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Abstract

To improve future decisions, people should seek information based on the value of
information (VOI), which depends on the current evidence and the reward structure of
the upcoming decision. When additional evidence is supplied, people should update
VOI to adjust subsequent information seeking, but the neurocognitive mechanisms of
this updating process remain unknown. We used a modified beads task to examine how
the VOl is represented and updated in the human brain. We theoretically derived, and
empirically verified, a normative prediction that the VOI depends on decision evidence
and is biased by reward asymmetry. Using fMRI, we found that the subjective VOl is
represented in right dorsolateral prefrontal cortex (DLPFC). Critically, this VOI
representation was updated when additional evidence was supplied, showing that
DLPFC dynamically tracks the up-to-date VOI over time. These results provide new
insights into how humans adaptively seek information in the service of decision making.
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Introduction

Information seeking is critical for adaptive decision making. In order to improve future
decisions, we collect information that would help us predict their outcomes. For
instance, we check the weather forecast to decide whether to go out for a hike; we read
about the policies and characters of candidates to decide how to vote; and we look up
the number of COVID-19 cases to decide whether to have a family gathering. Recent
work raises the possibility that deficits in information seeking underlie some psychiatric
diseases such as schizophrenia and obsessive-compulsive disorder (OCD) (Baker et
al., 2019; Dudley et al., 2016; Hauser et al., 2017; Ross et al., 2015).

In economic theories, information seeking should be primarily driven by information’s
instrumentality, or how much the information would help the agent acquire rewards and
avoid punishments in an upcoming decision. The information’s instrumentality is
formally characterized as the value of information (VOI), defined as the improvement in
the expected value (EV) that the agent can achieve by making the decision based on
the information (Edwards, 1965; Howard, 1966). While this normative VOI theory does
not incorporate psychological motives of curiosity, such as anticipatory utility (Caplin &
Leahy, 2001; Gottlieb & Oudeyer, 2018; Kakade & Dayan, 2002; Kidd & Hayden, 2015;
Kobayashi et al., 2019; Kreps & Porteus, 1978; Sharot & Sunstein, 2020), it predicts
human participants’ information-seeking decisions reasonably well in settings where
they acquire information at a cost (such as monetary costs or opportunity costs) that
can be used to maximize rewards (Edwards & Slovic, 1965; Kobayashi & Hsu, 2019;
Shanteau & Anderson, 1972; Wendt, 1969; Wilson et al., 2014). The idea that
information seeking is driven by the VOl is further supported by electrophysiological and
neuroimaging evidence that the VOl is encoded in reward-related regions (e.g., nucleus
accumbens, ventromedial prefrontal cortex) as well as anterior cingulate cortex (ACC)
and dorsolateral prefrontal cortex (DLPFC) (Blanchard et al., 2015; Bromberg-Martin &
Hikosaka, 2009, 2011; Brydevall et al., 2018; Charpentier et al., 2018; Gruber et al.,
2014; Jepma et al., 2012; Kaanders et al., 2020; Kang et al., 2009; Kobayashi & Hsu,
2019; Krebs et al., 2009; Lau et al., 2020; White et al., 2019).

The notion of the VOI based on the information’s instrumentality has two important
implications. First, the VOI should not be determined by how much the information
would contribute to the accuracy of prediction on the state of the world, but rather how
much it would help the agent maximize rewards. Therefore, the VOI depends on the
upcoming decision’s reward structure, or how rewarding or punishing possible
outcomes are (for instance, the value of a weather forecast depends on how much the
hiker prefers different weather conditions; those who don’t mind hiking in the rain or
snow may not value the weather forecast as much as those who do). Second, the VOI
depends on decision evidence that the agent already possesses prior to information
seeking (Loewenstein, 1994). The VOI tends to be smaller when the agent already has
more evidence, because they may already know what to do and additional information
is less likely to influence it (e.g., a hiker may not need to check the weather forecast if
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they have been already informed by other hikers that it is going to snow). Thus, the
agent needs to combine the available decision evidence with the reward structure to
assess the VOI and seek information adaptively.

Crucially, when the decision evidence available to the agent changes, the agent should
dynamically update the VOI based on the most recent evidence. Situations requiring
such updating are ubiquitous in the real world, either because the environment
gradually supplies evidence over time (e.g., a recent weather forecast is more accurate
than an old one) or because the agent sequentially samples multiple pieces of
information (the hiker can check multiple sources of weather forecasts). Despite its
importance, to the best of our knowledge, no study has examined how the human brain
tracks the up-to-date VOIbased on the most recent decision evidence. The majority of
neuroimaging studies so far have focused on cases where information is not
instrumental for upcoming decisions, and those that have examined instrumentality-
driven information seeking did not experimentally manipulate decision evidence over
time to characterize the neural processes of updating the VOI (Kaanders et al., 2020;
Kobayashi & Hsu, 2019).

We conducted an fMRI study to examine how human information-seeking behavior is
sensitive to reward structure and current decision evidence, and how human brains
track the up-to-date VOI after acquiring additional evidence. Our contributions are three-
fold. First, we theoretically derive, and empirically demonstrate, a simple and
generalizable prediction for how information seeking should be biased by asymmetry in
reward structure. Second, we show that the right DLPFC represents the subjective VOI
as a function of asymmetric rewards and current evidence. Third, we show that the VOI
representation in the right DLPFC is dynamically updated when a new piece of evidence
is supplied. These results suggest that the right DLPFC plays a critical role in
information seeking in dynamic decision-making contexts by tracking the up-to-date VOI
over time.
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Results

Experimental paradigm

To examine neural representations of the value of information (VOI) and its updating,
we adopted a variant of the beads task, an experimental paradigm widely used to study
probability judgement and information seeking (Furl & Averbeck, 2011; Huq et al., 1988;
Phillips & Edwards, 1966). As in the conventional version of the beads task, participants
were presented with a jar containing two types of beads, one marked with a face and
the other marked with a house, and asked to make a bet on its bead composition by
observing some beads drawn from it. There were two possible compositions of the jar:
one that consists of 60% face beads and 40% house beads, and the other that consists
of 40% face beads and 60% house beads (Fig. 1A).

Our variant of the beads task had three key features. First, we introduced reward
asymmetry, such that participants could earn more reward by correctly betting on one
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Fig. 1. Experimental paradigm. We adopted the beads task with three key modifications: asymmetry in
the reward structure, initial evidence prior to information seeking, and an updating event (one extra
bead). (A) Participants observed a number of beads drawn from a jar and made a bet on its
composition. Each bead was marked with a face or a house. There were two possible jar
compositions: 60% face beads and 40% of house beads, or 40% face beads and 60% house beads.
The jars are colored here only for illustrative purposes. (B) Reward structure. Participants earned more
reward points by correctly betting on one of the two jar types. The experiment consisted of two blocks,
in each of which one of the two reward structures was presented in each trial. The first block involved
a baseline shift and the second block involved a scale manipulation. (C) Trial sequence. In a third of
the trials (bet-only trials), participants were presented with a number of beads from the jar and
immediately made a bet on its type. In the remaining trials (information-seeking trials), they were
presented with the initial beads, an extra bead, and then allowed to seek further information by
drawing more beads from the jar before making a bet on one of the two jars. Participants could draw
as many beads as they needed within five seconds, but each additional draw incurred a cost (0.1
points). The extra bead was presented to evoke updating in the value of information.
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jar type (e.g., the face-majority jar) than the other (e.g., the house-majority jar) (Fig. 1B).
If participants were motivated to seek information to maximize rewards in the bet, their
information-seeking strategy should be sensitive not only to the current evidence (the
numbers of observed beads so far) but also to the reward asymmetry (the jar type they
should bet on to maximize rewards). On the other hand, if participants were motivated
to accurately guess the jar type, their information seeking should not be sensitive to the
reward asymmetry. Therefore, the reward asymmetry allowed us to test whether
information seeking was driven by the instrumentality of information for future reward
seeking, as normatively prescribed in economic theories.

Second, we provided initial evidence, in the form of 20 or 30 bead draws from the jar.
On a subset of trials, participants could then seek more information about the jar
composition by drawing additional beads or elect to make a bet on the jar type (Fig. 1C).
The difference in the numbers of face beads and house beads was parametrically
manipulated to range from strong evidence favoring the low-reward jar to strong
evidence favoring the high-reward jar. Additional draws incurred a small constant cost
(0.1 points per draw) to monetarily incentivize participants to seek information only
when necessary. This design allowed us to empirically measure the subjective VOI, or
how much participants were willing to seek costly information, as a function of the
current evidence.

Third, on the trials that allowed for information seeking, participants were presented with
one extra bead draw from the jar prior to the information-seeking phase (Fig. 1C). The
extra bead complemented the initial beads, shifting the evidence on the jar
compositions, and thus updated the VOI originally evaluated based on the initial beads.
We analyzed neural responses upon this extra bead event to examine how the neural
representation of the VOl is dynamically updated based on the up-to-date evidence over
time.

Participants completed the task inside the scanner. In each trial, after the presentation
of initial beads and an extra bead, participants were allowed to draw as many additional
beads as they wanted within five seconds, and then made a binary bet on the jar type.
Additionally, to empirically elucidate participants’ reward-seeking behavior in a way that
is not contaminated by information seeking, participants were asked to make a bet on
the jar type without information seeking in a subset of trials (bet-only trials). Lastly, to
explore how information seeking is sensitive to rewards, we introduced trial-wise
manipulation of the reward structures. Specifically, participants earned a baseline
reward of 100 points, irrespective of their bet, in half of the trials in one block
(henceforth the baseline block), and they earned a tenth of the rewards in half of the
trials in the other block (henceforth the scale block). Importantly, the reward of a correct
bet was asymmetric across all trials and blocks (Fig. 1B).

Theory
We first derived a theoretical prediction on how agents should seek information to
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optimize their bet and maximize rewards. We obtained theoretical VO/ under the
assumption that the agent aims to maximize the expected value (EV) of their decision,
which they evaluate based on posterior probability of the jar type inferred in a perfectly
Bayesian manner.

The posterior of the jar type is determined by the numbers of high-reward beads (the
majority bead in the high-reward jar, e.g., face) and low-reward beads (the majority
bead in the low-reward jar, e.g., house) observed from the jar so far (Fig. 2A). The more
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Fig. 2. Theoretical predictions. (A) The probability of the jar type (the true jar is the high-reward jar)
increases with the number of observed high-reward beads and decreases with the number of observed
low-reward beads. (B) The probability of the jar type is determined by the beads difference. (C) Due to
the reward asymmetry, when equal numbers of high-reward and low-reward beads have been
observed (the diagonal), the EV to bet on the high-reward jar is higher than the low-reward jar. The
agent would experience the smallest EV difference, and hence the highest uncertainty on the bet,
when more low-reward beads have been drawn (the white region). (D) The EV difference is smallest at
the beads difference of -5 across all reward structures. Top: Bet EVs are not affected by a baseline
shift in rewards. Bottom: The relative magnitudes of EVs remain the same when rewards are scaled
down overall. (E) The theoretical VOl is highest when the uncertainty on the bet is highest (the beads
difference = -5, the black region). This is because the next bead would provide evidence in favor of
either jar type, resolving the uncertainty. (F) The theoretical VOI takes an inverted-U shape across all
reward structures. Top: The VOl is unaffected by a baseline shift in rewards. Bottom: When the
rewards are scaled down, the magnitude of VOI/ becomes smaller as well, but the peak location
remains the same. EV: expected value, VOI: value of information.
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high-reward beads have been drawn, the more likely the jar is the high-reward jar, and
vice versa. More specifically, the posterior is determined by the difference in the
numbers of observed beads (high-reward beads minus low-reward beads) (Fig. 2B; Eq.
1). When more high-reward beads have been observed than low-reward beads (the
beads difference > 0), the probability of the high-reward jar is higher than the probability
of the low-reward jar, and it increases with the beads difference. Conversely, when
more low-reward beads have been observed (the beads difference < 0), evidence
favors the low-reward jar.

In order to evaluate the EV of a bet, the agent needs to combine the posterior on the jar
type with the reward structure (Fig. 2C). Due to the reward asymmetry, when the current
evidence does not favor either jar (the beads difference = 0; the diagonal in Fig. 2C), the
EVto bet on the high-reward jar is higher than the EV to bet on the low-reward jar. The
EVs to bet on the two jars are closest to each other when more low-reward beads have
been observed (the beads difference = -5; the white region in Fig. 2C). This prediction
holds across all of our reward structures (Fig. 2D); a baseline shift in rewards does not
affect the EV difference, and a scale manipulation in rewards multiplicatively affect both
EVs without changing their relative magnitudes. Therefore, if forced to bet on one of the
two possible jars, the EV-maximizing agent would experience the highest choice
uncertainty, not when equal numbers of beads have been observed, but when more
low-reward beads have been observed than high-reward beads.

Under economic theories, the VOI, or the value of drawing an additional bead, is
evaluated based on how much the next bead would improve the upcoming bet on
average (Eq. 2). Qualitatively, the theoretical VOItends to increase with the uncertainty
about which jar type to bet on, because an additional bead would provide more
evidence for either jar type and resolve the uncertainty over possible actions (Fig. 2E).
For instance, when the agent is under high uncertainty on the bet (the beads difference
= -5; the black region in Fig. 2E), an additional bead would help them make a bet
irrespective of its type; if the next bead is a high-reward bead, it provides additional
evidence in favor of the high-reward jar, whereas if it is a low-reward bead, it favors the
low-reward jar. The agent can improve the EV by making a bet conditional on the next
bead type. On the other hand, when the agent has observed more high-reward beads
than low-reward beads (e.g., the beads difference = +10; top right in Fig. 2E), or when
the agent has observed many more low-reward than high-reward beads (e.g., the beads
difference = —10; bottom left in Fig. 2E), an additional bead would not affect the
subsequent bet; the agent would bet on the high-reward jar or low-reward jar,
respectively, no matter what the next bead would be. Therefore, the theoretical VOI
takes an inverted-U shape as a function of the beads difference, with its peak at a
negative beads difference (-5) (Fig. 2F).

Therefore, our theoretical framework yields an important prediction that the information-
seeking strategy should be biased by the reward asymmetry; participants should draw
additional beads more frequently when more low-reward beads have been observed
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than high-reward beads (the beads difference < 0). The predicted bias holds across
reward structures (Fig. 2F); manipulation of the reward baseline (in the baseline block)
does not affect the VOI, and manipulation of the reward scaling (in the scale block)
affects the overall magnitude of the VOI but does not drastically alter its inverted-U
shape. This prediction might be somewhat counterintuitive, as the motivation for
information seeking is expected to be higher when the current evidence favors the less
desirable state (the low-reward jar). However, it is consistent with the widespread notion
of confirmation bias that an agent needs less evidence to bet on a desirable state than
an undesirable state (e.g., Gesiarz et al., 2019). More generally, the prediction echoes
the general assumption that information seeking should be driven not by the motivation
to predict the state (which jar is the true jar?) but to maximize rewards (which jar to bet
on?). If, in contrast to our theoretical assumption, an agent is solely motivated to
accurately predict the state, they would seek information the most when the beads
difference is zero. Therefore, a bias in information seeking would suggest that
participants seek information based on its instrumentality for future reward seeking, as
normatively prescribed. To our knowledge, the bias in information seeking under the
reward asymmetry is a novel theoretical prediction that has not yet been directly tested.

Behavior

We examined participants’ information-seeking behavior, and in particular, whether it
was biased due to the reward asymmetry as predicted. If participants sought to improve
their subsequent bet choice and maximize rewards, the frequency of information
seeking (i.e., how often they drew at least one bead) should be biased towards a
negative beads difference, i.e., when more low-reward beads have been drawn than
high-reward beads.

Observed information-seeking behavior was biased in the predicted direction (Fig. 3A).
In both baseline and scale blocks, the frequency of drawing an additional draw was
highest when more low-reward beads had been drawn than high-reward beads.
Sensitivity to the reward asymmetry was also confirmed by the bet on the jar type in the
bet-only trials (Fig. 3B); the frequency of betting on the high-reward jar increased with
the beads difference, and the indifference point (the point at which participants were
equally likely to bet on either jar) was shifted towards a negative beads difference.
These results show that participants incorporated both the current evidence and reward
asymmetry in reward-seeking and information-seeking choices.

A notable deviation from the theoretical prediction is that participants’ information
seeking was not sensitive to the reward scale manipulation. In our framework, the
theoretical VOl is smaller when the rewards are scaled down (even though its peak
location remains the same) while it is unaffected by a reward baseline shift (Fig. 2F).
Thus, if our participants were perfectly sensitive to the reward structure on a trial-by-trial
basis, their information seeking should be affected by trial-wise reward manipulation in
the scale block but not in the baseline block. To test this, we examined how information-
seeking behavior differed across reward conditions and blocks. To characterize the
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Fig. 3. Behavior. Participants’ information-seeking and reward-seeking behavior was biased by the
reward asymmetry as predicted. (A) Participants’ information seeking, or the frequency at which they
drew at least one bead, peaked when more low-reward beads had been drawn than high-reward
beads. (B) In the bet-only trials, the frequency with which they bet on the high-reward jar increased
with the beads difference and was biased by the reward asymmetry. Lines indicate the best-fit model,
which assumed sensitivity to blocks but not to reward manipulations within blocks. Error bars:
bootstrap SD resampling participants.

relationship between information seeking and the beads difference without assuming its
functional form, we used Gaussian Process (GP) logistic regression (Rasmussen &
Williams, 2006). We fit four models to participants' behavior; Model 1 assumed
sensitivity to the scale manipulation but not to the baseline manipulation, as normatively
prescribed; Model 2 assumed sensitivity to both manipulations; Model 3 assumed a
difference between blocks but no sensitivity to manipulation in either block; and Model 4
assumed no difference between blocks or reward conditions. We found that Model 3
outperformed other models, including Model 1, according to both leave-one-participant-
out cross validation (LOPO CV; log likelihoods [LL] = -1216.93, -1216.15, -1214.73,
and —-1232.15) and leave-one-trial-out cross validation (LOTO CV; LL = -1143.61,
-1143.76, -1142.25, and —-1166.17). Therefore, participant’s information-seeking
behavior was systematically different between blocks, even though they did not change
their strategy based on the reward structure on a trial-by-trial basis.
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We speculate that shifting information-seeking strategies on a trial-by-trial basis was too
cognitively taxing for our participants, because we also manipulated the beads
difference and the trial type (information-seeking or bet-only). Despite this limitation, we
observed that participants’ information seeking exhibited a clear bias in both blocks.
Indeed, we observed that Model 3, which allowed asymmetry in information seeking,
performed better than another model (Model 5) that assumed symmetric information
seeking (baseline block LOPO CV LL = -666.82 [Model 3] vs. -679.52 [Model 5]; LOTO
CV LL = -630.87 vs. —645.10; scale block LOPO CV LL = -547.92 vs. -548.13; LOTO
CV LL = -511.68 vs. —-512.53). Furthermore, analysis on betting choices also preferred
Model 3 to Models 1 and 2 (comparison between Models 3 and 4 is equivocal; LOPO
CV LL =-287.01, -285.67, —283.56, and —-281.19; LOTO CV LL = -267.77, —266.25,
-265.26, and —-268.46), showing that participants were insensitive to trial-wise reward
manipulation not only in information seeking but also in reward seeking. These results
are qualitatively consistent with our theoretical prediction and lend support to the
general notion that people seek information to improve their subsequent choices and
maximize rewards.

Neural representation of VOI

Next, we examined how the VOI was represented in the brain. Although previous fMRI
studies reported VOI representations in a set of regions including DLPFC, VMPFC, and
striatum, most of these studies focused on situations where participants obtained
information that would not be useful for future decisions (i.e., information seeking for its
own sake), and one study that examined instrumentality-driven information seeking
used a one-shot paradigm that did not involve any updating (Kobayashi & Hsu, 2019).
Thus, it remains unknown to what extent the neural representation of VOI is
generalizable across tasks and decision contexts, and whether previously reported
regions also represent and update the VOIin our experimental paradigm.

To look for brain regions that represent the VOI, we empirically estimated subjective
VOI from the information-seeking behavior. We used the winning model of our GP
logistic regression analysis (Model 3) to obtain the latent value function, which varied
smoothly with the beads difference and differed between blocks (Fig. 4A). We then
looked for regions where neural responses at the presentation of initial beads covaried
with the subjective VOI.

We found a cluster in the right DLPFC representing subjective VOI (Fig. 4B; cluster-
forming threshold p < .001, cluster-mass p < .05, whole-brain FWE corrected; peak MNI
coordinate = [48, 42, 24]). Activation in this cluster peaked when more low-reward
beads had been drawn in both blocks, consistent with the prediction (Fig. 4C). This
cluster is the only one that survived our whole-brain statistical threshold (we also
observed a cluster in the right anterior insula at a more lenient threshold, p < .10; peak
MNI coordinate = [30, 24, 4]; Fig. S1).
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Fig. 4. Neural representation of the VOI. (A) The subjective VOI/ was estimated for each block based
on information-seeking behavior (Fig. 3A). (B) The right DLPFC represented the subjective VOI
(cluster-mass p < .05, whole-brain FWE corrected; the peak MNI coordinate: [48, 42, 24]). (C) As
predicted, the right DLPFC activation peaks at a negative beads difference in both blocks. Error bars:
SEM.

Interestingly, the DLPFC cluster overlaps with a VOI cluster reported in a previous study
that examined one-shot instrumentality-driven information seeking (Kobayashi & Hsu,
2019) (Fig. S1), providing converging evidence that the right DLPFC represents the VOI
across decision contexts, at least when information is primarily acquired based on its
instrumentality for future value-guided decisions.

Updating of VOI representation

We then turned to our final question: how is the VOI updated upon the arrival of
additional evidence in the brain? When the evidence available to agents changes, they
need to track the up-to-date VOI in order to seek information adaptively over time.
Specifically, we examined how the right DLPFC responds to the extra bead presented
after the initial beads but prior to the information-seeking choice (Fig. 5A). We derived
the VOI updating, or the difference between the posterior and prior VOI, as a function of
the difference in the initial beads (the prior evidence) and the type of the extra bead (the
evidence that causes updating). For instance, if participants have observed many more
low-reward beads than high-reward beads (the beads difference < -5), an extra high-
reward bead would positively update the VOI, as it slightly increases the uncertainty on
the bet, while an extra low-reward bead would negatively update the VOI, as it further
decreases the uncertainty on the bet. The directionality of updating is the opposite when
more high-reward beads have been observed (the beads difference > 0).
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We hypothesized that the right DLPFC tracks the up-to-date VOI over time, such that it
responds not only to the VOI based on the initial beads but is dynamically updated to
the appropriate updated VOI after observation of the extra bead. To test this, we
estimated the effects of the initial VOl and VOI updating on BOLD signals from the
region of interest (ROI) defined above (Fig. 4B). In order to avoid a strong assumption
about the time course of the updating process, we estimated the effects of initial VOI
and VOI updating across time using finite impulse response (FIR) functions aligned to
the presentation of the extra bead (Fig 5, top). We included three FIRs in a GLM, one
parametrically modulated with the initial VOI, one modulated with the VOI updating, and
one without parametric modulation (intercept). Since the ROI was originally defined
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Fig. 5. Updating of the VOI representation. The right DLPFC tracks VOI as it is updated by an extra
bead, presented after the initial beads but prior to information seeking. (A) The VOI updating was
calculated as the signed difference between the VOI after the extra bead and the VOI before the extra
bead. (B) Time courses of the initial VOI signal (grey) and the VOI updating signal (purple) in the right
DLPFC. The right DLPFC responds not only to the initial VOI but also to the updating of VOI (temporal
cluster-mass p < .05, FWE corrected). Since the region of interest was defined based on the initial VOI
signal, estimation of the initial VOI signal is biased, but estimation of the updating signal is unbiased.

Error bars: SEM.
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based on its response to the initial VOI (albeit in an earlier time window), the estimated
effect of the initial VOl is biased, but the estimated effect of the VOI updating depends
critically on the exact bead that was drawn, and thus is independent of our ROI
selection process (Fig 5A).

The estimated time courses are shown in Fig. 5B. As expected, the right DLPFC
represents the initial VOI early on. Importantly, the right DLFPC also positively
responded to the VOI updating (cluster-forming threshold p < .05, cluster-mass p < .05,
FWE corrected across time). The rise of the VOI updating signal lags behind the initial
VOl signal in time, but they go back to the baseline in parallel. The estimated time
courses look somewhat sluggish, which presumably reflects the nature of our
experimental paradigm in which participants had several seconds to complete
information seeking.

This evidence demonstrates that neural representations in right DLPFC shift from the
initial (a priori) VOI to the updated (a posteriori) VOI, suggesting that this brain region
dynamically tracks the VOI based on the up-to-date evidence in service of adaptive
information seeking over time.
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Discussion

In order to make better decisions, we need to seek information adaptively based on
what we already know (up-to-date decision evidence) and what is at stake (reward
structure). When our knowledge is updated, we need to update the VOI accordingly to
decide whether to seek further information. Deficits in updating the VOI could lead to
excessive repetition of information seeking even after enough evidence is accumulated
(Hauser et al., 2017), or conversely, premature jumping to conclusions without enough
evidence (Dudley et al., 2016; Ross et al., 2015). Despite its importance and ubiquity in
the real world, we know little about how people evaluate and update the VOI. In this
study, we used a variant of the beads task, in which decision evidence was
parametrically manipulated on a trial-by-trial basis, to examine how information seeking
is shaped by current evidence and asymmetric reward structure, and how the VOl is
represented and updated in the brain.

We theoretically derived, and empirically verified, the normative prediction that
information seeking should be biased by reward asymmetry. Participants were more
likely to seek information when the current evidence preferred the less rewarding state
due to high uncertainty on which state to bet. While the current study used asymmetric
monetary rewards, our theoretical framework can be generalized beyond economic
decision making based on the notion that the people assign intrinsic values to beliefs
that they can hold (Kunda, 1991; Sharot & Garrett, 2016). If people are incentivized to
hold certain beliefs, they will be more motivated to seek information when the current
evidence supports the less desirable belief, even without extrinsic reward asymmetry
(e.g., people check the latest number of COVID-19 cases more often when it is
increasing than decreasing). It is worth noting, however, that the current study only
examined reward structures where a correct bet yields asymmetric rewards but an
incorrect bet does not, while outcomes of an incorrect prediction could also be
asymmetric in some real-world scenarios (e.g., it would be more punishing to
underestimate the chance of COVID-19 transmission and end up causing a
superspreader event than to overestimate it and avoid a social gathering). More
comprehensive, generalizable predictions would be obtained by expanding our findings
to various reward structures.

Our theoretical and behavioral findings may provide some insight into confirmation
biases observed across domains. Confirmation bias is commonly framed as biases in
updating processes and/or decision criteria due to reward asymmetry or other factors
such as pre-commitment (Gesiarz et al., 2019; Leong et al., 2019; Luu & Stocker, 2018;
Talluri et al., 2018). We showed that, even without biases in updating or decision
criteria, information seeking should be biased by reward asymmetry. The current study
was not designed to test conventional confirmation bias; our behavioral measure of
information seeking is not sensitive to a bias in updating, and a bias in decision criteria
is not distinguishable from non-neutral risk attitude in our paradigm. Future research
may examine how confirmation bias in updating and/or decision criteria affects
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information seeking, and conversely, how the information seeking bias would strengthen
or weaken the effects of confirmation bias. Another exciting question for future research
would be whether people exhibit an information-seeking bias upon sampling evidence
from internal representations rather than the external world, such as episodic memory
(Shadlen & Shohamy, 2016).

Our finding of the VOI representation in DLPFC is consistent with a previous fMRI study
on instrumentality-driven information seeking (Kobayashi & Hsu, 2019), despite a
number of key differences in task design. First, our paradigm required probabilistic
inference on the hidden jar composition based on observable evidence, while
Kobayashi & Hsu (2019) provided explicit and unambiguous visual presentation of
outcome probability. Second, while Kobayashi & Hsu (2019) manipulated the
information’s diagnosticity and cost on a trial-by-trial basis, the current paradigm did not
(the participant always drew one bead at a time, which incurred a small constant cost).
Third, and most importantly, unlike Kobayashi & Hsu (2019), the current study
manipulated decision evidence available to the participant at the beginning of each trial
and examined its effect on information-seeking behavior and underlying neural signals.
Thus, the current study not only replicates but also critically extends Kobayashi & Hsu
(2019)’s findings by showing that DLPFC is sensitive to the current evidence and biased
by reward asymmetry, a key theoretical prediction of the instrumentality-driven VOI.
Along with neuroimaging evidence that DLPFC is also activated upon information
seeking driven by factors other than instrumentality (Gruber et al., 2014; Kang et al.,
2009; Jepma et al., 2012), these results suggest that DLPFC is critical for adaptive
information seeking across decision contexts and domains.

Unlike previous studies, we did not find VOI representation in reward regions (e.g.,
striatum or VMPFC) or ACC (Bromberg-Martin & Hikosaka, 2009, 2011; Brydevall et al,
2018; Charpentier et al., 2018; Gruber et al., 2014; Kaanders et al., 2020; Kang et al.,
2009; Krebs et al., 2009; Lau et al., 2020; White et al., 2019). It is possible that we
lacked statistical power to detect signals in these regions; indeed, we found a VOI
cluster in anterior insula at a liberal threshold (Fig. S1), which often coactivates with
ACC in task-based and resting-state fMRI (Fox et al., 2005; Menon & Uddin, 2010;
Seeley et al., 2007). Alternatively, the involvement of these regions could depend on
task and decision context. For instance, striatum and/or VMPFC may be more important
when the information-seeking cost is larger and variable, which would demand online
cost-benefit analysis (Lau et al., 2020; Kobayashi & Hsu, 2019). On the other hand,
ACC may be more involved in evaluating uncertainty or conflict in the action space
(Kennerley et al., 2011; Rudebeck et al., 2008; Rushworth & Behrens, 2008; Shenhav
et al., 2016), which is tightly coupled with the VOIin many cases, particularly in
situations that involve an exploration-exploitation tradeoff (Kaanders et al., 2020; Kolling
et al., 2012; Shenhav et al., 2014). One possible reason that we did not observe
representation of the VOIin ACC, at least at the standard statistical threshold we used,
is that our experimental paradigm decoupled action uncertainty from the VOI
computation in three ways: first, information-seeking trials were intermixed with bet-only
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trials and the participant could not tell the trial type upon the presentation of the initial
evidence (the epoch where we observed the VOI representation; Fig. 4); second, the
action uncertainty could not be evaluated until the presentation of the extra bead; and
third, the information-seeking decision was mapped to different actions (left vs. right)
across trials. Further research is needed to understand the extent to which functional
localization of the VOl is dependent on task and decision context, and furthermore, how
neural representation of the VOl is related to other forms of information seeking,
including exploration and curiosity.

Importantly, we showed that DLPFC not only represents the VOI based on the initial
evidence but also updates it when additional evidence is supplied, or in other words,
DLPFC tracks the up-to-date VOI based on the most recent evidence. Such DLPFC
signals may be critical for adaptive information seeking in situations where the agent
accumulates decision evidence over time, either because it is gradually supplied from
the environment or because the agent sequentially acquires multiple pieces of
information. DLPFC may be well suited for sustained and dynamically updated
representation of the VOI, as DLPFC neurons are known to exhibit sustained activity for
working memory retention (Funahashi et al., 1989; Fuster & Alexander, 1971;
Sreenivasan & D’Esposito, 2019). Critically, the VOI updating in DLPFC is distinct from
information prediction error (IPE) signals observed in the dopaminergic reward system
and habenula (Blanchard et al., 2015; Bromberg-Martin & Hikosaka, 2009, 2011;
Charpantier et al., 2018); IPE encodes the probabilistic delivery of information itself,
while the VOI updating is concerned with how the delivered information increases or
decreases the instrumentality of further information. Exciting open questions for future
research include whether VOI signals in DLPFC play a causal role in information-
seeking behavior, and how they are adjusted when evidence acquired in the past
becomes less relevant in a dynamic environment (Behrens et al., 2007; McGuire et al.,
2014; Nassar et al., 2019).

Our results may have important implications for information-seeking deficits in clinical
populations. For instance, schizophrenia has been associated with the tendency to
make premature decisions without enough information seeking (Dudley et al., 2016;
Ross et al., 2015; but see Baker et al., 2019), which could be accompanied by DLPFC
hypoactivity (i.e., too low VOI signals) (Barch & Ceaser, 2012) and/or the lack of
DLPFC'’s sensitivity to current decision evidence and reward asymmetry. Similarly, OCD
patients exhibit excessive information seeking (Hauser et al., 2017), which could be
caused by hyperactivity in DLPFC (i.e., too high VOI signals) (Eng et al., 2015) and/or
the lack of VOI updating in DLPFC. Our experimental and theoretical framework
provides a novel approach to characterization of key components in instrumentality-
driven information seeking, namely the sensitivity to current decision evidence, updating
caused by additional evidence, and a bias due to reward asymmetry, which can be
readily applied in future research with typical and clinical populations.
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Materials and Methods

All procedures were approved by the Institutional Review Board at the University of
Pennsylvania.

Participants 15 people (11 female, 4 male, age: 18-28, mean = 21.27, standard
deviation = 2.79) participated in the experiment. They provided informed consent in
accordance with the Declaration of Helsinki.

Task design We adopted a variant of the beads task (Furl & Averbeck, 2011; Huq et
al., 1988; Phillips & Edwards, 1966); the participant was presented with a jar containing
two types of beads and asked to guess its composition (i.e., which type made up the
majority of the beads) by drawing some beads from the jar (Fig. 1A). Our variant had
three important features. First, the participant was rewarded for identifying the correct
jar composition, but the reward structure was asymmetric, such that the participant
could earn more rewards by correctly betting on one jar type than the other (Fig. 1B).
Second, a variable number of beads was drawn from the jar and presented to the
participant at the beginning of each trial, empirically manipulating the evidence available
to the participant before they seek information. Third, an extra bead was presented on a
subset of trials to update the initial evidence. These features allowed us to examine how
the brain represents and updates the VOI based on evidence that changes over time.

The experiment consisted of two interleaved trial types, bet-only trials and information-
seeking trials (Fig. 1C). In the bet-only trials, the participant was first presented with a
number of beads drawn from the jar. Each bead was depicted as a rounded picture of a
face or a house (one picture for face or house each was used throughout the
experiment). Beads marked with a face were presented to the left and those marked
with a house to the right. The participant was told that these beads were drawn from
one of two jars: a face-majority jar, which consisted of 60% face beads and 40% house
beads, and a house-majority jar, which consisted of 60% house beads and 40% face
beads. Rewards for correct and incorrect bets (in points) were also presented, in green
and gray, respectively. Rewards for a bet on the face-majority jar were shown above the
face beads, and rewards for a bet on the house-majority jar above the house beads.
Rewards for a correct bet on one jar were numerically larger than rewards for a correct
bet on the other jar (reward asymmetry), while an incorrect bet on either jar yielded the
same rewards (Fig. 1B). After the presentation of the initial beads for 3 seconds, the
participant was asked to make a bet. During the bet phase of the task, face and house
beads were separately outlined by magenta boxes, and the participant could press the
left or right button on a response box to bet on the face- or house-majority jar,
respectively. Trials in which the participant did not make a bet within 3 seconds were
terminated and discarded from the analysis.

In the information-seeking trials, the participant was first presented with the initial beads
screen (same as the bet-only trials), followed by a blank screen (0-2 seconds). Next, an
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extra bead drawn from the jar was presented, either marked with a face or a house (1
second), which was added to the corresponding group of beads on the initial screen (0-
2 seconds). The participant was then asked to decide whether to draw more beads from
the jar before making a bet on its composition (information-seeking phase). Two choices
appeared on the screen, “draw” and “bet”, and the participant pressed one button to
draw one more bead and another button to terminate the information-seeking phase
and proceed to the bet (the sides of the options were randomized across trials). The
participant was allowed to draw as many beads as they wanted within 5 seconds, and a
face or house bead was added to the screen every time they pressed the “draw” button.
The participant was told that each draw incurred a constant small cost (0.1 points).
Once they pressed the “bet” button (or when 5 seconds have passed), they were
presented with the bet screen (same as the bet-only trials).

The task was programmed in Matlab (The MathWorks, Natick, MA) using MGL
(http://justingardner.net/mgl/) and SnowDots (http://code.google.com/p/snow-dots/)
extensions.

Procedure In a separate task session before scanning, participants received extensive
training on the task, in which various aspects of the task were gradually introduced
(betting on the jar composition, asymmetric rewards, costly draws, and multiple reward
structures). During the subsequent session, participants completed the task inside the
scanner. Participants made responses using an MRI-compatible button box. They were
compensated based on the total points they acquired in the scanning session (500
points = $1).

The scanning experiment consisted of two blocks, which differed in reward structure
(Fig. 1B). In the first block (the baseline block), one of the two reward structures,
(Ry,R.,R;) = (70,10, 0) or (170, 110, 100), was randomly presented in each trial,
where Ry is the reward for a correct bet on the high-reward jar, R;, is the reward for a
correct bet on the low-reward jar, and R, is the reward for an incorrect bet; thus, the
participant earned a baseline reward of 100 points irrespective of their bet in half of the
trials. In the second block (the scale block), one of the two reward structures, (Ry, R;, R;)
= (70, 10, 0) or (7, 1, 0), was randomly presented in each trial; thus, the participant
earned a tenth of the rewards in half of the trials. Each block consisted of two scanning
runs, one where the high-reward jar was the face-majority jar and one where the high-
reward jar was the house-majority jar; their order was counterbalanced across
participants.

On each trial, the participant was presented with 20 or 30 initial beads from the jar. The
difference in the number of initial beads marked with a face or house was uniformly
sampled from a discrete set of values ranging from -10 to 10 in increments of 2.
Unbeknownst to the participant, the true jar type was stochastically determined following
the Bayesian posterior conditional on the initial beads difference (see Eq. 1 below). In
the information-seeking trials, the type of the extra bead presented and of all additional
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beads drawn by the participant (face or house) were stochastically determined based on
the hidden jar type. The participant was not provided with feedback on their bet
accuracy or rewards on a trial-by-trial basis. They were however informed of the total
number of points they had accumulated at the end of each run.

Theory Normative predictions about the VOI, or how much an optimal agent should pay
for information, were derived under assumptions that the agent conducts full-Bayesian
inference on the jar type, deterministically makes an optimal choice to maximize the
expected value (EV), is risk neutral, and optimally seeks information based on its
instrumentality, or how much it would improve the EV of the subsequent bet choice. Our
theoretical framework did not consider any additional information-seeking motives, such
as curiosity, savoring, dread, or uncertainty reduction.

Let s be the state where the true jar is the high-reward jar and s; the state where it is
the low-reward jar. Let ay be the action to bet on sy and a;, the action to bet on s; . Let
us further refer to the majority beads in the high-reward jar as high-reward beads and
the majority beads in the low-reward jar as low-reward beads (for instance, if the high-
reward jar is the house-majority jar, a house bead is a high-reward bead and a face
bead is a low-reward bead; note that the beads were not directly associated with
rewards per se). The goal for the agent is to choose between ay and a; to maximize EV
given the current evidence (i.e., the number of high-reward beads n, and low-reward
beads n;, drawn from the jar so far) and the reward structure (Ry, R;, R;).

The likelihood of drawing a high-reward bead by or a low-reward bead b; conditional on
the jar type is known to the agent:

P(bylsy) = P(bLlsy) =q
P(bylsy) = P(byls)) =1—¢q

where g = 0.6. Assuming that the agent has a flat prior on the jar type (P(sy) =
P(s;) = 0.5), the posterior follows

ng

P(sylng,ny) Py, nylsp)P(sy) (nH+nL) P(by|sy)™ P (b, |sy)"™ B ( q )”H—"L
q

P(syIny,n,) B P(ny,ny|s,)P(s.) Bl ("Hnt”L) P(byls )™ P(b,|s,)™ T \1-
therefore
q ng—ny,
(1 - q)
P(sylng,ny) = 1= P(s.|ny,n,) = g \"H L ¢y
(1 - q) +1

which is a function of the beads difference, ny — n; (e.g., the posterior is the same
when (ny, n;) = (5, 2) or (15, 12)) (Fig. 2a, b).
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Given the posterior, the agent makes a choice among three options: to bet on sy, to bet
on s;, or to seek information and draw an additional bead from the jar, which incurs a
cost c4raw (0.1 points). The agent should decide whether to draw an additional bead
based on the VOI, or the improvement in the bet’'s EV thanks to the next bead:

VOI(ny,ny) = EVgraw(my,ny) — EVpe(ny, ny) (2)

where EVy4..w iS the highest EV that the agent could achieve after drawing the next bead
(without considering the information-seeking cost), and EV;,, is the highest EV that the
agent could achieve by making a bet without any further information. The agent should
draw a bead if and only if the VOl is higher than the drawing cost c4raw-

EVyet is the higher of the two bet EVs based on the current evidence, namely

EVpet(ny,ny) = maxEV(alny, n,)
a

where a € {ay,a;} and

EV(agylng,ny) = Ry - P(sylnyg,ny) + Ry - P(sy|ny,ny)
EV(aylng,ny) = R, P(syIng,ny) + Ry - P(sylny, ny)

Since the posterior is determined by the beads difference (Eq. 1), the bet EVs are also
determined by the beads difference.

In order to evaluate EVjy.,.,, We have to take into account two important facets of our
information-seeking paradigm: first, the content of information (the type of the next
bead, by or b,) is stochastic, and second, the agent can decide whether to draw yet
another bead or not after observing the next bead. Therefore, we have to evaluate the
likelihood of the next bead type and combine it with the EV of an optimal choice
conditional on each bead type. The likelihood of the next bead type based on the
current evidence is evaluated according to the posterior on the jar type:

P(by|ng,ny) = P(bylsg)P(sylng, ny) + P(byls )P(s,Ing, ny)
P(by|ny,ny) = P(bylsy)P(sylng,n) + P(b s )P(s,Iny, ny)

If the next bead is by, it would update the evidence from (ny,n,) to (ny + 1,n;). Then
the agent can either make an optimal bet and achieve EV;,.(ny + 1,n,) or pay the cost
to draw another bead and achieve EVy.,w(y + 1,1,) — cqraw- Similarly, if the next bead
is by, it would update the evidence to (ny, n, + 1), based on which the agent can either
make an optimal bet and achieve EV,..(ny, n, + 1) or draw another bead and achieve
EVaraw (M, + 1) — cqraw- Therefore, the highest EV that the agent can achieve after
drawing an additional bead is
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EVdraw(nHrnL) = P(bHInHrnL) ' maX[EVbet(nH + 1'nL)'EVdraw(nH + 1'nL) - Cdraw]
+ P(bLInH; nL) ’ maX[EVbet(nHrnL + 1)' EVdraw(nH' ng + 1) - Cdraw] (3)

In Eq. 3, EV4raw(ny, ny) in the left-hand side depends on EVy,.., (ny + 1,n,) and

EV4raw (g, n, + 1) in the right-hand side due to the aforementioned sequentiality of
information seeking. We thus solved Eq. 3 by backward recursion. Specifically, we
arbitrarily assumed that the agent cannot draw more than 200 beads, set

EV4raw(my,n,) = 0 where ny + n, = 200, and used Eq. 3 to obtain EVy,,,(ny, n,) where
ny +n;, = 199. We then used Eq. 3 recursively to obtain EVy.,.(ny, n,) for all cases
where 0 < ny + n;, < 200. Although the obtained EVy,,, (ny, n,) depends on ny + n;, it
reaches an asymptote over the course of recursion quickly (Fig. S2). We substituted the
asymptotic EVy4.,w t0 EQ. 2 and obtained the theoretical VOI as a function of the beads
difference.

The VOI obtained for each of the three reward structures, (Ry, R, R;) = (70, 10, 0), (170,
110, 100), and (7, 1, 0), is shown in Fig. 2F. The baseline shift affects both EVy,.,, and
EVyer by the same amount, which is canceled out in Eq. 2 and does not affect the VOI.
On the other hand, since c4.4w Was not scaled along with rewards and remained the
same across conditions (0.1 points), the scale manipulation affects not only the
magnitude but also shape of EVy.,w (EQ. 3) and thus the VOI (Eq. 2).

The most important prediction of this theoretical framework is that information seeking
should be biased due to the reward asymmetry. The VOItakes an inverted-U shape as
a function of the beads difference, and its peak is at a moderate negative beads
difference (ny —n, = —5). This is because the information would directly improve the
subsequent bet choice; when ny; —n, = =5, EV(ay|ny,n,) is close to EV (a,|ny, n.), but
the next bead would increase their difference in either direction (if a high-reward bead
by is observed, EV(ay|ny + 1,n,) > EV(a,| ny + 1,n,); if a low-reward bead b, is
observed, EV(ay | ny,n, + 1) < EV(a, | ny,n;, + 1)). Therefore, the agent can bet on sy
after by and bet on s;, after b,, and such flexibility improves the overall EV. In contrast,
the VOl is effectively zero when the beads difference is positive (ny; —n, > 0), because
the agent would bet on sy irrespective of the next draw. The VOl is also effectively zero
when low-reward beads outnumber high-reward beads by a large enough margin (ny —
n, < —7), because the agent would bet on s; irrespective of the next draw.

This qualitative prediction, a bias in information seeking towards a negative beads
difference, does not depend on most of our assumptions (e.g., choice optimality, risk
neutrality). Information seeking would be biased as far as the agent is sensitive to the
rank order of rewards and the bead difference. On the other hand, if an agent is not
motivated to maximize rewards but to maximize the accuracy of the prediction (i.e., their
utility function U follows U(Ry) = U(R.) > U(R;)), they would exhibit unbiased
information seeking; the uncertainty about the jar type is determined by |ny — n;| and is
highest when n; = n;, which is when the agent would draw beads most frequently.
Therefore, a bias in information seeking would suggest that information seeking is
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motivated by information’s instrumentality for future reward seeking.

Behavioral data analysis In order to examine information-seeking behavior, we
analyzed the frequency at which participants drew at least one bead as a function of the
beads difference. We specifically focused on whether they drew the first bead as a
function of the current evidence and examined if it was biased by the reward asymmetry
as theoretically predicted. The relationship between information-seeking behavior and
the beads difference was analyzed using Gaussian Process (GP) logistic regression
(Rasmussen & Williams, 2006). GP logistic regression estimates a latent function that
smoothly varies with the independent variable (the beads difference) and yields
likelihoods of binary choices (whether participants drew a bead in each trial), and the
estimated latent function can be interpreted as the subjective VOI function (the higher
VOl is, the more likely participants draw a bead). The latent function with isotropic
squared exponential covariance was estimated using Variational Bayes approximation,
as implemented in Gaussian Processes for Machine Learning toolbox, version 4.2
(https://github.com/alshedivat/gpml) (Rasmussen & Nickisch, 2010).

To test whether information-seeking behavior systematically differed across blocks and
reward conditions within each block, we compared four models. Model 1 implemented
the theoretical prescription that information seeking is sensitive to the scale
manipulation but not to the baseline manipulation. It thus consisted of three separate
latent value functions, one used in all trials in the baseline block, one used in trials
where (Ry, R, R;) = (70, 10, 0) in the scale block, and one used in trials where
(Ry,R.,R;) = (7,1, 0) in the scale block. We constructed several alternative models.
Model 2 postulated different value functions for reward conditions not only in the scale
block but also in the baseline block, one for trials where (Ry, R;, R;) = (70, 10, 0) and
another for trials where (Ry, R;, R;) = (170, 110, 0) (i.e., four value functions in total);
Model 3 postulated the lack of sensitivity to reward conditions in both blocks but a
separate value function for each block (i.e., two value functions in total); and Model 4
postulated one common value function for all trials in both blocks. These models were
compared based on leave-one-participant-out cross validation (LOPO CV) and leave-
one-trial-out cross validation (LOTO CV). We also adopted the same analytic approach
to the bet choices, comparing the performance of Models 1-4.

We found that Model 3 outperformed other models for both information-seeking and bet
choices (see Results). To test whether information-seeking behavior was biased by the
reward asymmetry, we next compared Model 3 with another model (Model 5) that
assumed value functions that are symmetric with respect to the beads difference (i.e.,
value functions that only vary with the absolute value of beads difference). We found
that Model 3 fit information-seeking behavior better than Model 5, supporting a bias in
information seeking (see Results).

The fact that Model 3 performed better than Models 1, 2, and 4 suggests that, while
participants did not change their behavioral strategies based on the trial-by-trial reward
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manipulation, they adapted to the different reward statistics across blocks. However,
such changes across blocks could potentially reflect time-induced behavioral changes
as well, such as boredom or fatigue, since all participants completed the baseline block
first and the scale block second. To examine the possibility that the population-level
behavioral pattern was not stationary over time, we tested another model (Model 6) that
assumed distinct value functions between the first and second scanning runs within
each block (one value function for each run, four functions in total). Model 6 performed
worse than Model 3 (information-seeking choices: LOPO CV log likelihood [LL] =
-1222.05 vs. =1214.73, LOTO CV LL = -1145.39 vs. —-1142.25, bet choices: LOPO CV
= -288.55 vs. -283.56, LOTO CV LL = -266.00 vs. —265.26), suggesting that changes
in participants’ behavior were systematically driven by reward statistics rather than time.

MRI data acquisition MRI data was collected using a Siemens (Erlangen, Germany)
Trio 3T scanner with a 32-channel head coil at the University of Pennsylvania. A 3D
high-resolution anatomical image was acquired using a T1-weighted MPRAGE
sequence (voxel size = 0.9375 x 0.9375 x 1 mm, matrix size = 192 x 256, 160 axial
slices, Tl = 1100 msec, TR = 1810 msec, TE = 3.51 msec, flip angle = 9 degrees).
Functional images were acquired using a T2*-weighted multiband gradient echoplanar
imaging (EPI) sequence (voxel size = 2 x 2 x 2 mm, matrix size = 98 x 98, 72 axial
slices with no interslice gap, 400 volumes, TR = 1500 msec, TE = 30 msec, flip angle =
45 degrees, multiband factor = 4), followed by Fieldmap images (TR = 1270 msec, TEs
=5 msec and 7.46 msec, flip angle = 60 degrees).

MRI data analysis MRI data were analyzed using FSL (FMRIB Software Library,
version 6.0) (Jenkinson et al., 2012; Smith et al., 2004). MPRAGE anatomical images
were skull-stripped using FSL BET. EPI functional images were slice-time corrected,
motion corrected (FSL MCFLIRT), high-pass filtered (cutoff = 90 sec), geometrically
undistorted using Fieldmap images, registered to the MPRAGE anatomical image,
normalized to the MNI space, and spatially smoothed (Gaussian kernel FWHM = 6 mm).

To look for regions that represent the subjective VOI upon the initial beads presentation,
we ran a GLM analysis (GLM 1). The regressor of interest modeled the initial beads
presentation (3-second boxcar) and was parametrically modulated by the trial-by-trial
subjective VOI, which was the latent function estimated in the winning model (Model 3)
of GP logistic regression on the information-seeking behavior. GLM 1 also included
nuisance regressors that modeled the initial beads presentation (unmodulated), the
extra bead presentation, and button presses. The regressors were convolved with the
canonical double-gamma hemodynamic response function (HRF). GLM 1 additionally
incorporated six head motion parameters (3 translations and 3 rotations, estimated by
MCFLIRT) as confound regressors. GLM 1 was run following the standard approach of
FSL FEAT; the GLM was first fit to BOLD signals in each run (first level) and the
estimated coefficients of interest were combined across runs (second level). Individual-
level T-statistics were entered into the population-level inference using FSL randomise,
in which clusters that showed positive response to subjective VOI/ were defined at the
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voxel-wise cluster-forming threshold of p <.001 and evaluated by sign-flipping
permutation on cluster mass. A cluster that survived whole-brain family-wise error
(FWE) corrected p < .05 is reported in Fig. 3B; another cluster that survived a more
lenient threshold (p < .10) is reported in Fig. S1.

To illustrate how the cluster’s activation varied as a function of the beads difference, we
ran another GLM (GLM 2) using FSL FEAT, which included a regressor for each level of
beads difference separately, along with the same nuisance regressors as GLM 1. T-
statistics for each regressor of interest were then averaged across runs within each
block and then averaged across all voxels in the right DLPFC cluster defined as above
(Fig. 3B).

Lastly, to examine how the DLPFC responds to the updating of VOI, we ran another
GLM (GLM 3) using FSL FEAT to estimate the time course of signals related to the
initial VOI and the VOI updating, which were derived from Model 3 of GP logistic
regression. The VOI updating was calculated as the signed difference between the
posterior VOI, which depends both on the initial beads and the extra bead, and the prior
VOI, which depends only on the initial beads (Fig. 4A). GLM 3 included three sets of
finite impulse response (FIR) function, one unmodulated (intercept), one parametrically
modulated by the initial VOI, and one parametrically modulated by the VOI updating.
These FIRs were aligned to the onset of the extra bead and sampled every 1.5 seconds
(equal to TR) for the total duration of 21 seconds. GLM 3 also included nuisance
regressors that modeled the initial beads presentation and button presses, convolved
with the canonical HRF, along with head motion parameters. T-statistics of
parametrically modulated FIR sets were averaged across all voxels in the right DLPFC
cluster for each participant. Population-level inference on the updating signal was
conducted at the cluster level across time; clusters were defined at the event-wise
cluster-forming threshold of p < .05 and evaluated by sign-flipping permutation on
cluster mass, correcting for FWE across time.
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Supplementary Figures

The current dataset
Kobayashi & Hsu (2019)

Fig. S1. (A) At a liberal threshold (cluster-forming threshold p < .001, cluster mass p < .10, corrected for
whole-brain FWE), the subjective VOI was positively associated with activations in right anterior insula.
(B) The DLPFC cluster identified in the current dataset (Fig. 4b) overlaps with a subjective VOI cluster
reported in Kobayashi & Hsu (2019).
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Fig. S2. The theoretical VOI was numerically estimated by backward recursion (up to 200 steps). The VOI
reached an asymptote at each level of beads difference over the course of recursion. Moreover, the VOI
was highest with a negative beads difference (-5) throughout recursion.
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