1%; Digitonin 0.01%; BSA 1%) and incubated on ice for               
3 minutes (time optimized for thymus). Following the incubation, cells were washed (Tris-HCl             
(pH 7.4) 10mM; NaCl 10Mm; MgCl2 3mM; BSA 1%; Tween-20 0.1%) and centrifuged (300g for               
5 minutes) and nuclei were resuspended in Diluted Nuclei Buffer (10X Genomics). Isolated             
nuclei were high-quality with well-resolved edges and no evidence of blebbing. The final nuclei              
concentration was determined prior to loading using a hemocytometer. 
 
Single-cell RNA and ATAC sequencing of human thymus 
 
scRNA-seq targeting 5,000 cells per sample was performed using the Chromium Controller (10x             
Genomics). Single-cell cDNA synthesis, amplification, and sequencing libraries were generated          
using the Single Cell 5’ Reagent Kit following the manufacturer’s instructions. The libraries from              
up to eight loaded channels were multiplexed together and sequenced on an Illumina HiSeq              
4000.  
 
scATAC-seq targeting 5,000 cells was performed using Chromium Single Cell ATAC Library and             
Gel Bead kit (10x Genomics). The libraries from up to eight loaded channels were multiplexed               
together and sequenced on an Illumina HiSeq 4000. 
 
Computational processing and analysis of the human fetal thymus single cell genomics 
data 
 
scRNA-seq data were aligned and quantified using the Cell Ranger Single-Cell Software Suite             
(version 2.0, 10x Genomics) against the GRCh38 human reference genome provided by Cell             
Ranger. The scRNA-seq data was preprocessed using Seurat3 and log-normalized. Cells with            
fewer than 500 detected genes and more than 10% mitochondrial gene expression content             
were removed. Clusters were identified using a community identification algorithm as           
implemented in the Seurat ‘FindClusters’ function, using 30 principal components (PCs) and            
annotated using canonical cell-type markers from24. Ribosomal genes, cell cycle genes24 and            
genes associated with dissociation-induced effects28 were removed. The data was then reduced            
to 50 dimensions using principal components analysis (PCA). 
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The scATAC-seq data was aligned and preprocessed using CellRanger (10x Genomics).           
SnapATAC29 was used for quality control, preprocessing, and generating cell-by-bin and           
log-normalized gene activity matrices. The binarized cell-by-bin matrix was used as input for             
term frequency-inverse document frequency (TF-IDF) weighting, using term frequency and          
smoothed inverse document frequency as the weighting scheme. Weighted data were reduced            
to 50 dimensions using singular-value decomposition (SVD). Clustering and UMAP visualization           
were performed using Seurat3. chromVar30 was used to discover transcription factor dynamics            
and variation in their motif accessibility. 
 
The 50 dimension reduced accessibility of the scATAC-seq and the 50 dimension reduced gene              
expression of the scRNA-seq data were supplied as input to MultiMAP. A shared feature space               
with both the scATAC-seq and scRNA-seq was constructed by removing genes from each             
dataset that were not present in the other, and then reducing the space to 50 dimensions using                 
PCA. This shared space was supplied as input to MultiMAP, allowing the calculation of              
distances between cells from different datasets. The parameters of MultiMAP were all set to              
their default values, i ncluding the weight parameter for the scRNA-seq set to 0.8 and for               
ATAC-seq set to 0.2, on account of higher-quality, tighter clusters ge nerally observed in the              
scRNA-seq.  
 
The Leiden algorithm31 was applied directly to the MultiGraph to jointly cluster all cells. The               
clusters were then annotated using canonical cell-type markers from 24. Diffusion pseudotime            
(DPT)32 was used for trajectory inference. The MultiGraph was supplied as input to the DPT               
function in SCANPY. DPT was performed only on cells annotated as T cells. Cells were               
removed if they were positioned away from T cell clusters and close to Fibroblasts and               
Erythrocytes on the MultiMAP plot, as this likely indicated that they were incorrectly annotated.              
tradeSeq 33 was used to identify genes whose expression changes significantly along the            
trajectory. 
 
 
Single-cell RNA sequencing of mouse spleen and data processing 
 
The mice were maintained under specific pathogen-free conditions at the Wellcome Trust            
Genome Campus Research Support Facility (Cambridge, UK). These animal facilities are           
approved by and registered with the UK Home Office. All procedures were in accordance with               
the Animals (Scientific Procedures) Act 1986. The protocols were approved by the Animal             
Welfare and Ethical Review Body of the Wellcome Trust Genome Campus. 

The spleen from a 6-month-old C57BL/6Jax mouse was removed. The splenocytes were            
isolated by passing the spleen through a 70 µm cell strainer (Fisher Scientific 10788201) into 30                
m ice-cold 1X DPBS (Thermo Fisher 14190169) with 2 mM EDTA and 0.5% (w/v) BSA (Sigma                
A9418) using the plunger of a 2-ml syringe. Cells were spun down at 500 g for 7 minutes at 4                    
degree. Then the supernatant was removed, and the cell pellet resuspended in 5 ml 1X RBC                
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lysis buffer (Thermo Fisher 00-4300-54). The cell suspension was vigorously vortexed for 5             
seconds and left on the bench for 5 minutes to lyse the red blood cells. Then 45 ml ice-cold 1X                    
DPBS was added, and cells were spun down at 500 g for 7 minutes at 4 degrees. The                  
supernatant was removed, and 30 ml ice-cold 1X DPBS with 0.1% BSA was used to resuspend                
the cell pellet. The cell suspension was passed through a Miltenyi 30 μm Pre-Separation Filter               
(Miltenyi 130-041-407), and the cell number was determined using the C-chip counting chamber             
(VWR DHC-N01). The cells were spun down again, and the cell pellet resuspended in ice-cold               
1X DPBS with 0.1% BSA to reach a concentration of 1,000,000 cells per ml. The splenocytes                
were then loaded on the 10x Chromium Controller, aiming to recover ~ 5000 cells (Targeted               
Cell Recovery 5000 cells). cDNA and a sequencing library were made according to 10x Single               
Cell 3’ Reagent Kits v2 manual. The library was sequenced on an Illumina HiSeq 4000 machine. 

The resulting scRNA-seq data were preprocessed using CellRanger (10x Genomics) and           
downstream analysis were performed using the Seurat3 workflow. Cells with fewer than 200             
detected genes and more than 10% mitochondrial gene expression content were filtered out.             
Downstream analyses such as normalization, clustering and visualization were performed using           
Seurat3. Clusters were identified using the community identification algorithm as implemented in            
the Seurat ‘FindClusters’ function, using 20 PCs. Clusters were annotated using canonical            
cell-type markers from the original study13. Scrublet34 was used for doublet detection. 
 
Acquisition and processing of previously published datasets 
 
Mouse spleen scATAC-seq data was obtained from ArrayExpress (E-MTAB-6714) and          
preprocessed using the code provided by Chen et al. 13          

(https://github.com/dbrg77/plate_scATAC-seq ). Briefly, reads from all cells were merged, and         
open chromatin regions were identified by peak calling with MACS2 35. Latent semantic indexing              
analysis was used for dimensionality reduction of the resulting cell-by-bin matrix. The binary             
cell-by-bin accessibility was use d as input for TF-IDF weighting, using term frequency and             
smoothed inverse document frequency as the weighting scheme. Weighted data were reduced            
to 50 dimensions using SVD. SnapATAC29 was used to generate gene activity count matrices,              
which were then log-normalized. The 50 dimension reduced accessibility of the scATAC-seq            
and the 50 d imension reduced gene expression of the scRNA-seq data were supplied as input               
to MultiMAP. The 50-dimension reduced accessibility of the scATAC-seq and the 50-dimension            
reduced gene expression of the scRNA-seq data were supplied as input to MultiMAP. A shared               
feature space with both the scATAC-seq and scRNA-seq was constructed by removing genes             
from each dataset that were not present in the other, and then reducing the space to 50                 
dimensions using PCA. This shared space was supplied as input to MultiMAP, allowing the              
calculation of distances between cells from different datasets. The parameters of MultiMAP            
were all set to their default values, i ncluding the weight parameter for the scRNA-seq set to 0.8                 
and for ATAC-seq set to 0.2, on account of higher-quality, tighter clusters ge nerally observed in               
the scRNA-seq.  
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The Leiden algorithm was applied directly to the MultiGraph to jointly cluster all cells. Harmonic                
function-based node classification was performed directly on the MultiGraph to predict cell types             
of the scATAC-seq cells given the cell types of the scRNA-seq cells36. 
 
Human hematopoiesis scRNA-seq and scATAC-seq data were downloaded from         
https://github.com/GreenleafLab/MPAL-Single-Cell-2019 . The scRNA-seq consists of 6      
experimental batches, and the scATAC-seq consists of 10 experimental batches. Severe batch            
effects were observed, so this data was considered to consist of 16 separate datasets. The               
scRNA-seq data was preprocessed using Seurat3, and each batch was log-normalized and            
reduced to 50 dimensions with PCA. The cell-by-bin peak accessibility was used as provided by               
the authors. The binary cell-by-bin accessibility was used as input for TF-IDF weighting, using              
term frequency and smoothed inverse document frequency as the weighting scheme.           
Separately for each batch, the weighted data were reduced to 50 dimensions using SVD. Gene               
activities of the ATAC data were calculated using Cicero 37 and log-normalized. To integrate all              
of the data at once, all 16 datasets were provided as input to MultiMAP in the form of the 50                    
dimension reduced accessibility of the scATAC-seq and the 50 dimension reduced gene            
expression of the scRNA-seq. Shared feature spaces containing two datasets were constructed            
by removing genes from each of the datasets that were not present in the other, and then                 
reducing the space to 50 dimensions using PCA. These shared spaces were supplied as input               
to MultiMAP to calculate distances between cells from different datasets. The parameters of             
MultiMAP were all set to their default values, i ncluding the weight parameter for the scRNA-seq               
set to 0.8 and for ATAC-seq set to 0.2, on account of higher-quality, tighter clusters ge nerally                
observed in the scRNA-seq.  
 
scRNA-seq data of the mouse frontal cortex acquired with Drop-seq was obtained from             
dropviz.org. STARmap data of the mouse visual cortex was downloaded from           
https://www.starmapresources.com/data/. The scRNA-seq data has over 20K genes for each          
cell, while the STARmap has 1K genes per cell. Without removing genes from either dataset,               
the gene activity counts of each dataset were separately preprocessed with Seurat3 9,             
log-normalized, and reduced to 50 dimensions with PCA. Both 50 dimensional reduced datasets             
were supplied as input to MultiMAP. A shared feature space with both the STARmap and               
scRNA-seq data was constructed by removing genes from each dataset that were not present in               
the other, and then reducing the space to 50 dimensions using PCA. This shared space was                
supplied as input to MultiMAP to calculate distances between cells from different datasets. The              
parameters of MultiMAP were all set to their default values, i ncluding the weight parameter for               
the scRNA-seq set to 0.8 and for Drop-seq set to 0.2, on account of higher-quality, tighter                
clusters ge nerally observed in the scRNA-seq.  
 
scRNA-seq, scATAC-seq, and snmC-seq data from the mouse primary cortex18 was           
downloaded from the Neuroscience Multi-omics Archive (NeMO). The scRNA-seq was          
preprocessed using Seurat 3, log-normalised, and reduced to 50 dimensions with PCA. The             
binary cell-by-bin accessibility and gene activity count matrix of the scATAC-seq were obtained             
with SnapATAC29 and log-normalized. Latent semantic indexing analysis was used for           
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dimensionality reduction of the scATAC-seq accessibility. The binary cell-by-bin accessibility          
was used as input for TF-IDF weighting, using term frequency and smoothed inverse document              
frequency as weighting scheme. Weighted data were reduced to 50 dimensions using SVD. The              
DNA methylation data was preprocessed as described in 38, using the provided scripts. Briefly,              
after mapping, the methyl-cytosine counts and total cytosine counts were calculated in two sets              
of genome regions for each cell: the non-overlapping 100 kb bins tiling the mm10 genome,               
which was used for dimensionality reduction, and gene body regions ± 2 kb, which is used for                 
the joint alignment. Posterior mCH and mCG rates were calculated based on beta-binomial             
distribution for the non-overlapping 100kb bins matrix. The top 3000 highly variable features             
were reduced to 50 dimensions with PCA. Because gene body mCH proportions are negatively              
correlated with gene expression level, the direction of the methylation data was reversed by              
subtracting all values from the maximum methylation value 10. The 50 dimensional reduced            
scRNA-seq, scATAC-seq, and snmC-seq were supplied as input to MultiMAP. Shared feature            
spaces containing two datasets were constructed by removing genes from each of the datasets              
that were not present in the other, and then reducing the space to 50 dimensions using PCA.                 
These shared spaces were supplied as input to MultiMAP, allowing the calculation of distances              
between cells from different datasets. The parameters of MultiMAP were all set to their default               
values, i ncluding the weight parameter for the scRNA-seq set to 0.8 and for the other omics set                 
to 0.2, on account of higher-quality, tighter clusters ge nerally observed in the scRNA-seq.  
 
Benchmarking 
 
Benchmarking of MultiMAP, Seurat 3, LIGER, and Conos was performed using a variety of              
multi-omic data including the scRNA-seq and scATAC-seq data of the spleen, scRNA-seq and             
STARmap of the visual cortex, and the scRNA-seq, scATAC-seq, and snmC-seq of the primary              
cortex. These datasets were chosen because they all have cell type annotations supplied in              
their original publications, which was used to independently validate the integration.  
 
The scRNA-seq and STARmap data was log-normalised using Seurat3 and then used as an              
input for all integration methods. The scATAC-seq data was preprocessed as described above             
and the log-normalised gene activity matrix was used as an input for all integration methods.               
Seurat3, LIGER, and Conos were executed as detailed in their tutorials, with all parameters set               
to their default values. Latent Semantic Indexing was used as the dimensionality reduction             
technique for the scATAC-seq data for weighting anchors in Seurat3. CCA was used as the               
dimensionality reduction technique for the scRNA-seq and STARmap data for weighting           
anchors in Seurat3.  
 
A diversity of performance metrics was used. After integration, label transfer of the cell type               
annotations from the scRNA-seq to each other omic was performed by setting the cell type of a                 
query cell to the most frequent type among its 5 nearest labeled neighbors. The balanced               
accuracy of the label transfer (“Transfer”) was calculated using the annotations from the original              
publications as the ground truth. A high accuracy indicates that the same cell types from               
different modalities are near each other in the integrated embedding. After integration, the             
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average Silhouette score 39 (“Silhouette”') across all cells was calculated using the cell type             
annotations from the original publications as the cluster labels. We note that the Silhouette              
score is not affected by the number of clusters as we use the same cell type labels, and hence                   
number of clusters, for each integration method. A higher Silhouette score indicates the             
embedding is better separating distinct cell types. The degree of alignment (“Alignment”') of the              
different datasets in the integrated embedding was calculated as the proportion of each cell's 5               
nearest neighbors that originated in a different dataset, averaged over all cells. This metric was               
also used in 10. A higher value of the alignment score indicates that the different datasets are                 
more evenly mixed in the integrated embedding. The degree to which the embedding preserves              
the high-dimensional structure (“Structure”) of each dataset was calculated as the Pearson            
correlation between all pairwise distances in the high-dimensional spaces and the           
corresponding distances in the embedding. A higher correlation indicates that the embedding is             
more faithful to the high-dimensional structure. All of these performance metrics were also             
calculated in the shared feature space of the datasets to be integrated, to get baseline values of                 
the metrics prior to the application of any integration strategy.  
 
The wall-clock runtime of each method on each dataset was recorded. Additionally, to             
characterize the runtimes of the methods on a wide range of dataset sizes, the integration               
methods were run on datasets ranging from 1,000 to 500,000 cells. To produce these datasets               
we subsampled the mouse primary cortex scRNA-seq and scATAC-seq data 18 using geometric            
sketching 40. All methods were run with 3.1 GHz Intel i7 cores and 218 GB RAM. The large                 
memory was needed for Seurat3 and LIGER. MultiMAP was able to run to completion on all                
datasets on a laptop with <10 GB RAM. 
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