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Abstract 

 

Numerous autism spectrum disorder (ASD) risk genes are associated with Wnt signaling, suggesting that brain 

development may be especially sensitive to genetic perturbation of this pathway. Additionally, valproic acid, 

which modulates Wnt signaling, increases risk for ASD when taken during pregnancy. We previously found that 

an autism-linked gain-of-function UBE3AT485A mutant construct hyperactivated canonical Wnt signaling, 

providing a genetic means to elevate Wnt signaling above baseline levels. To identify environmental use 

chemicals that enhance or suppress Wnt signaling, we screened the ToxCast Phase I and II libraries in cells 

expressing this autism linked UBE3AT485 gain-of-function mutant construct. Using structural comparisons, we 

identify classes of chemicals that stimulated Wnt signaling, including ethanolamines, as well as chemicals that 

inhibited Wnt signaling, such as agricultural pesticides, and synthetic hormone analogs. To prioritize chemicals 

for follow-up, we leveraged predicted human exposure data, and identified diethanolamine (DEA) as a chemical 

that both stimulates Wnt signaling in UBE3AT485A–transfected cells and has a high potential for prenatal exposure 

in humans. DEA also enhanced proliferation in two primary human neural progenitor cell lines. Overall, this 

study identifies chemicals with the potential for human exposure that influence Wnt signaling in human cells. 
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Introduction 

 

Large-scale exome sequencing studies of individuals with autism identified over 100 high-confidence 

ASD genes(1-3). Approximately 19% of these ASD genes are associated with the Wnt/ß-catenin signaling 

pathway, suggesting that alterations in Wnt signaling contribute to ASD pathogenesis(4-9). Members of the Wnt 

family are secreted signaling proteins that affect the development of nearly every area of the central nervous 

system(10). In the developing brain, Wnt establishes the anterior/posterior and dorsoventral axes, and instructs 

cell fate decisions by regulating the balance between differentiation and proliferation(11). Constitutive activation 

of Wnt signaling leads to hyperproliferation of neural progenitor cells and macrocephaly(12). 

Non-genetic environmental factors also contribute to autism risk(6, 13, 14). Epidemiological studies link 

gestational exposure to agricultural pesticides with risk for ASD(15, 16). And, certain environmental-use 

chemicals can mimic transcriptional changes associated with ASD when applied to primary mouse neuron 

cultures(17, 18). The best characterized environmental risk factor for ASD is valproic acid (VPA), which is 

prescribed for epilepsy, bipolar depression, and migraine(19). Prenatal exposure to VPA increases the risk of 

congenital malformations(20), ASD(21, 22), and macrocephaly(23, 24). VPA activates Wnt signaling by targeting 

HDAC1(25). Furthermore, drugs approved by the FDA for treating behavioral symptoms of ASD (aripipazole, 

risperidone) can affect Wnt signaling(26, 27). These studies suggest that the developing nervous system may be 

highly sensitive to chemicals in the environment that modulate Wnt signaling.  

Identifying environmental risk factors for neurodevelopmental disorders is a major challenge due to the 

lack of developmental neurotoxicological data on the vast majority of chemicals(28). To address this critical need, 

the EPA created the Tox21 program, which aims to provide platforms and methods to rapidly screen chemicals 

for potential adverse health effects(29). Here, we hypothesized that Wnt modulating chemicals will have enhanced 

effects in cells expressing an ASD-linked gene that, when overexpressed, stimulates Wnt signaling. To test this 

hypothesis, we screened the EPA Toxcast Phase I/II libraries using a Wnt sensitive luciferase reporter(30) in cells 

overexpressing UBE3A with an autism-linked T485A mutation (UBE3AT485A), a mutation that promotes Wnt 

signaling(31, 32).  
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2. Materials and Methods  

 

2.1 Lentiviral infection of primary mouse cortical neurons  

All lentivirus was produced in HEK293T cells using the third-generation packaging plasmids(33). Supernatant 

was collected, filtered using 0.45 µM filters, and frozen in single use aliquots. 

Primary neuron cultures from E15.5 C57Bl/6 mouse embryos were prepared as previously described(18). 

Neurons were plated in 96 well plates at 20,000 cells per well. On day three, cells were infected with 

lentiviruses carrying BAR:luciferase and Tk:Renilla in a 5:1 ratio. Cells were incubated for five days, then 

treated with ToxCast chemicals and incubated for 48 hours. Cells were lysed and the lysate was used in dual 

luciferase assays using the Dual-Glo luciferase system (Promega), and measured on the GloMax Discover plate 

reader (Promega). 

 

2.2 High-throughput Wnt screen of ToxCast phase I/II libraries  

All liquid handling steps of HEK293T ToxCast Phase I/II screen were performed using the Tecan EVO liquid 

handling robot. These steps included cell plating, chemical library dilution and aliquots, cell dosing, 

transfections, and luciferase assays. Technical replicates for six control chemicals (three Wnt inhibitors and 

three Wnt activators) were spiked into random positions in each plate to ensure technical reproducibility and 

eliminate the risk of plate swaps. HEK293T cells were cultured in DMEM (Gibco) and 10% FBS in the absence 

of antibiotic in a humid incubator at 37°C with 5% (vol/vol) CO2. Cells were plated in white opaque 384 well 

plates at a density of 4,500 cells per well. 24 hours post plating cells were transfected with a β-catenin 

responsive luciferase reporter (BAR)(30), TK-Renilla, and pCIG2 UBE3AT485A using Fugene 6 (Promega). 4 

hours post transfection cells were treated with chemical libraries. Cells were lysed 24 hours later, and luciferase 

assays were performed using the Dual-Glo luciferase system (Promega). All steps, including cell culture, 

treatments, lysis, and luciferase assays were performed in the same plate to minimize technical variation from 

handling artifacts. Four biological replicates (one well per chemical per concentration per day) were performed 

on different days to ensure reproducibility and reduce batch effects. 

 

2.3 Screen analyses  

The “Wnt luciferase ratio” was calculated by dividing the raw Firefly value by the raw Renilla luciferase value, 

and median centering within each plate. “Cell Health” was calculated using the raw Renilla value median 

centered within each plate. Biological replicates were averaged, and P-values were calculated using a two tailed 
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T-test. To calculate the “Wnt Score” (Wnt activity with a penalty for toxicity) we calculated the mean log2 fold 

change of the Wnt luciferase ratio for each chemical, calculated the slope of the concentration-response curve 

for that chemical, and multiplied this by the mean of the Cell Health metric. The EPA spiked in replicate 

chemicals across plates to assess reproducibility, in addition to the six control chemicals we added. When a 

chemical was present in multiple plates we averaged the values for each metric. 

 

2.4 HEK293T versus neuron toxicity comparison 

RASL-seq assessed Toxcast Phase I chemical toxicity in primary mouse neuron cultures by spiking in control 

luciferase RNA in each well, and calculating the ratio of luciferase reads to total number of reads from 

neurons(18). We normalized this data by median centering and averaged the values for all concentrations of 

each chemical. We then compared the measure of cell health from primary neurons to the Cell Health Metric 

from this screen. 

 

2.5 Structural chemical clustering 

Chemical structuring was performed using ChemMineR(34). SMILE strings were converted to SDF files. 

Distance matrices were defined using atom-pair properties, and unsupervised hierarchic clustering was 

performed using R.  

 

2.6 Estimated human exposure data 

Estimated human exposure data was downloaded from(35). We compared the Wnt Score metric with the 95% 

confidence interval mg/kg/body weight/day for reproductive age females (defined as 16-49 years old), 

reasoning that this demographic is most representative of maternal, fetal, and neonatal exposure.  

 

2.7 DEA in HEK293T cells 

DEA was obtained from Sigma-Aldrich (#31589). The panel of luciferase reporter plasmids was a kind gift 

from the lab of Dr. Ben Major. Luciferase assays were performed as described above. The following day cells 

were transfected with either pCIG2:empty (eGFP with an IRES carrying empty sequence) or pCIG2 

UBE3AT485A. Four hours later cells were treated with the indicated concentrations of DEA or vehicle (DMSO). 

Cells were incubated for 48 h and then total RNA was extracted using Trizol. cDNA was synthesized using 

SuperScript IV VILO with ezDNase (ThermoFisher). qPCR experiments were performed using SsoAdvanced 

Universal SYBR Green Supermix (NEB) on the Quantstudio5 (Applied Biosystems). Data was normalized to 
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EIF4A2 using the ∆∆Ct method. Two-tailed t-tests were used for comparison between vehicle conditions, and 

two-way ANOVA was used for concentration-response curves.  

 

2.8 Primary human neural progenitor cell cultures 

Human fetal brain tissue was obtained from the UCLA Gene and Cell Therapy Core following IRB regulations. 

Primary human (ph)NPCs were grown and differentiated as previously described(36, 37). Briefly, cells were 

thawed and plated in 10 cm plates with proliferation media (Neurobasal A supplemented with primocin, 

BIT9500, glutamax, heparin, EGF, FGF, LIF, PDGF) in a humid incubator at 37°C with 5% (vol/vol) CO2. 

Cells were mycoplasma tested and confirmed to be mycoplasma free (ATCC, Universal Mycoplasma Detection 

Kit). For experiments in Supporting Figure 1b cells were plated in 96 well plates and infected with lentivirus 

carrying BAR:luciferase and Tk:Renilla in a 5:1 ratio. Cells were incubated for 48 hours, then treated with the 

indicated chemicals. Cells were incubated for an additional 48 hours, then lysed and subjected to dual luciferase 

assays, as described above. For experiments in Figure 5 cells were plated in 96 well plates at a density of 12,500 

cells per well. 24 hours later cells were treated with DEA, and incubated for 46 hours. We then performed a 

two-hour pulse with 10 uM EdU, then fixed the cells with 4% paraformaldehyde. Labelling was performed 

using the Click-iT EdU fluorescent labeling kit per manufacturer’s instructions (Thermo-Fisher Cat. C10337). 

DNA was labeled using FxCycle Far Red stain (Invitrogen, Cat# F10348). Cells were counted using the Attune 

NxT. Data was analyzed using the FlowJo software. 
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3. Results 

 

3.1 High-throughput screen for environmental-use chemicals that modulate Wnt signaling 

 Given the evidence implicating Wnt signaling in ASD pathogenesis, we set out to test the EPA ToxCast 

Phase I and Phase II libraries(38) in cells transfected with an ASD linked UBE3AT485A mutant expression 

construct(31). Toxcast libraries contain chemicals with the potential for human exposure, including pesticides, 

plasticizers, perfluorinated chemicals, and “failed-pharma” compounds, which were donated by pharmaceutical 

companies due to toxicity in trials(38). We were blind to the identities of ToxCast Phase II chemicals during the 

screen, and were only unblinded after sharing the results of our screen with the EPA.   

To quantify Wnt signaling, we used the β-catenin activated reporter (BAR) luciferase reporter, which 

contains 12 tandem binding sites for the TCF/LEF transcription factor(30). We cotransfected a Renilla 

luciferase reporter driven by the Thymidine Kinase (TK) promoter as an internal control to assess cell viability 

and toxicity. Overexpression of UBE3AT485A activates the Wnt reporter by inhibiting proteasome dependent 

degradation of β-catenin(32). To identify a representative cellular context in which to perform the screen, we 

tested known Wnt activators in primary mouse cortical neurons, primary human neural progenitor cells 

(phNPCs), and HEK293T cells (Supporting Figures S1a-c). Control chemicals included VPA(25), the GSK3β 

inhibitor CT99021(39) and lithium chloride(40). We found context specific effects, with LiCl not activating the 

Wnt reporter in primary mouse neurons (Supporting Figure S1a), and VPA not activating the Wnt reporter in 

phNPCs (Supporting Figure S1b). HEK293T were the only cells that demonstrated Wnt activation of all three 

chemicals, therefore we chose these cells to perform the screen (Supporting Figure S1c). Wnt inhibitors and 

activators received a positive Z-factor, a statistical measure of assay suitability for high-throughput 

screening(41) (Supporting Figure S1d). 

Our two endpoints were Wnt luciferase ratio (BAR/Renilla, Figure 1a) and “cell health” (Renilla values, 

Figure 1b) (see Materials and Methods). We considered putative Wnt modulators as those with log2 fold change 

abs(log2 fold change) > 1 compared to vehicle, and p-value<0.05 (Figure 1a, Supporting Table S1). All control 

chemicals performed as expected (arrows, Figure 1a).  

 

3.2 Toxicity of ToxCast phase I/II chemicals  

Many of the ToxCast chemicals exhibited concentration-dependent toxicity (log2 fold change < -1, and 

p-value<0.05, Supp. Table 1, Figure 1b). Previously, we tested the ToxCast Phase I library, which contains 
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mostly pesticides(38), in primary mouse neuron cultures using RNA-seq as well as RASL-seq—a massively 

pooled transcriptomic assay(17, 18). In the RASL-seq experiments we also estimated neuronal toxicity by 

comparing total read counts per well to a luciferase mRNA spike in control. To identify chemicals with context 

specific toxicity, we compared the toxicity values in HEK293T cells (Figure 1b) with those in primary neurons 

(Figure 1c). The chemicals which were specifically toxic in HEK293T cells were mechanistically broad 

(Supporting Table S2), but typically exert anti-mitotic effects, such as the chemotherapeutics paclitaxel, 

fluorodeoxyuridine, and irinotecan(42, 43). Among these chemicals were also environmental use pesticides 

such as ametryn, the most widely used herbicide in sugarcane production and a frequent contaminant in aquatic 

environments(44, 45). In contrast to the broad mechanisms of toxicity in HEK293T cells, the chemicals that 

were most toxic to neurons were mitochondrial complex I and III inhibitors.  These included fenpyroximate, 

trifloxystrobin, pyridaben, fenazaquin, and pyraclostrobin (Figure 1c, Supporting Table S2)(46, 47). This class 

of chemicals is functionally related to rotenone (Supporting Table S2), which is implicated in Parkinson’s 

disease(48, 49). Emamectin benzoate, a chemical that binds with high affinity to invertebrate GABA 

receptors(50, 51), was also selectively toxic in mouse neurons. 

We next compared Wnt modulation with toxicity, and found that many chemicals that activated or 

inhibited the Wnt reporter were also toxic (Figure 1d). This is in contrast to our control chemicals which 

modulated Wnt without strong toxicity (Figure 1d, Supporting Figure 2a,b). Therefore, we generated a metric 

termed the “Wnt Score,” which reflects the potency of each drug across multiple concentrations with a penalty 

for toxicity (See Materials and Methods, Supporting Figure S2). All the control chemicals segregated to the top 

of this list (Figure 2a). To identify high-confidence non-toxic Wnt modulators, we filtered for those with 

p<0.05, log2 fold change greater than abs(log2 fold change) > 1, and Wnt score >0.4.  

 
3.3 Structural and functional comparisons of non-toxic Wnt modulators  

Structural comparisons of chemical libraries can be used to group chemicals with similar structures to 

infer common functions and molecular targets. To characterize structural similarities in the ToxCast chemicals, 

we used SMILE strings to performed hierarchical clustering and multidimensional scaling(34). The most potent 

Wnt activator in the Toxcast library was pharmaGSID_48505, which has structural similarity with CT99021 

(Figure 2b, Supporting Figure S3a,b). The similarity in effect size and structure between these two molecules 

suggests pharmaGSID_48505 targets GSK3β, but the enhanced toxicity suggests it is not as specific as 

CT99021 (Supporting Figs. 3a,b). The next cluster of Wnt activators contains several forms of ethanolamine 

(Figure 2b,c). Ethanolamines are bifunctional chemicals, containing a primary amine group and a primary 
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ethanol group. Ethanolamine forms the head group of the phospholipid phosphatidylethanolamine, which is 

highly abundant in the inner leaflet of cell membranes(52), and comprises ~45% of all phospholipids in the 

brain(53). Both ethanolamine and diethanolamine (DEA) activated the Wnt reporter without toxic effects 

(Figure 2c), while triethanolamine had no effect (Supporting Figure S3c). DEA has marginal structural 

similarity to VPA (Figure 2b). Clopyralid-olamine, a mixture of clopyralid and ethanolamine, also activated the 

Wnt reporter (Figure 2c). However, clopyralid alone had no effect (Supporting Figure S3d), suggesting that 

ethanolamine in this mixture was responsible for activating the Wnt reporter.  

Wnt inhibitors were substantially more numerous than activators, highlighting the benefit of screening 

the Wnt reporter in cells transfected with UBE3AT485A, which activates Wnt signaling (Figure 3a). Multiple 

agricultural pesticides inhibited the Wnt reporter, and these were structurally diverse (Figure 3a). These 

included the mitochondria complex I inhibitor tebufenpyrad (Figure 3b), and flufenacet, which inhibits 

synthesis of very long chain fatty acids (Figure 3c)(54, 55). Three inhibitors of p38 were also identified (Figure 

3a), including CP-863187 which is a highly potent and selective p38 inhibitor (Figure 3d)(56). P38 regulates the 

canonical Wnt pathway through GSK3β(57), again highlighting GSK3β as a central regulatory node of the Wnt 

pathway. Four clusters resolved when comparing chemical similarity, including synthetic estrogens (Figure 3e), 

thyroid hormone analogs (Figure 3f), glucocorticoid and steroid hormones (Figure 3g), and agricultural 

fungicides (Figure 3h). The crosstalk between these hormone signaling pathways and Wnt signaling is well 

established(58-62). These results raise the possibility that exposure to multiple chemicals with structural and 

functional similarity might have additive effects by acting through the same molecular pathways. 

 

3.4 Prioritizing chemicals using predicted human exposure data 

Humans are exposed to thousands of environmental-use chemicals, yet exposure data is not available for 

the majority of these chemicals(63). Instead, exposure estimates can be generated using various parameters, 

including urine biomonitoring of representative chemicals, chemical use classes, and production volume(35). 

We used these estimates to prioritize chemicals for more detailed validation experiments (Figure 4). We focused 

on exposure (mg/kg/body weight/day) predictions for reproductive age (16-49) females, reasoning that this age 

group best represents in utero exposure estimates (Figure 4, Supporting Table S3). The inhibitor with the 

highest relative exposure predictions was FD&C Blue No.1 (Figure 4). This dye has been approved for use in 

foods since the early 1900’s, and is considered safe and non-toxic by the FDA. It is deep blue in color, which 

visibly altered the color of cell media, which could interfere with the sensitivity of the luciferase assay. For 

these reasons we did not pursue this chemical for further experimental validation.   
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The next Wnt modulator with high exposure predictions was DEA, which was in the 98th percentile of 

predicted exposure volume for all ~8,000 chemicals in the Tox21 set (Figure 4)(35). DEA is used in a wide 

range of products, including adhesives, printing inks, paint, pigments, and paper, among others (64). DEA is 

capable of absorbing through the skin, therefore the most likely route of human exposure is dermally through 

liquid laundry and dish detergents, shampoos, and soaps(64, 65), where it functions as a surfactant and pH 

adjuster(66). It is also used in manufacturing, where it is estimated that ~800,000 workers are exposed to DEA 

through occupations such as metalwork and road paving(64). There is inadequate epidemiological data for DEA 

exposure in humans, but DEA is classified as possibly carcinogenic in humans based on animal models(67), 

where dermal exposure demonstrates carcinogenic activity(68). DEA accumulates in specific tissues following 

repeat exposure, including the brain, where it is incorporated into phospholipids(69). DEA has also been shown 

to influence hippocampal neural progenitor proliferation at high doses in vitro(70) and in vivo(71, 72). 

DEA is structurally similar to endogenous ethanolamine and choline. Cells and animals treated with 

DEA phenocopy choline deficiency, likely via competitive inhibition of choline metabolism(70, 73). However, 

there are no previous reports linking DEA to Wnt signaling, nor to any other developmental signaling pathways.  

For these reasons we decided to focus on DEA in follow up experiments. Using commercially obtained DEA, 

we tested the specificity of DEA in HEK293T cells against luciferase reporters that are sensitive to various 

signaling pathways. DEA concentration-dependently activated the Wnt reporter, with slight but statistically 

significant activation of the TGFβ reporter (Figure 5a).  Wnt and TGFβ share many downstream target genes, 

and components of the two pathways are known to interact(74).  

 We next tested whether genetic background influenced the activity of DEA. We transfected HEK293T 

cells with either an empty plasmid, or one containing the autism linked UBE3AT485A mutant construct, and tested 

the effect of DEA on the Wnt reporter over a wide range of concentrations. Notably, DEA activated the Wnt 

reporter at 100-fold lower concentrations when transfected with UBE3AT485A (Figure 5b). DEA has previously 

been shown to decrease proliferation and increase apoptosis of mouse NPCs in vitro and in vivo(70, 71). In vivo, 

DEA affects hippocampal NPC proliferation at 80 mg/kg(71), which is substantially higher than what is 

predicted for human exposure (~0.0038 mg/kg bodyweight per day). Therefore, we sought to determine the 

lowest concentration at which DEA alters NPC proliferation using two genetically distinct phNPC lines(36). 

We compared DEA to known chemical Wnt modulators, including the Wnt activators CT99021, and lithium 

chloride. Each of the control chemicals increased proliferation as expected (Figure 5c,d). DEA increased 

proliferation in a concentration dependent fashion; the magnitude was similar to that of lithium chloride (Figure 
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5c,d). DEA was active at the lowest concentration tested (50 µM) in one cell line. We observed that higher 

concentrations were noticeably toxic to phNPCs (Figure 5d).   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2021. ; https://doi.org/10.1101/2021.02.15.430319doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.430319
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

Discussion 
Here, we screened a library of environmental-use chemicals for their ability to modulate a Wnt sensitive 

reporter in cells overexpressing UBE3AT485A, an autism-linked gene that stimulates Wnt signaling at baseline.  

Previously, the EPA tested the ToxCast libraries for Wnt activation using a similar TCF7 reporter construct(75). 

Our approach is different for two reasons. First, in HEK293T cells TCF/LEF reporters are largely not expressed 

above baseline levels without additional treatment, which prevents detection of Wnt inhibitors. Second, we 

evaluated Wnt signaling in a genetically “sensitized” background, which we hypothesized would enhance the 

effects of Wnt modulators.  

By comparing chemical structures, we identified classes of chemicals with shared effects on Wnt 

signaling, including synthetic estrogens, thyroid hormones, glucocorticoid and steroid hormones, and 

agricultural fungicides. Aside from PharmaGSID_48505, the primary cluster of non-toxic Wnt activators were 

ethanolamines, which are predicted to have relatively high levels of exposure in reproductive age females and 

children age 6-11 (Figure 4). We found that DEA specifically activated Wnt signaling in baseline conditions, 

but overexpressing the autism linked UBE3AT485A mutation amplified DEA’s effect on Wnt signaling (Figure 5). 

Consistent with the role on Wnt in regulating proliferation, we observed an increase in proliferation in primary 

human neural progenitor cells. 

 In animal models, DEA exposure has effects on several tissue/organ systems. Mice treated with DEA for 

two years develop higher rates of kidney and liver tumors (data reviewed in(65)). These tumors had high rates 

of mutations in exon two of the β-catenin gene, and demonstrated abnormal nuclear localization of β-catenin, 

indicative of constitutively active Wnt signaling(76). Topical treatment of DEA on pregnant mice reduces 

embryonic viability, and reduces proliferation of embryonic hippocampal neural progenitors in vivo(71). At 

high doses, DEA was found to reduce proliferation of cultured murine NPCs via inhibition of choline 

uptake(70). Choline is an essential nutrient crucial for normal brain development(77), and DEA affects patterns 

of DNA methylation that mimic choline deficiency(78). 

There are several possible mechanisms by which DEA could modulate Wnt signaling. DEA is 

structurally similar to choline, and both are incorporated into phosphoglyceride and sphingomyelin analogs(69). 

Importantly, this unnatural incorporation includes a xenobiotic headgroup from DEA, and leads to 

bioaccumulation in the brain(69). The composition of the lipid membrane influences membrane localization and 

trafficking of lipid modified proteins(79), such as the Wnt ligands, which require lipid modification for proper 

solubility, the establishment of morphogen gradients, and protein interactions(80). Furthermore, the Wnt 
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coreceptor LRP6 also uses phospholipids as signaling ligands(81). Thus, there are multiple possible 

mechanisms by which DEA exposure could influence lipid metabolism and affect Wnt signaling.  

DEA is used in cosmetics due to its properties as a pH stabilizer (pH 9.5).  Recent experiments in the 

context of chick development demonstrated that high intracellular pH caused by enhanced glycosylation leads 

to non-enzymatic ß-catenin acylation, which activates Wnt specific transcriptomic profiles that maintain 

mesoderm identity(82). Acidification of tumor cells also inhibits Wnt signaling in tumor cells(83). Furthermore, 

the loss of UBE3A affects pH of the Golgi apparatus, which compromises pH sensitive functions of the Golgi 

apparatus, such as glycosylation(84). Therefore, alterations in intracellular pH could be a mechanism by which 

DEA enhances Wnt signaling in the context of the hyperactive UBE3AT485A mutation. 

 The use of DEA in cosmetics was banned in Europe and Canada following concerns about DEA as a 

carcinogen(85, 86). The FDA and the National Toxicology Program have likewise found an association 

between DEA and cancer in lab animals, and provide information on the use of DEA and its derivatives in 

cosmetics (https://www.fda.gov/cosmetics/cosmetic-ingredients/diethanolamine). However, as of this writing, 

DEA is approved in the United States as long as it does not comprise >5% of the total product composition(65). 

To our knowledge there have been no epidemiological studies suggesting a role, or lack thereof, of DEA in 

increasing risk for neurodevelopmental disorders. Our data suggests that genetic background (i.e. UBE3AT485A 

expression) greatly enhances the effects of DEA on Wnt signaling (Figure 5b), and that DEA increases human 

NPC proliferation at relatively low concentrations (Figure 5c,d)(70). Given these findings, the predicted high 

level of exposure in humans, including women of childbearing age, additional studies are warranted, 

particularly with regard to exposure and neurodevelopmental outcomes in genetically sensitized backgrounds.  
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Figure Legends 

Figure 1 – Screen to identify ToxCast chemicals that stimulate or inhibit Wnt signaling. 

a) ToxCast phase I/II chemicals screened against the Wnt luciferase reporter in HEK293T cells transfected 

with UBE3AT485A expression plasmid. Arrows mark chemicals that were used as positive controls. Each 

point is a single chemical at a single concentration. P-value represents unpaired T-test comparing each 

chemical with negative control vehicle wells in each plate.   

b) Cell health of ToxCast chemicals in HEK293T cells transfected with UBE3AT485A expression plasmid. 

Each point is a single chemical at a single concentration. Decrease in cell health score indicates toxicity. 

c) Comparison of ToxCast chemical toxicity in HEK293T cells transfected with UBE3AT485A and primary 

mouse neuron cultures. Toxicity was calculated as the slope of Renilla luciferase (internal control) 

signal across all concentrations of each chemical. 

d) Comparison of cell health and Wnt activation measures. Each point is a single chemical at a single 

concentration. Chemicals below the dashed line are those that have toxic effects. 

 

Figure 2 – Non-toxic Wnt activators 

a) Toxicity corrected Wnt luciferase ratio (Wnt Score), which combines all concentrations of each 

chemical and imparts a penalty for toxicity (mean luciferase ratio of all concentrations (log2 fold 

change), multiplied by the mean Renilla values for all concentrations). Positive control chemicals for 

both activation and inhibition rose to the top of this list. 

b) Comparison of chemical structures of non-toxic Wnt activators using SMILE strings and hierarchical 

clustering. 

c) Concentration-response curves for Wnt luciferase signal and toxicity scores for the ethanolamine cluster. 

Values normalized to vehicle. 

 

Figure 3 – Non-toxic Wnt inhibitors 

a) Comparison of chemical structures of non-toxic Wnt inhibitors using SMILE strings and hierarchical 

clustering. Representative chemicals displayed in b-h marked by asterisks. 

b-h) Concentration-response curves for Wnt luciferase signal and toxicity scores for representative 

chemicals of each class.  

 

Figure 4 – Human exposure prediction data 
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Predicted exposure of reproductive age females to ToxCast chemical libraries. Chemicals with non-toxic 

Wnt modulation from Figures 2,3 are colored. 

 

Figure 5 -  DEA activates Wnt signaling and proliferation 

a) The effect of DEA on several luciferase reporters that measure developmental signaling pathways.  

Experiments done in the absence of UBE3AT485A overexpression. Tk:Renilla cotransfected for internal 

control. PGK (ubiquitous promoter, negative control), Hh (Hedgehog). Data normalized to vehicle for 

each reporter. T-test, * p<0.05, n = 4. 

b) Concentration-response curve of DEA on Wnt luciferase reporter in the presence of either empty 

plasmid, or UBE3AT485A overexpression. ANOVA, effect of genotype on Wnt response, ** p<0.01.  

c,d) Proliferation rates of Wnt control chemicals and DEA in two primary human neural progenitor cell 

lines. Cells treated for 46 hours with indicated chemical and concentration, followed by a two hour pulse 

with EdU. Cells analyzed by flow cytometry. T-test, * p<0.05, n = 4. 

 

Supporting Figure 1 – Establishing ToxCast screen conditions 

a-c) Chemicals known to activate Wnt signaling tested in primary mouse cortical neurons (a), primary 

human neural progenitor cells (b), and HEK293T cells (c), without UBE3AT485A overexpression. Primary 

cells were transduced with lentiviruses carrying BAR:Firefly and Tk:Renilla. HEK293T cells were 

transiently transfected with plasmids. n=4 per condition. 

d) Z-factor analysis for known Wnt activating and inhibiting control chemicals at indicated concentrations. 

 

Supporting Figure 2 – Examples of concentration-response curves and Wnt Score 

a-c) Control chemicals that modulate Wnt reporter (solid line) at concentrations that are non-toxic (dashed 

line). The Wnt score listed to the right of each graph is a single score combining multiple 

concentrations of the Wnt reporter values with a penalty for toxicity (see methods). 

d,e) Concentration-response curves for two ToxCast chemicals that significantly inhibit (d) or activate (e) 

the Wnt reporter, but do so at concentrations that are toxic. The Wnt score listed to the right, centered 

around 0, reflects the penalty incurred on Wnt activation from toxicity.  
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Supporting Figure 3 – Concentration-response curves for two Wnt activating chemicals and two 

chemicals that are structurally similar to activators, but that fail to activate Wnt signaling. 

a-d) HEK293T cells transfected with UBE3AT485A treated with (a) the most potent ToxCast wnt activator 

pharmGSID_48505, and (b) CT99021, the most potent Wnt activator identified to date. Results demonstrate 

similar effect sizes with higher toxicity for pharmaGSID_48505. (c) Triethanolamine, the trimeric form of 

monoethanolamine, fails to activate Wnt reporter. (d) Clopyralid alone also fails to activate Wnt reporter. 
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