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Abstract 

Why do people discount future rewards? Multiple theories in psychology argue that future events 

are imagined less concretely than immediate events, thereby diminishing their perceived value. 

Here we provide neuroscientific evidence for this proposal. First, we construct a neural signature 

of the concreteness of prospective thought, using an fMRI dataset where the concreteness of 

imagined future events is orthogonal to their valence by design. Then, we apply this neural 

signature in two additional fMRI datasets, each using a different delay discounting task, to show 

that neural measures of concreteness decline as rewards are delayed farther into the future. 

 

 

 

 

Significance Statement 

People tend to devalue, or discount, outcomes in the future relative to those that are more 

immediate. This tendency is evident in people’s difficulty in making healthy food choices or 

saving money for retirement. Several psychological theories propose that discounting occurs 

because delayed outcomes are perceived less concretely that more immediate ones. Here we 

build a brain decoder for the concreteness of future thought and use this unobtrusive measure to 

show that outcomes are processed less concretely as they occur farther into the future. 
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 Many of the most important choices we make in our daily lives involve tradeoffs between 

the present and future. Should I spend money now or to save it for retirement? Can I forego the 

pleasure of eating this dessert now in order to reach my weight loss goal and improve my health? 

In such intertemporal decisions, humans tend to devalue, or discount, outcomes in the future; a 

phenomenon known as delay discounting. In the laboratory, this tendency can be measured by 

presenting participants with choices between a smaller monetary amount available immediately 

or a larger monetary amount available after a delay. Patience as measured by laboratory 

intertemporal choice tasks predicts other important aspects of life such as drug and alcohol abuse, 

educational attainment, and personal finances (Alessi & Petry, 2003; Anderson & Mellor, 2008; 

Brañas-Garza, Georgantzís, & Guillén, 2007; Kirby, Petry, Nancy, & Bickel, Warren, 1999; 

Krain et al., 2008; Lejuez, Aklin, Bornovalova, & Moolchan, 2005; Lejuez et al., 2003; Schepis, 

McFetridge, Chaplin, Sinha, & Krishnan-Sarin, 2011; Shamosh & Gray, 2008; Urminsky & 

Zauberman, 2015). 

Why, however, are delayed outcomes fundamentally less desirable? Psychologists have 

long pondered this important question. Several theories suggest that one potential explanation is 

that future outcomes are less concrete. Rick and Lowenstein (2008) have pointed out that in 

many intertemporal decisions, delayed outcomes are intrinsically less tangible than sooner ones. 

For example, while a calorie-rich dessert yields immediately perceivable pleasure for the eater, 

the promise of better future health is less appreciable. Similarly, construal level theory proposes 

that even when future outcomes are not intrinsically less tangible, people tend to use a process of 

high-level construal when thinking about future events that leads to them being represented in a 

relatively more abstract way (Liberman & Trope, 2014; Trope & Liberman, 2010). In contrast, 

when people consider sooner events, they use low-level construal and represent them in a 
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relatively more concrete manner. Many behavioral studies have provided some support for the 

central claim that the same outcome is perceived less concretely when it occurs farther in the 

future rather than more immediately (for review, see Liberman & Trope, 2014), and linked these 

to changes in representation of delay discounting (Malkoc & Zauberman, 2006; Malkoc, 

Zauberman, & Bettman, 2010). However, an ideal test of these construal effects in discounting 

would measure concreteness on-line and non-obtrusively, while people are making intertemporal 

decisions. 

Functional brain imaging has the potential to provide such a non-obtrusive online test of 

whether future outcomes are perceived as less concrete during intertemporal decision-making. 

Yet, while many fMRI studies have compared brain activity for sooner versus later outcomes 

(for review, see Carter, Meyer, & Huettel, 2010), attributing any neural differences specifically 

to concreteness requires ruling out other potential sources for these differences. Perhaps the most 

important and obvious difference between sooner and later outcomes that could drive neural 

activity is that sooner outcomes are valued more highly than delayed ones; that is, brain activity 

selectively responding for sooner versus later outcomes may reflect valuation, not necessarily 

concreteness. Indeed several previous studies that have compared sooner and later outcomes 

have found increased activity in the medial prefrontal cortex (mPFC) and posterior cingulate 

cortex (PCC), two regions with well-established roles in valuation (Bartra, McGuire, & Kable, 

2013; Cooper, Kable, Kim, & Zauberman, 2013; Lee, Parthasarathi, & Kable, 2020; Mitchell, 

Schirmer, Ames, & Gilbert, 2011; Tamir & Mitchell, 2011). Instead, what is required is a neural 

signature that is specifically predictive of concrete versus abstract prospective thought, and 

independent of positive versus negative evaluation. 
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In the current study, we use a recently developed novel method (Lee, Bradlow, & Kable, 

2021) to construct a whole-brain multivariate neural predictor of the concreteness of imagined 

future events. To train this predictor, we use a prospective imagination dataset (Lee et al., 2020), 

in which the concreteness (high versus low) and valence (positive versus negative) of imagined 

future events were orthogonal, such that the subsequent neural predictor was specific to 

concreteness and not valence. We then applied the whole-brain neural predictor of concreteness 

in two separate delay discounting task datasets with different evaluation schemes (bidding vs. 

choice) to test whether the temporal distance of monetary options in intertemporal decision-

making modulates the neural signature of concrete versus abstract imagination.  

Methods 

Prospection Dataset 

 We used a dataset from (Lee et al., 2020) to develop a whole brain predictor of the 

concreteness of imagined future events. This study examined neural activity associated with the 

valence (positive versus negative) and concreteness (high versus low) of imagined future events. 

Twenty-four participants underwent fMRI scanning while imagining thirty-two different future 

scenarios. In a 2x2 design (positive versus negative valence crossed with high versus low 

concreteness), eight different unique scenarios were selected for each condition based on pilot 

testing. Each scenario was repeated twice during the experiment. Participants completed four 

runs and imagined sixteen scenarios per run. Each trial involved up to 5 seconds of participants 

reading the scenario cue, 12 seconds of imagination, and up to 14 seconds in which participants 

rated the concreteness and valence of the imagined event on a 7-point Likert Scale (7 seconds 

each). The trial duration was buffered such that the time the participants did not use in the cue 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431095doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431095
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

phase and the rating phase was appended to the ITI at the end of the trial to make the total 

duration of a single trial 34 seconds.  

Delay Discounting Datasets 

We applied the neural predictor of concreteness developed in the prospection dataset in 

two different delay discounting datasets to test whether the neural signature of concreteness is 

modulated by delay during intertemporal decisions. We use one bidding dataset and one choice 

dataset to evaluate the robustness of the results to different task structures. The first dataset we 

used was from Cooper et al., 2013, which involved bidding on delayed rewards. A total of forty 

participants were asked on each trial to indicate an immediate monetary amount that they would 

feel was equivalent to receiving $75 after a given delay, varying from 14 to 364 days. Each trial 

began with a screen of the form “I feel indifferent between receiving $75 in 28 days and 

receiving _____ now”. After the prompt was shown for 3 to 5 seconds, participants were then 

allowed a maximum of 10 seconds to use a button pad to indicate their immediate equivalent 

amount within a range of $0 to $75. Each participant went through four scan runs, each of which 

involved twenty-six questions at different delays, ranging from 14 to 364 days. We removed one 

participant who bid $75 for all trials regardless of delay, as we were not sure whether the 

participant understood the task. An advantage of this dataset is that it presents participants with 

the exact same reward amount at varying delays, thereby allowing us to test whether the neural 

signature of imagination concreteness is modulated by the delay. The flipside of this advantage is 

that only the delay, and not the amount, of the delayed reward is varied across trials. This 

limitation is addressed in the second dataset below. 

The second dataset we used was from Kable et al. 2017, which investigated the effects of 

cognitive training on neural activity during economic decision-making. Here we use the data 
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from the intertemporal choice task in the first, baseline, scanning session. One hundred sixty-six 

participants completed four runs of the intertemporal choice task while being scanned. Each run 

consisted of thirty binary choices between a smaller immediate reward of $20 today that was 

held constant throughout the entire session and a larger delayed reward (e.g., $30 in 7 days) that 

varied in amount and delay from trial to trial. On each trial, the delayed option was shown on the 

screen; the immediate option was not displayed. Participants pressed the left/right buttons on a 

button pad to indicate whether they would like to accept the delayed option shown on the screen 

and forego the immediate reward of $20, or to reject the delayed option and take the immediate 

reward of $20. Participants had up to 4 seconds to respond, and after their response, a checkmark 

was shown on the screen if they accepted the delayed reward and an X was shown on the screen 

if they rejected it. 

Image acquisition 

For all datasets, the images were collected with a Siemens 3T Trio scanner with a 32-

channel head coil. High-resolution T1-weighted anatomical images were acquired using an 

MPRAGE sequence (T1 = 1100ms; 160 axial slices, 0.9375 x 0.9375 x 1.000 mm; 192 x 256 

matrix). T2*-weighted functional images were acquired using an EPI sequence with 3mm 

isotropic voxels, 64 x 64 matrix, TR = 3,000ms, TE = 25ms (TE = 30ms for Cooper et al., 2013). 

The prospection dataset’s EPI sequence involved 44 axial slices with 181 volumes (Lee et al., 

2020), the intertemporal bidding dataset’s EPI sequence involved 45 axial slices with 150-152 

volumes (Cooper et al. 2013), and the intertemporal choice dataset’s EPI sequence involved 53 

axial slices with 104 volumes (Kable et al. 2017). Lee et al. (2020) and Kable et al. (2017) 

collected B0 fieldmap images for distortion correction (TR = 1000ms, TE = 2.69 and 5.27ms for 

prospection dataset and TR = 1270ms, TE = 5 and 7.46ms for the intertemporal choice dataset). 
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Image preprocessing 

All datasets were preprocessed via fMRIPrep (Esteban et al., 2019). The details on the 

preprocessing pipeline, as generated by fMRIPrep and unaltered, are available in the 

supplemental materials. In short, all BOLD runs were motion-corrected, slice-time corrected, b0-

map unwarped, registered and resampled to a MNI 2mm template. fMRIPrep does not perform 

smoothing, so it was manually performed after estimating single trial activities (see below). 

BOLD deconvolution 

We used beta-series regression (Rissman, Gazzaley, & D’Esposito, 2004) to estimate the 

BOLD activity associated with each trial in each of the three datasets. In the prospection dataset, 

we estimated the BOLD activity during the imagination period of 12 seconds. The regressors 

were time-locked to imagination time onset with an event duration of 12 seconds and convolved 

with a double gamma HRF function. In the intertemporal bidding dataset from Cooper et al. 

(2013), the regressors were time-locked to the onset of the response period (when participants 

can input their bids) with event duration of 0.1 seconds and convolved with a double gamma 

HRF function. Finally, in the intertemporal choice dataset from Kable et al. (2017), the 

regressors were time-locked to the trial onset period with event duration of 0.1 seconds and 

convolved with a double gamma HRF function. In this dataset only, the last trial of each run was 

excluded from analysis because the BOLD activity of the last trial was often not observed due to 

the termination of the scan. After the single trial coefficients were estimated, all images were 

smoothed with a FWHM 8mm gaussian filter, which is the standard smoothing kernel for SPM. 

Concreteness prediction map 
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 To create a whole brain predictor of the concreteness of imagined future events, we used 

thresholded partial least squares (T-PLS; Lee et al., 2021). T-PLS is similar in approach to other 

methods for constructing whole predictors that use principal components analysis (PCA) to 

reduce the dimensionality of the data followed by regression (Chang, Gianaros, Manuck, 

Krishnan, & Wager, 2015; Wager, Atlas, Leotti, & Rilling, 2011; Wager et al., 2013). The key 

advantage of T-PLS over PCA-based methods is that partial least squares (PLS) is used for data-

reduction. PLS components maximally explain the covariance between the predictors and the 

outcome, whereas PCA components only explain the variance of the predictors. Thus, PLS yields 

data-reduction that is more pertinent to prediction. 

 We built the whole-brain predictor of concreteness in three steps (Fig. 1). First, we 

performed PLS to extract components that maximally explain the covariance between the single 

trial images and the binary concreteness trial categories (high versus low). These components 

consist of a map of weights for each voxel in the brain. PLS also automatically yields 

coefficients for each component that are equivalent to the regression coefficients one would 

obtain from regressing the dependent variable on the components. We also calculated the t-

statistics of each component as one would get from a regression model (here, given the large 

number of observations, we assume that the t-statistics are approximations of z-statistics). In the 

second step, we back-project the PLS coefficients and z-statistics into the original voxel space by 

multiplying them with the PLS weight maps. This yields coefficients for each of the brain voxels 

for easier interpretation. In the final step, we used the back-projected z-statistics of each voxel to 

rank their variable importance and threshold the voxel coefficient map so that less important 

voxels are removed from the final predictor. This final predictor can be used to obtain a 

‘concreteness score’ for each brain image by calculating the dot product between the predictor 
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and the image. We chose the number of PLS components to use and the level of thresholding 

based on the combination that gave the highest 24-fold leave-one-person-out cross validation 

prediction performance as measured by the area under the receiver operating characteristic curve 

(AUC). 

Sensitivity and specificity analysis 

 To assess the accuracy of our whole-brain predictor of concreteness, we performed a 

nested 24-fold leave-one-person-out cross validation within the prospection dataset. We trained 

the predictor on data from 23 participants and tested on the one left-out person. Within the 23 

training participants’ data, we employed an additional 23-fold leave-one-person-out cross 

validation to find the optimal number of components and thresholding level. After the best 

parameters were found, the T-PLS model was fitted using all 23 participants and used to predict 

the left out person’s data. Specifically, we tested whether the T-PLS model can accurately 

classify the high vs. low concreteness trial categories. Furthermore, we also tested if the T-PLS 

model predictions are correlated with the participants’ ratings of concreteness.  

As we trained the T-PLS model on the condition labels for concreteness, and these were 

orthogonal by design to the condition labels for valence, we expected our whole brain predictor 

to be specific to concreteness and not valence. To assess the specificity of our whole brain 

predictor of concreteness, we also tested whether the T-PLS model could not accurately classify 

the positive vs. negative valence trial categories, and whether its predictions are not correlated 

with the participants’ ratings of valence. 

Concreteness and Delay Discounting 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431095doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431095
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

 To calculate an expression score for the neural signature of concreteness during delay 

discounting, we calculated the dot product between the neural predictor of concreteness and the 

brain image of estimated activity for each trial. These scores were then correlated with the delay 

until the receipt of the delayed reward (in days), and the delayed amount (for Kable et al. 2017 

only, since the delayed amount is constant in Cooper et al. 2013). The correlations were 

performed at the individual level, and each individual’s correlation coefficient was used as a 

summary statistic to test if there was a significant correlation at the group level. 

Results 

We first developed a whole-brain neural predictor of the concreteness of prospective 

thought. We used an fMRI data set of 24 participants imagining possible future events that had 

been categorized a priori as high versus low in concreteness and positive versus negative in 

valence (Lee et al., 2020, Fig 2A). We used thresholded partial least squares (T-PLS, see Fig. 1) 

to develop a whole-brain classifier that discriminated events that were high versus low 

concreteness. We checked by cross-validation within the training dataset to ensure that our 

predictor of concreteness could accurately, out-of-sample, predict the concreteness but not the 

valence of imagined future events. As expected, the neural predictor of imagination concreteness 

successfully discriminated the trial categories of high versus low concreteness (mean prediction 

AUC = 64.76%, t-test against 50%, t(23) = 8.03, p < .0001), but not the trial categories of 

positive versus negative valence (mean prediction AUC = 51.16%, t-test against 50%, t(23) = 

0.66, p = .51; Fig. 2B). We also further checked whether our predictions were also aligned with 

the participants’ ratings of the concreteness of imagined future events but not with their ratings 

of valence. Again, we found that our predictor was able to predict out-of-sample ratings of 

concreteness but unable to predict ratings of valence (Fig. 2C). Mean out-of-sample correlation 
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between the neural prediction score and concreteness ratings was r = 0.16 (t(23) = 4.19, p 

= .0004), while the correlation between the neural prediction score and valence ratings was r = 

0.0021 (t(23) = 0.063, p = .95). 

The whole-brain prediction map of concreteness involved various regions of the brain, 

mostly in a bilateral fashion (Fig. 3 & Table 1). Positive coefficients (predictive of higher 

concreteness) were found in bilateral hippocampus, bilateral central orbitofrontal cortex (OFC), 

bilateral middle occipital gyri, right dorsolateral prefrontal cortex (dlPFC), and right inferior 

temporal gyrus. Negative coefficients (predictive of lower concreteness) were found in bilateral 

temporal poles, bilateral temporoparietal junction (TPJ), precuneus, and right cerebellum. 

 We next applied this whole-brain predictor of concreteness in two separate delay 

discounting tasks, in order to test whether the neural signature of concrete future thinking was 

higher when considering sooner rewards and lower when considering later rewards. In both 

datasets we found that neural concreteness scores were negatively correlated with the delay until 

the receipt of the reward, such that farther delays were associated with lower concreteness scores. 

Firstly, in an intertemporal bidding task, participants (n = 39) were presented with a fixed 

monetary outcome of $75 at different delays and asked to report the immediate amount they 

would feel to be equivalent to the delayed outcome. For each trial, we calculated neural 

concreteness scores by applying the whole brain predictor developed above to the activity for 

that trial. We found that the trial-by-trial neural concreteness scores were correlated negatively 

with delay (Fig. 4; mean r = -0.069, t(38) = -3.48, p = .0013), such that shorter delays (i.e., more 

proximal future) were associated with higher concreteness scores, and longer delays (i.e., more 

distant future) with lower concreteness scores. 
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We replicated this finding in a second dataset in which participants made discrete binary 

choices between immediate and delayed rewards. In this choice task from Kable et al. (2017), 

participants (n = 166) made choices between a fixed immediate reward of $20 and a future 

reward that varied in amount ($21 ~ $85) and delay (20 ~ 180 days) across trials. Again, we 

found that the trial-by-trial neural concreteness scores were correlated negatively with delay (Fig. 

5; mean r = -0.050, t(165) = -6.09, bonferroni p < .0001), such that shorter delays were 

associated with higher concreteness scores. Furthermore, this association was specific to the 

delay to reward. The neural concreteness scores were not significantly correlated with the 

delayed amount (mean r = 0.016, t(165) = 2.12, bonferroni p = .11) and concreteness was more 

strongly associated with delay than amount (paired t-test, t(165) = 3.10, bonferroni p = .007). 

Discussion 

 Multiple theories in psychology have suggested that delayed outcomes are discounted in 

value relative to immediate outcomes in part because more temporally distant options are 

perceived as less concrete and tangible than more temporally proximal ones (Liberman & Trope, 

2014; Rick & Loewenstein, 2008; Trope & Liberman, 2010). These theories have been supported 

by a range of various behavioral experiments (Bischoff & Hansen, 2016; Kelley & Schmeichel, 

2015; Liberman & Trope, 2014; Malkoc et al., 2010; Mischel & Baker, 1975; Yi, Stuppy-

Sullivan, Pickover, & Landes, 2017). Here we add converging neuroscientific evidence to these 

theories.  

We used fMRI data during an imagination task to create a whole-brain, multivariate 

predictor specific to the concreteness of prospective thought, independent of the valence of 

prospective thought. Then we show, in two separate delay discounting datasets with markedly 

different task structure (one bidding task, one choice task), that the neural signature of 
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concreteness is modulated by the temporal distance to the delayed option under consideration. 

That is, the pattern of neural activity that predicts more concrete prospective thinking is stronger 

for more temporally proximal outcomes and weaker for more temporally distal ones. The neural 

signature of concreteness was also more strongly modulated by the delay to reward than by the 

magnitude of reward. These results show that, while people are making intertemporal decisions, 

an online, unobtrusive neural index of concrete thinking declines as the outcomes considered are 

delayed farther into the future.   

 Our results complement previous tests of construal level theory using fMRI. These 

studies have shown that neural activity associated with imagining near events, compared to 

distant events, overlaps with neural activity engaged by other forms of psychological proximity 

or by low- versus high-level construal (Stillman et al., 2017; Tamir & Mitchell, 2011). Here we 

make two advances over these previous results. First, we distinguish between neural activity due 

to the concreteness, versus the valence, of prospective thought. This is critical as several 

previous studies have found the strongest increases in activity for sooner, compared to later, 

events in the mPFC and PCC (Mitchell et al., 2011; Tamir & Mitchell, 2011), two regions that 

we have previously shown are associated with the valence of prospective thought (Lee et al., 

2020). Second, we show that a neural index of concreteness is modulated by the delay to the 

outcome during intertemporal decision-making. This links reduced concreteness directly to the 

discounting of future rewards, a process known to be associated with many important life 

outcomes (Alessi & Petry, 2003; Anderson & Mellor, 2008; Brañas-Garza et al., 2007; Kirby et 

al., 1999; Krain et al., 2008; Lejuez et al., 2005, 2003; Schepis et al., 2011; Shamosh & Gray, 

2008).  
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The whole-brain prediction map for concreteness is remarkably consistent with findings 

from other lines of research. Several previous studies have argued that the orbitofrontal cortex 

represents the features of potential outcomes during decision making (Burke, Franz, Miller, & 

Schoenbaum, 2008; Howard, Gottfried, Tobler, & Kahnt, 2015; Takahashi et al., 2013), and that 

interactions with the hippocampus may be critical for generating these representations from 

memory (for review, see Shohamy & Daw, 2015). Furthermore, there is evidence that these 

regions play a role in valuing delayed rewards. Lesions to the OFC caused increased impatience 

(Sellitto, Ciaramelli, & Di Pellegrino, 2010), and reduced grey matter thickness in both the OFC 

(Pehlivanova et al., 2018) and the medial temporal lobe (Lempert et al., 2020; Owens et al., 2017) 

is associated with increased discounting. Correspondingly, we would expect that modulating 

activity in these regions as people consider future outcomes would alter the concreteness with 

which those outcomes are imagined and the degree to which those outcomes are discounted. 

To obtain the current results, we applied a novel adaptation of partial least squares 

optimized to construct interpretable whole-brain predictors with minimal computation time (Lee 

et al., 2021). Though many different methods for constructing whole brain predictors have been 

proposed (Grosenick, Greer, & Knutson, 2008; Kragel & LaBar, 2014; Smith, Douglas 

Bernheim, Camerer, & Rangel, 2014; Wager et al., 2013), none have yet achieved widespread 

use in the field. Here we illustrate what we think is the most promising and exciting potential use 

of such predictors: decoding mental states online in order to test psychological hypotheses.   
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Tables 

 

 

Description Size (number of voxels) X Y Z 

Positive 

        Bilateral Hippocampus 583 voxels (left) -35 -42 -12 

         110 voxels (right) 26 -4 -18 

        Bilateral Central Orbitofrontal Cortex 182 voxels (left) -25 35 -18 

 110 voxels (right) 20 33 -10 

        Bilateral Middle Occipital Gyri 109 voxels (left) -35 -78 37 

 230 voxels (right) 40 -60 17 

        Right Dorsolateral Prefrontal Cortex  
                (right middle frontal gyrus) 

117 voxels  -39 37 11 

        Right Inferior Temporal Gyrus 198 voxels 52 -32 -16 

     

Negative 

        Bilateral Temporal Pole 64 voxels (left) -47 0 -28 

 

167 voxels (right) 58 9 -28 

        Bilateral Temporoparietal Junction 98 voxels (left) -69 -30 15 

 

55 voxels (right) 70 -30 17 

        Bilateral Precuneus 171 voxels (left) -7 -52 29 

 52 voxels (right) -13 -66 35 

        Right Cerebellum 118 voxels 22 -82 -42 

     

     
Table 1. Clusters in the whole-brain predictor of imagination concreteness. Reported are 
clusters of voxels that have non-zero coefficients in the final predictor of the concreteness of 
imagined future events, grouped by the sign of the coefficients and ordered by cluster size. From 
left to right, the region names, cluster size in voxels, and peak MNI coordinates are provided. 
Clusters that are 50 voxels or smaller are not reported. 
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Figures 

 

 

 

 

Figure 1. Thresholded Partial Least Square (T-PLS) approach to building a whole-brain 
predictor. Adapted with permission from (Lee et al., 2021). From left to right, the T-PLS 
method is outlined. The first step performs partial least squares on the brain image data (X) and 
the dependent variable (Y) in order to extract components that maximally explain the variance 
between X and Y. Each of these components are paired with weight maps that describe how each 
component is a weighted sum of the original voxels. They are also associated with regression 
coefficients and t-statistics (approx. z-stat) from regressing the dependent variable onto the 
components. These regression coefficients and z-stats are multiplied with their respective weight 
maps to yield regression coefficients and z-stats in the original voxel space. Using the voxel-
level z-stats, the whole-brain predictor is thresholded by removing less important voxels (i.e., 
voxels with smaller absolute z-stats). 
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Figure 2. Out-of-sample prediction of concreteness and valence in the prospection dataset. 
Panel A shows the schematic of the prospection task from Lee et al. (2020). A whole-brain 
concreteness predictor is trained on 23 people’s data and used to predict the left-out person’s 
data. Panel B shows classification performance on a priori trial categories of concreteness (high 
versus low) and valence (positive versus negative) as measured by area under the receiver 
operating characteristic curve. Panel C shows correlation with concreteness and valence ratings 
provided by participants. Each dot represents one participant, the vertical bar represents the mean, 
and the horizontal bar represents the standard error of the mean. 
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Figure 3. Whole-brain predictor of the concreteness of imagined future events. The warm 
colors indicate positive coefficients and cool colors indicate negative coefficients. Notable 
regions with positive coefficients include bilateral central OFC and bilateral hippocampus, and 
and with negative coefficients include precuneus, TPJ, and bilateral temporal pole. 
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Figure 4. Out-of-sample prediction of delay in an intertemporal bidding task. Panel A 
shows the bidding task structure from Cooper et al. (2013). Participants are first shown the 
delayed amount of $75 (fixed) and a variable delay and are asked to bid their immediate 
equivalent. Panel B shows the per-person correlation between trial-by-trial delay (sign-flipped) 
and concreteness prediction scores from the whole-brain predictor. The vertical bar represents 
the mean, and the horizontal bar represents the standard error of the mean (n = 39). 

 

 

Figure 5. Out-of-sample prediction of delay in an intertemporal choice task. Panel A shows 
the choice task structure from Kable et al. (2017). Participants are shown the delayed reward and 
are asked to either accept it or to reject it for $20 immediately. Panel B shows the per-person 
correlation between trial-by-trial delay (sign-flipped) and concreteness prediction scores in 
comparison to that between trial-by-trial amount and concreteness prediction scores (delay has 
been sign-flipped to facilitate this comparison). The vertical bar represents the mean, and the 
horizontal bar represents the standard error of the mean (n = 166). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431095doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431095
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

References 

Alessi, S. M., & Petry, N. M. (2003). Pathological gambling severity is associated with 

impulsivity in a delay discounting procedure. Behavioural Processes, 64(3), 345–354. 

Anderson, L. R., & Mellor, J. M. (2008). Predicting health behaviors with an experimental 

measure of risk preference. Journal of Health Economics, 27(5), 1260–1274. 

Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based 

meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. 

NeuroImage, 76, 412–427. 

Bischoff, C., & Hansen, J. (2016). Influencing support of charitable objectives in the near and 

distant future: delay discounting and the moderating influence of construal level. Social 

Influence. https://doi.org/10.1080/15534510.2016.1232204 

Brañas-Garza, P., Georgantzís, N., & Guillén, P. (2007). Direct and indirect effects of 

pathological gambling on risk attitudes. Judgment and Decision Making, 2(2), 126–136. 

Burke, K. A., Franz, T. M., Miller, D. N., & Schoenbaum, G. (2008). The role of the 

orbitofrontal cortex in the pursuit of happiness and more specific rewards. Nature. 

https://doi.org/10.1038/nature06993 

Carter, R. M. K., Meyer, J. R., & Huettel, S. A. (2010). Functional Neuroimaging of 

Intertemporal Choice Models: A Review. Journal of Neuroscience, Psychology, and 

Economics. https://doi.org/10.1037/a0018046 

Chang, L. J., Gianaros, P. J., Manuck, S. B., Krishnan, A., & Wager, T. D. (2015). A sensitive 

and specific neural signature for picture-induced negative affect. PLoS Biology, 13(6), 1–28. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431095doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431095
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

https://doi.org/10.1371/journal.pbio.1002180 

Cooper, N., Kable, J. W., Kim, B. K., & Zauberman, G. (2013). Brain activity in valuation 

regions while thinking about the future predicts individual discount rates. Journal of 

Neuroscience. https://doi.org/10.1523/JNEUROSCI.0400-13.2013 

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., … 

Gorgolewski, K. J. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI. 

Nature Methods. https://doi.org/10.1038/s41592-018-0235-4 

Grosenick, L., Greer, S., & Knutson, B. (2008). Interpretable classi ers for FMRI improve 

prediction of purchases. Analysis, X(Xx), 1–10. 

Howard, J. D., Gottfried, J. A., Tobler, P. N., & Kahnt, T. (2015). Identity-specific coding of 

future rewards in the human orbitofrontal cortex. Proceedings of the National Academy of 

Sciences of the United States of America. https://doi.org/10.1073/pnas.1503550112 

Kable, J. W., Caulfield, M. K., Falcone, M., McConnell, M., Bernardo, L., Parthasarathi, T., … 

Lerman, C. (2017). No Effect of Commercial Cognitive Training on Brain Activity, Choice 

Behavior, or Cognitive Performance. The Journal of Neuroscience, 37(31), 7390–7402. 

Kelley, N. J., & Schmeichel, B. J. (2015). Thinking about Death Reduces Delay Discounting. 

PLoS ONE. https://doi.org/10.1371/journal.pone.0144228 

Kirby, K. N., Petry, Nancy, M., & Bickel, Warren, K. (1999). Heroin addicts have higher 

discount rates for delayed rewards than non drug using controls. Journal of Experimental 

Psychology, 128(1), 78–87. 

Kragel, P. A., & LaBar, K. S. (2014). Multivariate neural biomarkers of emotional states are 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431095doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431095
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

categorically distinct. Social Cognitive and Affective Neuroscience. 

https://doi.org/10.1093/scan/nsv032 

Krain, A. L., Gotimer, K., Hefton, S., Ernst, M., Castellanos, F. X., Pine, D. S., & Milham, M. P. 

(2008). A Functional Magnetic Resonance Imaging Investigation of Uncertainty in 

Adolescents with Anxiety Disorders. Biological Psychiatry, 63(6), 563–568. 

Lee, S., Bradlow, E. T., & Kable, J. W. (2021). Thresholded Partial Least Squares: Fast 

Construction of Interpretable Whole-brain Decoders. BioRXiv. 

Lee, S., Parthasarathi, T., & Kable, J. W. (2020). The dorsal and ventral default mode networks 

are dissociably modulated by the valence and vividness of imagined events. BioRxiv. 

Lejuez, C. W., Aklin, W. M., Bornovalova, M. A., & Moolchan, E. T. (2005). Differences in 

risk-taking propensity across inner- city adolescent ever-and never-smokers. Nicotine & 

Tobacco Reserach, 7(1), 71–79. 

Lejuez, C. W., Aklin, W. M., Jones, H. A., Strong, D. R., Richards, J. B., Kahler, C. W., & Read, 

J. P. (2003). The Balloon Analogue Risk Task (BART) differentiates smokers and 

nonsmokers. Experimental and Clinical Psychopharmacology, 11(1), 26–33. 

Lempert, K. M., Mechanic-Hamilton, D. J., Xie, L., Wisse, L. E. M., de Flores, R., Wang, J., … 

Kable, J. W. (2020). Neural and behavioral correlates of episodic memory are associated 

with temporal discounting in older adults. Neuropsychologia. 

https://doi.org/10.1016/j.neuropsychologia.2020.107549 

Liberman, N., & Trope, Y. (2014). Traversing psychological distance. Trends in Cognitive 

Sciences. https://doi.org/10.1016/j.tics.2014.03.001 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431095doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431095
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Malkoc, S. A., & Zauberman, G. (2006). Deferring versus expediting consumption: The effect of 

outcome concreteness on sensitivity to time horizon. Journal of Marketing Research. 

https://doi.org/10.1509/jmkr.43.4.618 

Malkoc, S. A., Zauberman, G., & Bettman, J. R. (2010). Unstuck from the concrete: Carryover 

effects of abstract mindsets in intertemporal preferences. Organizational Behavior and 

Human Decision Processes. https://doi.org/10.1016/j.obhdp.2010.07.003 

Mischel, W., & Baker, N. (1975). Cognitive appraisals and transformations in delay behavior. 

Journal of Personality and Social Psychology. https://doi.org/10.1037/h0076272 

Mitchell, J. P., Schirmer, J., Ames, D. L., & Gilbert, D. T. (2011). Medial prefrontal cortex 

predicts intertemporal choice. Journal of Cognitive Neuroscience. 

https://doi.org/10.1162/jocn.2010.21479 

Owens, M. M., Gray, J. C., Amlung, M. T., Oshri, A., Sweet, L. H., & MacKillop, J. (2017). 

Neuroanatomical foundations of delayed reward discounting decision making. NeuroImage. 

https://doi.org/10.1016/j.neuroimage.2017.08.045 

Pehlivanova, M., Wolf, D. H., Sotiras, A., Kaczkurkin, A. N., Moore, T. M., Ciric, R., … 

Satterthwaite, T. D. (2018). Diminished cortical thickness is associated with impulsive 

choice in adolescence. Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.2200-

17.2018 

Rick, S., & Loewenstein, G. (2008). Review. Intangibility in intertemporal choice. Philosophical 

Transactions of the Royal Society B: Biological Sciences. 

https://doi.org/10.1098/rstb.2008.0150 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431095doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431095
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Rissman, J., Gazzaley, A., & D’Esposito, M. (2004). Measuring functional connectivity during 

distinct stages of a cognitive task. NeuroImage. 

https://doi.org/10.1016/j.neuroimage.2004.06.035 

Schepis, T. S., McFetridge, A., Chaplin, T. M., Sinha, R., & Krishnan-Sarin, S. (2011). A pilot 

examination of stress-related changes in impulsivity and risk taking as related to smoking 

status and cessation outcome in adolescents. Nicotine and Tobacco Research, 13(7), 611–

615. 

Sellitto, M., Ciaramelli, E., & Di Pellegrino, G. (2010). Myopic discounting of future rewards 

after medial orbitofrontal damage in humans. Journal of Neuroscience. 

https://doi.org/10.1523/JNEUROSCI.2516-10.2010 

Shamosh, N. A., & Gray, J. R. (2008). Delay discounting and intelligence: A meta-analysis. 

Intelligence, 36(4), 289–305. 

Shohamy, D., & Daw, N. D. (2015). Integrating memories to guide decisions. Current Opinion 

in Behavioral Sciences. https://doi.org/10.1016/j.cobeha.2015.08.010 

Smith, A., Douglas Bernheim, B., Camerer, C. F., & Rangel, A. (2014). Neural activity reveals 

preferences without choices. American Economic Journal: Microeconomics, 6(2), 1–36. 

https://doi.org/10.1257/mic.6.2.1 

Stillman, P. E., Lee, H., Deng, X., Rao Unnava, H., Cunningham, W. A., & Fujita, K. (2017). 

Neurological evidence for the role of construal level in future-directed thought. Social 

Cognitive and Affective Neuroscience. https://doi.org/10.1093/scan/nsx022 

Takahashi, Y. K., Chang, C. Y., Lucantonio, F., Haney, R. Z., Berg, B. A., Yau, H. J., … 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431095doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431095
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Schoenbaum, G. (2013). Neural Estimates of Imagined Outcomes in the Orbitofrontal 

Cortex Drive Behavior and Learning. Neuron. https://doi.org/10.1016/j.neuron.2013.08.008 

Tamir, D. I., & Mitchell, J. P. (2011). The default network distinguishes construals of proximal 

versus distal events. Journal of Cognitive Neuroscience. 

https://doi.org/10.1162/jocn_a_00009 

Trope, Y., & Liberman, N. (2010). Construal-Level Theory of Psychological Distance. 

Psychological Review. https://doi.org/10.1037/a0018963 

Urminsky, O., & Zauberman, G. (2015). The Psychology of Intertemporal Preferences. In The 

Wiley Blackwell Handbook of Judgment and Decision Making. 

https://doi.org/10.1002/9781118468333.ch5 

Wager, T. D., Atlas, L. Y., Leotti, L. A., & Rilling, J. K. (2011). Predicting individual 

differences in placebo analgesia: Contributions of brain activity during anticipation and pain 

experience. Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.3420-10.2011 

Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C. W., & Kross, E. (2013). An 

fMRI-based neurologic signature of physical pain. New England Journal of Medicine. 

https://doi.org/10.1056/NEJMoa1204471 

Yi, R., Stuppy-Sullivan, A., Pickover, A., & Landes, R. D. (2017). Impact of construal level 

manipulations on delay discounting. PLoS ONE. 

https://doi.org/10.1371/journal.pone.0177240 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431095doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431095
http://creativecommons.org/licenses/by-nc-nd/4.0/

