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Abstract 
 

Human-associated microbial communities comprise not only complex mixtures of bacterial 
species, but also mixtures of conspecific strains, the implications of which are mostly unknown since 
strain level dynamics are underexplored due to the difficulties of studying them. We introduce the Strain 
Genome Explorer (StrainGE) toolkit, which deconvolves strain mixtures and characterizes component 
strains at the nucleotide level from short-read metagenomic sequencing with higher sensitivity and 
resolution than other tools. StrainGE is able to identify nearest known references and find variants for 
multiple conspecific strains within a sample at relative abundances below 0.1% in typical metagenomic 
datasets.  
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Background 
Human-associated microbial communities include complex mixtures of bacterial species. Many of 

these species are renowned for their genomic and phenotypic plasticity, which can lead to different 
human health outcomes. For example, strains of Escherichia coli can share less than 50% of their gene 
content and cause distinct disease including diarrhea and urinary tract infections, or potentiate 
tumorigenesis, while other strains are able to co-exist with their host without causing overt illness (1–3). 
Multiple distinct strains of E. coli, often from across genetically dissimilar phylogroups, frequently coexist 
at low abundance (<1% relative abundance) within a single human gut community (4,5), the implications 
of which are mostly underexplored due to the difficulties of studying strain-level variation from complex 
community samples. 

While culture-based approaches have been a workhorse for dissecting strain-level diversity, 
these approaches can be slow and unfaithful to the true representation of strains, due to culturing 
bottlenecks that limit what diversity can be observed, as well as the potential for evolution during culture 
(6). Whole metagenome shotgun sequencing approaches offer less perturbed views of strain-level 
diversity, but require specialized tools to resolve. Current strain-level metagenomic data analytical tools 
(reviewed in Anyansi et al. (7)), including MIDAS (8) and StrainPhlan (9), have been successful in 
distinguishing strains present in different samples, but are unable to disentangle strain mixtures as they 
rely on a single nucleotide variant (SNV) profile per sample. Another class of tools, including BIB (10) and 
StrainEst (11), are designed to untangle strain mixtures, but are limited to reporting a close reference 
genome from a database, and are unable to distinguish between distinct strains that are close to the 
same reference. Tools including DESMAN (12) and inStrain (13) aim to recover strain-level variation after 
de novo metagenomic assembly, which is not always feasible for low abundance members of a 
community. To our knowledge, none of these tools alone can robustly disentangle mixtures of 
same-species strains, distinguish similar strains at the nucleotide level, and work robustly at the low 
coverages typically found for many clinically relevant organisms in metagenomic samples, as is typical for 
E. coli in the human gut (4). 

We developed the Strain Genome Explorer (StrainGE) toolkit to disentangle strain mixtures, 
particularly when strains are present at low relative abundances, and to characterize and compare strains 
across samples at the nucleotide-level, with higher resolution than other tools. While what defines a strain 
depends on the research question to be answered (6), we created StrainGE to be sensitive, tunable and 
detailed in its output, enabling researchers to tailor it to their definition. We have extensively benchmarked 
StrainGE on synthetic data, compared StrainGE against other state-of-the-art strain detection tools, and 
applied StrainGE to two clinical human gut metagenomic datasets, demonstrating StrainGE’s ability to 
distinguish low-abundance strains in real metagenomic settings. While we focus on E. coli in the context 
of the human gut as our proof-of-concept, StrainGE can be broadly applied to all community assemblages 
where same species bacterial strain dynamics are of interest. 

 

Results 

Strain Genome Explorer (StrainGE) toolkit  
 

StrainGE is a toolkit for strain-level characterization and tracking of species (or genera) of interest 
from short read metagenomic datasets, tuned specifically to capture low abundance strains where data 
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are scant. StrainGE has two key components: Strain Genome Search Tool (StrainGST), and Strain 
Genome Recovery (StrainGR). StrainGST sensitively reports reference genome(s) from a database that 
are most similar to the strain(s) in a sample. StrainGR analyzes short read alignments to a reported 
reference genome(s) to identify SNVs and large deletions (i.e., gaps in coverage) relative to the 
reference. Though StrainGST can be used as a standalone tool, the StrainGE tool suite, including 
StrainGR, enables sensitive nucleotide-level comparison and tracking of strains across multiple samples 
and provides insights into potential functional variation among individual strains. 

In brief, StrainGST builds a database of high-quality reference genomes (e.g., RefSeq 
assemblies) from a species or genus of interest (Figure 1a), filtering them to remove highly similar 
genomes using a k-mer based clustering approach. To identify a similar reference(s) to the strain(s) within 
a sample and to estimate its relative abundance, StrainGST compares the k-mers in the sample to those 
of the database reference genomes (Figure 1b) using an iterative algorithm similar to that of QuantTB 
(14). StrainGR provides additional detailed information about gene content and single nucleotide variants 
(SNVs) in a strain(s) by analyzing alignments of metagenomic sequencing data to each StrainGST 
predicted reference. To ensure accurate SNV calls while maintaining sensitivity at low coverage, 
StrainGR has stringent quality thresholds and heuristics to filter spurious alignments and reduce the 
number of incorrect calls.  

To separate SNVs belonging to different strains, StrainGR creates a concatenated set of 
reference genomes, containing all references predicted by StrainGST in a sample or set of samples. It 
uses this reference set to align metagenomic reads and call variants. To prevent assigning alleles 
incorrectly, StrainGR only calls variants in regions unique to a single reference by filtering out 
ambiguously aligned reads. In cases where StrainGST has identified distinct but closely related strains 
across samples, StrainGR can perform another, coarser round of reference clustering prior to 
concatenation, which increases the amount of unique sequence for variant calling.  

These variant calls can in turn be used to compare strains across samples. StrainGR compares 
positions in the combined reference where both samples have a “strong” allele call (the common callable 
genome), roughly equivalent to positions where both samples have at least two good reads or >10% of 
the pileup supporting that allele. Strain relationships can be assessed using two key metrics: i) the 
Average Callable Nucleotide Identity (ACNI), or the percentage of common callable positions where both 
samples have a single identical base call; and ii) a “gap similarity” metric, as patterns of large deletions 
are often conserved between closely related strains, which can provide an orthogonal metric of strain 
similarity (15). Bringing StrainGST and StrainGR together, StrainGE can identify, track and characterize 
strains, including strain mixtures, at coverages as low as 0.5x across the genome, or approximately 
0.08% relative abundance for a 5 Mb genome in 3 Gb of raw sequencing data. 
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Figure 1. StrainGE is a toolkit to track, characterize and compare low-abundance strains in metagenomic 
samples. a) Overview of StrainGE pipeline. StrainGST uses a database of reference genomes to select those 
most similar to strains present in a metagenomic sample. StrainGR further characterizes SNVs and gaps that differ 
between references selected by StrainGST and the actual strain present in the sample. b) At each iteration, 
StrainGST scores each reference strain by comparing the k-mer profile of the reference to the sample k-mers, 
reporting the reference closest to the highest abundant strain in the sample. The k-mers in the reported reference 
are removed from the sample and the process is repeated to search for lower-abundance strains, until there are 
insufficient k-mers. c) StrainGR uses a short read alignment-based approach to characterize variation (SNVs and 
gaps) between the reference(s) identified by StrainGST and the metagenomic sample. Regions shared between 
the concatenated genomes (grey shaded areas) are detected and excluded from variant calling. After applying 
rigorous QC, positions in the reference are classified as i) “reference confirmed” (light grey; a single strong allele 
which matches the reference); ii) “SNV” (red; a single strong allele that is different than the reference); or iii) 
“multi-allelic” (blue; multiple strong alleles present, e.g. the blue allele together with the reference allele in grey). 
The position with a strong reference allele and a weak allele (green; an allele with only limited support in the reads) 
is classified as “reference confirmed” because only the reference allele is considered strong at that position. 
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Benchmarking StrainGE on Escherichia. StrainGE was designed to be broadly applicable across 
different bacterial genera and species, including less well-studied species lacking numerous high quality 
reference genomes (Supplemental Results A). In this paper, we focused on E. coli, an evolutionarily and 
functionally diverse species composed of eight main phylogroups (A, B1, B2, C, D, E, F, G; mean 
within-phylogroup ANI ranges from 97.6%-99.1% ANI) (16). Despite their importance to human health as 
an opportunistic pathogen and frequent commensal, E. coli are typically found at low (<1%) relative 
abundance in diverse strain mixtures in human guts (4). Thus, E. coli presents a challenging and clinically 
relevant case on which to benchmark StrainGE. 

We first used StrainGST to construct an Escherichia-specific reference database by downloading 
all available complete Escherichia assemblies from NCBI RefSeq (929 at time of download; Materials and 
Methods; Supplemental Table 1). Because we were interested in tracking specific strains as opposed to 
plasmids, and because plasmids readily transfer between different genetic backgrounds of the same 
and/or different species (see Supplementary Results A) (17), scaffolds labeled as plasmid, or those 
smaller than 1 Mbp were removed. To select unique database representatives, StrainGST uses a k-mer 
based clustering method to cluster genomes with an average nucleotide identity (ANI) higher than 
approximately 99.8% (a tunable parameter; parameter optimization in Supplemental Table 4) to other 
reference(s) in the database. The resulting StrainGST database contained 361 complete Escherichia 
chromosomes, comprising 341 E. coli and Shigella chromosomes, representing all eight phylogroups, and 
20 chromosomes from other Escherichia species (Supplemental Table 1). 
 
StrainGST works at lower coverages and pinpoints more closely related references than other 
tools.  In order to assess the sensitivity and specificity of StrainGST compared to similar tools, we 
constructed in silico metagenomes that were spiked with sequences of known strains of Escherichia at 
varying relative abundances. We simulated reads from randomly selected Escherichia genomes 
downloaded from RefSeq, approximately one third of which were also represented in our Escherichia 
reference database, and mixed them with reads from a metagenomic sample from the Human 
Microbiome Project without any detectable Escherichia, to a total of 3 Gb per sample (Materials & 
Methods). Strains were mixed at both equal (1-4 strains) and unequal (2-3 strains) abundances to 
achieve between 0.1x and 10x depth of Escherichia coverage (roughly 0.02% to 1.6% relative 
abundance) per sample per strain, designed to cover the typical ranges of complexity and abundance of 
E. coli within metagenomic stool samples. A total of 240 spiked metagenomes were generated with 
strains mixed at equal abundance, and another 30 with strains mixed at unequal abundance. 

We compared StrainGST to two similar tools, which also identify strains in a sample based on 
those in a reference database: BIB (10) and StrainEst (11). BIB applies a Bayesian model to sample 
reads aligned to a core alignment of its database in order to identify the closest strain(s). StrainEst applies 
a regression model based on unique SNVs in the genomes of strains represented in its database to 
identify the closest strain(s) in a sample. All tools were run on each spiked metagenome sample, and the 
fidelity of the results were determined by comparing the reports from each tool against the known 
composition of the spiked metagenomes. We excluded PathoScope (18) and Sigma (19), because we 
were unable to run them to completion because of their dependencies on outdated databases or software 
(Materials & Methods). Because BIB’s database construction step, which required generation of a core 
alignment using progressiveMauve (20), could not scale to include all 361 reference genomes used for 
benchmarking StrainGST and StrainEst, we also created a smaller database for BIB with only 20 
reference genomes. 

StrainGST performed as well as, or better than, the other tools across all scenarios tested, and 
stood out strongly when strains were at very low abundance, either alone or as part of a mixture with 
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other strains. StrainGST had the highest precision (mean 0.99), F1 score (mean 0.99), and its recall and 
average Mash similarity (21) were at least as good as that of the other tools when given the task of 
identifying the closest reference(s) to those present in the spiked metagenome (Figure 2). There was no 
significant correlation between StrainGST’s F1 scores and the number of strains with an exact reference 
match in the database (Spearman’s 𝝆=0.06, p-value=0.25) suggesting that StrainGST performance was 
not dependent upon exact matches to references in the database. Although StrainEst was tested using 
the same reference database as StrainGE, StrainEst often reported a strain different from the true closest 
strain in the database or none at all, thus lowering both its precision and recall. However, in these cases, 
StrainEst still selected a strain with relatively high similarity, as reflected in its high Mash similarities. In 
contrast, while BIB often picked the closest strain in its database (mean recall 0.94), the selected 
reference was often a poor proxy given BIB’s smaller database, resulting in much lower Mash similarities.  

The high performance of StrainGST was especially striking at lower coverages. While StrainGST 
consistently performed well across all coverages and mixtures, both StrainEst and BIB performed poorly 
at coverages <1x. StrainGST was the only tool able to recover mixtures of strains present at a 20-fold 
coverage difference, as reflected by a mean precision of 0.98 and mean recall of 1.0 in the 10x:1x:0.5x 
benchmark (Figure 2). These results highlight the wide dynamic range over which StrainGST was able to 
correctly identify the closest strains within mixtures, including for the abundance range typically seen for 
key organisms such as E. coli in the human gut. 
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Figure 2. StrainGST was more sensitive and precise in identifying close reference genomes than other 
tools. Performance of StrainGST (red circles), StrainEst (brown triangles) and BIB (blue triangles) on 15 sets of 
metagenomes spiked with known Escherichia strains mixed at either equal abundance (left panel; 1-4 strains for 
each sample, 0.1x-10x coverage) or unequal abundance (right panel; 2 strains mixed at 1x:0.5x and at 10x:1x, or 3 
strains mixed 1x:0.5x:0.1x and 10x:1x:0.5x). Performance plotted as a) Precision, b) Recall, c) F1 score, d) 
Average Mash similarity to closest reference. 
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StrainGST resolved the composition of a mock community more precisely than other tools . In 
order to assess the performance of each tool on a real sample of known composition, we created and 
sequenced a mock community containing approximately 99% human DNA and 1% E. coli DNA, 
representing a mixture of four distinct, previously sequenced strains with fully finished genomes mixed in 
unequal (80:15:4.9:0.1) relative abundances (Materials & Methods). Two of these strains were 
represented in the reference database, while the other two had an approximate ANI similarity (or 1 - Mash 
distance (21)) of 99.95% and 99.89% to the closest representative in the database. StrainGST was the 
only tool that correctly identified all four E. coli strains, with no additional predictions (Table 1). While 
StrainEst also correctly identified the same four strains, it also reported two false positive strains not 
present in the mixture. BIB’s limited database lacked references as closely related as the other two tools, 
but it was able to identify the closest matching reference in its own database; however, it also reported six 
false positive strains.  

StrainGST predicted that E. coli represented 0.74% of the total sample, which was close to the 
expected value (1%) and consistent with predictions from MetaPhlAn2 (22) and Bracken (23). StrainGE 
also reported predicted abundances of the four detected strains, which were in the expected range. The 
capability to predict relative abundances was unique to StrainGE and not available for the other tools.  
 
Table 1. StrainGST was the only tool that correctly identified the mock community composition.  
 

*A check mark indicates that the exact strain was present in our database and correctly identified. A strain name on a green 
background indicates that the exact reference was not in the reference database, but the closest available reference was correctly 
identified (along with its approximate ANI to the actual strain). An “X” on a yellow background indicates a false positive strain 
identified by the tool that was not present in the mock community. 
 

8 

                                           Predicted Strains (approximate ANI to true strain) * 
 

Actual Strain 
present in mock 

community 
(phylogroup) 

StrainGST StrainEst BIB 

E. coli SEC470 (A) ✓ ✓ E. coli K-12 GM4792, 99.24 
% 

E. coli UTI89 (B2) E. coli UM146; 99.95% E. coli UM146, 99.95% E. coli H105, 98.49% 

E. coli Sakai (E) E. coli 149, 99.89% E. coli 149, 99.89% E. coli 108, 99.97% 

E. coli 24377A (B1) ✓ ✓ E. coli S40, 99.01% 

   ✘ E. coli APEC 
IMT5155 

✘ S. flexneri G1663 

   ✘ E. coli RM14721 ✘ E. coli LHM10-1 

     ✘ E. coli MSHS 133 

     ✘ S. dysenteriae 80-547 

     ✘ E. coli IMT16316 

     ✘ S. dysenteriae ATCC 
12039 
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StrainGE was the most accurate at detecting shared strains at coverages as low as 0.1x. 
StrainGST uses similarity to reference genomes as a proxy for strain identity and to calculate relative 
abundances of strains in a sample. However, the success of this approach to identify the “same” versus 
“different” strain varies with the granularity of the reference database. That is, StrainGST with a larger 
reference database will be more specific to detect distinct strains than with a smaller reference database. 
StrainGR was designed to complement StrainGST by providing a more detailed view of the nucleotide- 
and gene-level differences between a strain in a sample and its closest reference, which can be used to 
compare across samples having strains that match the same reference. While a close reference genome 
generally results in more accurate alignments and variant calls (24), StrainGR can still provide meaningful 
relationships when the reference is more distant, as would be the case in a smaller constructed database 
or with less well-studied organisms (Supplemental Results A). Thus, StrainGR extends the tool’s 
sensitivity to distinguish different strains and minimizes biases introduced in database construction.  

Using Escherichia spiked metagenomes, we first benchmarked the ability of StrainGR to call 
variants—i.e., SNVs and deletions (or gaps in coverage)—against close references for Escherichia 
strains present in each sample. StrainGE accurately called SNVs and large deletions, for both single 
strain and mixture samples, providing key information to assess whether two samples share a strain 
(Supplementary Figure 1; Supplementary Results B-C).   

Next, we selected two recent and highly cited strain-tracking tools, MIDAS (8) and StrainPhlan 
(9), to compare with StrainGR’s performance in tracking identical strains across samples containing one 
or more strains. To assess the sensitivity of these tools to distinguish between similar strains, we 
generated pairs of spiked metagenomic samples, each containing one or more Escherichia strains at 
between 0.1x and 10x coverage. Similar strain pairs were derived from the same reference genome, but 
with a different set of ~5,000 random SNVs introduced in silico into each strain’s genome (Figure 3a-b). 
This resulted in each strain having 99.9% ANI to the reference and each strain pair having 99.8% ANI to 
one another. This identity level should result in strain pairs matching the same StrainGST reference but 
still distinguishable by StrainGR. By default, MIDAS and StrainPhlan require that a strain have at least 5x 
and 10x coverage, respectively, to run to completion, which is higher than that required by StrainGE. 
Thus, we ran each of these tools using default settings, in order to evaluate their default performance at 
higher coverages, as well as with manual tuning to allow the tools to accommodate our lower coverage 
benchmarks (Materials & Methods).  

At 10x coverage, MIDAS and StrainPhlan performed comparably using default and tuned settings 
(Figure 3; Supplemental Figure 2). While StrainGE and MIDAS performed well across all scenarios at 
high coverage, StrainPhlan performed poorly on mixes because it only reported a single SNV profile for 
each sample. For lower coverage scenarios, StrainGE consistently outperformed the manually tuned 
versions of MIDAS and StrainPhlan (Figure 3). For single strain samples, StrainGE perfectly matched 
strain pairs down to 0.1x coverage, with MIDAS performing comparably (Figure 3c). StrainPhlan 
performed marginally at 1x coverage, and still was unable to run to completion at coverages lower than 
1x. For simple mixtures (Figure 3d), only StrainGE and MIDAS correctly matched most pairs, because 
StrainPhlan was unable to disentangle mixes. StrainGE was the only tool that was able to generate 
results across the whole range of coverages, scoring almost perfectly even down to the lowest tested 
coverage of 0.1x. When we included samples containing very closely related pairs (Figure 3e), StrainGE 
and MIDAS performed well down to 0.5x coverage, but StrainPhlan could not distinguish between closely 
related strains, even at 10x coverage, likely due to its reliance on marker genes which comprise only a 
small fraction of the genome . 

Aside from its relative sensitivity, another key advantage of StrainGE over the other tools is its 
ability to link a strain in a sample to its specific close reference genome reported by StrainGST, which 
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places an observed strain within the known phylogenetic structure of the reference database 
(Supplemental Figure 3). In contrast, the SNV profiles output by StrainPhlan (based on marker genes) or 
MIDAS (compared to a single built in E. coli reference), do not offer convenient phylogenetic placement. 
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Figure 3. StrainGE is the only tool that can detect strain sharing at coverages as low as 0.1x. a) Depiction of 
how synthetic Escherichia genomes were generated from randomly selected NCBI RefSeq genomes to create sets 
of closely related strains (e.g., A1/A2 and B1/B2) for spike in experiments. b) Depiction of how spiked 
metagenomes were created using synthetic genomes from (a). Each circle represents a spiked metagenome. The 
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StrainGE can be used to approximate the ANI between low-abundance strains within 
metagenomic samples. Having demonstrated that StrainGE is able to track strains across samples, we 
next sought to determine how well StrainGE metrics recapitulated genetic relationships between strains, 
as well as to evaluate how other Escherichia strains in a sample might influence these metrics. We 
generated another set of spiked metagenomes similar to that described above, except we spiked into 
each metagenome one of a set of diverse known E. coli genomes with between 0 and 5,000 random 
SNVs introduced in silico (100%-99.9% ANI to reference, steps of 0.01%). Individual strains were spiked 
into multiple metagenomic samples (potentially containing other E. coli strains) at random coverage levels 
of 0.1x-10x. We then ran StrainGE on each sample, and compared strains that matched the same close 
reference via ACNI, computed from across the common callable regions of the reference, and gap 
similarity scores. 

Identical strains in different samples were found to have high ACNI and gap similarity (Figure 4a), 
despite different metagenomic backgrounds. StrainGR’s ability to correctly delineate identical strain pairs 
increased with a larger common callable genome (Supplementary Figure 4), with a substantial drop in 
accuracy when the common callable genome fell below 0.5%. Of the same-strain pairs with at least 0.5% 
common callable genome, 74% had an ACNI >99.98% and 96% had a gap similarity >0.98, highlighting 
StrainGE’s ability to identify same-strain pairs even at low abundance and in the presence of other 
strains. 

StrainGR’s ACNI measurements across all strain pairs (that can have 0-10,000 SNV differences) 
also correlated strongly with true ANI, even though ACNI is based on unique regions, and ANI is based 
on the entire genome. Ninety two percent of ACNI values were within 0.05% of the true ANI, regardless of 
metagenomic background though ACNI values tended to fall below the true ANI value (Figure 4a). Given 
that SNVs in our synthetic benchmarking were uniformly distributed across the genome, whereas SNVs in 
real genomes tend to be denser in the accessory regions assessed by StrainGE (25), it is likely that, for 
real data, ACNI measurements would underestimate ANI (i.e., report greater diversity), thus representing 
a lower bound for the similarity between related genomes. 
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color of the circle indicates which synthetic strain was included: single color circles indicate spiked metagenomes 
containing a single synthetic strain, and two color circles indicate spiked metagenomes containing two synthetic 
strains mixed at equal proportions. c-e) Precision-recall curves for each tool and coverage 0.1x-10x, when given 
the task to detect which sample pairs contain identical strains. The area under the curve (AUC) is depicted as a 
heatmap below. The “successful comparisons” bar plot indicates the percentage of sample pairs for which a 
comparison was possible (i.e., tools ran to completion for both samples). c) Limiting to single-strain samples from 
distinct references. d) Including samples with two strains, but limited to strains from distinct references. e) Including 
samples with closely related strains. 
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In real metagenomic data, StrainGE identifies low abundance strains and can 
track strains across samples, including in strain mixtures 
 
StrainGE can identify lower abundance instances of persistent strains previously undetectable by 
other tools. In order to assess StrainGE’s utility to characterize strains from real world samples, we 
examined its performance, using default parameters with our Escherichia reference database, on a 
previously published metagenomic dataset of 27 longitudinally collected stool samples from a patient with 
Crohn’s disease, on which MIDAS was used to delineate E. coli strains (26). MIDAS identified seven 
dominant “strain types” (“ST1” - ”ST7”) that varied in abundance over time. Each of these belonged to a 
distinct multi-locus sequence type (MLST) and represented one of five E. coli phylogroups. StrainGE 
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Figure 4. StrainGR can discriminate between highly similar strains and reports ACNI values that correlate 
well with the true ANI between strains. a) For all synthetic sample pairs with the same StrainGST reference 
called, the Jaccard gap similarity index and pairwise ACNI are plotted. Circle size indicates the percentage of the 
reference genome that was callable across both strains being compared. Red circles indicate comparisons 
between identical strains. b) For all pairs, the true ANI between spiked isolates is plotted against the ACNI, as 
estimated by StrainGR. The dashed line indicates parity between these metrics. 
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showed good concordance with results from MIDAS for all of the high abundance strains (>10% 
abundance) (Table 2). For the two calls that disagreed, our StrainGST database lacked representatives 
for the two MLSTs reported by MIDAS. However, StrainGE selected the next closest reference, which we 
confirmed was correct by comparing the whole genome sequence from a cultured representative of ST1 
reported in Fang et al. to our reference database.  

StrainGST also identified seven distinct strains that were missed by MIDAS (Figure 5a). While the 
majority of these were secondary strains found to coexist with a dominant strain predicted by MIDAS, 
StrainGST also predicted strains at timepoints where MIDAS called none (time points 6-10). In most of 
these cases, the strains were at or below 1% relative abundance and were also detected by MIDAS at 
higher abundance in other time points (e.g., ST3; dark green), lending credence to their existence in 
these samples and suggesting that some strains were more persistent over time than previously predicted 
(Figure 5a). 

After collapsing references to include a single representative from each closely related group of 
references (approximately 99.2% or greater ANI; ensuring every genome had at least 20% unique 
content) (Figure 5b; phylogroups G, B2 and A), StrainGR was run on all datasets using a concatenated 
reference including 10 references, representing the 14 strains detected by StrainGST. SNV and gap 
patterns predicted by StrainGR showed that the majority of strains matching the same reference had 
strikingly high pairwise ACNI (>99.96%) and gap similarity (>0.97) (Figure 5c,d), which were within the 
range of those of same-strain sample pairs in our simulations (Figure 4a). However, StrainGR results 
from strains matching the E. coli 118UI (dark green) reference stood out. While 118UI-like strains from 
samples 3 and 4 had ACNI and gap similarity relationships that were on par with what we observed in 
same-strain simulations, all other comparisons fell outside of this range, suggesting that this individual 
carried a mixture of 118UI-like strains in their gut over time that were closely related, but not necessarily 
the same with respect to gene content and single nucleotide variation (Supplementary Figure 5). 

 
Table 2. The strains predicted by MIDAS match the dominant strains predicted by StrainGE. 

§ Fang et al. (26) 
* The actual strain corresponding to ST1 (3_2_53FAA) was whole-genome sequenced by Fang et al. PA45B and 
3_2_53FAA share 99.9% average nucleotide identity based on whole-genome comparative genomics analysis. 
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 MIDAS§ StrainGST 

Strain 
(time points) MLST E. coli 

phylogroup MLST E. coli 
phylogroup Most abundant strain 

ST1  (1) 95 B2 95 B2 PA45B* 

ST2  (2) 1629 † E 1011 
 

E 
 

Santai 
 

ST3  (3,4) 69 D 69 
 

D 
 

118UI 
 

ST4  (11-18) 58 B1 58 
 

B1 
 

D5 
 

ST5  (19-22, 
27) 

131 B2 131 
 

B2 
 

MVAST0167 
 

ST6  (23,24) 409 † A 1408 
 

A 
 

AR_0061 
 

ST7  (25,26) 1727 B1 1727 B1 2011C-3911 
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† MLST profile was not represented by any reference genome in the StrainGE database. StrainGST predicted the 
closest reference within the StrainGE database, which was within the same phylogroup. 
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Figure 5. StrainGE accurately and sensitively identifies distinct E. coli strains in a longitudinal collection of 
stool sample metagenomes from an individual with Crohn’s Disease. a) Stacked barplot showing the relative 
abundances of StrainGST calls for each of 27 longitudinal stool metagenomes from Fang et al. Circles indicate the 
strain detected in Fang et al., colored by its StrainGST counterpart and labeled using the ST designations 
(ST1-ST7) assigned by Fang et al. Small grey circles indicate samples where no strain was predicted in Fang et 
al.; these are labeled with “n.d.” b) Single-copy core phylogeny of the 14 StrainGST reference genomes with close 
matches to strains across samples. “Strain” colors are based on the clade from which each strain is predicted to 
belong; see column “Clade”. “Collapsed” column indicates which reference was selected as a representative for 
subsequent StrainGR analysis, when two or more references shared more than ~99.2% ANI. c) For all sample 
pairs matching the same collapsed reference, the Jaccard gap similarity index and pairwise ACNI are plotted. 
Circles indicate comparisons where the predicted reference was the same before collapsing, and diamonds 
indicate cases where the predicted reference before collapsing was different. Sizes of shapes indicate the 
percentage of the reference genome that was callable across both strains being compared. Filled in shapes 
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StrainGE accurately and sensitively identified a low-abundance, persistent strain of E. coli in 
longitudinal stool samples from a woman with recurrent urinary tract infection.  Although the results 
of StrainGE on the Fang et al. (26) dataset highlighted its ability to resolve strains present at low 
abundance, the overall E. coli relative abundances in these samples were significantly higher (median 
7.9%; range 0.05%-27%) than those typically seen in the human gut. Thus, we also tested StrainGE on 
12 stool metagenomes having more typical E. coli relative abundances (median 0.55%; range 
0.006%-17.4%), which originated from a single individual with a history of recurrent urinary tract infection 
(rUTI) over the span of a year. Given that the gut is a known important reservoir for UTI-causing E. coli 
(27), it was of interest to trace gut E. coli strain dynamics and their relationship with UTI.  

StrainGST detected a total of four distinct strains of E. coli  (Figure 6a), including a recurrent strain 
detected in over half of samples. The persistent strain, an E. coli 1190-like strain from clade D, had a 
median relative abundance of only 0.6% (range 0-1.1%) and was detected even in samples that were 
composed of multiple E. coli strains, including at very low (20-fold less) abundance relative to another 
strain (Figure 6a). Despite its low abundance, we were able to confirm that all E. coli 1190-like strains had 
extremely high ACNI (>99.95%) and gap similarity (> 0.98) (Figure 6b), in line with the identities observed 
for same-strain benchmarking (Figure 4a), suggesting that this strain, also the causative agent of this 
individual’s rUTI, persisted long-term in their gut. StrainGR output enabled us to look closely at the 
locations and identities of SNVs and genes within gaps relative to the reference. For example, we 
consistently identified a large gap across all time points encoding a prophage found in the original 
reference, but apparently lacking in the E. coli 1190-like strain in this individual (Figure 6c). Using 
StrainGR output that included both strong and weak variant calls (see Figure 1c for strong vs. weak calls; 
Materials & Methods), we were able to track 295 variant sites across samples, where the corresponding 
allele was called in at least one sample, and weakly called in at least five samples (e.g., a 
nonsynonymous SNV in the gene cydC; Figure 6d). At each of the 295 variant sites, the called allele was 
identical across all time points, further supporting the persistence of a single UTI-causing strain.  
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indicate whether this strain instance was undetected by MIDAS. Dark green circles are labelled with the timepoints 
compared. d) Zoomed in view of the upper right corner of figure c). 
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Discussion 
 

Strain-level variation can determine a bacterial species’ interactions with its host and host 
microbiota, and can be used as a tool to trace the dynamics and transmission patterns of a species over 
time and space. The ability to discern strain-level variation from primary specimens—where the species of 
interest may be at low abundance—can transform our understanding of them, including species 
population dynamics and ecology. We have shown that our novel tool suite, StrainGE, works directly from 
primary specimen metagenomes to enable sensitive differentiation and nucleotide-level characterization 
of individual bacterial strains, at coverages typical of many clinically relevant bacteria (28–30). StrainGE is 
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Figure 6. StrainGE detected a long-term, persistent strain of E. coli in a woman with rUTI. a) Relative 
abundances predicted by StrainGE are shown for all E. coli strains detected. b) For all sample pairs containing a 
strain matching to E. coli 1190, plot shows pairwise ACNI and gap similarity scores. Size of the circle indicates the 
percentage of the common callable genome. c) Zoom in of a region of the chromosome of E. coli 1190. Grey 
shaded areas indicate “callable” regions, where StrainGR had enough read data to make a strong allele call. 
Predicted gaps are shaded black. The blue line represents the number of SNVs per 1,000 bp, observed in at least 
3 samples. d) Further zoom in representing a region where StrainGR identified a nonsynonymous SNV that was 
consistently detected across all 1190-like strains.  
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highly sensitive and uniquely able to disentangle multi-strain mixtures and to determine strain-specific 
variation. We also showed that this tool provides a substantial advance over previously published tools, 
which either report only overall consensus SNV profiles for a mixture (8), disentangle strain-specific SNVs 
in a limited set of housekeeping genes (9), or do not offer nucleotide-level resolution (10,11). Importantly, 
StrainGE was able to shed light on the strain-level dynamics of a patient with Crohn’s disease, including 
the presence of co-existing strains and strains at timepoints missed by another popular strain-tracking 
tool. StrainGE similarly revealed the long-time gut carriage of a UTI-causing E. coli strain, suggesting that 
persistence in the gut may be an important mechanism for UTI recurrence.  

Though benchmarked and demonstrated on  E. coli, a typically low abundance member of healthy 
and disease-associated gut microbiota (4), StrainGE is designed to be broadly applicable to many 
bacterial taxa, and includes tools to adapt it to any genus or species of interest. For species with many 
available reference genomes, StrainGST is capable of handling large reference databases. For species 
that are less well-represented in genome repositories, our analysis in Supplementary Results A 
showcased that combining StrainGST and StrainGR can return accurate information about strain 
relationships, even when the best matching strain is from a low density area of the reference database. 
Though we did not benchmark StrainGE on other microbes (e.g., fungi) or viruses, StrainGE is tunable 
and has abundant and easy to analyze output that should make it straightforward to explore for these 
applications.  

  StrainGST’s default database clustering threshold (0.9 Jaccard similarity, corresponding to an 
approximate ANI of ~99.8%) should work well for most users, but in some cases it may be helpful to 
optimize the phylogenetic density of a database in order to maximize the extent of strain-level details 
provided by the tool. For example, comprehensive representation of the phylogenetic diversity of a taxon 
can be desirable for identifying the nearest reference strains, since these should serve as the best basis 
for the identification of strain variants and to tease apart mixtures of closely related strains. However, a 
database containing nearly identical references can pose a challenge for StrainGST, particularly when 
strains are present at the extremely low coverages at which StrainGST was designed to operate. 
Sequencing error and metagenomic background sequence can lead to different instances of the same 
strain matching to different, but closely related, references, complicating comparisons across samples. 
Therefore, StrainGST includes the ability to cluster input reference genomes based on a user-defined 
k-mer Jaccard similarity threshold, reducing the redundancy of the database by selecting one reference 
from each cluster of highly related references. We recommend using assemblies that are as complete 
and as contiguous as possible in database construction since these make plasmid detection, read 
alignment and variant calling more straightforward. However, StrainGE can work with less complete 
assemblies, though the user should be aware that they contribute to additional sources of error when 
analyzing StrainGE output. 

Using a clustered database, StrainGST’s k-mer-based scoring heuristics (Materials & Methods) 
are capable of detecting and correctly identifying nearest references of strains with high precision and 
recall down to 0.1x coverage per strain, or about 0.02% relative abundance, assuming a 5Mb genome 
with 3 Gb of sequenced reads. StrainGST’s iterative approach to strain identification finds and reports the 
nearest reference for the strain with the most evidence, and then excludes all k-mers from that reference 
from consideration in future iterations, thereby focusing on distinct evidence to identify subsequent 
strains. This has proven very effective in identifying mixtures of strains throughout the phylogeny of both 
equal and unequal abundance . By using StrainGST alone, the user can get a sense as to which strains of 
the target taxon are present in a sample, their relative abundances, as well as what known references 
they are most like, enabling straightforward placement of observed strains into the known phylogenetic 
structure of the database. 

StrainGR provides a deeper level of context beyond StrainGST, identifying genetic differences 
between the actual strain(s) and the reference(s) selected by StrainGST, by aligning metagenomic reads 
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to the StrainGST-identified references. The combined reference set allows the aligner to place reads at 
their optimal location, deconvolving reads with alleles specific to a strain. In order to be robust against 
sequencing and alignment errors, StrainGR has stringent read filters and ignores regions in the reference 
with abnormally high coverage. StrainGR requires, by default, at least two high quality reads in order to 
consider evidence of an allele strong, but it also keeps track of alleles present with less evidence (“weak” 
alleles). Weak evidence becomes useful if there is other reason to believe a strain variant may be 
present; e.g., if other samples from the same subject have strong evidence for an allele, it is more likely 
that weak evidence of the same allele in other samples is real. StrainGR is also unique among similar 
tools in its ability to identify gaps in coverage, i.e., large deletions in the sample strain relative to the 
reference. Recombination and horizontal gene transfer is very common in bacterial evolution (15), and 
patterns of presence and absence of blocks of sequence can provide supportive evidence about the 
relatedness of strains that are orthogonal to SNVs. Further, missing blocks of sequence can point to 
potentially important missing gene content relative to the reference genome.  

StrainGR stands out in its ultra-sensitivity to detect and compare very low abundance strains in a 
sample. For example, in a 5 Mb genome, StrainGR can make strong allele calls at ~50,000 sites even 
when data from a strain covers only 0.1x of a detected reference. Though scant, this is sufficient to 
estimate the ANI between the sample strain and the reference. However, at 0.1x coverage, the probability 
that related strains from different samples have sufficient read depth at the same location along the 
reference to call variants is extremely low. Thus, StrainGR performs well in sample comparison 
benchmarking when coverages reach at least 0.5x, where the likelihood of capturing variation at 
comparable reference sites is higher. Though we did not benchmark StrainGE on strains at >10x 
coverage, we noted that StrainGE worked well on a real metagenomic data set where strains were 
present at 100x coverage, indicating that the tool should also work well at coverages standardly achieved 
for isolates. 

When comparing strains across multiple samples using StrainGR, we found that it can be useful 
to further refine the set of concatenated references to be used in alignment. Since StrainGR only calls 
variants within regions unique to a single reference genome by considering only unambiguously placed 
reads, the more reference genomes identified by StrainGST across samples, the less unique content 
there is per reference for StrainGR to call variants against. To address this, we included an option 
(prepare-ref) to further cluster the set of StrainGST-identified references prior to StrainGR analysis, in 
order to minimize overlap while providing a consistent set of reference genomes for comparing SNVs and 
gaps across more strains in a sample set. To guide this additional round of clustering, prepare-ref 
estimates the amount of shared genome in the combined reference using MUMmer (31). Based on a 
benchmark with several E. coli mixtures (data not shown), we set the default clustering value to a Jaccard 
similarity of 0.7 (~99.2% ANI), which worked well for our use cases. Application of prepare-ref to the 
dataset shown in Figure 5 increased the total amount of unique content across references from 19% 
(including all 14 references) to 57% (including 10 references after collapsing), and enabled direct 
comparisons of more strains with respect to their nucleotide and gap similarities. This parameter can be 
easily adjusted by the user. 

Despite StrainGE’s focus on unique regions, which are typically more variable than core genomic 
regions (25), we found that StrainGE-computed ACNI values were strongly correlated with true ANI 
(Figure 4b). This correlation was strong even in the context of other diverse E. coli, making StrainGE 
output relatively straightforward to put into evolutionary context. Though the measures that define the 
“same” versus “different” strain will depend upon the research question and the species being evaluated 
(6), our benchmarking suggested that when both ACNI and the gap similarity between two strains were 
>99.98% ACNI and >0.97 gap similarity, respectively, this was strong evidence that strains were 
essentially the same. These thresholds are unlikely to be universal for all studies or species. However, 
StrainGE provides a compendium of outputs that give the user the ability to assess relationships between 
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strains in detail. While StrainGE’s default settings limit SNV reports to only the unique regions of each 
reference since it is unable to disentangle variation at multi-mapped sites, there is an option to have it 
report variation across the entirety of each reference, which could be helpful to characterize variation in 
known genes. 

In summary, StrainGE is an easy-to-use tool for ultra sensitive and high resolution tracking of 
strains in metagenomes. Rather than relying on a single approach, StrainGE uses both k-mer and 
alignment analysis to reveal as much information as possible about sample strain genomes, including 
basic high-level information about strains such as their i) closest matching reference, which places them 
phylogenetically, ii) relative abundance, and iii) ACNI to other strains, which can be achieved even at very 
low coverage levels, with more detailed information about specific variants and cross-sample 
comparisons becoming available as coverage increases. StrainGE is limited in evaluating the 
relationships between strains using unique regions of reference genomes, is unable to detect new genes 
that occur in strain genomes that are not present in its closest matching reference, and currently only 
works with Illumina data. Furthermore, StrainGE is currently not designed to phase SNVs from multiple 
strains matching the same reference in the same sample. In this case, StrainGR output will reveal 
evidence for multiple alleles, the frequencies of which cannot be robustly compared to link alleles together 
at the coverages StrainGE was designed to operate on. Despite these limitations, StrainGE provides a 
major advance compared to previously published tools and will help to accelerate our understanding of 
the role of strain-level variation in shaping ecological and disease processes.  

Materials and Methods 

Strain Genome Explorer toolkit algorithms 
StrainGST: Strain Genome Search Tool. StrainGST is a k-mer based tool used to identify specific 
strain(s) of a species in a metagenomic sample. StrainGST computes a reference database of previously 
sequenced strains from this species, and uses it to report close reference genomes to strains present in a 
metagenomic sample along with their relative abundances. The references reported by StrainGST can be 
used as input to StrainGR to further characterize genetic variation found within the metagenomic sample. 

Creating a StrainGST database . A StrainGST database is constructed from a set of high quality 
sequenced reference genomes for a single species or genus, such as all  complete reference genomes in 
NCBI RefSeq. From this set of genomes, StrainGST generates a database of k-mer profiles, using a 
sliding window (window size k) to traverse each genome and count the frequency of each k-mer. To 
reduce memory usage and computation time, a minhash technique (similarly to Mash (21)) is applied to 
keep 1% of the k-mers with the lowest hashes. 

StrainGST next performs clustering to remove highly similar genomes from the reference set. In 
order to track and compare genomic variation across related samples, StrainGR must be able to align 
reads to a common reference genome across different sample sets. Therefore, the references reported 
by StrainGST should not be too closely related, or each sample could end up matching distinct yet closely 
related references, making comparisons difficult. StrainGST computes pairwise Jaccard similarities using 
each reference genome’s k-mer set, performing single linkage clustering using a Jaccard similarity 
threshold of , and picking a single representative genome for each cluster to include in the referenceτ  
set. StrainGST selects the genome with the highest mean similarity to all other genomes in that cluster. 
This process ensures that the k-mer similarities between remaining genomes in the database are all lower 
than . Additionally, to remove genomes from the database that are highly similar to another genome, butτ  
that may have lower Jaccard similarity due to the presence of large indels, StrainGST removes genomes 
where 99% or more k-mers overlapped with those from another genome.  
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Identifying strains present in a sample . StrainGST uses this database to identify the closest 
reference genome(s) to the strain(s) present within a sample (Figure 1).  First, all reads in the sample are 
k-merized, resulting in the k-mer set . The algorithm then selects for k-mers from the species ofKsample  
interest by taking the intersection between the sample k-mer set and that of the reference database for 
the species of interest (Figure 1b), excluding k-mers not associated with the target species.  

StrainGST then uses these k-mers to identify the reference genome(s) with the best k-mer 
matches to the sample using an iterative process.   In each iteration, StrainGST scores each reference 
genome in the database against the remaining k-mers in  in order to find the reference with theKsample  
best score, which is reported to the user as the reference with the strongest evidence of being present. 
The scoring system is described in detail below. If no reference strain is identified that scores above a 
threshold (adjustable by a command line option), the algorithm is terminated. The default value for θ θ
(0.02) was optimized to maximize sensitivity while minimizing false positives (Supplementary Results D). 
In each iteration, k-mers corresponding to the reference selected are removed from the sample k-mer set 
in order to enable identification of secondary strains in the next iteration. This process continues until 
either no strain is reported or the maximum number of iterations is reached (default of 5).  

Scoring metric for selecting matching reference strains. To determine which reference strain to 
report in each iteration, we calculate a score for each reference strain using a combination of three 
metrics based on: 1) the fraction of matching k-mers in the reference; 2) the fraction of the reference 
database k-mers in the sample that could be explained by this reference genome; and 3) the evenness of 
the distribution of matching k-mers across the genome. 

1) Fraction of matching k-mers in the reference (ƒ). This metric represents the fraction of distinct 
k-mers in reference j that is present in the sample and has a value between 0 and 1, where 1 would 
indicate all k-mers of this reference are present in this sample.  

,K ′ = Ksample ⋂ K j  

. 
 represents all k-mers in the sample,  represents all k-mers in reference j, and  representsKsample K j K ′  

the set of k-mers both present in the reference and in the sample.  
2) Fraction of sample k-mers that could be explained by this reference (ɑ). To give more weight to 

reference genomes that are similar to higher abundance strains in the sample, StrainGST calculates the 
fraction of database k-mers remaining in the sample that could be explained by the k-mers in this 
reference: 

. 
 

 represents the count of k-mer  in the sample. Note that we include k-mer counts, rather than usingci i  
the fraction of distinct k-mers, which gives more weight to reference strains with high average depth of 
coverage. This metric has a value between 0 and 1. 

3) Evenness (e). To quantify whether the matching k-mers are evenly distributed across the 
reference genome, rather than being found predominantly in a small region (e.g., due to a horizontal gene 
transfer event, or conserved regions attracting reads from different species), we defined the evenness 
score. First, we assumed that the coverage across the genome follows a Poisson distribution. The rate 
parameter  of the Poisson distribution specifies the average depth of coverage across the wholeλj  
genome: 

20 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.14.431013doi: bioRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=%20f%20%3D%20%5Cfrac%7B%7CK%27%7C%7D%7B%7CK_j%7C%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20a%20%3D%20%5Cfrac%7B%5Csum_%7Bi%20%5Cin%20K%27%7D%20c_i%7D%7B%5Csum_%7Bi%20%5Cin%20K_%7Bsample%7D%7D%20c_i%7D%20#0
https://doi.org/10.1101/2021.02.14.431013
http://creativecommons.org/licenses/by/4.0/


. 
 represents the count of k-mer  in the sample, and  represents the count of k-mer  in referenceci i dij i  

strain .j  
If X is the random variable that indicates how many reads cover a position, then using the 

Poisson distribution, the probability of observing  reads at a position is:x  

. 
The probability of observing 0 reads at a position is then . The probability of(− )P (X )= 0 = exp λj  
observing at least one read at a position is (24): 

 
.(− )P (X )> 0 = 1 − P (X )= 0 = 1 − exp λj  

 
This probability also represents the expected fraction of the genome covered by at least one read 

given a certain average depth of coverage. The evenness score describes how well the observed fraction 
of the genome covered by at least one read (which is estimated using the fraction of matching k-mers in 
the reference defined earlier), matches the expected fraction of the genome covered by at least one read 
when assuming a Poisson distribution for the depth of coverage: 

 

. 
 

This score will be close to 1 if the observed fraction of the genome with at least one read matches 
the expected value for a certain average depth of coverage (assuming a Poisson distribution). It will be 
closer to zero if only small portions of the genome are well covered. A value higher than 1 indicates that 
the observed fraction of the genome with at least one read is higher than the expected fraction of the 
genome with at least one read. To bound this score between 0 and 1, StrainGST uses the minimum of e  
and its reciprocal: 

 

. 
 
 

Finally, we combined these three metrics together in order to obtain the final score: 
 

core  s = f · a · e′2  
 

At each iteration, the reference strain with the highest score represents the best match to the 
highest abundant strain remaining in the sample and is reported to the user. 

 
StrainGR: Strain Genome Recovery. The StrainGR pipeline consists of: 1) building a concatenated 
reference based on reference strains reported by StrainGST;  2) aligning reads to the concatenated 
reference; 3) analyzing read alignments to called SNVs and large deletions; and 4) using these variant 
calls to analyze gene content or track strains across multiple samples. 
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Preparing a concatenated reference . To analyze a set of related samples together, such as a 
longitudinal series, StrainGR concatenates a single, unified set of representative references present 
across the whole dataset. This can facilitate comparisons of alignments or genomic variation across a set 
of samples, which may contain different strain mixes at different time points. Use of the concatenated 
reference allows reads with an allele unique to a particular strain to be aligned to the genome of the 
correct reference strain, thus helping disentangle reads from mixture samples. Genomes from the same 
species, however, will share conserved genomic regions (i.e., housekeeping and other core genes), 
where the aligner will be unable to place reads unambiguously within the concatenated reference. 
StrainGR detects and excludes these conserved regions from variant calling.  

In order to minimize conserved regions where StrainGR is unable to call variants, it is important to 
select a set of reference strains that are not too closely related, which could result in a large fraction of the 
concatenated reference genome being marked as shared. To construct a concatenated set of references 
with an optimal degree of similarity, StrainGR includes a tool called prepare-ref that analyzes StrainGST 
output from a set of samples (e.g., a longitudinal set from a single patient) and generates a concatenated 
reference ready for use with StrainGR, optionally performing another round of clustering at a stricter 
threshold to prevent too-closely related genomes from being included. By default, the stricter clustering 
threshold is set to a Jaccard similarity of 0.7 (~99.2% estimated ANI). 

Read alignment and filtering . The reads from a metagenomic sample are then aligned to the 
concatenated reference using BWA mem (25), removing read pairs with 1) improper pairing; 2) clipped 
alignment; or 3) implied insert size smaller than the read length. In order to identify shared regions within 
the concatenated reference which should be excluded from variant calling, StrainGR tracks the number of 
“multi-mappable” read alignments (those which map equally well at multiple locations) at each position in 
the reference. When the majority of aligned reads at a position are multi-mappable, StrainGR excludes 
this position from variant calling. We rely on BWA’s “XA” SAM tag to obtain a read’s alternative alignment 
locations, so aligners other than BWA are not currently supported by StrainGR. 

In addition to excluding multi-mappable regions, StrainGR also excludes regions with abnormally 
high coverage (greater than threshold ), likely due to genes highly conserved across genera whichτ  
attract nonspecific reads from other members of the microbial community. was chosen such that the τ  
probability of observing a depth of coverage higher than  is 1x10 -7  assuming a Poisson distribution. τ  
This value results in a threshold of 10x coverage when the mean coverage depth across the genome is 
1x, and a threshold of 20x when the mean is 5x. 

SNV calling . StrainGR analyzes read alignments to identify single-nucleotide variants (SNVs) 
between a specific strain within a metagenomic sample and its closest reference genome identified by 
StrainGST. To filter likely sequencing errors, bases with an Illumina Phred base quality score <5 are 
ignored by default. An allele is considered strong if the sum of base quality scores supporting that allele is 
i) higher than 50 (roughly equivalent to having at least two high-quality supporting reads) and ii) at least 
10% of the total sum of base quality scores of all alleles at that genomic position. If an allele is present but 
doesn’t match these criteria, it is considered weak. StrainGR stores weak evidence for use when tracking 
a strain across multiple samples—if a particular strain is highly abundant in some samples, with many 
strong SNP calls, then weak calls can be useful to discern that allele in low abundance samples from the 
same sample set.  

Based on the observed alleles, StrainGR classifies a genomic position as either “reference 
confirmed”, “SNV” or “multiple alleles”. If a position has a single strong allele call, and that allele is the 
same as the reference, the position is classified as “reference confirmed”. A position with a single strong 
allele call that is different from the reference is classified as a SNV. Any position with multiple strong allele 
calls (whether they match the reference or not) is classified as “multiple alleles”. 
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To estimate the overall degree of similarity between the strain in the sample and its closest 
reference, StrainGR computes an estimate of average nucleotide identity (ANI) using StrainGR SNV calls: 
the average callable nucleotide identity (ACNI) is the percentage of positions marked as “reference 
confirmed” out of all positions with a single strong allele call. 
 Large deletion predictions. StrainGR also analyzes the read alignments to identify large deletions 
present in a specific strain within a sample, as compared to its closest reference identified by StrainGST. 
Consecutive positions in the reference genome over a specified length (by default 5,000 bp; ~2 genes) 
with no aligned reads could indicate a large deletion. To account for situations with low coverage across 
the genome (<1x), StrainGR employs a simple heuristic that exponentially scales the threshold for the 
length of such regions at lower coverages; thus, only longer gaps can be detected at lower coverages.  If 

 is the average depth of coverage along the genome, and  is the unadjusted threshold, then theλ  ϕ  
adjusted minimum size of a “gap” is: 

 . 
Large deletions are used to assess whether particular genes are absent from the strain in a sample. In 
addition, the overall pattern of deletions across the genome for the strain in a longitudinal sample set can 
be used as a strain “fingerprint” to track a particular strain across samples. 

Strain comparisons across samples. To assess whether the strains in two samples are the same 
(or very closely related), we compare both SNV calls (via pairwise ACNI) and patterns of large deletions. 
StrainGR calculates pairwise ACNI by dividing the number of positions where both samples have the 
same strong allele by the total number of positions where both samples have a single strong allele. To 
compare the pattern of predicted deletions between two samples, StrainGR calculates the Jaccard 
similarity: if is the set of positions not marked as a large deletion in sample 1, and  is the set ofG1 G2  
positions not marked as a large deletion in sample 2, then the gap similarity  is defined asl   

. 
  

Benchmarking StrainGE using simulated data and mock communities 
Spiked metagenome generation.  Unless otherwise noted, all synthetic metagenomes used for 
benchmarking were generated as follows: reads were simulated from the relevant genomes using ART 
(32) and merged with reads subsampled from a genuine metagenomic data set without detectable E. coli 
(accession SRS014613) as per MetaPhlan2 (22) and StrainGST, up to a fixed depth of 3 Gb. At this 
depth, strain coverages of 0.1x, 0.5x, 1x and 10x corresponded to relative abundances of 0.016%, 
0.083%, 0.16%, and 1.6%, respectively, assuming a 5 Mb E. coli genome. 
 
StrainGST database for Escherichia. For construction of the Escherichia reference database, all 
complete Escherichia genomes available in NCBI RefSEq were downloaded in July 2019 (929 genomes 
total; Supplemental Table 1). All tools required to construct the StrainGST database are included in the 
StrainGE suite.  

In order to set StrainGST’s default clustering threshold, we benchmarked its ability to correctly 
identify single strain and two-strain mixes using the metagenomic spike-in methods described below, 
using synthetic reads generated from 200 randomly selected E. coli genomes spiked into subsets of real 
metagenomic samples devoid of E. coli, to a total of 3 Gb. For the single-strain benchmarks, 200 samples 
were generated with 10x, 1x, 0.5x, and 0.1x coverage of each of the selected E. coli genomes (800 
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samples total). For the 2-strain mix benchmarks, 100 random 2-strain combinations from the set of 200 
selected E. coli genomes were spiked in at each combination of 10x, 1x, 0.5x, and 0.1x coverage (10 
coverage combinations, 1000 samples total). The 1800 benchmark cases were run using database 
clustering thresholds of 0.95,  0.90, 0.85, and 0.80 Jaccard k-mer similarity, corresponding to Mash 
distance ANIs of 99.89%, 99.77%, 99.63%, and 99.49%, respectively. For each threshold, we measured 
precision, recall, and F1 score for strain identification, with true positives being only those cases in which 
StrainGST identified the closest reference strain to the true strain as measured by Jaccard k-mer 
similarity. The clustering  threshold of 0.90 generated the best combined results in each of the three 
metrics (Supplementary Table 4). 
 
Phylogenetics and MLST typing of genomes in the Escherichia reference database.  A single copy 
core (SCC) phylogeny was generated for the entire database of reference genomes. In brief, SynerClust 
(33) was used to generate clusters of orthologous genes (orthogroups). A concatenated alignment was 
generated for all single-copy, core orthogroups using MUSCLE (34). A phylogenetic tree was constructed 
using FastTree v2.1.8 (35). Phylogenetic trees were visualized using iTol (36). 

MLST designations for each reference genome were predicted with the tool mlst 
(https://github.com/tseemann/mlst). Sequence types reported were based on the Achtman scheme. E. 
coli clade/phylogroup designation was determined using ClermonTyping 
(https://github.com/A-BN/ClermonTyping ). For cases when there were missing or conflicting results 
between predicted typing and MASH groups, the clade designation for a given genome was selected 
based on where it was located in the SCC phylogeny with respect to unambiguous genome to clade 
designations. 
 
StrainGST benchmarking . We compared the ability of StrainGST to select the closest strain in a 
Escherichia reference database to BIB (10) StrainEst (11). We excluded PathoScope (18) because its 
database construction process required taxonomy IDs in BLAST’s NT database, which have been phased 
out by NCBI. Sigma was excluded because we could not run the pipeline end-to-end, as we were unable 
to run steps that depended on MPI for compute parallelism. Where possible, we used the same database 
to ensure fair comparison. For StrainGST and StrainEst, we used the same 361-strain database. For BIB, 
since BIB’s database construction process did not scale, we generated a smaller database containing 20 
representative genomes. To select the 20 representatives, we computed pairwise Mash distances (10) 
between all 929 genomes used as input into the StrainGST Escherichia database and performed 
hierarchical clustering to obtain 20 clusters. The genome from each cluster with the lowest average 
distance to all other genomes in its cluster was selected. 

We took into consideration StrainEst and BIB calls that reported a strain at >1% abundance 
relative to other strains in the database, the same threshold used in Albanese and Donati (11). We used 
pairwise Mash distances to assess how close a reported strain was to the true strain, counting a reported 
strain as a true positive if it was the closest strain in the database to the strain in the sample. Any other 
reported strain that was not present in the sample was counted as a false positive. If any of the strains 
present in the sample were not reported by the tool, it was counted as a false negative.  

We ran each tool on 240 spiked metagenomes with 1-4 strains mixed at equal abundance, with 
average coverage of 0.1x, 0.5x, 1x or 10x; 40 spiked metagenomes with two strains mixed at 10x:1x or 
1x:0.1x; and 40 spiked metagenomes with three strains spiked at 10x:1x:0.5x or 1x:0.5x:0.1x. Strains for 
each sample were randomly selected from NCBI RefSeq and metagenomes were generated as described 
above. 

We further benchmarked each tool using sequencing data from a mock community with known 
composition, containing four phylogenetically diverse strains of E. coli (see Creation of four strain E. coli 
mock community).  
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Creation of four strain E. coli mock community. Four phylogenetically distinct E. coli strains - H10407 
(clade A), E24337A (clade B1), UTI89 (clade B2), and Sakai (clade E) - were cultured separately 
overnight at 37ºC in 2 mL of liquid LB media shaking at 200 rpm. The bacterial number in each culture 
was estimated via optical density and then combined at a ratio of 80% H10407, 15% UTI89, 4.9% Sakai, 
and 0.1% E24337A. Genomic DNA was then extracted from this mock community using the Qiagen 
MagAttract DNA Isolation Kit (Hilden, Germany), following manufacturer’s protocols. In two separate 
tubes, human genomic DNA was then added to the extracted E. coli DNA for final ratios of 99% human / 
1% E. coli (weight / weight). Sequencing data for this mock community has been submitted to NCBI’s 
Sequence Read Archive (SRA) under bioproject PRJNA685748 (biosample SAMN17091845). 
 
Comparison of tools for tracking specific strains across samples using simulated sets of related 
samples. We compared the ability of StrainGE, StrainPhlan (9), and MIDAS (8) to track strains across 
samples. We performed strain tracking comparisons across ten sets of twelve spiked metagenomes, 
where each set of twelve was structured similarly in terms of strain content (Figure 3a-b). For each set, 
we randomly picked two Escherichia reference genomes (A and B) from NCBI RefSeq complete, and 
derived two different but closely related synthetic strains from each reference by introducing ~5,000 
random SNVs (99.9% ANI) uniformly across the genome. We spiked reads generated from these 
synthetic genomes into a real metagenome to generate samples containing these strains in different 
combinations (Figure 3b), at 0.1x, 0.5x, 1x and 10x coverage.  

For each data set, we assessed strain similarity metrics calculated by each tool, to determine 
whether the tool could match i) the identical strain found in different samples (i.e., strain A in sample 1 
and 2; Figure 3c); ii), strains found either in mixtures or single-isolate samples (i.e., strain A in sample 1, 
2, 5, and 6; Figure 3d); or iii) closely related strains (i.e., the ability to distinguish strain A1 from strain A2; 
Figure 3e). In each case, we compared the tools’ predictions to the known strain content of each sample 
to calculate true positives (TP), false positives (FP), and false negatives (FN). For each tool, we varied 
the threshold (discussed in detail below) for determining shared strains in order to plot precision-recall 
curves. 

Detecting shared strains using StrainGE. For each sample, we ran the complete StrainGE 
pipeline: StrainGST was run to identify the closest reference genomes, and StrainGR was run on a 
sample-specific concatenated reference to call genetic variation. To detect shared strains, we collected all 
samples predicted to match to the same StrainGST reference, and computed a pairwise ACNI matrix for 
strain comparisons with at least a 0.5% callable genome. The similarity matrix was transformed to a 
distance matrix by computing , and transformed to a genetic distance using the Jukes-Cantor ACNI1 −   
model (37). If a pair of samples did not share any predicted close reference genomes, we set the distance 
between those samples to the maximum integer value. To plot the precision-recall curve, we varied the 
genetic distance threshold that determines when strains are considered the same.  

Detecting shared strains with StrainPhlan. We ran StrainPhlan on each sample, using the tool’s 
marker gene database v295 (Jan 2019). Using the marker gene SNV profiles for each sample, 
StrainPhlan computed the pairwise sample distance matrix using Kimura’s two parameter model (38) (as 
suggested in their user manual). To plot the precision-recall curve, we varied the genetic distance 
threshold that determines when samples share a strain, as performed for StrainGE. To tune StrainPhlan 
for lower coverage levels, we ran it using --relaxed-parameters. 

Detecting shared strains with MIDAS. We ran MIDAS v1.3.2 (database version v1.2) with default 
parameters. MIDAS includes a strain tracking tool that is first “trained” by giving it a single sample from 
each patient in a cohort. This training step identifies unique SNV markers for each patient. For our 
benchmarking, we “trained” MIDAS on samples containing a single strain (sample 1 for strain A1, sample 

25 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.14.431013doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?txTw3S
https://www.zotero.org/google-docs/?AAg1Fc
https://www.zotero.org/google-docs/?zShP3a
https://www.zotero.org/google-docs/?plW8XL
https://doi.org/10.1101/2021.02.14.431013
http://creativecommons.org/licenses/by/4.0/


3 for strain B1, sample 7 for strain A2, and sample 9 for strain A2). (This likely helped the tool in 
benchmarking since, in a real world scenario, it is likely unknown whether a training sample contains a 
single strain.) Next, MIDAS compares these SNV markers to alleles in other samples and assesses how 
much they overlap. To plot precision-recall curves, we varied the percentage of overlapping markers 
between two samples that serves as a threshold to determine whether two samples share a strain. To 
tune MIDAS for lower coverage levels we ran its merge_snvs.py script with --all_snvs 
--all_samples and its strain_tracking.py script with --min_reads 1. 

 
Evaluating the ability of StrainGR to quantify strain sharing in distinct metagenomic backgrounds. 
In order to determine how well StrainGE metrics recapitulated genetic relationships between strains, we 
generated another set of spiked metagenomic samples, spiked with varying quantities of E. coli reads 
from real, previously sequenced isolates. Ten stool metagenomes were randomly selected from the 
Human Microbiome Project (4) (Supplemental Table 3). The randomly selected samples contained E. coli 
at relative abundances between 0.005% and 0.9%; no two samples contained the same E. coli strain 
based on StrainGST output. Ten complete genome sequences of E. coli isolates, distinct from those 
identified in the background metagenomes, were selected from NCBI RefSeq database. For each isolate, 
ten variants were created by generating random mutations, such that the ANI to the original reference 
ranged from 99.9% to 99.99% at increments of 0.01%. Each reference and variant (110 in total) were 
spiked into at least two randomly chosen distinct metagenomic backgrounds at coverage levels of 0.1x, 
0.5x, 1x, 2x or 5x. A total of 300 synthetic samples were generated, with 350 pairs containing an identical 
strain in a distinct background. All spiked samples were analyzed with StrainGE; all sample pairs with a 
matching StrainGST reference were compared using StrainGR. StrainGST hits corresponding to strains 
present in background samples were not considered further. The ACNI was calculated for every pair.  

Evaluation of StrainGE on longitudinal, clinical metagenomic samples  
Metagenomic time series from a patient with Crohn’s disease .  We downloaded from the UCSD Qiita 
database (https://qiita.ucsd.edu/; Supplementary Table 2) 27 metagenomic data sets representing stool 
longitudinally collected from a single individual with Crohn’s Disease (26). We ran the full StrainGE 
pipeline on each sample, using our Escherichia database and default parameters, to identify and analyze 
E. coli strains. For pairwise strain comparisons, we only included samples where the common callable 
percentage of the genome was >0.5%. 
 
Metagenomic sequencing of longitudinally collected stool.  Twelve longitudinally collected stool 
samples were extracted with Chemagen Kit CMG-1091 (Baesweiler, Germany). Libraries were generated 
with NexteraXT (Illumina, San Diego, CA, USA) and sequenced in paired-end mode on an Illumina HiSeq 
2500 (101 bp length) and/or Illumina HiSeq X10 (151 bp length). Short-read sequencing data was 
submitted to the Sequence Read Archive (SRA) with Bioproject accession PRJNA400628 . We ran the full 
StrainGE pipeline on each sample, using our Escherichia database and default parameters, to identify 
and analyze E. coli strains. 
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StrainGE is an open source tool written in Python and C++ released under the BSD 3-clause license, 
available at https://github.com/broadinstitute/strainge  (10.5281/zenodo.4536379 ). StrainGE is built on top 
of several existing Python libraries, including NumPy (39) and SciPy (40). Analysis scripts to generate the 
figures in this publication are available at https://github.com/broadinstitute/strainge-paper 
(10.5281/zenodo.4538994 ). 
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Supplementary Tables 
Supplementary Table 1.  Identifiers of genomes in the E. coli StrainGST reference database. 
 
Supplementary Table 2 .  Identifiers for metagenomic datasets used.  a) Qiita artifact identifiers for 27 
metagenomic samples from Fang et al. (20). b) identifiers for eleven newly sequenced metagenomic 
samples from a patient with recurrent UTI (Bioproject PRJNA400628 ). 
 
Supplementary Table 3.   Identifiers for metagenomic datasets used for ACNI and gap similarity 
benchmarks. Second column indicates E. coli relative abundance as predicted by Kraken. Third column 
indicates number of E. coli strains as predicted by StrainGST. 
 
Supplementary Table 4.   Results of benchmarking to determine optimal StrainGST clustering 
threshold. We benchmarked StrainGST using multiple databases varying the clustering threshold 
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(column B) on 1800 samples with 1-2 strains. We counted true positives (TP), false negatives (FN), and 
false positives (FP). Recall, precision and F1 scores were computed, and the database clustered at 0.9 
performed best overall.  
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