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ABSTRACT 38 
Advances in mass-spectrometry have generated increasingly large-scale proteomics 39 
datasets containing tens of thousands of phosphorylation sites (phosphosites) that 40 
require prioritization. We develop a bioinformatics tool called HotPho and systematically 41 
discover 3D co-clustering of phosphosites and cancer mutations on protein structures. 42 
HotPho identifies 474 such hybrid clusters containing 1,255 co-clustering phosphosites, 43 
including RET p.S904/Y928, the conserved HRAS/KRAS p.Y96, and IDH1 p.Y139/IDH2 44 
p.Y179 that are adjacent to recurrent mutations on protein structures not found by linear 45 
proximity approaches. Hybrid clusters, enriched in histone and kinase domains, 46 
frequently include expression-associated mutations experimentally shown as activating 47 
and conferring genetic dependency. Approximately 300 co-clustering phosphosites are 48 
verified in patient samples of 5 cancer types or previously implicated in cancer, 49 
including CTNNB1 p.S29/Y30, EGFR p.S720, MAPK1 p.S142, and PTPN12 p.S275. In 50 
summary, systematic 3D clustering analysis highlights nearly 3,000 likely functional 51 
mutations and over 1,000 cancer phosphosites for downstream investigation and 52 
evaluation of potential clinical relevance.   53 
 54 
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INTRODUCTION 59 
Dysregulated phosphorylation of oncogenic proteins alters pathway activity and contributes to 60 
tumor phenotypes1,2. Recent advances in mass-spectrometry have generated increasingly 61 
large-scale proteomics datasets in multiple cancer types3,4, each containing tens of thousands 62 
of phosphosites that urgently require prioritization. Missense somatic mutations and 63 
phosphorylations, independently or through mutual interactions, can affect the physicochemical 64 
properties of the residue side chains and modulate protein functions or stability in oncogenic 65 
pathways. Thus far, mutation and phosphorylation have been largely studied in isolation by 66 
genomics and proteomics approaches. Integrated methodologies are required to reveal their 67 
interactions and prioritize both types of events with functional significance.  68 
Previous works highlighted the potential functionality of mutations that are linearly adjacent to 69 
phosphosites in cancer driver genes5–7, yet these studies did not consider the 3-dimensional 70 
structures of proteins. We and others previously demonstrated that mutations in cancer genes 71 
form 3-dimensional (3D) spatial clusters—defined by high local concentrations of mutations on 72 
protein structures—enriched for functional missense mutations8–10. We hypothesize that co-73 
clustering mutations and phosphosites in spatial hotspots will also enrich for functional events of 74 
both categories. Systematic analyses of mutations from sequencing data and phosphosites from 75 
global proteomics data will enable us to investigate beyond currently-interrogated phosphosites 76 
with available targeting antibodies and reveal functionalities of phosphosites. 77 
Here, we report on the development and application of a bioinformatics tool called HotPho to 78 
systematically discover spatial interactions of mutations and phosphosites. We find 474 79 
significant hybrid clusters (defined as clusters containing both co-clustering phosphosites and 80 
mutations) that prioritize 1,255 phosphosites and 2,938 mutations on protein structures from 81 
large-scale proteomics and genomics data. Many co-clustering mutations are associated with 82 
high functional scores, expression changes, and known recurrent/activating events that expose 83 
genetic dependency; whereas many co-clustering phosphosites are found in kinase domains 84 
and verified in primary tumor samples. We specifically prioritize phosphosites co-clustering with 85 
activating mutations of BRAF, EGFR, and PIK3CA. Collectively, our approach of 3D spatial 86 
clustering on protein structures systematically highlights likely functional mutations and 87 
phosphosites for downstream investigation.   88 
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RESULTS 89 
HotPho Algorithm and Performance 90 
Extending beyond the originating framework of an earlier mutation-clustering tool we developed, 91 
namely HotSpot3D8, HotPho enables investigation of proximal and structural information of 92 
phosphosites with their neighboring mutations and domains, both on a single protein structure 93 
or co-crystallized binding partners in a protein complex (Figure 1). Briefly, all missense variants 94 
and phosphosites are considered as nodes and their 3D distances as edges on an undirected 95 
graph and the clusters are built up using the Floyd–Warshall shortest-paths algorithm 96 
implemented by HotSpot3D8 (Methods).  97 
We demonstrated the capability of HotPho for identifying co-clustering cancer mutations and 98 
phosphosites using data comprised of 225,151 unique phosphosites from PTMcosmos compiled 99 
from multiple databases and CPTAC cancer proteomic cohorts3,4 (Methods). We also included 100 
791,637 missense mutations of 9,097 samples across 33 cancer types from a filtered set of 101 
Multi-Center Mutation Calling in Multiple Cancers project (MC3) mutation calls from the TCGA 102 
PanCanAtlas11, taken in account their recurrence in the MC3 cohort. Both mutations and 103 
phosphosites are mapped by HotPho and analyzed based on 5,950 processed human proteins 104 
from UniProt12 having at least one PDB structure.  105 
To assess whether the co-clustering between aforementioned sets of mutations and 106 
phosphosites is non-random, we analyzed the clusters against a set of permutated data as 107 
follows: the original mutation backbone was maintained while phosphosites were randomly 108 
populated 100 times, keeping the corresponding ratios of residue types of phosphosites 109 
constant (Methods). We found a higher fraction of hybrid clusters in the original HotPho output 110 
(8.1%) at the top 5% of the cluster closeness score compared to the null distribution from the 111 
permutations (Figure 1). We defined the criteria of high-confidence clusters to have cluster 112 
closeness scores within the top 5% of their respective cluster types and subsequently limited 113 
our analyses to these clusters. In hybrid clusters, the 5% sensitivity corresponded to 97.4% 114 
specificity in a receiver operating characteristic (ROC) curve analysis (AUC = 0.58, 115 
Supplementary Fig. 1A).  116 
We conducted a multitude of analyses to investigate the modality in the score distribution and 117 
the implication of using the 5% threshold. First, while this threshold (cluster closeness score = 118 
2.56) may permit false-positives if the simulated phosphosites only contain negatives, we 119 
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observed many of the clusters containing activating or recurrent mutations with cluster 120 
closeness scores close to the threshold (Supplementary Data 1). It is possible that the spatial 121 
distribution of cancer mutations and commonality phosphosite residues (i.e., serine, threonine, 122 
and tyrosine) is not random and thus retaining these additional hybrid clusters is needed to 123 
minimize false-negatives. Second, to resolve possible reasons underlying the multi-modal 124 
distribution of cluster closeness scores, we compared the score distributions for 299 mutation-125 
enriched cancer driver genes13 versus other genes. While hybrid clusters involving driver genes 126 
showed a higher density at the higher-score mode, driver gene status did not guarantee high 127 
scores (Supplementary Fig. 1B). The 5% score threshold showed a sensitivity = 0.17 and 128 
specificity = 96.0% in distinguishing hybrid clusters with driver genes (Supplementary Fig. 1C). 129 
Finally, we examined the score distribution using 200 bins on both the simulated vs. observed 130 
clusters, finding multiple peaks and alternative thresholds, for example, thresholding using one 131 
of the higher local minima retained only the top 2.28%, or the top 216 clusters (Supplementary 132 
Fig. 1D). Cluster closeness scores for all identified clusters are provided herein to prioritize a 133 
more stringent set of clusters (Supplementary Data 1). 134 
Co-clustering of Phosphosites and Mutations using HotPho 135 
HotPho generated a final high-confidence set of 906 mutation-only, 127 phosphosite-only, and 136 
474 hybrid clusters based on the top 5% cluster closeness score threshold (Methods, 137 
Supplementary Data 1). Top genes harboring each type of cluster varied (Figure 2A): MGAM, 138 
SI, ERBB3, and LRRC4C each had at least 9 mutation-only clusters and such type of clusters 139 
have been previously characterized8–10. Phosphosite-only clusters are found in fewer instances: 140 
ANXA5, CLIP1, FLNB, GPI, HSPD1, PEBP1, and PTK2 each harbored two (Supplementary 141 
Fig. 2A).  142 
For subsequent analyses, we focused on investigating hybrid clusters and properties of this 143 
entity found across 474 unique proteins (some proteins only form hybrid clusters with their 144 
protein complex partners). Notably, the highest counts of hybrid clusters were found for genes 145 
known for recurrent mutations, including TP53 (10 hybrid clusters), PIK3CA (8), CTNNB1 (6), 146 
EGFR (6), and other genes involved in cancers, such as HIST1H2BC (6) and PLG (5) (Figure 147 
2A). These clusters comprise a total of 1,255 phosphosites and 2,938 mutations. The 148 
composition of co-clustered phosphosites differs across gene products; co-clustered tyrosines 149 
are most commonly observed in PIK3CA and EGFR kinases, whereas serines are most 150 
common in HIST1H2BC and HBG2 (Figure 2A). The top hybrid clusters of each protein—151 
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identified by the highest cluster closeness score—may span mutations and phosphosites that 152 
are far from one another in the linear distance (Figure 2C, Supplementary Fig. 2B). 153 
Phosphosites prioritized in these clusters include CTNNB1 p.T40, EGFR p.T290, ERBB2 154 
p.T733/T759, KIT p.Y578, and TP53 p.T284. We also compared the mutations in the hybrid 155 
clusters to those found in a clustering analysis using only TCGA MC3 mutations, which 156 
contained 9,403 clustered mutations. Among the 2,938 mutations found in the 474 hybrid 157 
clusters, we found only 48 mutations not found by mutation-only clustering. The list of 48 158 
mutations contained mutations of interest in PDE1B (5 mutations), SRSF7 (4 mutations), and 159 
PTPN12 p.S275F/C that co-localized with p.S275 and co-clustered with p.S39/p.T40 160 
(Supplementary Data 2).  161 
Among the 1,255 co-clustered phosphosites, 291 sites directly overlap and 356 sites are 162 
proximal (within 2 amino acid residues linearly) to their co-clustered mutations (Supplementary 163 
Data 1, Figure 2B). The HotPho co-clustering analysis adds a substantial count of 608 164 
phosphosites which are distant in terms of a linear sequence, yet close in 3D protein structure, 165 
including the majority of the sites found on ACTB, HIST1H2BC, and ERBB2. Nearly half of the 166 
clusters we identified can only be found by integrating 3D protein structure, demonstrating the 167 
added value of 3D approaches for the discovery of spatial relationships between mutations and 168 
phosphosites. 169 
We then examined whether proteins containing hybrid clusters are enriched in specific biological 170 
pathways curated by WikiPathways14 and the NCI-Nature Pathway Interaction Database15 using 171 
Enrichr16 (Supplementary Data 3, Supplementary Fig. 3, Methods). The most enriched NCI-172 
Nature pathways include PDGFR-beta, ErbB2/ErbB3, ErbB1, Hepatocyte Growth Factor 173 
Receptor (c-Met), SHP2, Fc-epsilon receptor I, and mTOR signaling pathways (Fisher’s Exact 174 
Test, adjusted P < 1E-12), which is reaffirmed by the Focal Adhesion-PI3K-Akt-mTOR-signaling 175 
pathway being one of the top enriched WikiPathways (adjusted P = 8.8E-16). These findings 176 
suggest the possible involvement of hybrid clusters and co-clustering phosphosites in oncogenic 177 
signaling pathways.  178 
We further hypothesized that hybrid clusters would be enriched in functional domains related to 179 
oncogenic processes17. Mapping residues to PFAM domains, we identified 26 PFAM domains 180 
significantly enriched for mutations and phosphosites in hybrid clusters when comparing to the 181 
background of all mapped mutations and phosphosites (Supplementary Data 4, 182 
Supplementary Fig. 3, Methods). Domains of histone proteins, including centromere protein 183 
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Scm3, core histone H2A/H2B/H3/H4, and centromere kinetochore component CENP-T histone 184 
fold showed the most significant enrichment (Fisher’s Exact Test, FDR ≤ 1.53E-43). Another two 185 
top PFAM domains are protein tyrosine kinase and protein kinase domains (Supplementary 186 
Fig. 3). Specifically, we identified hybrid clusters in tyrosine kinase domains of tyrosine kinases 187 
(TK), such as MET, FGFR2/3, and ERBB2/3, and in BRAF of the tyrosine kinase-like (TKL) 188 
group. Other hybrid clusters involving sites at protein kinase domains included TGFBR1 of the 189 
TKL group, MAP2K4 of the STE group, and AKT1/2 of the AGC group. Notably, some kinase-190 
domain clusters showed conserved mutation/phosphosite patterns across homologs, such as 191 
FGFR2 and FGFR3 (Supplementary Fig. 3).  192 
 193 
Co-clustering Phosphosites Adjacent to Known Activating Mutations 194 
To prioritize candidate phosphosites, we first investigated phosphosites co-clustering with 195 
known functional cancer mutations. We curated experimentally validated mutations from the 196 
Cancer Biomarkers database with Cancer Genome Interpreter18, OncoKB19, and KinDriver20, 197 
collecting a total of 367 activating mutations (Methods). We found 29 hybrid clusters containing 198 
90 of these activating mutations in 17 genes, suggesting the functional relevance of the 54 co-199 
clustering phosphosites (Supplementary Data 5). PIK3CA and EGFR are each involved in 4 200 
hybrid clusters containing activating mutations and such clusters are also found in CTNNB1 (3), 201 
KIT (3), BRAF (2), ERBB2 (2), KRAS (2), MET (2), and NRAS (2). 202 
Phosphosites co-clustering with activating mutations are likely of functional relevance. We 203 
specifically examined these clusters on protein structures (Figure 3B, Supplementary Fig. 5). 204 
Both ERBB2 p.T733 and p.T759 are located adjacently to the activating mutation p.L755W. 205 
NRAS phosphosite p.Y64 is co-clustered with two of the most recurrently mutated residues 206 
p.G12 and p.Q61. Receptor tyrosine kinases, KIT, MET, and RET all harbor phosphorylated 207 
tyrosine sites co-clustering with activating mutations. These prioritized phosphosites include KIT 208 
p.Y578, MET p.Y1093/Y1159/Y1230, and RET p.Y928. Two hybrid clusters containing 209 
activating mutations were found on a protein complex formed by PIK3CA/PIK3R1: PIK3R1 210 
phospho-tyrosines p.Y470 and p.Y556 clustered with activating mutations PIK3CA p.N344G/M, 211 
p.N345K, p.C420R, and PIK3R1 p.N564D. In the other hybrid cluster, PIK3R1 p.T463 clustered 212 
with activating mutations PIK3CA p.E453K/Q. The co-clustering phosphosites next to known 213 
activating mutations are promising targets for further investigation, along with their adjacent 214 
mutations.  215 
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We hypothesized that phosphosites co-clustering with highly-recurrent mutations in a cancer 216 
cohort might imply functionality in the specific cancer type. We calculated the frequency of each 217 
of the co-clustering mutations within each of the TCGA cancer cohorts and identified their 218 
spatially adjacent phosphosites (Supplementary Data 6). We found that co-clustering 219 
phosphosites of the most recurrent mutations aggregate in proteins including CTNNB1, HRAS, 220 
IDH1, KRAS, NRAS, PIK3CA, and TP53 (Figure 3A, Supplementary Fig. 5). In PIK3CA, we 221 
identified p.T957 co-clustering with the highly recurrent p.H1047R that affects many gynecologic 222 
cancer cases, including 13.8% of breast invasive carcinoma (BRCA), 7% of uterine 223 
carcinosarcoma (UCS), and 5.8% of uterine corpus endometrial carcinoma (UCEC). In TP53, 224 
phosphosites p.R249 and p.T284 co-cluster with p.R273C/H that affects 11.4% of brain lower-225 
grade glioma (LGG), 5.3% of UCS, and 3.8% of esophageal carcinoma (ESCA); TP53 p.T155 226 
and P.S183 co-cluster with p.R175H that affects 8.3% of rectum adenocarcinoma (READ), 6.3% 227 
of colon adenocarcinoma (COAD), 6% of ESCA, 3.7% of ovarian serous cystadenocarcinoma 228 
(OV), and 3.5% of UCS.  229 
Many phosphosites co-clustering with recurrent mutations were found in protein homologs. 230 
IDH1 phosphosites p.Y135 and p.Y139 co-clustered with p.R132H, which is highly recurrent in 231 
brain tumors (73.6% of LGG and 6.1% of glioblastoma multiforme [GBM]), as well as p.R132C 232 
implicated in several cancer types (17.1% of cholangiocarcinoma [CHOL], 4.3% of acute 233 
myeloid leukemia [LAML], 3.4% of LGG, and 3.2% of skin cutaneous melanoma [SKCM]). In its 234 
homolog protein IDH2, p.Y179 co-clustered with p.R140Q affecting 6.5% of LAML (Figure 3). 235 
For the Ras proteins, KRAS/HRAS/NRAS all harbor highly recurrent mutations for residues 236 
p.G12/G13 that affect large fractions of pancreatic adenocarcinoma (PAAD), COAD, READ, 237 
lung adenocarcinoma (LUAD), and UCEC. Each harbors overlapping yet distinct sets of co-238 
clustering phosphosites—KRAS p.S89/p.Y96, NRAS p.Y64, and HRAS p.Y32/T35/Y64/Y96—239 
warranting further investigation into their potentially shared and distinct signaling functions 240 
across cancer types (Figure 3).  241 
 242 
Functional Evidence for Co-clustering Mutations  243 
We evaluated whether HotPho can effectively prioritize functional mutations in hybrid clusters by 244 
comparing with functional scores predicted by VEST21, Mutation Assessor22, PolyPhen223, 245 
SIFT24, and a composite Eigen score composed of all these scores25 (Figure 4A). Within 246 
proteins harboring hybrid clusters, clustered mutations showed strikingly higher predicted 247 
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functional scores compared to other mutations in the same proteins (Wilcoxon Rank Sum Test, 248 
P < 2.2e-16), supporting the view that co-clustered mutations should be prioritized.  249 
To further demonstrate that hybrid clusters enrich for functional mutations, we examined 250 
whether clustered mutations are associated with the protein or phosphoprotein changes, as 251 
previously found for functional and pathogenic mutations26,27. Using the TCGA RPPA dataset for 252 
each of the 33 cancer types, we conducted a differential expression analysis to search for 253 
protein/phosphoprotein markers expressed at different levels in carriers of clustered mutations 254 
(Methods), identifying 24 significant (FDR < 0.05, linear regression) gene-cancer associations 255 
(Figure 4B, Supplementary Data 7). TP53 mutations in hybrid clusters are significantly 256 
correlated with higher p53 protein expression in 14 cancer types, most strikingly in UCEC, 257 
BRCA, COAD, and OV, consistent with the previously reported cis-effect of functional TP53 258 
missense mutations28. Clustered EGFR mutations are likewise associated with higher EGFR 259 
protein and EGFR p.Y1068 expression in LGG, GBM, and LUAD, cancer types largely affected 260 
by activating mutations of EGFR. We also found clustered KIT mutations to be associated with 261 
higher c-Kit in TGCT and SKCM (Figure 5B).  262 
At a single residue level, we noted clustered mutations showing high protein or phosphoprotein 263 
expressions above the 95th percentile in the same cancer cohort (Figure 4C). These include 264 
recurrent TP53 mutations p.R248Q/W, p.R273H/C/L, p.R175H, p.R282W/G, and p.R337C. Top 265 
mutations in EGFR differ between brain and lung tumors: in LGG, EGFR p.R108K, p.R252C/P, 266 
and p.R263I, which are adjacent to the phospho-threonine p.T290, are associated with high 267 
EGFR protein and phosphoproteins. Many samples with top EGFR expression in GBM also 268 
carry mutations in the same hybrid cluster, p.A289V/T and p.R252C/P, whereas in LUAD the 269 
associated mutation is the recurrent EGFR p.L858R (4.3% of LUAD) co-clustering with 270 
phosphosites p.Y869 and p.Y891. KIT mutation p.D816V and p.829P is associated with high c-271 
kit and it clustered with p.Y362 and p.Y823 (Figure 4C).  272 
To further validate these findings, we conducted similar analyses of the mutational impact on 273 
protein expression using global proteomics datasets from retrospective and prospective CPTAC 274 
cohorts of breast, ovarian, and colorectal cancers (2 cohorts/cancer) each comprised of 78~126 275 
samples (Methods, Supplementary Data 8, Supplementary Fig. 6). Given the limited sample 276 
sizes, no associations passed multiple testing thresholds (FDR < 0.05) and only suggestive 277 
associations (Wilcoxon rank-sum test, P < 0.05) are highlighted herein: we validated that TP53 278 
co-clustering mutations associated with higher protein expression in all three cancer types. In 279 
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colorectal cancer, KRAS mutations in cluster 9458.0 affecting p.G12, p.G13, p.V14, and p.Q61 280 
are associated with higher KRAS expression, whereas HNF4A mutations in cluster 7977.0 are 281 
associated with low HNF4A expression. Other notable findings include that ESR1 mutations in 282 
cluster 1357.1 are associated with high ESR1 in ovarian cancer, whereas AKT1 mutations in 283 
cluster 756.0 (Supplementary Fig. 6) are associated with high AKT1 proteins.  284 
Finally, given the potential functionality of co-clustering mutations, we characterized the 285 
mutational landscape across cancer types in the TCGA MC3 dataset of ~10 thousand tumors11. 286 
By considering missense mutations (1) directly overlapping phosphosites, (2) proximal to 287 
phosphosites, and (3) co-clustering with phosphosites, we noticed that considering co-clustering 288 
mutations contribute significantly to the fraction of potentially functional mutations in many 289 
cancer genes including EGFR, KRAS, and PIK3CA (Supplementary Fig. 7).  290 
 291 
Functional Verification of Co-clustering Mutations 292 
Finally, we test the hypothesis that hybrid clusters enrich for functional mutations, including 293 
those shown to be activating and confer genetic dependency by cancer cells. To test for 294 
activating mutations that confer clonal selection advantages, we assessed experimental data 295 
from 1,054 somatic mutations in the Ba/F3 and MCF10A cells29, including 549 found in genes 296 
with hybrid clusters. Out of the 549 unique somatic mutations, 86 co-clustered with 297 
phosphosites and 463 did not. There was a striking enrichment of activation in hybrid mutations 298 
co-clustering with phosphosites. For mutations functionally assessed in Ba/F3, 77.6% (66/85) of 299 
the co-clustering mutations were determined as activating compared to only 30.2% (138/457) of 300 
the other mutations determined as activating (One-tailed Fisher’s Exact Test, P = 2.66E-16, 301 
Figure 5A). For mutations functionally assessed in MCF10A, 67.6% (46/68) of the co-clustering 302 
mutations were activating compared to only 35.2% (146/415) of the other mutations being 303 
activating (P = 5.03E-7, Figure 5B). Collectively 72 co-clustered phosphosites were determined 304 
as activating in either Ba/F3 or MCF10A.  305 
We then examined whether the co-clustered mutations show significant enrichment of activating 306 
mutations compared to the other mutations on a gene-by-gene basis (Figure 5A-B, 307 
Supplementary Data 9). Co-clustering mutations of PIK3CA are significantly enriched for 308 
activating events in both cell lines (One-tailed Fisher’s Exact Test, P ≤ 1.22E-3), with 33/35 co-309 
clustering mutations being validated in Ba/F3 and 21/22 in MCF10A; its binding partner PIK3R1 310 
also shows suggestive enrichment in Ba/F3 (P = 0.072, 3/3). Significant enrichment of activating 311 
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mutations was also observed for EGFR (P = 1.63E-4, 10/11) and BRAF (P = 1.11E-3, 12/18) 312 
co-clustering mutations in Ba/F3. In MCF10A, we also noted suggestive associations for BRAF, 313 
where 7/18 co-clustering mutations are activating (P = 0.068), and ESR1, where 7/18 co-314 
clustering mutations are activating (P = 0.068). The enrichment of activating mutations in hybrid 315 
clusters suggests structural adjacency to phosphosites implies functional significance in 316 
oncogenes.  317 
To evaluate the added predictive power of mutation functionality provided by phosphosite co-318 
clustering, we examined the relationships between mutation functionality versus co-clustering 319 
mutation counts, mutation recurrence, and co-clustering with phosphosites (Figure 5C-D). First, 320 
using a multivariate logistic regression model corrected for the mutated gene, we found that the 321 
number of co-clustering mutations was not significantly associated with the mutation 322 
functionality in either the BAF3 (P = 0.91) or MCF (P = 0.40) cell line (Supplementary Fig. 9A). 323 
Second, using a multivariate logistic regression model corrected for the mutated gene, we found 324 
that the recurrence of mutations in the TCGA MC3 cohort was significantly associated with the 325 
mutation functionality in both the BAF3 (P = 2.8e-3) or MCF10A (P = 0.023) cell lines. But, when 326 
adding the phosphosite co-clustering status to the regression model, the mutation functionality 327 
was no longer associated with recurrence (P>0.21), but strongly associated with the co-328 
clustering status in both BAF3 (P = 1.4e-10) and MCF10A (P = 1.5e-4) cell lines (Figure 5C-D, 329 
Supplementary Fig. 9A). Altogether, these results suggest that spatial co-clustering with 330 
phosphosites may improve prediction of mutation functionality beyond the commonly used 331 
mutation recurrence.  332 
Next, we sought to test whether the co-clustered mutations may confer genetic dependency to 333 
the mutated cancer cells. In this case, cancer cells with co-clustered mutations would show 334 
higher vulnerability in a CRISPR knockout screen targeting the mutated genes than cells with 335 
other mutations. To test this hypothesis, we utilized data using characterized by the CRISPR-336 
knockout screens in the Cancer Dependency Map (DepMap) project30, where a negative 337 
CERES dependency score indicates genetic dependency of the cancer cell. Within each of the 338 
27 tested lineages, we carried out a Wilcoxon Rank Sum test between the cell lines with co-339 
clustered missense mutations versus those with other missense mutations (Methods). Strikingly, 340 
cancer cell lines with co-clustered mutations showed significantly higher dependency (or more 341 
vulnerability upon genetic knockout) than those with missenses in 14 lineages (Wilcoxon Rank 342 
Sum test, FDR < 0.05), most notably lung, colorectal, skin, pancreas, and gastric cancer cells 343 
(FDR ≤ 3.3E-7, Figure 5E). We also obtained similar results when comparing cell lines with co-344 
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clustered missense mutations versus other non-synonymous mutations (Supplementary Data 345 
10). Overall, these analyses showed that co-clustered mutations adjacent to phosphosites are 346 
enriched for activating events and highlight genetic vulnerability of cancer cells.  347 
Verification of Co-clustering Phosphosites 348 
To verify co-clustering phosphosites, we sought evidence of these events being observed in the 349 
CPTAC proteomic cohorts of prospective primary tumor samples of 123 breast invasive 350 
carcinoma (BRCA), 83 ovarian carcinoma (OV), 97 colorectal adenocarcinoma (CRC), 103 351 
uterine corpus endometrial carcinoma (UCEC), and 41 clear cell renal cell carcinoma (CCRCC). 352 
Of the 1,255 co-clustered phosphosites, 259 were detected in at least one of the 5 cohorts 353 
(Figure 6A, Supplementary Data 11). Some phosphosites may be cancer-type specific: we 354 
uniquely observed BRAF p.S467/Y472 in BRCA and p.S465 in UCEC. For TP53, we uniquely 355 
observed p.S149 in breast cancer versus TP53 p.T150 in ovarian cancer. Other phosphosites 356 
are found in multiple cancer types (Figure 6B); for instance, AKT1 p.T308 was seen in both 357 
breast and ovarian cancers. Notably, phosphosites (p.S29/Y30/T40/T41/T42) near the section-358 
terminus of the CTNNB1 protein were commonly seen in breast and ovarian cancers (p.T41 359 
was also observed in UCEC), and p.S675 was detected in substantial numbers of samples in all 360 
5 cancers (Figure 6B). Co-clustering tyrosine phosphosites, PIK3R1 p.Y452/556/580, on the 361 
other hand, were observed in endometrial and renal cancer (p.Y580 was also observed in 362 
colorectal cancer). As a cautionary note, given the different reference samples and mass 363 
spectrometry runs for each cancer cohort, the cancer-specific phosphosites observed herein 364 
require further validation. Nonetheless, the detection of the co-clustering phosphosites in 365 
primary tumor samples further implicates their functionality in oncogenesis.  366 
Finally, we conducted a systematic literature review of co-clustering phosphosites regulated or 367 
implicated in cancer (Methods), finding 25 unique phosphosites across 18 proteins that were 368 
experimentally linked to cancer (Supplementary Data 12). These include AKT1 p.T308 and 369 
CTNNB1 p.T41 found in CPTAC patient tumors, as well as sites with known kinase regulations, 370 
including EGFR p.S768/Y869/Y1016, ESR1 p.Y537, and TP53 p.S376/378. Other co-clustering 371 
phosphosites showing functionality related to cancer include: MAPK1 p.S142 that was 372 
previously shown to be critical to the ERK2 docking domain and its mutated form p.S142L 373 
confers gain-of-function31; CTCF p.T374 that, along with a few nearby residues, were shown to 374 
be phosphorylated during mitosis and to decrease its DNA-binding activity32; BRAF p.T599 and 375 
p.S602 that are conserved from C. elegans to mammals and required for activation of the B-Raf 376 
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kinase33,34, and RB1 (Rb) p.S567 that is uniquely phosphorylated by MAPK11 (p38), triggering 377 
Rb-Hdm2 interaction and apoptosis35. These findings further validate the functionality of 378 
selected co-clustering phosphosites HotPho identified and suggest other sites in hybrid clusters 379 
may be prioritized for downstream investigations.  380 
 381 
DISCUSSION 382 
We describe the first systematic discovery of co-clustering mutations and phosphosites on 3D 383 
protein structures, a feat enabled by a bioinformatics tool—HotPho. HotPho successfully 384 
identifies likely functional mutational clusters and phosphosites in known cancer proteins 385 
including EGFR, KIT, and KRAS/HRAS/NRAS, many of which are in kinase domains (Figure 2). 386 
Co-clustering mutations in these clusters have higher predicted functional scores, increased 387 
protein/phosphoprotein levels (Figure 4), and are experimentally validated as being functional 388 
and confer genetic dependency by cancer cells (Figure 5). Concurrently, co-clustering 389 
phosphosites show multiple characteristics supporting their contributions in oncogenesis, 390 
including co-clustering with validated activating and recurrent mutations in multiple cancer types 391 
(Figure 3) and are detected in patient tumors (Figure 6). Co-clustering events may represent 392 
potential drivers and therapeutic targets.  393 
Proteomics datasets, such as those generated by CPTAC, are quantifying increasingly larger 394 
numbers of phosphoproteomes in cancer and other samples. The abundant phosphosites of 395 
unknown significance (PUS) discovered in these datasets highlight the urgent need for 396 
enhanced annotation and prioritization using approaches like HotPho. There are still significant 397 
limitations to identifying functional hybrid clusters, as prioritization necessarily relies on known 398 
mutations or functional domains. Thus, while we also discovered phosphosite-only clusters, we 399 
cannot yet effectively determine their significance until we enhance our understanding of 400 
functional phosphosites. 401 
Our investigation supports the functional relevance of co-clustering phosphosites and mutations. 402 
For example, we found that these phosphosites and mutations are enriched in functional 403 
domains of kinases and histones, that co-clustering mutations tend to be functional active and 404 
confer genetic dependency. Among the 1,255 co-clustering phosphosites, only 25 were 405 
previously known to be associated with cancer (Supplementary Data 12). Hopefully, the 406 
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repertoire of characterized phosphosites will grow rapidly using combinations of high throughput 407 
proteomics approaches, systematic in silico analysis, and experimental validation36,37.  408 
More, multiple co-clustering phosphosites were located in activation loops of kinase proteins, 409 
including RET p.S904, MET p.Y1248, AKT1 p.T308, EGFR p.Y827/869, as well as the MAPK3-410 
regulated site MAPK8 p.Y185. Crystal structures revealed that  PTPN12 p.S275 is found in the 411 
Q loop that constitutes the pY+1 pocket demonstrating strong substrate specificity, and the 412 
phospho-inhibitory mutant p.S275A significantly decreased the activity of PTPN12 toward all 413 
three HER2 phospho-peptides38. Notably, this site also harbored a rare mutation p.S275C in the 414 
TCGA MC3 mutation data, which only showed clusters when leveraging the adjacent 415 
phosphosite information but was not found in the mutation-only clusters. 416 
Spatially co-clustering phosphosites and mutations may interact and exhibit further associations 417 
in patient samples. Currently, we only observed a handful of examples where a single tumor 418 
sample carries both of the co-clustering phosphosites and mutations in existing quantitative 419 
phosphoproteomics cohorts, precluding systematic investigations of their correlative 420 
relationships (Supplementary Fig. 9). The growing cohort size of CPTAC and other cancer 421 
global phosphoproteomic datasets will likely enable us to test the intriguing hypothesis that 422 
samples carrying mutations will show disrupted regulation or mutual exclusivity of a co-423 
clustering phosphosite with sufficient statistical power.  424 
In conclusion, we conduct a large-scale spatial clustering analysis between 225,151 425 
phosphosites and 791,637 missense mutations using the HotPho tool. The resulting 474 hybrid 426 
clusters help us discover 1,255 phosphosites co-clustering with mutations in human cancer, 427 
dozens of which are adjacent to activating mutations and verified in patient tumor samples. Our 428 
approach nominates phosphosites of likely functional significance for experimental validation 429 
and may be expanded to investigate other post-translational modifications, such as acetylation 430 
and glycosylation.  431 
METHODS 432 
Data Sources 433 
Phosphosites data 434 
We gathered 225,151 human phosphorylation sites from PTMcosmos, following a procedure 435 
similar to our recently published study39. PTM sites from PTMcosmos were retrieved from 436 
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UniProt Knowledge Base (UniProtKB) version 2018.01, PhosphoSitePlus (snapshot on the date 437 
2018-02-14), and CPTAC2 MS phosphoproteome data. A PTM site was included if it satisfied 438 
either of the following: (1) included in UniProtKB and was reported in at least one publication or 439 
by sequence similarity. (2) included in PhosphoSitePlus and was reported in at least one 440 
publication or validated internally by Cell Signaling Technology. (3) included in CPTAC2 441 
experiments and was detected in at least one of the samples. To match phosphosites between 442 
multiple databases, we used transvar40 to map amino acid residues on different protein isoforms 443 
to their unique genomic positions. 444 
Somatic mutation data 445 
We used somatic mutations from the TCGA cohort as provided by the publicly-available MC311 446 
mutation annotation file (MAF) (syn7824274). These mutations were further filtered based on 447 
flagged artifacts, hypermutators, and pathology to a driver discovery dataset of 9,097 samples 448 
with 791,637 missense mutations, as described in the recent PanCanAtlas somatic driver 449 
paper25.  450 
Known activating somatic mutations 451 
We curated experimentally validated mutations identified as neutral or activating from multiple 452 
databases and papers, including the Cancer Biomarkers database within the Cancer Genome 453 
Interpreter18, OncoKB19, KinDriver20, and ClinVar41. We subsequently required an activating 454 
mutation to be seen in at least 2 of these sources, collecting a total of 367 activating mutations. 455 
PDB structures 456 
We used the GRCh37 assembly and Ensembl release 75 to preprocess residue pair data for all 457 
human proteins in RCSB PDB as of 22 May 2017, which includes PDB structures of 6,002 458 
genes. 459 
Some chains or structures from PDB were filtered out due to the following types of artifacts in 460 
the data file annotations, 1) chains with inconsistent PDB to UniProt coordinate ranges from 461 
DBREF given any alterations from SEQADV length changes, 2) chains where SEQADV 462 
describes REMARK 999, which indicates absent residues explained by free text, and 3) 463 
structures in which site mismatches were identified (for example, where a Threonine should be 464 
found according to the UniProt sequence, but a Valine was instead found at the position in the 465 
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PDB sequence) even after converting between the PDB and UniProt coordinates designated by 466 
the DBREF line. 467 
 468 
Bioinformatics and Experimental Analyses 469 
Quality control of sites and structures 470 
HotPho reads a site input file where each phosphosite must contain the HUGO symbol, 471 
Ensembl transcript accession ID (ENST), its residue position within the given transcript, and 472 
feature description. The sites are then combined and run through the HotSpot3D search step to 473 
produce pairwise data between mutations and phosphosites, comprising mutation-mutation 474 
pairs, mutation-site pairs, and site-site pairs. Even though HotPho calculates offsets in residue 475 
numbers in PDB structures and transcripts, some offsets provided by structure uploaders 476 
resulted in the erroneous mapping of residues. In the resulting pairwise files with phosphosites 477 
(.musite and .sites files), we therefore filtered out the sites where the mapped residue on the 478 
PDB structure differs from those documented in our original input phosphosite file, ultimately 479 
retaining 785,867 mutation-mutation pairs, 376,614 mutation-site pairs (78,477 eliminated), and 480 
1,010,011 site-site pairs (267,547 eliminated).   481 
The HotPho algorithm and cluster discovery 482 
HotPho extends beyond the originating HotSpot3D algorithm8 and enables co-clusterings of 483 
mutations and phosphosites on protein structures (Figure 1). Briefly, 3D distances of all 484 
missense mutations and phosphosites were calculated using PDB structures, considering the 485 
closest atoms on their respective amino acids on PDB structures, to identify proximity pairs. 486 
Each potential cluster is then treated as an undirected graph G = (V,E), where V is a subset of 487 
the input mutations and phosphosites and E is the set of proximal pairs from V. Considering vi, 488 
vj ∈ V for i, j ∈ {1,2,…,N} where N is the number of vertices in V, the clusters are built up using 489 
the Floyd–Warshall shortest-paths algorithm, initiated by the distance matrix of the edges, to 490 
obtain the geodesics, gi,j between each vi and vj. For each vi ∈ V where i ≠ j, the cluster centrality, 491 
c(vi), is then calculated as: 492 

( ) =  12 ,                           (1) 
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For each of the cluster, the centroid is identified as the vertex showing the highest c(vi), and the 493 
cluster closeness score (Cc) is calculated as: 494 

=  ( )                                (2) 

A high Cc score indicates a dense 3D cluster enriched in recurrent mutations and phosphosites 495 
on the protein structure. In the pan-cancer study of mutation-only clusters, clusters with known 496 
cancer proteins showed significantly higher Cc score than those without cancer-related proteins, 497 
and a threshold at top 5% showed a notably significant difference between cancer- and non-498 
cancer-related proteins8. Here in our hybrid cluster analysis, we not only show the top 5% 499 
clusters show sensitivity in distinguishing cancer driver genes vs. other genes, but also in 500 
observed vs. randomly simulated clusters.  501 
We then conducted clustering using HotPho with recurrence as the vertex type. The analysis 502 
generated a total of 30,131 unfiltered clusters in 4989 unique genes, comprising 9,483 hybrid 503 
clusters, 18,112 mutation-only clusters, and 2,536 site-only clusters. To resolve the multi-modal 504 
distribution of cluster closeness scores, we further compared the score distributions for 299 505 
mutation-enriched cancer driver genes13 versus other genes using a ROC curve analysis 506 
(Supplementary Fig. 1B-C).  507 
Cluster benchmarking using permutation analysis 508 
The hybrid clusters generated by HotPho was benchmarked by comparison to those obtained 509 
through HotPho analyses using a combination of the TCGA MC3 mutation data and permutated 510 
phosphosite data. Since we are interested in the hybrid clusters having high cluster closeness 511 
(Cc) scores (ie. more closely packed clusters) we chose the top 100 genes having high CC 512 
clusters. Next, for each of these genes, we found the number of phosphosites in the original 513 
dataset which are covered by at least one structure. After that, we generated a permutated 514 
phosphosites-dataset by randomly populating the sites at possible covered phosphosite residue 515 
locations keeping the original residue ratios the same. HotPho clustering was performed for 100 516 
such simulated phosphosites-datasets and the maintained TCGA MC3 mutation call backbone 517 
given the non-random distribution and occurrence count of mutation calls. Finally, the clusters 518 
from the original HotPho run and the simulated runs were compared focusing on the number of 519 
clusters and their Cc score distribution. We further evaluated the sensitivity, specificity, and 520 
ROC curves using different threshold of the Cc score (Supplementary Fig. 1D). Based on our 521 
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simulated results, we set the cluster closeness thresholds as the top 5% cluster closeness score 522 
within each cluster type (e.g., hybrid, mutation-only, and phosphosite-only). 523 
 524 
Domain enrichment analysis 525 
We conducted a domain enrichment analysis of co-cluster phosphosites in PFAM domains 526 
(Pfam 31.0 released Mar 2017)42. We evaluated domain enrichment of co-clustered 527 
phosphosites using the Fisher test. Each 2x2 table was comprised of tallies of domain status 528 
(current domain or not) versus co-clustered status (co-cluster with mutation or not). Although 529 
this test is exact, we followed the general rule-of-thumb for table testing of only evaluating those 530 
cases where there were at least 5 mutations and phosphosites in the domain. Resulting P-531 
values were corrected to FDR values using the standard Benjamini-Hochberg procedure.  532 
 533 
Mutational impact RPPA analysis 534 
Similar to our previous analyses of a different set of mutations27, TCGA level-3 535 
normalized RPPA expression data of the tumor samples were downloaded from 536 
Firehose (2016/1/28 archive). The protein/phosphoprotein expression percentile of 537 
individual proteins in each cancer cohort was calculated using the empirical cumulative 538 
distribution function (ecdf), as implemented in R. Where there are at least 3 carriers 539 
within each cancer type, we then applied the linear model to evaluate the 540 
protein/phosphoprotein expression percentile between carriers of co-clustered 541 
mutations and all other cancer cases. The age at initial diagnosis, gender, and ethnicity 542 
are included as covariates to account for potential confounding effects. The resulting P 543 
values were adjusted to FDR using the standard Benjamini-Hochberg procedure for 544 
tests across all cancer types. 545 
 546 
Mutational impact proteome analysis 547 
We analyzed the effects of clustered mutations using samples from the CPTAC2 548 
retrospective3,4,43 and prospective collection (https://cptac-data-549 
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portal.georgetown.edu/cptac/public). For each hybrid cluster, protein levels were 550 
compared between samples with and without cluster mutations (Wilcoxon rank sum 551 
test).  552 
 553 
Cancer cell dependency analyses 554 
Within each lineage, we carried out a Wilcoxon Rank Sum test between the cell lines with co-555 
clustered missense mutations versus those with either (1) other missense mutations, or (2) 556 
other non-synonymous mutations. The p-values represent the alternative hypothesis that the 557 
dependency score distribution of the cell lines with co-clustered mutations is located left (more 558 
dependent, more vulnerable) of that of without co-clustered mutations, and they are multiple-559 
testing adjusted using the BH method for FDR.  560 
 561 
Literature reviews of cancer-associated phosphosites 562 
First, we confined our search space to 71 cancer genes with hybrid clusters by limiting 563 
our search space to 299 cancer driver genes25. The abstracts of all publications 564 
associated with a phosphosite were then retrieved from Europe PMC using their Digital 565 
Object Identifier (DOI) or PubMed identifier (PMID). We determined a paper to be 566 
cancer-related if its abstract contained the keyword 'tumor' and/or 'cancer'. We then 567 
closely examined whether the exact co-clustering phosphosites identified by HotPho 568 
showed any alterations on cancer-related phenotypes in these publications. 569 
Additionally, we included all disease-associated sites in PhosphoSitePlus (snapshot on 570 
the date 2018-02-14) that were connected to any type of cancer.   571 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2021. ; https://doi.org/10.1101/2021.02.14.431184doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.14.431184
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure legends: 572 
Figure 1. HotPho workflow and performance benchmarks. (a) HotPho takes user-provided lists 573 
of mutations and phosphosites as inputs, map them onto PDB protein structures, calculates 574 
each of the pairwise distances, conducts clustering, and reports clusters with prioritized 575 
mutations and phosphosites. (b) Comparison of HotPho results measured using phosphosite 576 
and MC3 cancer mutation data vs. simulated data of randomly distributed phosphosites. The left 577 
panel indicates the density of cluster closeness (CC) scores for all hybrid clusters in the HotPho 578 
run and the simulated runs, where the vertical line indicates the top 5% score threshold. The 579 
right panel shows the bar plot comparing the number of hybrid clusters passing the same 5% 580 
threshold in the HotPho and simulated runs.  581 
 582 
Figure 2. Hybrid clusters containing both phosphosites and mutations. (a) Left shows the counts 583 
of hybrid clusters, mutation-only clusters, and site-only clusters in genes with at least two hybrid 584 
clusters. Right barplot shows counts of each type of phospho-residue, being serine (S), 585 
threonine (T), tyrosine (Y), or Arginine (R), found in hybrid clusters for each of the genes. (b) 586 
Spatial interactions of co-clustered mutations and phosphosites. For each of the genes, we 587 
counted how many of the co-clustered mutations and phosphosites are also directly overlapping 588 
(Direct) or within 2 amino acid residues (Proximal), and without any of these apparent linear 589 
relationships (Clustered) to phosphosites and mutations, respectively, in the same hybrid 590 
clusters. (c) Phosphosite and mutations on the linear protein coordinate of top hybrid clusters as 591 
defined by cluster closeness scores in each of the highlighted genes (excluding HIST1H4G and 592 
H3F3A due to their top hybrid clusters included phosphosites from other proteins and excluding 593 
MGAM due to its top clusters located at residue coordinate beyond the plotted range [centroid at 594 
1514]). The Ensembl transcripts used for mapping of the protein coordinates are described in 595 
Supplementary Data 1. 596 
 597 
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Figure 3. Hybrid clusters highlighting co-clustering phosphosites adjacent to recurrent mutations 598 
across cancer types. (a) The frequency of co-clustering mutations within each TCGA cancer 599 
type. For each of the cancer types shown in a distinct color, the mutation with the highest 600 
recurrence is labeled along with its co-clustering phosphosites. The size of the dot to indicate 601 
the pan-cancer score calculated by the averaging the frequencies of the mutation across the 32 602 
cancer types in TCGA. (b) Selected hybrid clusters with activating mutations shown on 3D 603 
protein structures obtained through PDB. Mutations are colored in shades of blue and 604 
phosphosites are colored in shades of red.   605 
 606 
Figure 4. Proteomic effects associated with co-clustered mutations. (a) Comparison of predicted 607 
functional scores, including those provided by Mutation Assessor, PolyPhen-2, SIFT, VEST, and 608 
an eigen score for mutations having different spatial interactions with phosphosites. The 609 
interaction types are direct (directly overlapping), proximal (within 2 residues in the linear 610 
distance), clustered (in hybrid clusters), and none of these interactions. (b) Plot showing cancer 611 
types where the carrier of each gene’s co-clustered mutation is associated with significantly 612 
higher or lower expression of the corresponding protein/phosphoprotein marker in the RPPA 613 
dataset. Each dot represents a gene-cancer association, where color depicts cancer type and 614 
shape shows significance. (c) Expression percentile of the protein/phosphoprotein marker in 615 
carriers of multiple types of mutations (direct, proximal, clustered, none) in the corresponding 616 
genes. Mutations carried by the samples with greater than 97% marker expression are further 617 
text-labeled.  618 
 619 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2021. ; https://doi.org/10.1101/2021.02.14.431184doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.14.431184
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5. Functional assessment of co-clustering mutations. Experimental validation data of co-620 
clustering somatic mutations were extracted from previous systematic assessments in (a) Ba/F3 621 
and (b) MCF10A cell lines29; we evaluated the functionality of 1,054 somatic mutations in a cell 622 
viability assay, where each of the evaluated mutations were assessed through one transfected 623 
cell colony compared to control cell colonies. The number of activating mutations vs. other types 624 
of mutations in each gene was then calculated for the set of co-clustering mutations adjacent to 625 
phosphosites as discovered by HotPho and other non-clustering mutations. The asterisk 626 
indicates the significance of the association (One-tailed Fisher’s Exact Test, *** P < 0.005, ** 627 
0.005 <= p < 0.05, * 0.05 <= p < 0.1). The gene products showing significant associations 628 
include EGFR (P = 1.63E-4) and BRAF (P = 1.11E-3) co-clustering mutations in Ba/F3, and 629 
PIK3CA in Ba/F3 (P = 1.67E-5) and MCF10A (P = 0.0012). At a single mutation level, the 630 
functional status (color codes) between co-clustered versus other mutations are further shown 631 
for (c) Ba/F3 and (d) MCF10A cell lines against the mutation recurrence on the Y-axis, 632 
demonstrating the additional predictive power of co-clustering status on mutation functionality. 633 
(e) Dependency CERES score comparison of cell lines with co-clustered vs. other missense vs. 634 
other non-synonomous mutations in the DepMap CRISPR screen dataset. The 10 lineages with 635 
the highest numbers of co-clustered mutations are shown, including cell lines of the bile duct 636 
(N=30), blood (N=44), central nervous system (N=61), colorectal (N=36), gastric (N=27), lung 637 
(N=107), ovary (N=43), pancreas (N=34), skin (N=54), and uterus (N=26) tissues. The centre 638 
line corresponds to the median; lower and upper hinges correspond to the first and third 639 
quartiles (the 25th and 75th percentiles), respectively; the whiskers extend from the hinges to 640 
the largest value no further than 1.5 * IQR from the respective hinge, where IQR (inter-quartile 641 
range) is the distance between the first and third quartiles. 642 
Figure 6. Verification of co-clustering phosphosites in primary tumors. (a) Verification of co-643 
clustering phosphosites of cancer proteins in patient tumor samples characterized by the 644 
CPTAC prospective projects. Each dot represents the phosphosites being detected in the 645 
cancer cohort colored-coded by cancer type. The size of the dot represents the standard 646 
deviation of the phosphosite level in the respective cancer cohort. (b) Lolliplots showing number 647 
of tumor samples (number in circle) where the co-clustering phosphosites of AKT1, CTNNB1, 648 
TP53, and PIK3R1 proteins are detected in each cancer cohort out of 123 breast invasive 649 
carcinoma (BRCA), 83 ovarian carcinoma (OV), 97 colorectal adenocarcinoma (CRC), 103 650 
uterine corpus endometrial carcinoma (UCEC), and 41 clear cell renal cell carcinoma (CCRCC). 651 
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