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Abstract 

The molecular mechanisms underlying the diversity of cortical glutamatergic synapses is still only partially 

understood. Here, we tested the hypothesis that presynaptic active zones (AZs) are constructed from 

molecularly uniform, independent release sites (RSs), the number of which scales linearly with the AZ 

size. Paired recordings between hippocampal CA1 pyramidal cells and fast-spiking interneurons followed 

by quantal analysis demonstrate large variability in the number of RSs (N) at these connections. High 

resolution molecular analysis of functionally characterized synapses reveals highly variable Munc13-1 

content of AZs that possess the same N. Replica immunolabeling also shows a 3-fold variability in the 

Munc13-1 content of AZs of identical size. Munc13-1 is clustered within the AZs; cluster size and density 

are also variable. Our results provide evidence for quantitative molecular heterogeneity of RSs and 

support a model in which the AZ is built up from variable numbers of molecularly heterogeneous, but 

independent RSs.  
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Introduction 

Computational complexity of neuronal networks is greatly enhanced by the diversity in synaptic 

function (Dittman et al., 2000; O'Rourke et al., 2012). It has been known for decades that different types 

of central neurons form synapses with widely different structure, molecular composition, and functional 

properties, resulting in large variations in the amplitude and kinetics of the postsynaptic responses and the 

type of short- and long-term plasticity. When the mechanisms underlying distinct functions were 

investigated among synapses made by distinct pre- and postysynaptic cell types (e.g. hippocampal mossy 

fiber vs. Schaffer collateral vs. calyx of Held vs. cerebellar climbing fiber etc. synapses), most studies 

converged to the conclusion that different pre- (e.g. different types of Ca channels, Ca sensors) and 

postsynaptic (e.g. different types of AMPA receptor subunits) molecule isoforms underlie the functional 

variability (reviewed by Sudhof, 2012). 

Robust differences in synaptic function were also found when a single presynaptic cell formed 

synapses on different types of postsynaptic target cells. Such postsynaptic target cell type-dependent 

variability in vesicle release probability (Pv) and short-term plasticity was identified in cortical and 

hippocampal networks (Koester and Johnston, 2005; Losonczy et al., 2002; Pouille and Scanziani, 2004; 

Reyes et al., 1998; Rozov et al., 2001; Scanziani et al., 1998; Thomson, 1997). Studies investigating the 

underlying mechanisms revealed not only different molecules (e.g. mGluR7, kainate receptors in the 

active zone (AZ) and Elfn1 in the postsynaptic density (PSD), Shigemoto et al., 1996; Sylwestrak and 

Ghosh, 2012), but distinct densities of the same molecules were also suggested as key molecular features 

(Eltes et al., 2017; Rozov et al., 2001).  

Probably even more surprising is the large structural and functional diversity of synapses that are 

established by molecularly identical pre- and postsynaptic neuron types (e.g. synapses among cerebellar 

molecular layer interneurons (INs), Pulido et al., 2015; among hippocampal CA3 PCs, Holderith et al., 

2012), suggesting that qualitative molecular differences are unlikely to be responsible for the functional 

diversity. What could then be responsible for the large diversity in function in such synapses? Pulido 

(2015) investigated so called simple synapses where the synaptic connection is mediated by a single 

presynaptic AZ and the opposing PSD. Their results revealed that the number (N) of functional release 

sites (RSs) varied from 1 to 6 per AZ and it showed a positive correlation with the quantal size (q). 

Because in these synapses q is largely determined by the number of postsynaptic GABAA receptors and 

because the GABAA receptor number scales linearly with the synapse area (Nusser et al., 1997) they 

concluded that the N linearly scales with the synaptic area. Previous results from our laboratory showed 

that the probability with which release occurs (PR) from a CA3 PC axon terminal correlates with the size 

of the synapse. As this probability is the function of both Pv and N [PR = 1-(1-Pv)N], our results are also 

consistent with the model that N scales with synaptic area (Holderith et al., 2012). This view was further 

supported by a recent paper (Sakamoto et al., 2018), which concluded that in synapses of cultured 
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hippocampal neurons the number of Munc13-1 macromolecular clusters shows a linear correlation with 

the N. Thus, the following model emerged: presynaptic AZs are composed from an integer number of 

uniform, independent RSs, which are built from the same number of identical molecules (molecular 

units). The more RSs there are, the larger the size of the AZ is, which face a correspondingly larger PSD 

containing proportionally more receptors. This model is supported by a number of molecular 

neuroanatomical studies showing that the number of presynaptic AZ molecules (e.g. Cav2.1, Cav2.2, 

Rim1/2; Holderith et al., 2012; Kleindienst et al., 2020; Miki et al., 2017) or postsynaptic molecules (e.g. 

PSD-95, AMPA receptors; Fukazawa and Shigemoto, 2012; Kleindienst et al., 2020) scales linearly with 

the synapse area. However, a recent study using superresolution imaging of release from cultured neurons 

concluded that the RSs are functionally heterogeneous and RSs with high or low Pv are distributed in a 

nonrandom fashion within individual AZs (Maschi and Klyachko, 2020). 

Here, we performed in vitro paired whole-cell recordings followed by quantal analysis to determine the 

quantal parameters (N, Pv and q) in synaptic connections between hippocampal CA1 pyramidal cells 

(PCs) and fast-spiking interneurons (FSINs). Our results demonstrate that the large variability in 

postsynaptic response amplitude is primarily the consequence of large variations in N. The variability in 

N is also substantial in individual AZs (1 – 17). Multiplexed molecular analysis with confocal and STED 

superresolution microscopy revealed large variability in the Munc13-1 content of AZs that possess the 

same number of RSs, indicating that RSs could be formed by variable number of Munc13-1 molecules. 

This molecular variability among RSs is supported by our high-resolution electron microscopy replica 

immunolabeling data, demonstrating highly variable number of gold particles in Munc13-1 clusters in 

these hippocampal glutamatergic AZs.  

Results 

Large variability in unitary EPSC amplitudes evoked by CA1 PCs in FSINs 

To investigate the variance in unitary EPSC (uEPSC) amplitudes evoked in FSINs by CA1 PC single 

action potentials (APs), we recorded a total of 79 monosynaptically connected pairs in 2 mM external 

[Ca2+] from acute slices of adult mice of both sexes (Figure 1). The amplitude of uEPSCs ranged from 3 

to 507 pA with a mean of 105.0 pA and a SD of 107.9 pA, yielding a coefficient of variation (CV) of 1.03. 

The uEPSCs had a moderate variability in their 10-90% rise times (RT, mean = 0.4 ± 0.2 ms, CV = 0.4) 

but some had values over 1 ms. To exclude the contribution of differential dendritic filtering to the 

observed variance in amplitudes, we restricted our analysis to presumed perisomatic synapses by 

subselecting uEPSCs with 10-90% RTs ≤500 µs. These fast-rising EPSCs had a similar large variability in 

their amplitudes (113.1 ± 111.0 pA, n = 68; Figure 1D) with a CV of 0.98. The type of short-term 

plasticity is a widely used feature of postsynaptic responses that is assumed to predict the Pv. Although, 

some connections displayed initial facilitation followed by depression, most of the connections showed 

robust depression, and the resulting moderate variability in the paired-pulse ratio (CV = 0.38; Figure 1E) 
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implies that the variability in Pv might not be the major source of variability in EPSC amplitudes. It is well 

known that FSINs are morphologically diverse (contain perisomatic region-targeting basket and axo-

axonic cells and dendrite-targeting bistratified cells) and therefore we tested whether the observed 

amplitude variance could be the consequence of different morphological identity of the postsynaptic cells. 

A total of 50 INs could be categorized into perisomatic region-targeting (n = 35) or bistratified (n = 15) 

cells, and when uEPSCs amplitudes were compared (perisomatic: 128.1 ± 121.9 pA vs bistratified: 126.4 

± 125.7 pA), no significant difference was found (p = 0.98, Mann-Whitney U-test). Furthermore, the CV 

within each group was ~1, revealing a similar variance in EPSC peak amplitudes when the postsynaptic 

cells belong to a well-defined IN category. 

Quantal parameters at PC – FSIN connections 

To elucidate the basis of the uEPSC amplitude variability, we determined the quantal parameters N, 

Pv and q of the connections using Multiple Probability Fluctuation Analysis (MPFA, Silver, 2003). For 

their reliable determination, the Pv must be changed substantially and must have a maximum value >0.5. 

We aimed to achieve these by elevating the external [Ca2+] to 6 mM and applying a train of presynaptic 

APs (6 APs at 40 Hz) within which the Pv changes dynamically (Biro et al., 2005; Figure 1F-H). We also 

bath applied the CB1 receptor antagonist AM251 to increase further the Pv (the effect of AM251 in 

separate experiments: control: 68.0 ± 16.5 pA; AM251: 78.0 ± 23.2 pA, n = 5 pairs) and to minimize 

potential variability due to differential presynaptic tonic CB1 receptor activations. The peak amplitude of 

uEPSCs in 6 mM [Ca2+] was significantly higher (165.5 ± 169.3 pA, n = 100; p = 4.42 * 10-4, Mann-

Whitney U-test) than in 2 mM extracellular [Ca2+] but showed similarly large variability (CV = 1.0). The 

RT-subselected, presumably perisomatic uEPSCs had a mean amplitude of 183.4 ± 180.7 pA (n = 81) 

with a CV of 0.99, confirming our results in 2 mM [Ca2+] that dendritically unfiltered EPSCs are also 

highly variable. Out of these 81 pairs, we managed to reliably determine the quantal parameters (see 

methods) in 47 pairs (peak amplitude: 215.8 ± 211.2 pA, CV = 0.98; Figure 2A) and found large 

variability in N (9.9 ± 9.0, CV = 0.91; Figure 2B), a much smaller variance in q (32.4 ± 16.0 pA, CV = 

0.49; Figure 2C) and an especially low variance in Pv (0.72 ± 0.1, CV = 0.14; Figure 2D). Peak 

amplitude of uEPSCs correlated tightly with N (rs = 0.79; Figure 2E), less tightly with q (rs = 0.38; 

Figure 2F) and with Pv (rs = 0.36; Figure 2G), demonstrating that variability in N is the major 

determinant of the uEPSC amplitude variability.  

The small variance in Pv and its small contribution to the total amplitude variance in 6 mM [Ca2+] is 

not surprising given the ceiling effect of artificially increasing the release. To investigate its variance under 

more physiological [Ca2+], we recorded cell pairs in 2 mM then subsequently in 6 mM [Ca2+] (Figure 2–

figure supplement 1). The Pv was then determined with MPFA in 6 mM [Ca2+] and its value in 2 mM 

[Ca2+] was calculated from the uEPSC amplitude ratio, assuming that changing extracellular [Ca2+] only 

affects Pv. As expected, the Pv was smaller (mean = 0.42 ± 0.15, n = 14) and more variable (CV = 0.36) 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.15.431316doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.431316
http://creativecommons.org/licenses/by/4.0/


6 

 

in 2 mM [Ca2+] when compared to that in 6 mM [Ca2+] (mean = 0.71 ± 0.10, CV = 0.14, n = 14). 

Because, Pv in 2 mM [Ca2+] shows a more pronounced correlation with the peak EPSC amplitude 

(Figure 2–figure supplement 1C), we calculated the relative contribution of the three quantal 

parameters to the amplitude variance and found that even in 2 mM [Ca2+] the variance in N (63%) has a 

substantially larger contribution than that of q (25%) or Pv (12%; for CV values in 2 mM [Ca2+] see 

Figure 2–figure supplement 1A). 

Because PC – FSIN connections are not mediated by single synapses (Buhl et al., 1997; Molnar et al., 

2016), the overall variability in N is not simply the consequence of different Ns per AZs, but also the 

function of the number of synaptic contacts formed by the presynaptic axon on the postsynaptic cell. To 

determine the number of synaptic contacts between the connected cells, we carried out high 

magnification confocal microscopy analysis of the biocytin filled, aldehyde fixed and post hoc developed 

cells (detailed below). Our data revealed a relatively weak correlation between peak uEPSC amplitude and 

the N / AZ (rs = 0.37; Figure 2H) and a more robust one between the peak uEPSC amplitude and the 

synapse number (rs = 0.61; Figure 2I). When we examined their variances, an approximately equal 

contribution of the synapse number (mean = 2.3 ± 1.6, n = 26, CV = 0.68) and the N / AZ (mean = 4.9 

± 3.7, n = 26, CV = 0.75) to the variance in N (mean = 10.2± 9.8, n = 26, CV = 0.96) was observed.  

Correlation of the amounts of synaptic molecules with N 

So far, our results demonstrate large variability in the peak amplitude of uEPSCs between CA1 PC 

and FSINs, which is primarily the consequence of large variability in N among the connections. This 

variability originates approximately equally from differences in the number of synaptic contacts between 

the connected cells (ranges from 1 to 7, CV = 0.68) and from variations in the number of RSs within 

individual AZs (ranges from 1 to 17, CV = 0.75). Why monosynaptic connections between the same pre- 

and postsynaptic cell types show variability in the number of synaptic contacts is unknown and answering 

this question is outside the scope of the present study.  

Here we address the question of what the molecular correlates of the variability in the number of RSs 

within individual presynaptic AZs are. We employ a recently developed high-resolution, quantitative, 

multiplexed immunolabeling method (Holderith et al., 2020) to molecularly analyze functionally 

characterized individual synapses. Following in vitro paired recordings, the slices were fixed, re-sectioned 

at 70-100 µm, the biocytin-filled cells were visualized with Cy3-coupled streptavidin and the sections were 

dehydrated and embedded into epoxy resin. As Cy3 molecules retain their fluorescence in the water-free 

environment of epoxy resins (Figures 1A, Figure 1-figure supplement 1 and Figure 3), we could 

search for potential contact sites between PC axons and the IN soma/dendrites under epifluorescent 

illumination using a high numerical aperture (NA = 1.35) objective lens. Every pair was studied by two 

independent investigators and all independently found potential contacts were scrutinized by three 

experts. After obtaining confocal image Z stacks from all potential contacts, the thick sections were re-
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sectioned at 200 nm thickness, in which we could unequivocally identify the contacts (compare Figure 

3F and G). Following their registration with confocal microscopy, multiplexed immunoreactions were 

carried out on serial sections for presynaptic Munc13-1, vGluT1 molecules and postsynaptic AMPA 

receptors (with a pan-AMPAR Ab, data not shown) and PSD-95 (Figure 3H and I, Figure 1-figure 

supplement 1). The reaction in each staining step was imaged with confocal and STED microscopy in 

each relevant serial section and following an elution step they were re-stained and re-imaged. The 

presence of vGluT1 immunoreactivity in the boutons and the opposing Munc13-1 and PSD-95 labeling 

at the sites of bouton–dendrite appositions were taken as evidence for the contacts being chemical 

glutamatergic synapses (Figure 3H and I, Figure 1-figure supplement 1B and D).  

We then analyzed the amounts of PSD-95 and Munc13-1 molecules in the functionally characterized 

synapses quantitatively (Figure 4). We have chosen PSD-95 because its amount correlates almost 

perfectly with the size of the synapse (see Figure 5-figure supplement 1G and Cane et al., 2014; Meyer 

et al., 2014) and, therefore, we use it as a molecular marker of the synapse size; and concentrated on 

Munc13-1 as it has been suggested to be a core component of the RS (Reddy-Alla et al., 2017; Sakamoto 

et al., 2018). Immunoreactivity for both molecules in the functionally characterized synapses were 

normalized to that of the population mean of the surrounding synapses, ruling out variations in our data 

due to slight differences in slice conditions, fixations, or immunoreactions. We have analyzed a total of 11 

cell pairs: five had only one, five had 2 and one had 3 synaptic contacts, resulting in a total of 18 synapses 

(Figure 4). The summed PSD-95 immunoreactivity for all the contact sites within each pair shows a 

positive, though non-significant correlation with N (Figure 4A), which is not surprising as this 

correlation is strongly influenced by the multi-site connections (colored symbols in Figure 4A), which is 

the consequence of the positive correlations between the PSD-95 and the contact number (Figure 4B) 

and that and the N / AZ (Figure 4C). The lack of correlation between the size of the synapse (average 

PSD-95 signal) and the Pv (Figure 4D) indicates that there is no ‘cross-talk’ between the RSs and the 

average Pv of the RSs within individual AZs does not depend either on the size of the synapse (Figure 

4D) or on the number of RSs within the synapse (Figure 2J). A similar picture emerged when the 

Munc13-1 content of the synapses was analyzed and correlated with the above-mentioned parameters 

(Figure 4E-H).  

Since N is the function of how many contacts there are between the cells and how many RSs there 

are within the AZs, we next dissected their individual contributions. Although, our results revealed 

positive correlations for both values with Munc13-1 (Figure 4F and G), we noticed a remarkable 

variability: synapses with widely different numbers of RSs have similar amounts of Munc13-1 and 

synapses with similar Ns showed very different amounts of Munc13-1 (Figure 4G). In summary, our data 

is consistent with a model in which the size of the presynaptic AZ correlates with the number of RSs, but 

the observed variance indicates variability in the overall amounts of Munc13-1 in individual RSs. Next, we 

aimed to investigate this issue with a more sensitive and higher resolution method. 
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Variable size and molecular content of Munc13-1 clusters in glutamatergic AZs on Kv3.1b+ INs 

as revealed by SDS-FRL 

To investigate the relationship between the size of AZs and the amounts of Munc13-1, we obtained 

replicas from the CA1 region of age-matched mouse hippocampus. First, we verified the specificity of our 

labeling using two Munc13-1 antibodies recognizing non-overlapping epitopes (Figure 5-figure 

supplement 1). We then performed double immunogold labeling for Kv3.1b and Munc13-1 (Figure 5). 

We used the Kv3.1b potassium channel subunit to identify fractured membrane segments of parvalbumin 

positive FSINs (Weiser et al., 1995). AZs on these Kv3.1b+ IN somata and proximal dendrites are highly 

variable in size (mean = 0.071 ± 0.014 µm2, CV = 0.43 ± 0.06, n = 4 reactions in 3 mice) and contain 

variable number of gold particles labeling Munc13-1 (mean = 26.0 ± 5.1 gold, CV = 0.49 ± 0.08, n = 4; 

Figure 5C-G). Visual inspection of the EM images revealed that large AZs had many gold particles and 

small ones had fewer. Indeed, a significant positive correlation was observed between the AZ size and the 

Munc13-1 gold number in four experiments of three mice (Figure 5I). If Munc13-1 had a tight 

correlation with the AZ area, then its density should be uniform and synapse size independent. Plots 

showing the Munc13-1 density vs. the AZ area revealed substantial (mean CV = 0.33 ± 0.07) and slightly 

synapse size-dependent variability (Figure 5J). Synapses with identical size could have a 10-fold 

difference in their Munc13-1 content, suggesting large variability in either the number of RSs or the 

amounts of Munc13-1 per RS. To exclude the possibility that a significant source of this variability is 

technical, we carried out PSD-95 labeling experiments (Figure 5-figure supplement 1). The number of 

gold particles for PSD-95 showed an extremely tight, positive correlation with the synapse area 

(Spearman regression = 0.96), resulting in a size-independent uniform PSD-95 density (Figure 5-figure 

supplement 1C and D). The exceptionally small variability in the PSD-95 density (CV = 0.09) 

demonstrates the capability of SDS-FRL method to reveal uniform densities of synaptic molecules with a 

small variance. Because the variability in Munc13-1 density is substantially higher (CV = 0.33 ± 0.07) with 

similar mean values (Munc13-1: 383 ± 71 gold / µm2 vs PSD-95 in dendrites: 497 ± 45 gold / µm2) we 

concluded that the observed synapse to synapse variation in the Munc13-1 density must have a biological 

origin.  

Next we investigated the sub-synaptic distribution of Munc13-1 as it has been suggested to have a 

clustered distribution in AZs and the clusters represent the RSs (Sakamoto et al., 2018). First, we 

measured mean nearest-neighbor distances (NND) between gold particles in the AZs and compared them 

to random particle distributions. The mean NND distances were significantly smaller than those of 

randomly distributed gold particles (data: 0.026 ± 0.01 µm, random: 0.033 ± 0.009 µm, n = 159, p<0.001, 

Wilcoxon signed-rank test; Figure 5K). A previous study from our laboratory demonstrated that Ripley’s 

H-function analysis could reveal clustered distribution of synaptic molecules, including Munc13-1 in 

cerebellar synapses (Rebola et al., 2019). We performed this analysis on 159 AZs and found that in 66% 

of the AZs the distribution of gold particles was compatible with clustering (p<0.05, MAD-test). Next, 
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we used DBSCAN to identify the Munc13-1 clusters in these 105 AZs and found an average of 5.4 ± 2.5 

clusters per AZ. This number is remarkably similar to the number of functional RSs per AZ (4.9 ± 3.7), 

supporting the notion that Munc13-1 clusters are indeed the molecular equivalents of the functional RSs 

(Sakamoto et al., 2018). When the number of clusters were plotted against the AZ area, a significant 

positive correlation was found (Figure 5L). However, the number of clusters also varied 3-fold in 

synapses of identical sizes, resulting in a CV of 0.36 in the cluster density (mean: 73 ± 27 clusters / µm2 

AZ area, n = 105). We also noticed that not only the cluster density varies, but the Munc13-1 content of 

the clusters (4.5 ± 3.0 gold /cluster, CV: 0.67, n = 571) is also highly variable (for individual AZs see 

Figure 5H). 

Quantitative STED analysis reveals highly variable amounts of Munc13-1 in excitatory synapses 

of identical sizes 

Our SDS-FRL experiments reveal large variability in the Munc13-1 content of synapses with identical 

sizes, which is the consequence of both the variability in the cluster density and the molecular content of 

the clusters. We believe that the replica labeling is the most appropriate method for quantitative analysis 

of sub-synaptic distributions of molecules due to its high resolution and sensitivity, but unfortunately it is 

impossible to perform SDS-FRL in synapses that had been functionally characterized due to the random 

fracturing of the tissue. Because of this limitation, we developed the above described postembedding, 

multiplexed immunofluorescent reaction with which we could molecularly characterize functionally tested 

individual synapses (Holderith et al., 2020). In our final set of experiments we aimed to compare the 

results of these postembedding reactions to those obtained with SDS-FRL.   

We randomly selected and serially sectioned proximal dendritic segments of two in vitro recorded 

FSINs (Figure 6). The sections were then immunoreacted for Munc13-1 and PSD-95 in consecutive 

labeling rounds and their reaction strengths were quantitatively analyzed on the STED images. First, we 

performed the analysis on 200 nm thick sections (the usual section thickness in our protocol) and focused 

on en face synapses where the pre- and postsynaptic specializations are present in a single section and 

therefore no 3D reconstruction is needed from serial sections (Figure 6C). In the two examined cells 

relative Munc13-1 and PSD-95 intensities show a loose correlation (Figure 6D). More important, the 

PSD-95 normalized Munc13-1 labeling showed a large variability (Cell 1: CV = 0.42; Cell 2: CV = 0.40) 

and a slight synapse size- (PSD-95 intensity) dependence, like that obtained with SDS-FRL (compare 

Figure 5J with Figure 6E). Because the orientation of the functionally characterized synapses related to 

the sectioning plane is random, i.e. is not always perpendicular or vertical, we repeated these experiments 

using 70 nm section thickness and performed full 3D reconstruction of the synapses from serial sections 

(Figure 6-figure supplement 1). As can be seen in the superimposed STED images in Figure 6-figure 

supplement 1C the relative proportion of cyan (Munc13-1) and red (PSD-95) signals varies substantially, 

resulting in a large variability in the PSD-95 normalized Munc13-1 signal (CV = 0.40, Figure 6-figure 
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supplement 1D and E) again consistent with our SDS-FRL results and indicating that the different 

amounts of Munc13-1 in synapses with identical number of RSs are likely to be of biological origin.  

Discussion 

Data obtained in three independent series of experiments indicate a substantial variability in the 

molecular content of presynaptic RSs within individual AZs. 1) By determining the number of RSs with 

quantal analysis and subsequently the amounts of Munc13-1 molecules in the functionally characterized 

AZs we revealed that AZs with similar Ns have very different amounts of Munc13-1(Figure 4G). 2) 

When populations of synapses on FSINs were examined with multiplexed postembedding 

immunolabeling and STED analysis, the PSD-95 (synapse size)-normalized Munc13-1 immunolabeling 

showed large variability (Figure 6E). 3) Finally, SDS-FRL, the currently known most sensitive and 

highest resolution immunolocalization method, demonstrated large variability in the Munc13-1 density in 

AZs on FSINs and subsequently revealed a synapse size-independent variability in the number of 

Munc13-1 clusters and in the Munc13-1 content of such clusters (Figure 5J and L).  

It is well known that synapses made by molecularly identical presynaptic nerve cells on molecularly 

identical postsynaptic cells can show large structural and functional variability (reviewed by Pulido and 

Marty, 2017). In the present study, we examined the connections between hippocampal CA1 PCs and 

FSINs in adult mice and revealed large variability in uEPSC amplitudes (from 3 to 500 pA, CV = 1) 

evoked by single PC APs. This large amplitude variability is also present in dendritically unfiltered EPSCs 

and for both morphologically defined basket and bistratified cells. Quantal analysis demonstrated that 

variability in N has the largest contribution to the variance in uEPSC amplitudes, which is the 

consequence of an approximately equal variability in the number of synapses per connection (2.3 ± 1.6, 

CV = 0.68, from 1 to 7) and the N / AZ (4.9 ± 3.7, CV = 0.75, from 1 to 17). PC to FS basket cell 

synaptic connections are mediated by a remarkably similar number of synapses in human neocortex 

(mean = 3.3, range: 1-6; Molnar et al., 2016), cat visual cortex (mean = 3.4, range: 1-7; Buhl et al., 1997), 

rat neocortex (mean = 2.9, range 1-6; Molnar et al., 2016) and mouse hippocampus (mean = 2.3, range: 1-

7; present study). It seems that it is not a unique feature of PC – FSIN connections, because a very similar 

number (mean = 2.8, range: 1-6) was found when CA1 PCs to oriens-lacunosum-moleculare (O-LM) IN 

connections were examined in juvenile rats (Biro et al., 2005). All data taken together demonstrate that 

multi-synapse connections between PCs and GABAergic local circuit INs is an evolutionary conserved 

feature of cortical networks. As mentioned above, currently it is unknown why PC to IN connections are 

mediated by multiple (~3) and variable number (1 – 7) of synaptic contacts.  

Unlike the number of synapses per connection, when the mean number of RS per AZ was compared, 

a much larger variability and a species-specific difference was found. Molnar et al. (2016) reported that the 

N /AZ was ~4-times larger in human (~6) compared to rat (1.6) cortical PC – FSIN connections. It is 

4.9 for the same connection in adult mouse hippocampus, which is very similar to that found in mouse 
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cultured hippocampal neurons (4.9 in Sakamoto et al., 2018 and 4.2 in Ariel et al., 2013). The difference in 

N / AZ between human and rat was accompanied by a larger AZ size in human (0.077 µm2), which is 

again similar to that obtained in our present study in adult mice (0.071 µm2), indicating that both in 

human and mice a RS occupy (or need) approximately the same AZ area. The positive correlations 

between the docked vesicles and the AZ area (Molnar et al., 2016; Schikorski and Stevens, 1999) and 

between the N / AZ and the average PSD-95 immunoreactivity (Figure 4C) are consistent with a model 

in which the N scales linearly with the AZ area and each independent RS is built up from the same 

number of molecules (Sakamoto et al., 2018). However, when not only the mean, but the variance in the 

available data is also considered, a more complex picture emerges. First, there is large variability in the 

number of docked vesicles in AZs with identical sizes (Figure 3S in Molnar et al., 2016), which might 

reflect variability in RS density, but an incomplete docking site/RS occupancy cannot be excluded. Such 

incomplete RS occupancy cannot explain our data showing that AZs with the same amount of PSD-95 

(same size) have an over 3-fold variability in N. Thus, it seems that variability in the docking site 

occupancy might not be the main source of variability, but the actual RS density seem to be variable. A 

similar large variability is present in the data of Sakamoto et al (Figure 3c in Sakamoto et al., 2018) in the 

correlation between the readily releasable pool size (NRRP) and the number of labeled Munc13-1 

molecules. The almost identical number of RSs and NRRP indicate a docking site occupancy close to one in 

their cultured hippocampal neurons again arguing for the variability in either the RS density or in the 

number of Munc13-1 molecules per RS.  Our high-resolution SDS-FRL experiments provide direct 

evidence for both: substantial variability in the Munc13-1 cluster (i.e. RS) density in AZs and in the 

number of Munc13-1 molecules per cluster (Figure 5H and L).  

One consequence of the variable number of docked vesicles or RS density is that the inter RS 

distance varies substantially in AZs of identical sizes. One possible consequence of that is that the RSs 

might not function independently when they are close enough to “see” substantial amounts of Ca2+ from 

the neighboring RSs. Our data, showing that the average Pv of the RSs does not depend on the N, 

together with that of Sakamoto et al (2018), demonstrating that Pv does not depend on the NRRP, strongly 

indicate that the average Pv does not depend on the size of AZ. A pervious study from our laboratory 

(Holderith et al., 2012) described that the probability with which release occurs at hippocampal synapses 

(PR) depends on the AZ size. We would like to stress that this probability (PR) is the function of both the 

Pv and N [PR = 1-(1-Pv)N], therefore the synapse size-dependent increase in N fully explains our previous 

and current results.   

What might be the consequence of the variable amounts of Munc13-1 in RSs? Munc13-1 is an 

evolutionally conserved presynaptic protein that is essential for docking and priming vesicles for release 

(Augustin et al., 1999; Betz et al., 2001; Brockmann et al., 2020; Imig et al., 2014; Jahn and Fasshauer, 

2012; Ma et al., 2011; Varoqueaux et al., 2002) therefore it can be hypothesized that the amount of this 

molecule might have an effect on the docking site occupancy or the priming state of the vesicles. MPFA 
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only allows the determination of Pv, a probability that depends on the probability of the RS being 

occupied (Pocc) and on the probability of a docked vesicle being released (Psucc; Neher, 2017). What could 

be the consequence of the variable amounts of Munc13-1? Two lines of evidence indicate that Pocc is high 

at neocortical/hippocampal glutamatergic synapses. As mentioned above, Sakamoto et al. (2018) came to 

this conclusion from the similar NRRP and N. Molnar et al (2016) examined the number of docked vesicles 

at cortical PC – FSIN synapses and determined N, and found rather similar values for both human and 

rat synapses, arguing for a Pocc of ~0.8 that is similar to that found at the Calyx of Held (Neher, 2010), but 

larger than at cerebellar IN synapses (Pulido et al., 2015). Thus it seems that variability in Pocc might not be 

the major consequence of the variable amounts of Munc13-1 per RS, indicating that Psucc might be 

affected. Heterogeneity in the Pv for different vesicles has been demonstrated at the AZs of the Calyx of 

Held (reviewed by Neher, 2017). Here, approximately half of the vesicles have high and the other halves 

have low Pv. Furthermore, there is also data indicating further heterogeneity in the Pv of the fast releasing 

(high Pv) vesicles in the Calyx (normally primed and superprimed vesicles; Taschenberger et al., 2016) and 

in hippocampal synapses as well (Hanse and Gustafsson, 2001; Schluter et al., 2006). Whether such high- 

and low-Pv vesicles are intermingled within individual AZs or are segregated to distinct AZs is unknown. 

It is just as unknown whether the normally and superprimed vesicles need different amounts of Munc13-

1 or not. It is noteworthy that the priming efficacy of Munc13-1 depends on its interaction with RIM and 

RIM binding protein (Brockmann et al., 2020) therefore predicting the functional consequence of the 

different amounts of Munc13-1 per RS might require the determination of these molecules in individual 

Munc13-1 clusters. A recent study using superresolution imaging of vesicle release from cultured 

hippocampal neurons provided strong evidence for the heterogeneity in Pv among RSs within individual 

AZs. Maschi and Klyachko (2020) demonstrated that the Pv of centrally located RSs is higher and 

participate more frequently in multivesicular release (MVR) than those that are located at the periphery of 

the AZs. These data taken together indicate substantial variability in Pv among RSs, which is more likely 

to be the consequence of variable Psucc, the relationship of which to the amounts of Munc13-1 molecules 

remains to be seen.  

Our results are also compatible with the concept that individual cortical synapses release more than a 

single vesicle from an AZ upon the arrival of a single AP (called MVR; Biro et al., 2006; Christie and Jahr, 

2006; Maschi and Klyachko, 2020; Pulido et al., 2015; Rudolph et al., 2015; Wadiche and Jahr, 2001). The 

occurrence of MVR is the function of N / AZ and Pv. All available data indicate that 

cortical/hippocampal excitatory and inhibitory synaptic AZs contain multiple RSs, the number of which 

positively correlates with the size of the AZ, fulfilling one essential requirement of MVR. The average Pv, 

however, is much more heterogeneous. The most compelling evidence for variable Pv in distinct boutons 

is the postsynaptic target cell type-dependent variability in Pv and short-term plasticity (Eltes et al., 2017; 

Koester and Johnston, 2005; Losonczy et al., 2002; Pouille and Scanziani, 2004; Reyes et al., 1998; Rozov 

et al., 2001; Scanziani et al., 1998; Thomson, 1997). A previous study from our laboratory demonstrated 

that Pv at hippocampal CA1 PC to O-LM cell synapses is so low that the occurrence of MVR is negligible 
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under physiological conditions (Biro et al., 2005). However, the Pv at PC – FSIN synapses is almost an 

order of magnitude higher (~0.4) than that at PC – O-LM synapses and given an average of five RSs per 

AZ, the probability of MVR is around 70%. We would emphasize that Pv at CA3 to CA1 PC synapses is 

probably in between these values, indicating that the occurrence of MVR is much less prominent. The 

degree of postsynaptic receptor occupancy is a key issue when the functional consequence of MVR is 

considered. If the occupancy is high (e.g. cerebellar climbing fiber to Purkinje cell synapses; Harrison and 

Jahr, 2003 or at cerebellar molecular layer IN synapses, Auger et al., 1998; Nusser et al., 1997) the effect 

of simultaneously released multiple vesicles is negligible and the rational of such release mode is debated. 

However, more and more evidence indicate that receptor occupancy is relatively low at most central 

glutamatergic synapses, allowing the postsynaptic cell to detect the number of simultaneously released 

vesicles within a single synapse either linearly or sublinearly. Our result, showing no correlation between 

the q and N / AZ (data not shown) is also consistent with this. Such MVR operation of synapses by 

increasing the reliability of transmission and reducing stochastic trial-to-trial variability might provide an 

important circuit element with which perisomatic GABAergic inhibition is recruited reliably by an active 

ensemble of PCs.  
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Figure legends 

 

Figure 1. Synapses between CA1 PC and FSINs show a large variability in their postsynaptic response 

amplitude and short-term plasticity. (A) Representative confocal image of a monosynaptically connected, 

biocytin labelled PC – FSIN pair in the hippocampal CA1 region (top). Membrane potential responses of 

the IN upon depolarizing and hyperpolarizing current injections (bottom). The supratreshold response 

shows FS firing characteristics. (B) Excitatory connections in three PC – FSIN pairs. EPSCs (lower 

traces) recorded in postsynaptic FSINs evoked by action potential (AP) trains in the presynaptic PCs (6 

APs at 40Hz followed by a recovery pulse at 300 or 500 ms, upper traces) display large variability in 

amplitude and short-term plasticity in 2 mM [Ca2+]. (Pair #1, 68.0 ± 27.7 pA, PPR: 1.05; Pair #2, 140.7 ± 

50.8 pA, PPR: 0.58; Pair #3, 507.4 ± 199.6 pA, PPR: 0.65). Top scale bars apply to the top two traces. 

Recording shown in orange (Pair #1) are from the cell pair in (A). (C) Superimposed averaged traces of 

the 1st EPSCs (n = 65 from 50 mice, mean EPSC rise time: 0.4 ± 0.2, CV = 0.40). Colored traces are 

from the corresponding pairs shown in (B). (D and E) Cumulative distribution of the peak amplitudes of 

the rise time-subselected 1st EPSCs and the paired-pulse ratios (EPSC2 / EPSC1) recorded in 2 mM 

[Ca2+] (n = 68 pairs from 46 mice). Colored symbols represent two corresponding pairs with rise times ≤ 

0.5 ms shown in (B). (F) Unitary EPSCs in a representative PC – FSIN pair recorded in 6 mM [Ca2+]. 

Same stimulation protocol as in (B). (G) Stability of the peak amplitude of the 1st EPSCs over 30 sweeps 
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from the pair shown in (F). (H) Relationship between mean and variance values of EPSC peak amplitudes 

in 6 mM [Ca2+] from the pair shown in (F). Quantal parameters were estimated with MPFA. N, number 

of functional release sites, q, quantal size, Pv, vesicular release probability. rs, Spearman’s rank correlation 

coefficient. s.o. stratum oriens, s.p. stratum pyramidale, s.r. stratum radiatum, s.lm. stratum lacunosum-

moleculare 
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Figure 2. Variability in the number of release sites is primarily responsible for the variability in peak 

EPSC amplitudes at PC – FSIN pairs. (A-D) Distribution in the peak amplitude of the 1st EPSCs (mean: 

215.9 ± 211.2 pA), the number of release sites (N, mean: 9.9 ± 9.0), quantal size (q, mean: 32.4 ± 16.0 

pA) and vesicular release probability (Pv, mean: 0.72 ± 0.1) in 47 pairs from 41 mice in 6 mM [Ca2+]. 

Boxplots represent 25 - 75% percentile, median (middle line), mean (red square) and SD (whisker) values. 

(E-I) Relationship between the peak amplitude of the 1st EPSC and the N (E), q (F), Pv (G), N / contact 

number (H), number of anatomical contact sites (I) in 6 mM [Ca2+], (panels E-G n = 47 pairs, panels H 

and I n = 61 contacts from 26 pairs, 25 mice). (J) Relationship between N / contact number versus 

release probability in n = 26 pairs. rs, Spearman’s rank correlation coefficient.   
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Figure 3. STED analysis of Munc13-1 and PSD-95 immunosignals at functionally characterized PC – 

FSIN synapses. (A) Confocal maximum intensity projection image of a monosynaptically connected, 

biocytin filled PC – FSIN pair in the hippocampal CA1 region. (B) Enlarged view of the boxed area in 

(A) with the IN soma and proximal dendrites. (C) Confocal image stack enlarged from the boxed area in 

(B). Boxed region indicates the location of the synaptic contact site shown in (F and G). (D) Unitary 

EPSCs recorded from the pair shown in (A) in the presence of 2 mM or 6 mM [Ca2+]. 6 APs were evoked 

at 40 Hz followed by a recovery pulse at 500 ms. (E) Relationship between mean and variance values of 

EPSC peak amplitudes in the presence of 6 mM extracellular [Ca2+]. Quantal parameters were estimated 

with MPFA. (F) Maximum intensity projection image of confocal z-stacks (from 7 optical sections at 300 

nm steps) was obtained from a 125 µm thick resin-embedded slice. Arrow points to the putative synaptic 

contact between the PC axon and the IN dendrite. (G) The same contact is shown reconstructed from 10 

thin (200 nm) serial sections after re-sectioning the resin-embedded slice. (H) STED microscopy image of 

a single 200 nm thin section. White dashed lines outlining the presynaptic bouton and the postsynaptic 

dendrite are superimposed on all images. Excitatory synapses - including the identified connection - are 
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located along the biocytin filled dendrite identified by vGluT1 (green), Munc13-1 (cyan) and PSD-95 (red) 

triple immunolabeling. Arrows point to the putative synaptic contact between the PC axon and the IN 

dendrite. White box indicates the location of the enlarged area in (I). (I) Localization and separation of 

the presynaptic (vGluT1 and Munc13-1) and postsynaptic (PSD-95) proteins in the identified contact on 

2 consecutive sections. The biocytin filled bouton is labeled for vGluT1 (green). The close apposition of 

the Munc13-1 and PSD-95 immunosignals on the merged STED image confirms that the presynaptic 

axon forms a synapse on the postsynaptic dendrite. s.o. stratum oriens, s.p. stratum pyramidale, s.r. 

stratum radiatum, s.lm. stratum lacunosum-moleculare 
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Figure 4. Correlations of the amounts of synaptic molecules with the quantal parameters at PC – FSIN 

synapses. (A-B) Summed PSD-95 intensity of all synapses of each pair as a function of N (A) and contact 

number (B). In pairs with double or triple contacts the sums of PSD-95 intensities are plotted. Black 

circles represent single contact pairs, colored circles represent pairs with two or three (yellow) synaptic 

contacts throughout the panels. (C-D) Averaged PSD-95 intensity in individual contacts as a function of 

N / contact (C) and Pv (D) in 6 mM [Ca2+]. (E-H) Same as A-D, but for Munc13-1 immunoreactivity. 

Data are from n = 18 synapses from 11 pairs from 10 mice. rs, Spearman’s rank correlation coefficient, 

note that linear fits are not part of the correlation analysis.    
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Figure 5. Density of Munc13-1 shows large variability in AZs targeting Kv3.1b+ cells in hippocampal 

CA1 area as revealed by SDS-FRL. (A and B) Low magnification EM images of corresponding 

protoplasmic-face (somaPF, A) and exoplasmic-face (somaEF, B) membranes of a Kv3.1b+ cell body in the 

stratum oriens. AZs fractured onto the somatic plasma membranes are highlighted in orange. (C and D) 

High magnification images of the boxed areas from panels (A and B) show matching EF and PF 

membranes of a bouton (bEF and bPF) attached to the Kv3.1+ cell. 5 nm gold particles (highlighted in red) 

labeling Munc13-1 are accumulated in the AZ (orange) of the bouton. (E-G) Other examples of Munc13-

1 labeled AZs attached to Kv3.1b+ somata or dendrites. (H) Distribution and cluster identification of 

gold particles labeling Munc13-1 in the AZs shown in (D-G) by DBSCAN analysis (epsilon = 31 nm, 

minimum number of particles per cluster = 2). (I) Number of Munc13-1 gold particles as a function of 

AZ area. Data from Exp1 (n = 36) is shown on the upper panel, additional three experiments are shown 

on the lower panel (Exp2, n = 65; Exp3, n = 48, Exp4 = 10 from 3 mice). The four AZs shown in (D-G) 
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are indicated by their corresponding colors. (J) Density of Munc13-1 gold particles as a function of AZ 

area. Data from Exp1 (n = 36) is shown on the upper panel, additional three experiments are shown on 

the lower panel. (K) Cumulative distribution of mean NNDs (per AZ) of Munc13-1 gold particles (n = 

159 AZs) and mean NNDs of randomly distributed particles within the same AZs (generated from 200 

random distributions per AZ, p < 0.001, Wilcoxon test). (L) Number of Munc13-1 gold particle clusters 

(estimated by DBSCAN analysis, n = 105 AZs) as a function of AZ area. Colored symbols represent the 

AZs shown in panels (D-G). rS, Spearman’s rank correlation coefficient. 
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Figure 6. Quantitative STED analysis reveals highly variable Munc13-1 signal in excitatory synapses on 

FSIN dendrites. (A) Confocal maximum intensity projection image of a biocytin filled FSIN (Cell1, soma 

and basal dendrites in the str. oriens are shown). The dendritic segments that were re-sectioned and 

analyzed are highlighted in yellow. (B) Reconstruction of the re-sectioned dendritic segments (20 sections, 

200 nm thick each) shown in (A). Colored circles indicate en face excitatory synapses (n = 33) identified by 

Munc13-1 and PSD-95 double immunolabeling. (C) STED analysis of Munc13-1 and PSD-95 

immunofluorescent signals on a single 200 nm thick section (shown in the boxed area in (B). The biocytin 

filled dendrite shown in a confocal image (top left) is outlined by a white line. Colored regions of interests 

(ROIs) represent en face synapses based on the Munc13-1 and PSD-95 immunosignals. (D) Relative 

Munc13-1 intensity as a function of relative PSD-95 signal in individual synapses. Symbols represent 

mean normalized integrated fluorescent intensities in individual synapses (Cell1, n = 33; Cell2, n = 26). 

Magenta and green filled symbols indicate the corresponding color-coded synapses shown in (C). Note 

that the two synapses have very similar Munc13-1 content although their PSD-95 reactivity is ~2.5 fold 

different.  (E) Munc13-1 to PSD-95 ratio as a function of relative PSD-95 intensity in individual synapses. 

Magenta and green filled symbols indicate the corresponding color-coded synapses shown in (C). rs, 

Spearman’s rank correlation coefficient.   
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Materials and Methods 

Animals 

Animals were housed in the vivarium of the Institute of Experimental Medicine in a normal 12 h/12 

h light/dark cycle and had access to water and food ad libitum. All the experiments were carried out 

according to the regulations of the Hungarian Act of Animal Care and Experimentation 40/2013 (II.14) 

and were reviewed and approved by the Animal Committee of the Institute of Experimental Medicine, 

Budapest.  

SDS-digested freeze-fracture replica-labeling  

Three C57Bl/6J (P49 – P63) male and a P49 female mice were deeply anesthetized and were 

transcardially perfused with ice-cold fixative containing 2% formaldehyde (FA) in 0.1 M phosphate buffer 

(PB) for 15 minutes.  80 µm thick coronal sections from the dorsal hippocampus were cut, cryoprotected 

in 30% glycerol, and pieces from the CA1 area were frozen with a high-pressure freezing machine 

(HPM100, Leica Microsystems, Vienna, Austria) and fractured in a freeze-fracture machine (EM 

ACE900, Leica) as described in (Lorincz and Nusser, 2010).  Tissue debris were digested from the 

replicas with gentle stirring in a TBS solution containing 2.5% SDS and 20% sucrose (pH = 8.3) at 80°C 

for 18 hours.  The replicas were then washed in Tris buffered saline (TBS) containing 0.05% bovine 

serum albumin (BSA) and blocked with 5% BSA in TBS for one hour followed by an incubation in a 

solution of the following antibodies: rabbit polyclonal anti-Kv3.1b (1:1600; Synaptic Systems, SySy, 

Goettingen, Germany, Cat#. 242 003, RRID: AB_11043175), rabbit polyclonal Munc13-1 (1:200, SySy 

Cat# 126 103, RRID: AB_887733, raised against AA 3-317), a guinea pig polyclonal Munc13-1 (1:200, 

produced in collaboration with SySy against AA 364-469), and a guinea pig polyclonal PSD-95 (1: 500,  

SySy, Cat#. 124 014) antibody. In three experiments from four mice the Munc13-1 antibody was mixed 

with a guinea pig Cav2.1 (1:3000, SySy Cat# 152 205, RRID: AB_2619842) antibody, but only the 

Munc13-1 signal was analyzed in the present study. This was followed by an incubation in 5% BSA in 

TBS containing the following secondary antibodies: goat anti-rabbit IgGs (GAR) coupled to 5 nm or 10 

nm gold particles (1:80 or 1:100; British Biocell International, BBI, Crumlin, UK) or donkey anti-guinea 

pig IgGs coupled to 12 nm gold particles (1:25, Jackson ImmunoResearch, Ely, UK), or goat anti-guinea 

pig IgGs coupled to 15nm gold particles (1:100, BBI).  Finally, replicas were rinsed in TBS and distilled 

water, before they were picked up on parallel bar copper grids and examined with a Jeol1011 EM (Jeol, 

Tokyo, Japan).  The rabbit Munc13-1 antibody was raised against an intracellular epitope, resulting in a 

labeling on the protoplasmic face (P-face), therefore nonspecific labeling was determined on surrounding 

exoplasmic-face (E-face) plasma membranes and was found to be 5.7 ± 0.8 gold particle / µm2. 

To quantify the Munc13-1 densities in the AZs of axon terminals targeting Kv3.1b+ dendrites and 

somata, all experiments were performed using the “mirror replica method” (Eltes et al., 2017; Hagiwara et 
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al., 2005). With this method, replicas are generated from both matching sides of the fractured tissue 

surface, allowing the examination of the corresponding E- and P-faces of the same membranes. The AZs 

were delineated on the P-face based on the underlying high density of intramembrane particles. 

Analysis of the distribution of Munc13-1 protein within the AZs 

We used a Python-based open-source software with a graphical user interface, GoldExt (Szoboszlay 

et al., 2017) to analyze gold particle distributions. Coordinates of the immunogold particles and 

corresponding AZ perimeters were extracted from EM images. Spatial organization of immunogold 

particles in presynaptic AZs was analyzed on the population of AZs using mean nearest neighbor distance 

(NND) and a Ripley analysis (Rebola et al., 2019; Ripley, 1979). For the NND analysis, we calculated the 

mean of the NNDs of all gold particles within an AZ and that of random distributed gold particles within 

the same AZ (same number of gold particles, 200 repetitions). The NNDs were then compared 

statistically using the Wilcoxon signed-rank test. We used a variance stabilized and boundary corrected 

version of the Ripley’s K function, called H-function (Hr) to examine whether particle distributions 

within individual AZs are clustered or dispersed over a range of spatial scales according to Rebola et al. 

(2019). To determine the number of clusters in Munc13-1 labeled AZs we used the density-based 

clustering algorithm, DBSCAN (Ester et al., 1996). DBSCAN requires two user-defined parameters: ε 

(nm), which is the maximum distance between two localization points to be assigned to the same cluster, 

and MinPts, the minimum number of points within a single cluster. We systematically changed the ε value 

from 1 to 100 nm and found the largest difference between the data and the random distributions at ε = 

31 nm (Matlab code was kindly provided by Maria Reva). We then determined the mean number of 

clusters (Nc = 5.4 ± 2.5) with this ε value and a MinPts of 2. We then tested the effects of changing ε and 

MinPts on Nc (ε = 21, NminP = 2, Nc = 5.7 ± 2.7; ε = 41, MinPts = 2, Nc = 4.0 ± 1.8; ε = 31, MinPts = 3, Nc 

= 3.8 ± 1.8) and found that changing these parameters within plausible values results in a moderate 

change Nc.  

In vitro electrophysiology 

Slice preparation 

Acute 300 µm thick coronal dorsal hippocampal slices were cut from C57Bl6/J (Jackson 

Laboratories, Bar Harbor, ME, USA) (n = 70),Tg(Chrna2-Cre)OE25Gsat/Mmucd, 

(RRID:MMRRC_036502-UCD, on C57Bl6/J background)  (n = 18), sst tm3.1 (flop) Zjh/J, (RRID: Cat# 

JAX:028579, RRID:IMSR_JAX:028579 on C57Bl6/J background) (n = 2) and Tg(Vipr2-

cre)KE2Gsat/Mmucd, (RRIP: MMRRC_034281-UCD) x Dlx5/6-Flpe (Tg(mI56i-flpe)39Fsh/J, 

(RRID:IMSR_JAX:010815) on C57Bl6/J background (n = 1) mice of both sexes (postnatal day 52 – 86). 

Animals were anaesthetized with a ketamine, xylasine, pypolphene cocktail (0.625, 6.25, 1.25 mg / ml 

respectively, 10 µl / g body weight) then decapitated, or perfused with  ice cold cutting solution 
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containing (in mM): sucrose, 205.2; KCl, 2.5; NaHCO3, 26; CaCl2, 0.5; MgCl2, 5; NaH2PO4, 1.25; and 

glucose, 10, bubbled with 95% O2 and 5% CO2. The brain was quickly removed into ice cold cutting 

solution and coronal slices containing the dorsal hippocampus were cut using a Leica vibratome 

(VT1200S, Leica, Wetzlar, Germany) and placed in a submerged-type chamber in ACSF containing (in 

mM): NaCl, 126; KCl, 2.5; NaHCO3, 26; CaCl2, 2; MgCl2, 2; NaH2PO4, 1.25; glucose, 10 saturated with 

95% O2 and 5% CO2 (pH = 7.2 – 7.4) at 36°C, which was then gradually cooled down to 22 – 24°C.  

Recordings were carried out in the same ACSF 32 – 33 oC, slices were kept up to 6 hours.   

Electrophysiology and data analysis 

Patch pipettes were pulled (Zeitz Universal Puller; Zeitz-Instrumente Vertriebs, Munich, Germany) 

from thick-walled borosilicate glass capillaries with an inner filament (1.5 mm outer diameter, 0.86 mm 

inner diameter; Sutter Instruments, Novato, CA).  Pipette resistance was 4 – 5 M when filled with the 

intracellular solution containing (in mM): K-gluconate, 130; KCl, 5; MgCl2, 2; EGTA, 0.05; creatine 

phosphate, 10; HEPES, 10; ATP, 2; GTP, 1; biocytin, 7; glutamate, 20 (for presynaptic PCs only) (pH = 

7.3; 290–300 mOsm). All recordings were carried out in the presence of 0.35 mM γ-DGG (Tocris, 

Bristol, UK; #112) and 2 µM AM251 (Tocris; #1117). All drugs were applied using a recirculating system 

with a peristaltic pump (3-5 ml/min). All drugs were ordered from Sigma (St. Luis, MO, USA), unless 

indicated otherwise. 

Recordings were obtained using either a Multiclamp 700A or 700B amplifier (Molecular devices, CA, 

USA) and signals were filtered at 6 kHz (Bessel filter) and digitized at 50 kHz with DigiData 1550A AD 

converter (Molecular Devices, San Jose, CA, USA). Data were collected and analyzed using pClamp10_7 

software (Molecular Devices, CA, USA). Cell pairs where the access resistance of the postsynaptic IN 

exceeded 25 MΩ, the PCs access resistance exceeded 35 MΩ or the access change was >20% were 

excluded from the study. Cells were visualized using infrared differential interference contrast (DIC) 

method using an Olympus BX51 microscope with a 40X water immersion objective (NA = 0.8), or 

Nikon Eclipse FN1 microscope (Nikon, Tokyo, Japan) with a 40X water immersion objective (NA = 

0.8). 

Both PCs and FSINs in the hippocampal CA1 area were identified by their position and shape and 

size of the somata in the DIC image. INs were held at -65 mV in current-clamp mode and firing 

properties were determined from their responses to square current injections (500 ms, from -300 pA to 

+300, 50 pA steps). Neurons with a narrow spike width, producing high frequency spiking in response to 

large depolarizing current injections and displaying lack of a sag in response to hyperpolarizing current 

injections were considered FSINs in accordance with the literature. Presynaptic CA1 PCs were held at -65 

mV in current-clamp mode and postsynaptic FSINs were held at -65 mV in voltage-clamp mode. In the 

presynaptic PCs, six APs were evoked at 40 Hz followed by a recovery pulse after 300 or 500 ms with 1.5 

ms long 1.5 nA depolarizing current pulses, which was repeated in every 8 seconds. The measured EPSC 
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amplitude values were corrected with the amplitude of the baseline negative peak. To investigate changes 

in quantal parameters Pv was increased by elevating extracellular [Ca2+] to 6 mM. MPFA was carried out 

according to (Biro et al., 2005). If the variance for the largest mean value was the largest, the cell was 

excluded from the analysis. This criterium served to ensure that the Pv is likely to be >0.5 increasing the 

reliability of deciphering the quantal parameters from the parabola fit. The mean and variance of EPSC 

peak amplitudes were calculated in 6 mM [Ca2+] recordings from 24-30 sweeps (contaminated sweeps 

were excluded, and if the total number of sweeps was <24, the cell pair was omitted from the analysis). 

Plots of mean versus variance values were fitted with a parabola to determine N, and q. Pv was calculated 

as P1 / (N * q) where P1 is the peak amplitude of the first EPSC of the train. All electrophysiological data 

were analyzed with Microsoft Excel and OriginPro 2018 (OriginLab, Northampton, MA, USA) as 

described above.  

Postembedding immunofluorescent reactions 

Tissue preparation 

After recordings, slices were placed in a fixative containing 4% FA and 0.2% picric acid in 0.1 M PB 

(pH = 7.4) for 12 hours at 4 °C. They then were embedded in agarose (2%) and re-sectioned at ~150 µm 

thickness. The biocytin-filled cells were visualized with Cy3-conjugated streptavidin (1:1000, Jackson 

ImmunoResearch, Bar Harbor, ME, USA) in TBS containing 0.2% Triton X-100. Sections were then 

treated with uranyl acetate, dehydrated in a graded series of ethanol, incubated in acetonitrile and flat-

embedded in epoxy resin (Durcupan) as described in (Holderith et al., 2020).  Putative contacts between 

the recorded neurons were identified with visual inspection at high magnification (60x, 1.35 NA objective, 

Olympus FV1000 microscope, Tokyo, Japan). Tissue blocks containing the biocytin-filled processes were 

re-embedded and ultrathin (70 or 200 nm) serial sections were cut and mounted on adhesive Superfrost 

Ultra plus slides. Potential contact sites between the presynaptic PC boutons and the postsynaptic 

dendrites were identified on the ultrathin sections, imaged using a confocal microscope (Olympus 

FV1000) and reconstructed with a custom-made ImageJ plugin (HyperStackStitcher, 3DHistech, available 

on the website: www.nusserlab.hu/software). 

Postembedding immunofluorescent labeling 

Etching of the resin, antigen retrieval, immunolabeling and elution were carried out as reported 

previously (Holderith et al., 2020). Primary and secondary antibodies were the followings: rabbit 

polyclonal Munc13-1 (1:200, SySy Cat# 126 103, RRID: AB_887733), guinea pig polyclonal PSD-95 (1: 

200, SySy, Cat#. 124 014, RRID: AB_2619800), rabbit polyclonal vGluT1 (1:200, SySy, Cat# 135-302, 

RRID: AB_887877), guinea pig polyclonal pan-AMPAR (1:200, Frontier Cat# Af580, RRID: 

AB_257161), goat anti-rabbit IgGs coupled to Abberior635P (1:200, Abberior GmbH, Goettingen, 

Germany), goat anti-guinea pig IgGs coupled to Abberior635P (1:200), donkey anti-rabbit coupled to 
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Alexa488 (1:200, Jackson ImmunoResearch).  After labeling sections were washed and mounted in 

Slowfade Diamond Antifade Mountant (ThermoFisher Scientific, Waltham, MA, USA). Images of all 

sections containing the identified synaptic contacts were taken at high magnification using an Abberior 

Instruments Expert Line STED microscope (100x 1.4 NA objective on an Olympus BX63 microscope, 

Abberior Instruments GmbH, Goettingen, Germany). After imaging, immunoreagents were eluted and a 

new round of labeling was performed. 

Image analysis 

A custom-made ImageJ plugin (HyperStackStitcher) was used to align images of ultrathin serial 

sections. To quantitatively analyze immunolabelings, ROIs were placed over the identified and 

surrounding synapses in ImageJ and background subtracted integrated fluorescence intensities were 

measured. Signals of the identified synapses were normalized to the population mean calculated from 49 

– 89 surrounding synapses. 

To quantify the Munc13-1 and PSD-95 signal of random synapses located on FSIN dendrites, the 

measured integrated fluorescence intensities were normalized to the mean of the analyzed synapse 

population. Munc13-1 to PSD-95 ratios were calculated in each synapse and the coefficient of variation 

(CV) of these ratios were assessed. 

Statistical analysis 

Shapiro-Wilk test was used to test the normality of our data. To compare two dependent groups 

paired t-test or Wilcoxon signed-rank test was used. Correlations were determined with Spearman’s rank 

correlation. Statistical tests were performed in Statistica (TIBCO Software Inc, Palo Alto, CA, USA) or 

OriginPro 2018 (OriginLab) 
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Figure 1-figure supplement 1. Confocal and STED analysis of Munc13-1 and PSD-95 immunosignals at 

functionally characterized synapses in a CA1 PC – FSIN pair that is shown in Figure 1F-H.  (A) Maximum 

intensity projection of confocal image stack of contact #1 (left panel) and reconstruction of the same 

contact after re-sectioning (nineteen 200 nm thick sections, right panel). Arrows point to the putative 

synaptic contact between the PC and the FSIN. (B) A single 200 nm thin section containing contact #1. 

The biocytin filled presynaptic bouton and postsynaptic dendrite are outlined with white lines. The 

presynaptic bouton is labeled for vGluT1 (green). Munc13-1 (cyan), and PSD-95 (red) are shown in 

confocal (middle) and STED (bottom) images. The close apposition of the Munc13-1 and PSD-95 

immunosignals on the merged STED image confirms that the presynaptic axon forms a synapse on the 

postsynaptic dendrite. (C) Same as (A), but for contact #2. (D) Same as (B), but for contact #2. 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.15.431316doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.431316
http://creativecommons.org/licenses/by/4.0/


 

Figure 2-figure supplement 1. Comparison of quantal parameters and their correlations in 2 mM and 6 

mM extracellular [Ca2+]. (A) Quantal parameters in the presence of 2 mM and 6 mM [Ca2+] (mean of 1st 

EPSC peak amplitude: 107.0 ± 90.6 pA vs 170.1 ± 112.6 pA; Pv: 0.42 ± 0.15 vs 0.71 ± 0.10; q: 27.4 ± 14.1 

pA; N: 10.0 ± 8.2). N and q values were determined from MPFA calculated in 6 mM [Ca2+]. (B) N as a 

function of 1st EPSC peak amplitude in the presence of 2 mM (black) and 6 mM (blue) [Ca2+]. (C) Pv as a 

function of 1st EPSC peak amplitude in the presence of 2 mM (black) and 6 mM (red) [Ca2+]. (D) q as a 

function of 1st EPSC peak amplitude in the presence of 2 mM (black) and 6 mM (green) [Ca2+]. (E) Pv as a 

function of N in the presence of 2 mM (black) and 6 mM (red) [Ca2+]. 

Data are collected from n = 14 cell pairs, 12 mice. rs, Spearman’s rank correlation coefficient. p, Wilcoxon 

signed rank test (panel A), Spearman’s rank test (panels B-E).  
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Figure 5-figure supplement 1. Specificity test of the Munc13-1 immunolabeling and tight correlation of the 

number of gold particles labeling PSD-95 with the synaptic area. (A and B) Two axon terminals with AZs (yellow) 

labeled for Munc13-1 with a guinea pig antibody (epitope: AA 364-469) shown at low (left) and high (right) 

magnifications. (C and D) Two axon terminals with AZs (yellow) double labeled for Munc13-1 with two polyclonal 

antibodies raised against non-overlapping epitopes (guinea pig antibody: AA 364-469, 5 nm gold; rabbit antibody: 

AA 3-317, 10 nm gold) shown at low (left) and high (right) magnifications. Quantitative analysis in Figure 5 was 

performed with the rabbit anti-Munc13-1 antibody. (E and F) Two mirror replica pairs showing excitatory 

postsynaptic densities (PSDs) on dendrites in the CA1 area. PSD area is identified by the accumulation of 
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intramembrane particles on the exoplasmic-face dendritic membranes (dendriteEF) highlighted by blue (left). The 

corresponding protoplasmic-face of the same dendrite (dendritePF) is labeled for PSD-95 with 5 nm gold particles 

(right). (G) Number of gold particles labeling PSD-95 as a function of PSD area in dendritic shaft (n = 25) and 

dendritic spine (n = 32) synapses. (H) Density of gold particles labeling PSD-95 as a function of PSD area in 

dendritic shafts (n = 25, rS = -0.115, p = 0.583) and dendritic spines (n = 32, rS = -0.326, p = 0.069).  rs, Spearman’s 

rank correlation coefficient.    
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Figure 6-figure supplement 1. Quantitative STED analysis on 70 nm thick sections reveals high variance 

in Munc13-1 signal in excitatory synapses on FSIN dendrites. (A) Confocal maximum intensity projection 

image of a biocytin filled FSIN (the re-sectioned and analyzed dendritic segment is highlighted in yellow). 

(B) Reconstruction of the re-sectioned dendritic segment (23 sections, 70 nm thick each) shown in (A). 

Colored circles indicate excitatory synapses (n = 54) identified by Munc13-1 and PSD-95 double 

immunolabeling. (C) STED analysis of Munc13-1 and PSD-95 immunofluorescent signals on 8 consecutive 

70 nm thick sections (shown in the boxed area in B). The biocytin filled dendrite (top left) is outlined by a 

dashed white line. Colored regions of interests (ROIs) represent excitatory contacts based on the Munc13-

1 and PSD-95 immunosignals. (D) Relative Munc13-1 intensity as a function of relative PSD-95 signal in 

individual synapses. Symbols represent mean normalized integrated fluorescent intensities in individual 

synapses (n = 53). Magenta, blue and green filled symbols indicate the corresponding color-coded synapses 

shown in (C). Note that the three synapses have very similar PSD-95 content although their Munc13-1 

reactivity is largely different. (E) Munc13-1 to PSD-95 ratio as a function of relative PSD-95 intensity in 

individual synapses. Magenta, blue and green filled symbols indicate the corresponding color-coded 

synapses shown in (C). rs, Spearman’s rank correlation coefficient, s.o. stratum oriens, s.p. stratum 

pyramidale, s.r. stratum radiatum 
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