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Abstract 

The amplitude of activation in brain resting state networks (RSNs), measured with resting-state 

functional MRI, is heritable and genetically correlated across RSNs, indicating pleiotropy. Recent 

univariate genome-wide association studies (GWAS) explored the genetic underpinnings of RSNs, but do 

not describe their pleiotropic nature. In this study, we used multivariate genomic structural equation 

modelling to model latent factors that capture shared genomic influences. Using summary statistics from 

GWAS of 21 RSNs in the UK Biobank (N = 21,081) sample, we show that their genetic organization can be 

best explained by two distinct but correlated genetic factors that divide multimodal association networks 

and sensory networks. We identify single-nucleotide polymorphisms and genes associated with the joint 

architecture of resting-state networks. We conclude that multivariate models of genetic structures can 

help us to learn more about the biological mechanisms involved in brain function. 
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Introduction 

The human brain is a complex system comprised of networks of regions that are interconnected in terms 

of their function 1–3. At rest, brain function can be assessed using resting-state functional magnetic 

resonance imaging (rfMRI), which uses a blood oxygenation level dependent (BOLD) signal to indirectly 

measure synchronicity in the metabolic activity of brain regions 4,5. Studies investigating rfMRI show that 

sets of brain regions are highly synchronized in their spontaneous BOLD activity, forming so-called 

resting-state networks (RSNs) 1–3. An extensive body of literature shows that activity in RSNs is 

phenotypically associated with the incidence of neuropsychiatric disorders 6–10. More recently, RSNs 

were also linked to physical factors portrayed by anthropometric, cardiac, and bone density traits 11.  

RSN activation is heritable 12,13, as demonstrated by twin and pedigree studies (i.e., broad-sense 

heritability; 0.23 < h2 < 0.97) 12,14–16 as well as based on the effect of single nucleotide polymorphisms 

(SNPs) in unrelated individuals, i.e. SNP-based heritability (0.05 < hSNP
2  < 0.28) 13,17. Most of these studies 

measured the heritability of functional connectivity based on correlations of BOLD timeseries within and 

between RSNs. However, RSN activity can also be captured by the amplitude of BOLD fluctuations 18,19, 

which were reported in Elliot et al. 13 to have on average higher SNP-based heritability estimates than 

correlation-based measures (0.14 < hSNP
2  < 0.36) 13. The genome-wide association study (GWAS) of BOLD 

amplitude conducted by Elliot et al. 13 led to the discovery of the first genomic loci associated with 

individual RSNs: seven RSNs covering prefrontal, parietal and temporal cortices were associated with 

SNPs in the gene PLCE1; four RSNs mainly covering prefrontal regions were associated with the same 

three intergenic variants (rs7080018, rs11596664, rs67221163) in chromosome 10; one genome-wide 

association with a single sensorimotor RSN involved the intronic variant rs60873293. 

Next to an overlap in single genetic variants involved in multiple RSNs, significant genetic correlations 

between different RSNs have been reported using bivariate GWAS analysis 13 and twin models 15,16, with 
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observed correlations between 0.37 and 0.79. These results suggest that RSNs are driven by shared 

genetic variation, indicating the potential for pleiotropy, i.e. the same genetic variants being involved in 

the etiology of different RSNs. One twin study conducted by Reineberg et al. 15 showed that the 

heritability of brain connectivity within and across RSNs is represented by three clusters, of which one 

was defined by low-heritability connections, and two clusters of heritable connections. The latter two 

can be described as one cluster comprising connections with high heritability in the visual cortex (i.e. 

“sensory” regions) and a second cluster comprising associations among default mode, frontoparietal, 

salience, dorsal and ventral attention regions (i.e. “multimodal association” regions, which integrate 

inputs from multiple sensory modalities). This broad division of the connectome into sensory networks 

and multimodal association networks is in line with what was previously found on the basis of clustering 

of BOLD amplitude across RSNs as well 18,19. Based on these results, we hypothesize that RSNs genetically 

diverge according to their “sensory” or “multimodal association” functions. 

 To identify the SNPs and genes driving this observed pleiotropy multivariate methods can be applied 

20–22. Grotzinger et al. 20 used a novel technique called genomic structural equation modelling (genomic 

SEM) to model a single genetic factor capturing GWAS associations across multiple psychiatric diagnoses. 

This multivariate GWAS approach led to the discovery of SNPs that were not observed by any of the 

separate univariate GWASs of any of the disorders 20. In this way, multivariate GWAS provides a new, 

statistically powerful opportunity to directly characterize the genomic influence on multiple phenotypes 

simultaneously. Given the observed pleiotropy between brain activation in RSNs, the same approach can 

be applied to discover the SNPs most associated with shared genetic effects on brain function. 

In the current study, we investigated shared genetic etiologies of multiple RSNs within the brain. We 

used GWAS summary statistics for the amplitude of 21 RSNs throughout the brain made available by the 

UK Biobank (N = 21,081) 11,13,23,24. First, we estimated the SNP-heritability of the selected RSNs, and for 

heritable RSNs we modelled their shared genetic structure using genomic SEM 20. Next, we performed 
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multivariate GWASs to characterize the SNPs associated with these pleiotropic factors. Our multivariate 

GWAS findings were further interpreted via functional annotation of top GWAS loci and gene-mapping 

with the Functional Mapping and Annotation (FUMA) tool 25 and gene-wide and gene-set analysis in 

MAGMA 26. Finally, we also tested whether the newly found genomic factors were genetically correlated 

with psychiatric and physical traits.  
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Results 

SNP-based heritability of RSNs. We obtained GWAS summary statistics of BOLD amplitudes of ten 

multimodal association and eleven sensory RSNs (Fig. 1, Supplementary Fig. 1, and Supplementary Table 

1) measured in 21,081 adult individuals from the UK Biobank cohort (see Methods: GWAS sample). 

Nineteen of the twenty-one RSN amplitudes showed a significant SNP-based heritability (hSNP
2 ; Adjusted 

P(FDR) ≤ 0.05; Supplementary Fig. 1 and Supplementary Table 1), with estimates of 0.05-0.17. Two 

sensory networks involved in secondary visual processing had non-significant hSNP
2  estimates (hSNP

2  = 0.036 

and 0.038) and were excluded from subsequent analyses. On average, multimodal association networks 

showed a higher hSNP
2  than sensory networks (average hSNP

2  = 0.13 and 0.07, respectively). 

Genetic correlations between RSNs. To test the existence of shared genetic etiologies between the 

heritable RSNs, we calculated genetic correlations using Linkage Disequilibrium Regression Analysis 27 

available within the genomic SEM package 20. Figure 2 displays the 171 genetic correlations between the 

heritable RSNs, of which 36 reached Bonferroni-level significance (P(Bonferroni) <= 0.05/171 = 3E-4), and 

63 other genetic correlations showed uncorrected p-values < 0.05. The Bonferroni and the ‘nominally’ 

significant genetic correlations were predominantly positive (97 out of 99), ranging from 0.29 to 0.84; 

whereas two nominally-significant correlations had negative coefficients: SN11 with MA4 (rg = -0.44, p = 

0.01) and SN11 with MA5 (rg = -0.59, p = 0.03). For more details on the genetic correlation values and 

respective standard errors and p-values, see Supplementary Table 2. 

Genomic structural equation modelling. To characterize the common underlying genetic etiologies 

between the nineteen heritable RSNs, we derived latent genomic factors using genomic SEM 20. We 

chose the most optimal model on the basis of exploratory factor analysis (EFA). The EFA results are 

summarized in Fig. 3, showing that the two-factor model explained 17% more variance than the one-

factor model, while the addition of a third factor did not explain substantially more variance 28,29. These 
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results indicate that the most optimal model in representing the pleiotropy among these RSNs consists 

of two factors. Therefore, we continued our main analysis on the two-factor model. For completeness, 

we also report results of the one-factor model, which also had a reasonable fit, for each step in the 

supplementary data (Supplementary Tables 3-5, and Supplementary Fig. 2). Factor loadings for the two-

factor model are available in Supplementary Table 6.  

We used confirmatory factor analysis (CFA) to test the model fit of the two-factor model. The model 

fit estimates are reported in Table 1, organized in two sets: (i) fit estimates reported for the model 

retrieved by EFA (see top row in Table 1); and (ii) fit estimates for the corrected model after excluding 

non-significant factor loadings (see bottom row in Table 1). By comparing chi-square and Akaike 

information criterion (AIC) statistics between the two sets, we observed that excluding non-significant 

factor loadings from the model led to lower values retrieved by both statistics, and thus an improved 

model fit.  

In Figure 4, we show the path diagram of the two-factor model, where the pleiotropy among RSNs is 

represented by two distinct but correlated factors (r = 0.48, p = 1.31E-5). The first factor (F1) comprises 

all ten multimodal association networks (MA1-10) and two sensory networks (SN4 and SN10); whereas 

the second factor (F2) consists of five sensory networks (SN5-9). The primary visual network SN11 was 

the only RSN whose amplitude was associated with both factors, reporting positive and negative factor 

loadings in F2 and F1, respectively. In Supplementary Table 7, we include the nominal and Bonferroni-

corrected p-values of the factor loadings shown in Fig. 4. Neither of the factor loadings of the primary 

visual network SN11 were significant upon Bonferroni correction (P(Bonferroni) <= 0.05/19 = 0.0026), 

leading to the exclusion of SN11 from the multivariate GWAS model.  

Multivariate GWAS Results. We estimated the SNP effects driving the pleiotropy of RSNs using 

multivariate GWASs of the two latent genetic factors. Both F1 and F2 showed significant SNP-based 
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heritability (F1: hSNP
2  = 0.20, SE = 0.028, P =  3.98E-13; F2: hSNP

2  =  0.11 , SE = 0.020, P =  6.87E-08). For F1, 

142 SNPs, encompassing 3 genomic loci, showed genome-wide significance (P < 5E-8). Of these SNPs, 

none had a genome-wide significant QSNP statistics (P < 5E-8), indicating that these SNPs are driven by 

multiple RSNs associated with F1, rather than by any specific RSN. All the genomic loci have been 

reported in the univariate GWASs 13, however, the association with the locus on chromosome 17 has not 

previously reached genome-wide significance corrected across all the tested traits. For F2, no SNP 

reached genome-wide significance (Supplementary Fig. 3).  

Functional characterization of top GWAS loci. We interpreted our multivariate GWAS results by 

conducting functional annotation and gene-mapping of genomic loci using FUMA 25. In addition to 142 

genome-wide significant SNPs reported for F1, FUMA analysis identified 131 other SNPs in LD with these 

genome-wide significant SNPs, making a total 273 candidate SNPs distributed among three genomic loci 

(see Table 2). With the functional annotation of these candidate SNPs, we mapped a total of 51 genes 

using positional, eQTL (Adjusted P(FDR) <= 0.05), and chromatin interaction mapping (Adjusted P(FDR) 

<= 1e-6), as reported in Supplementary Tables 8-10. Supplementary Table 11 contains a list of studies 

from the GWAS Catalog reporting genome-wide significant SNPs that map to these genomic loci. 

Gene-wide and gene-set results. To investigate whether our multivariate SNP-associations aggregated in 

a biologically meaningful way, we performed gene-wide and gene-set association analyses for F1 and F2 

using MAGMA 26. We found eight genome-wide significant genes associated with F1 (Fig. 5):  FHL5, 

PLCE1, HPS1, ANO1, EPN2, B9D1, MAPK7, and HIC1. Furthermore, F1 was significantly associated with 

one gene-set: a biological process involving lipoprotein clearance from the blood via receptor-mediated 

endocytosis (Supplementary Table 12). For F2, we discovered one gene-wide association for SMYD3, but 

no significant gene-sets (Supplementary Table 13). Additionally, we investigated whether the genes 

associated with F1 and F2 were enriched in 30 general human tissue types analyzed via MAGMA tissue 
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expression profile analysis. No significant enrichment was found for F1 or F2 genes (Supplementary Fig. 

4). 

Genetic correlations with neuropsychiatric and physical traits. To examine shared genetic effects 

between the two multivariate RSN factors and ten pre-selected neuropsychiatric and physical traits we 

performed genetic correlation analyses with GWAS summary statistics. The genetic correlation results 

are reported in Fig. 6. No genetic correlation reached significance after multiple comparison correction 

(Adjusted P(FDR) <= 0.05). One genetic correlation between F2 and BMI showed nominal significance (P 

<= 0.05). For more details on the genetic correlation values and respective standard errors and p-values, 

see Supplementary Table 14.  
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Discussion 

We investigated the genomic basis of pleiotropy of brain function in 21 resting-state networks across the 

brain. We discovered that two latent genetic factors best captured the genomic influence on resting 

state activity throughout the brain. The first factor was associated with multimodal association networks 

and two sensory networks; the second factor represented only sensory networks. Further, we found that 

the first factor was associated with SNPs, genes, and a gene-set with implications for our understanding 

of the molecular basis of brain function. With the statistical power provided by our multivariate genomic 

approach, we were able to characterize SNP effects relevant to general brain function over and above 

individual GWAS of RSN amplitude. 

Our genomic factor analyses point to a genetic divergence of multimodal association and sensory 

functions. This distinction is in line with previous studies using functional connectivity measures 15 and 

phenotypic analyses of RSN amplitudes 18,19. Brain regions involved in sensory and multimodal 

association functions have also been found to differ in cytoarchitectonic properties 30. For example, 

sensory cortical areas contain higher concentrations of myelin compared to higher order association 

areas 31–33. Furthermore, sensory and multimodal association areas exhibit distinct patterns of gene 

expression 34. Together with our findings, the extensive evidence of genetic and brain differences 

between these two factors may potentially reflect the known differences in the period of maturation 

between their respective brain regions 35. In addition, in evolution humans show more pronounced 

cortical expansion in multimodal association networks than they do in sensory networks compared to 

other primate species 36,37. Thus, differences between sensory and multimodal brain networks have been 

consistently indicated across biological disciplines from neurodevelopment, to neurophysiology, to 

evolution. With our findings, we suggest that this divergence between the sensory and multimodal 

association systems may also be represented by partly distinct effects of common genetic variation. 
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The first factor of general brain function was associated with a total of 273 candidate SNPs 

distributed among three genomic loci, of which one locus, on chromosome 17, was not previously 

detected by their univariate GWAS when corrected for multiple testing across traits and SNPs 13. We also 

detected eight gene-wide associations, seven of which were not previously detected by the univariate 

GWAS 13, and we were able to functionally map 47 additional genes relevant to the study of brain 

physiology. We thus demonstrate that a multivariate genomic approach has additional value in the 

search for genetic underpinnings of brain function.  

The gene EPN2, which encodes a protein involved in notch signaling endocytosis pathways, showed 

up in our gene-wide analysis and has previously been associated with educational attainment 38,39 and 

schizophrenia 40; this indicates that notch signaling, known for its role in neurodevelopment and the 

onset of psychiatric disorders 41, may also have an influence on general brain function in adulthood. We 

also reported a significant gene-set for the mainly multimodal association factor, namely triglyceride-rich 

lipoprotein particle clearance, which contains nine genes including APOE, the most well-known risk-gene 

for Alzheimer’s disease 42,43. A possible role of neurodegenerative processes in this factor was also 

suggested by the gene-wide association with MAPK7, which has also been reported in a GWAS of 

Alzheimer’s disease 44. This hypothesis is also supported by the functional mapping of LGI1, which was 

previously reported in relation to beta-amyloid measurement in cerebrospinal fluid, a biomarker for 

Alzheimer’s disease 45,46. An eventual link between this factor and ageing-effects potentially reflective of 

Alzheimer’s disease was, however, not corroborated by our genetic correlation analysis with Alzheimer’s 

disease, suggesting that this link is not reflected by association patterns at the genome-wide scale. 

Interesting significant gene-wide associations also included FHL5, a gene previously associated with 

migraine 47,48, spatial memory 49, and cerebral blood flow 50, and SMYD3, which previously came up in 

GWASs of cognitive ability 51,52, suicide attempt 53, and bipolar disorder 54. However, the genes retrieved 

by our gene-wide analyses were not all related to traits exclusively relevant to the brain, but also to 
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cardiovascular 55,56, metabolic 57,58, and drug response traits 59,60. BOLD amplitude, being a blood-based 

measure, may also be susceptible to genetic effects affecting blood-related traits that are not necessarily 

specific to the brain. The gene-wide result for PLCE1 is an example of such an observation, since it was 

previously reported for 38 other phenotypes, covering brain (e.g. migraine), cardiovascular (e.g. 

hypertension, blood pressure), and more general metabolic traits (e.g. BMI). The association of PLCE1 

was previously reported with seven individual RSNs in Elliott et al. 13. The gene encodes a phospholipase 

enzyme involved in cell growth, cell differentiation, and regulation of gene expression.  

Despite known associations of the above rfMRI-associated genes with neuropsychiatric and physical 

traits and previously reported phenotypic associations between these traits and rfMRI-derived imaging 

phenotypes 6–11,  we did not detect significant genetic correlations between our two genetic factors for 

brain function and those other neuropsychiatric and physical traits. This suggests that eventual links 

between general brain function and these phenotypes are not primarily explained by additive effects of 

common variants across the whole genome. 

This study should be viewed in light of several strengths and limitations. Strengths of our study are 

the use of GWAS results of large resting-state fMRI samples, which provided the power necessary to run 

this analysis. Furthermore, we used state of the art novel technologies to find shared genetic etiologies 

in summary statistics including genomic SEM, which provided statistical power-boosting through the 

joint analysis of GWASs. Our results provide a new, data-driven basis for studying biological pathways 

relevant to brain function, by integrating multiple data sources spanning genomics, epigenomics, and 

transcriptomics. However, this characterization was limited by the data sources that are currently 

available. As more resources become publicly available and integrated in FUMA and equivalent 

platforms, in the future an even broader genetic mapping of traits will be possible. Another limitation of 

our study is the fact that our approach focused exclusively on the effects of common SNPs, without 

including the effects of rare genetic variants or gene-environment interactions and correlations. 
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Including rare variation in follow-up studies and more extended explicit modelling of gene-environment 

interplay may provide even more insight into the biological pathways underlying brain function. 

In conclusion, we show that pleiotropy in heritable RSNs is best represented by a two-factor model 

mainly distinguishing the genetic influences on multimodal association from those on sensory networks. 

GWAS-based analysis of these genetic factors led to the discovery of relevant SNPs, genes, and a gene-

set. With our approach, we demonstrate that taking advantage of the pleiotropy of RSNs using 

multivariate genome-wide approach provides new insights in the genetic and molecular roots of brain 

function.   
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Methods & Materials 

GWAS Sample. We used GWAS summary statistics from the UK Biobank initiative, publicly available in a 

second release via Oxford Brain Imaging Genetics Server (open.win.ox.ac.uk/ukbiobank/big40/; 

accessed on 10 June 2020). They contain GWAS results for 3,919 imaging phenotypes of brain structure 

and function, based on a discovery sample consisting of 22,138 unrelated individuals of UK ancestry, of 

which 11,624 female (Females: mean age= 63.6 ± 7.3 years; Males: mean= 65.0 ± 7.6 years). In this 

dataset, 21,081 individuals with available rfMRI data were included in the GWAS on the amplitude of 21 

RSNs (i.e., the standard deviation of BOLD signal measured within each RSN). The MRI acquisition and 

analysis procedures of the brain imaging phenotypes have been described previously 11,61 and accounted 

for the confounders age, sex, head size, and estimated amount of head motion 62. Genotypes were 

imputed with the Haplotype Reference Consortium (HRC) reference panel and a merged UK10K + 1000 

Genomes reference panel as described by Bycroft et al. 24. The GWAS summary statistics come from the 

study by Smith et al. 63. This GWAS used a quality control procedure that included thresholding for minor 

allele frequency (MAF >= 0.001), the quality of the imputation (INFO >= 0.3), and Hardy-Weinberg 

Equilibrium (HWE –Log10(P) <= 7), while controlling for population structure represented by the first 40 

genetic principal components. A total of 20,381,043 SNP associations were reported in the selected 

GWAS summary statistics, which were estimated via linear association testing in BGENIE software 24. 

Description of RSNs. The 21 RSNs covering spontaneous BOLD fluctuations in the brain were labeled 

based on the clustering analyses conducted in Bijsterbosch et al. 19, which appointed RSNs to one of two 

distinct system categories: multimodal association and sensory systems. In Supplementary Table 15, we 

show the system category given to each RSN, the respective UK Biobank label, and its respective two-

dimensional anatomical visualization. Visualization of RSNs is also provided by the UK Biobank online 

resources (fmrib.ox.ac.uk/ukbiobank/group_means/rfMRI_ICA_d25_good_nodes.html). 
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Genomic Structural Equation Modelling. Taking the GWAS summary statistics of BOLD amplitude in 21 

RSNs, we modelled the potentially shared underlying genetic etiologies using a genomic factor analyses 

in genomic SEM package v0.0.2 in R v3.4.3, developed by Grotzinger et al. 20. For more details see 

github.com/MichelNivard/GenomicSEM/wiki/3.-Models-without-Individual-SNP-effects. 

First, we conducted a quality control (QC) step on the selected GWAS summary statistics that 

included (i) selection of SNPs reported in the HapMap3 reference panel; (ii) exclusion of SNPs located in 

the major histocompatibility complex (MHC) region; (iii) exclusion of SNPs with MAF lower than 1%; (iv) 

exclusion of SNPs with INFO scores lower than 0.9. This QC step retained a total of 1,171,392 autosomal 

SNPs. 

Secondly, we calculated the SNP-based heritability of the 21 RSN amplitudes with LD-Score regression 

(LDSC v1.0.0) 27. The univariate LDSC calculates SNP-based heritability estimates of traits, based on SNP 

effect sizes in relation to each SNP’s linkage disequilibrium (LD) 27. Only RSNs with FDR-corrected 

significant (Adjusted P(FDR)<0.05) SNP-based heritability were taken forward to the next genomic SEM 

steps. 

In the following step, the covariance matrices estimating the pleiotropy among heritable RSN 

amplitudes were retrieved using the multivariate extension of LDSC distributed by the genomic SEM 

package. We obtained (i) a genetic covariance matrix quantifying the genetic overlap among the RSNs; 

(ii) the respective matrix containing the standardized genetic covariance values (i.e. genetic correlations); 

(iii) a sampling covariance matrix informative of the standard errors associated with the genetic 

covariance measures. 

To determine the number of factors in the model, and which imaging phenotype loaded on which 

factor, we conducted an exploratory factor analysis (EFA) with maximum likelihood estimation. Before 

running EFA, the LDSC-derived covariance matrix was smoothed to the nearest positive, as part of the 
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default genomic SEM pipeline. We tested EFA with one factor and repeated the same step for an 

increasing number of factors up to six. We selected the highest number of factors leading to an 

explained variance increase (r2) of equal or more than 10% 29. For all the modelling results, positive or 

negative factor loadings with magnitudes equal or higher than 0.35 were assigned to a given factor, 

identical to Grotzinger et al. 20.  

For the most optimal model, we ran confirmatory factor analysis (CFA) using the genomic SEM 

package, in order to estimate the factor loadings of the variables included in the model and evaluate the 

respective model fit. Both the genetic and sampling covariance matrices were analyzed using weighted 

least squares estimation, providing fit statistics and inferred factor loadings. We retained factor loadings 

at a Bonferroni significance level across the factor loadings within the model (P(Bonferroni) <= 

0.05/Number of factor loadings).  

Multivariate GWAS. A multivariate GWAS was conducted on the factors of the most optimal model (see 

above), in order to discover the SNPs driving their pleiotropy. Only SNPs reported in the 1000 Genomes 

phase 3 reference panel were taken forward in this step, and SNPs were excluded in case of MAF lower 

than 1% or INFO score lower than 0.6, as in Grotzinger et al. 20. This analysis leads to the multivariate 

effect sizes and p-values for each SNP, reflecting the contribution of 8,135,328 autosomal SNPs to each 

factor. Additionally, for each SNP, the results included a heterogeneity statistic (QSNP) and respective p-

value addressing whether the SNP effect was mediated by the common factor(s) (null hypothesis), or is 

specific to one of the traits (P <= 5E-8). The SNP-based heritability of genetic factors represented in each 

model was also estimated, using LDSC 27, following the same procedure used for the 21 RSN amplitudes 

(see above). 

Functional Mapping Analysis. Functional annotation and gene-mapping of genomic risk loci of our 

multivariate GWAS results was performed using FUMA version v1.3.6 25, an online platform used to 
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prioritize, annotate, and interpret GWAS summary results (access via fuma.ctglab.nl). For each 

multivariate GWAS, FUMA annotates SNPs that reach independent genome-wide significance (P < 5E-8), 

or that reach nominal significance (P < 0.05) and are in LD (r2>=0.6) with any of the independent 

genome-wide significant SNPs within a 250 kb window. After determining the independent significant 

SNPs, the lead SNP of each genomic locus is chosen according to a more stringent LD squared coefficient 

r2 <= 0.1 25. For each independent significant SNP, FUMA retrieved information regarding the type of 

variant and the nearest gene, while providing for each genomic locus a GWAS Catalog list of published 

studies reporting genome-wide associations with SNPs located in that same locus. 

Gene-mapping was performed by (i) selecting genes located within 10 kb of each SNP, (ii) annotating 

SNPs based on their expression quantitative trait loci (eQTL) enrichment in the data resources listed in 

Supplementary Table 16, and (iii) the chromatin interactions depicted in the HI-C data resources 

reported in Supplementary Table 17. Only FDR-corrected significant gene associations were reported 

based on eQTL mapping (Adjusted P(FDR) <= 0.05) and chromatin interaction mapping (Adjusted P(FDR) 

<= 1E-6), as recommended in FUMA 25. 

Gene-wide and gene-set analyses. To test for aggregated association of multiple SNPs within genes, we 

performed gene-wide analyses on the multivariate GWAS results. We then performed gene-set analysis 

for curated gene-sets and GO terms from MsigDB c2 and c5, respectively, testing for the presence of 

pathways associated with these factors. Furthermore, we performed tissue gene expression analysis in 

the genomic factors. These analyses were all performed using the MAGMA v1.07 software 26 as 

embedded within the FUMA platform 25, for details see the Supplementary Methods.  

Genetic correlations with other traits. To examine shared genetic effects between our RSN genomic 

factors and other traits, we performed genetic correlation analyses with GWAS summary statistics from 

ten selected traits. We followed the same QC and bivariate genetic analysis procedures used for RSN 
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amplitudes (see above). Based on literature associating RSN function with many neuropsychiatric 

disorders, we selected GWAS summary statistics reported for Alzheimer’s disease 43 and for five major 

psychiatric disorders reported by the Psychiatric Genomics Consortium: attention deficit/hyperactivity 

disorder 64, autism spectrum disorder 65, bipolar disorder 54, major depressive disorder 66, and 

schizophrenia 60. We also included in our analysis  GWAS summary statistics reported for body-mass 

index 67, height 68, bone density 69, and diastolic blood pressure 70 traits, which were previously linked to 

RSN activation 11. Significant genetic correlations were determined by FDR multiple comparison 

correction (Adjusted P(FDR) <= 0.05). For detailed information about these GWAS summary statistics, 

consult Supplementary Table 18. 

Statistical Analysis. The significance of SNP-based heritability of BOLD amplitude in the 21 RSNs was 

determined via FDR correction accounting for multiple comparison bias. Bonferroni correction was used 

to determine the significance of factor loadings tested in CFA, correcting for the total number of factor 

loadings tested in each model. Genes discovered via gene mapping using eQTL enrichment and 

chromatin interactions were selected if their associated p-values reached the FDR-corrected threshold 

assigned to eQTL enrichment and chromatin interaction-based associations, respectively. Significance of 

findings for the gene-wide, gene-set, and tissue expression profiles was determined via a Bonferroni 

correction accounting for the number of tested genes, gene-sets, and tissue samples, respectively. FDR 

correction was used to determine the significance of the genetic correlations involving the latent 

genomic factors with psychiatric and physical health traits. 
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Figure 1. SNP-based heritability results obtained for RSNs of multimodal association and sensory networks. 

Cortical surface maps displayed show the multimodal association (top) and sensory networks (bottom). Both the medial and 

lateral views of RSNs in the left and right hemispheres are displayed from left to right. RSNs are color-coded according to their 

SNP-based heritability - proportion of variance in the trait explained by SNP effects – whose scale is displayed on the right. 
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Figure 2. Genetic correlation matrix of the nineteen heritable RSN amplitudes. 

Genetic correlations among multimodal association (MA) and sensory (SN) network amplitudes are represented according to the 

color bar displayed below, with their size being proportional to the magnitude of the correlation. SN2 and SN3 were not included 

due to non-significant SNP-based heritability. Genetic correlations scoring nominal and Bonferroni-corrected significance are 

respectively labeled with one (*) and two (**) asterisks. 
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Number of factors 1 2 3 

Cumulative explained variance 41% 58% (+17%) 61% (+3%) 

Figure 3. Summary of exploratory factor analysis. Plot displaying the percentage of cumulative explained variance (r2) 

from up to six-factor models tested using EFA (a); Cumulative explained variance by the one, two and three factor models tested 

using EFA. The added explained variance corresponding to an additional factor in the model is shown in parenthesis (b). 

 

  

a) 

b) 
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Table 1. Summary of confirmatory factor analysis. 

Model 
Number of 

factors 

Included 

RSNs 

Chi-square 

statistic 

Degrees of 

freedom 
AIC CFI SRMR 

EFA-based Model 2 18 897 133 973 0.81 0.12 

Model for 

Multivariate GWAS 
2 17 575 118 645 0.84 0.12 

The first column distinguishes the two stages composing our CFA approach: the first stage, i.e. EFA-based model, tested the model 

design for the two-factor model indicated by our EFA approach; the second stage, i.e. modelling for Multivariate GWAS, only kept 

RSNs that showed Bonferroni-corrected factor loadings in the first stage. The models were tested with a distinct number of factors 

(second column), with a given number of RSNs (third column). For each model, we display the chi-square statistic, degrees of 

freedom, Akaike information criterion (AIC), CFI (comparative fit index), and standardized root mean square residual (SRMR), from 

the fourth to the eighth columns. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2021. ; https://doi.org/10.1101/2021.02.15.431231doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.431231
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

 

Figure 4. Path diagram of two-factor model. Orange circles represent the two latent genetic factors of the two-factor 
confirmatory factor analysis (CFA). Factor 1 (F1) and 2 (F2) are connected by a double-headed arrow, which represents the 
correlation between the two factors. F1 and F2 are associated with eighteen RSNs represented by blue rectangles, with loadings 
represented by a blue (positive) or red (negative) arrow. Factor correlation and loadings reaching Bonferroni-corrected 
significance (P(Bonferroni) <= 0.05/19 = 0.0026) are indicated by an asterisk, whereas those that do not reach Bonferroni-
corrected significance are represented by dashed lines. 
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Table 2. LD-independent significant SNPs for latent factor F1. 

Genomic 

Locus 
rsID Chromosome Position P-value Variant Type Nearest Gene 

1 

rs7069316 10 96000282 9.83e-09 Intronic PLCE1 

rs10786156 10 96014622 1.93e-11 Intronic PLCE1 

rs11187842 10 96052511 2.46e-08 Intronic PLCE1 

2 

rs11596664 10 134280157 3.89e-09 Intergenic C10orf91 

rs7907962 10 134287486 1.92e-09 Intergenic C10orf91 

rs4880380 10 134288177 3.04e-09 Intergenic C10orf91 

rs7080018 10 134301505 8.69e-11 Intergenic RP11-432J24.5 

rs34102287 10 134331173 2.21e-10 Intronic RP11-432J24.5 

3 rs1969161 17 19194812 8.84e-09 Intronic EPN2 

For each genomic locus, the respective independent genome-wide significant SNPs are displayed. The lead SNP of each genomic 
locus is highlighted in bold, and information regarding the chromosome, position, genome-wide p-value, variant type, and 
nearest gene is provided. 
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Gene-wide analysis of F1 

 

Gene-wide analysis of F2 

 
Figure 5. Manhattan plot of MAGMA gene analysis findings of latent factors F1 and F2. 

Gene-wide p-values of associations in F1 (top), which comprises genetic effects shared among all ten multimodal association 

networks (MA1-10) and two sensory networks (SN4 and SN10); and F2 (bottom), consisted of five sensory networks (SN5-9). 

In each plot, genes located across the 22 autosomes labeled along the x-axis are represented by blue dots, whose position along 

the y-axis represents the log p-value scored by their gene-wide association with the latent factor F1. The red-dashed horizontal 

line marks the Bonferroni-corrected significance for the number of genes being tested (P(Bonferroni) <= 2.64e-6).  
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Figure 6. Genetic correlation matrix comparing the two factors of general brain function with neuropsychiatric 
and physical health traits. 

Genetic correlations of two genetic factors (F1 and F2) with ten neuropsychiatric and physical traits: attention 
deficit/hyperactivity disorder (ADHD), autistic spectrum disorder (ASD), bipolar disorder (BIP), major depressive disorder (MDD), 
schizophrenia, Alzheimer’s disease (AD), height, body-mass index (BMI), diastolic blood pressure (DBP) and bone density. 

Genetic correlations at nominal and FDR-corrected significance are respectively labeled with *  and **.  
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