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Abstract 
 
To improve future decisions, people should seek information based on the value of 
information (VOI), which depends on the current evidence and the reward structure of 
the upcoming decision. When additional evidence is supplied, people should update 
VOI  to adjust subsequent information seeking, but the neurocognitive mechanisms of 
this updating process remain unknown. We used a modified beads task to examine how 
the VOI is represented and updated in the human brain. We theoretically derived, and 
empirically verified, a normative prediction that the VOI depends on decision evidence 
and is biased by reward asymmetry. Using fMRI, we found that the subjective VOI is 
represented in right dorsolateral prefrontal cortex (DLPFC). Critically, this VOI 
representation was updated when additional evidence was supplied, showing that 
DLPFC dynamically tracks the up-to-date VOI over time. These results provide new 
insights into how humans adaptively seek information in the service of decision making.   
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 2 

Introduction 1 
 2 
Information seeking is critical for adaptive decision making. In order to improve future 3 
decisions, we collect information that would help us predict their outcomes. For 4 
instance, we check the weather forecast to decide whether to go out for a hike; we read 5 
about the policies and characters of candidates to decide how to vote; and we look up 6 
the number of COVID-19 cases to decide whether to have a family gathering. Recent 7 
work raises the possibility that deficits in information seeking underlie some psychiatric 8 
diseases such as schizophrenia and obsessive-compulsive disorder (OCD) (Baker et 9 
al., 2019; Dudley et al., 2016; Hauser et al., 2017; Ross et al., 2015). 10 
 11 
In economic theories, information seeking should be primarily driven by information’s 12 
instrumentality, or how much the information would help the agent acquire rewards and 13 
avoid punishments in an upcoming decision. The information’s instrumentality is 14 
formally characterized as the value of information (VOI), defined as the improvement in 15 
the expected value (EV) that the agent can achieve by making the decision based on 16 
the information (Edwards, 1965; Howard, 1966). While this normative VOI theory does 17 
not incorporate psychological motives of curiosity, such as anticipatory utility (Caplin & 18 
Leahy, 2001; Gottlieb & Oudeyer, 2018; Kakade & Dayan, 2002; Kidd & Hayden, 2015; 19 
Kobayashi et al., 2019; Kreps & Porteus, 1978; Sharot & Sunstein, 2020), it predicts 20 
human participants’ information-seeking decisions reasonably well in settings where 21 
they acquire information at a cost (such as monetary costs or opportunity costs) that 22 
can be used to maximize rewards (Edwards & Slovic, 1965; Kobayashi & Hsu, 2019; 23 
Shanteau & Anderson, 1972; Wendt, 1969; Wilson et al., 2014). The idea that 24 
information seeking is driven by the VOI is further supported by electrophysiological and 25 
neuroimaging evidence that the VOI is encoded in reward-related regions (e.g., nucleus 26 
accumbens, ventromedial prefrontal cortex) as well as anterior cingulate cortex (ACC) 27 
and dorsolateral prefrontal cortex (DLPFC) (Blanchard et al., 2015; Bromberg-Martin & 28 
Hikosaka, 2009, 2011; Brydevall et al., 2018; Charpentier et al., 2018; Gruber et al., 29 
2014; Jepma et al., 2012; Kaanders et al., 2020; Kang et al., 2009; Kobayashi & Hsu, 30 
2019; Krebs et al., 2009; Lau et al., 2020; White et al., 2019). 31 
 32 
The notion of the VOI based on the information’s instrumentality has two important 33 
implications. First, the VOI should not be determined by how much the information 34 
would contribute to the accuracy of prediction on the state of the world, but rather how 35 
much it would help the agent maximize rewards. Therefore, the VOI depends on the 36 
upcoming decision’s reward structure, or how rewarding or punishing possible 37 
outcomes are (for instance, the value of a weather forecast depends on how much the 38 
hiker prefers different weather conditions; those who don’t mind hiking in the rain or 39 
snow may not value the weather forecast as much as those who do). Second, the VOI 40 
depends on decision evidence that the agent already possesses prior to information 41 
seeking (Loewenstein, 1994). The VOI tends to be smaller when the agent already has 42 
more evidence, because they may already know what to do and additional information 43 
is less likely to influence it (e.g., a hiker may not need to check the weather forecast if 44 
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they have been already informed by other hikers that it is going to snow). Thus, the 45 
agent needs to combine the available decision evidence with the reward structure to 46 
assess the VOI and seek information adaptively. 47 
 48 
Crucially, when the decision evidence available to the agent changes, the agent should 49 
dynamically update the VOI based on the most recent evidence. Situations requiring 50 
such updating are ubiquitous in the real world, either because the environment 51 
gradually supplies evidence over time (e.g., a recent weather forecast is more accurate 52 
than an old one) or because the agent sequentially samples multiple pieces of 53 
information (the hiker can check multiple sources of weather forecasts). Despite its 54 
importance, to the best of our knowledge, no study has examined how the human brain 55 
tracks the up-to-date VOI based on the most recent decision evidence. The majority of 56 
neuroimaging studies so far have focused on cases where information is not 57 
instrumental for upcoming decisions, and those that have examined instrumentality-58 
driven information seeking did not experimentally manipulate decision evidence over 59 
time to characterize the neural processes of updating the VOI (Kaanders et al., 2020; 60 
Kobayashi & Hsu, 2019). 61 
 62 
We conducted an fMRI study to examine how human information-seeking behavior is 63 
sensitive to reward structure and current decision evidence, and how human brains 64 
track the up-to-date VOI after acquiring additional evidence. Our contributions are three-65 
fold. First, we theoretically derive, and empirically demonstrate, a simple and 66 
generalizable prediction for how information seeking should be biased by asymmetry in 67 
reward structure. Second, we show that the right DLPFC represents the subjective VOI 68 
as a function of asymmetric rewards and current evidence. Third, we show that the VOI 69 
representation in the right DLPFC is dynamically updated when a new piece of evidence 70 
is supplied. These results suggest that the right DLPFC plays a critical role in 71 
information seeking in dynamic decision-making contexts by tracking the up-to-date VOI 72 
over time.  73 
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Results 74 
 75 
Experimental paradigm 76 
To examine neural representations of the value of information (VOI) and its updating, 77 
we adopted a variant of the beads task, an experimental paradigm widely used to study 78 
probability judgement and information seeking (Furl & Averbeck, 2011; Huq et al., 1988; 79 
Phillips & Edwards, 1966). As in the conventional version of the beads task, participants 80 
were presented with a jar containing two types of beads, one marked with a face and 81 
the other marked with a house, and asked to make a bet on its bead composition by 82 
observing some beads drawn from it. There were two possible compositions of the jar: 83 
one that consists of 60% face beads and 40% house beads, and the other that consists 84 
of 40% face beads and 60% house beads (Fig. 1A). 85 
 86 
Our variant of the beads task had three key features. First, we introduced reward 87 
asymmetry, such that participants could earn more reward by correctly betting on one 88 

  
 

Fig. 1. Experimental paradigm. We adopted the beads task with three key modifications: asymmetry in 
the reward structure, initial evidence prior to information seeking, and an updating event (one extra 
bead). (A) Participants observed a number of beads drawn from a jar and made a bet on its 
composition. Each bead was marked with a face or a house. There were two possible jar 
compositions: 60% face beads and 40% of house beads, or 40% face beads and 60% house beads. 
The jars are colored here only for illustrative purposes. (B) Reward structure. Participants earned more 
reward points by correctly betting on one of the two jar types. The experiment consisted of two blocks, 
in each of which one of the two reward structures was presented in each trial. The first block involved 
a baseline shift and the second block involved a scale manipulation. (C) Trial sequence. In a third of 
the trials (bet-only trials), participants were presented with a number of beads from the jar and 
immediately made a bet on its type. In the remaining trials (information-seeking trials), they were 
presented with the initial beads, an extra bead, and then allowed to seek further information by 
drawing more beads from the jar before making a bet on one of the two jars. Participants could draw 
as many beads as they needed within five seconds, but each additional draw incurred a cost (0.1 
points). The extra bead was presented to evoke updating in the value of information. 
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jar type (e.g., the face-majority jar) than the other (e.g., the house-majority jar) (Fig. 1B). 89 
If participants were motivated to seek information to maximize rewards in the bet, their 90 
information-seeking strategy should be sensitive not only to the current evidence (the 91 
numbers of observed beads so far) but also to the reward asymmetry (the jar type they 92 
should bet on to maximize rewards). On the other hand, if participants were motivated 93 
to accurately guess the jar type, their information seeking should not be sensitive to the 94 
reward asymmetry. Therefore, the reward asymmetry allowed us to test whether 95 
information seeking was driven by the instrumentality of information for future reward 96 
seeking, as normatively prescribed in economic theories. 97 
 98 
Second, we provided initial evidence, in the form of 20 or 30 bead draws from the jar. 99 
On a subset of trials, participants could then seek more information about the jar 100 
composition by drawing additional beads or elect to make a bet on the jar type (Fig. 1C). 101 
The difference in the numbers of face beads and house beads was parametrically 102 
manipulated to range from strong evidence favoring the low-reward jar to strong 103 
evidence favoring the high-reward jar. Additional draws incurred a small constant cost 104 
(0.1 points per draw) to monetarily incentivize participants to seek information only 105 
when necessary. This design allowed us to empirically measure the subjective VOI, or 106 
how much participants were willing to seek costly information, as a function of the 107 
current evidence. 108 
 109 
Third, on the trials that allowed for information seeking, participants were presented with 110 
one extra bead draw from the jar prior to the information-seeking phase (Fig. 1C). The 111 
extra bead complemented the initial beads, shifting the evidence on the jar 112 
compositions, and thus updated the VOI originally evaluated based on the initial beads. 113 
We analyzed neural responses upon this extra bead event to examine how the neural 114 
representation of the VOI is dynamically updated based on the up-to-date evidence over 115 
time. 116 
 117 
Participants completed the task inside the scanner. In each trial, after the presentation 118 
of initial beads and an extra bead, participants were allowed to draw as many additional 119 
beads as they wanted within five seconds, and then made a binary bet on the jar type. 120 
Additionally, to empirically elucidate participants’ reward-seeking behavior in a way that 121 
is not contaminated by information seeking, participants were asked to make a bet on 122 
the jar type without information seeking in a subset of trials (bet-only trials). Lastly, to 123 
explore how information seeking is sensitive to rewards, we introduced trial-wise 124 
manipulation of the reward structures. Specifically, participants earned a baseline 125 
reward of 100 points, irrespective of their bet, in half of the trials in one block 126 
(henceforth the baseline block), and they earned a tenth of the rewards in half of the 127 
trials in the other block (henceforth the scale block). Importantly, the reward of a correct 128 
bet was asymmetric across all trials and blocks (Fig. 1B). 129 
 130 
Theory 131 
We first derived a theoretical prediction on how agents should seek information to 132 
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 6 

optimize their bet and maximize rewards. We obtained theoretical VOI under the 133 
assumption that the agent aims to maximize the expected value (EV) of their decision, 134 
which they evaluate based on posterior probability of the jar type inferred in a perfectly 135 
Bayesian manner. 136 
 137 
The posterior of the jar type is determined by the numbers of high-reward beads (the 138 
majority bead in the high-reward jar, e.g., face) and low-reward beads (the majority 139 
bead in the low-reward jar, e.g., house) observed from the jar so far (Fig. 2A). The more 140 

 
 

Fig. 2. Theoretical predictions. (A) The probability of the jar type (the true jar is the high-reward jar) 
increases with the number of observed high-reward beads and decreases with the number of observed 
low-reward beads. (B) The probability of the jar type is determined by the beads difference. (C) Due to 
the reward asymmetry, when equal numbers of high-reward and low-reward beads have been 
observed (the diagonal), the EV to bet on the high-reward jar is higher than the low-reward jar. The 
agent would experience the smallest EV difference, and hence the highest uncertainty on the bet, 
when more low-reward beads have been drawn (the white region). (D) The EV difference is smallest at 
the beads difference of −5 across all reward structures. Top: Bet EVs are not affected by a baseline 
shift in rewards. Bottom: The relative magnitudes of EVs remain the same when rewards are scaled 
down overall. (E) The theoretical VOI is highest when the uncertainty on the bet is highest (the beads 
difference = −5, the black region). This is because the next bead would provide evidence in favor of 
either jar type, resolving the uncertainty. (F) The theoretical VOI takes an inverted-U shape across all 
reward structures. Top: The VOI is unaffected by a baseline shift in rewards. Bottom: When the 
rewards are scaled down, the magnitude of VOI becomes smaller as well, but the peak location 
remains the same. EV: expected value, VOI: value of information. 
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high-reward beads have been drawn, the more likely the jar is the high-reward jar, and 141 
vice versa. More specifically, the posterior is determined by the difference in the 142 
numbers of observed beads (high-reward beads minus low-reward beads) (Fig. 2B; Eq. 143 
1). When more high-reward beads have been observed than low-reward beads (the 144 
beads difference > 0), the probability of the high-reward jar is higher than the probability 145 
of the low-reward jar, and it increases with the beads difference. Conversely, when 146 
more low-reward beads have been observed (the beads difference < 0), evidence 147 
favors the low-reward jar. 148 
 149 
In order to evaluate the EV of a bet, the agent needs to combine the posterior on the jar 150 
type with the reward structure (Fig. 2C). Due to the reward asymmetry, when the current 151 
evidence does not favor either jar (the beads difference = 0; the diagonal in Fig. 2C), the 152 
EV to bet on the high-reward jar is higher than the EV to bet on the low-reward jar. The 153 
EVs to bet on the two jars are closest to each other when more low-reward beads have 154 
been observed (the beads difference = −5; the white region in Fig. 2C). This prediction 155 
holds across all of our reward structures (Fig. 2D); a baseline shift in rewards does not 156 
affect the EV difference, and a scale manipulation in rewards multiplicatively affect both 157 
EVs without changing their relative magnitudes. Therefore, if forced to bet on one of the 158 
two possible jars, the EV-maximizing agent would experience the highest choice 159 
uncertainty, not when equal numbers of beads have been observed, but when more 160 
low-reward beads have been observed than high-reward beads. 161 
 162 
Under economic theories, the VOI, or the value of drawing an additional bead, is 163 
evaluated based on how much the next bead would improve the upcoming bet on 164 
average (Eq. 2). Qualitatively, the theoretical VOI tends to increase with the uncertainty 165 
about which jar type to bet on, because an additional bead would provide more 166 
evidence for either jar type and resolve the uncertainty over possible actions (Fig. 2E). 167 
For instance, when the agent is under high uncertainty on the bet (the beads difference 168 
= −5; the black region in Fig. 2E), an additional bead would help them make a bet 169 
irrespective of its type; if the next bead is a high-reward bead, it provides additional 170 
evidence in favor of the high-reward jar, whereas if it is a low-reward bead, it favors the 171 
low-reward jar. The agent can improve the EV by making a bet conditional on the next 172 
bead type. On the other hand, when the agent has observed more high-reward beads 173 
than low-reward beads (e.g., the beads difference = +10; top right in Fig. 2E), or when 174 
the agent has observed many more low-reward than high-reward beads (e.g., the beads 175 
difference = −10; bottom left in Fig. 2E), an additional bead would not affect the 176 
subsequent bet; the agent would bet on the high-reward jar or low-reward jar, 177 
respectively, no matter what the next bead would be. Therefore, the theoretical VOI 178 
takes an inverted-U shape as a function of the beads difference, with its peak at a 179 
negative beads difference (−5) (Fig. 2F). 180 
 181 
Therefore, our theoretical framework yields an important prediction that the information-182 
seeking strategy should be biased by the reward asymmetry; participants should draw 183 
additional beads more frequently when more low-reward beads have been observed 184 
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 8 

than high-reward beads (the beads difference < 0). The predicted bias holds across 185 
reward structures (Fig. 2F); manipulation of the reward baseline (in the baseline block) 186 
does not affect the VOI, and manipulation of the reward scaling (in the scale block) 187 
affects the overall magnitude of the VOI but does not drastically alter its inverted-U 188 
shape. This prediction might be somewhat counterintuitive, as the motivation for 189 
information seeking is expected to be higher when the current evidence favors the less 190 
desirable state (the low-reward jar). However, it is consistent with the widespread notion 191 
of confirmation bias that an agent needs less evidence to bet on a desirable state than 192 
an undesirable state (e.g., Gesiarz et al., 2019). More generally, the prediction echoes 193 
the general assumption that information seeking should be driven not by the motivation 194 
to predict the state (which jar is the true jar?) but to maximize rewards (which jar to bet 195 
on?). If, in contrast to our theoretical assumption, an agent is solely motivated to 196 
accurately predict the state, they would seek information the most when the beads 197 
difference is zero. Therefore, a bias in information seeking would suggest that 198 
participants seek information based on its instrumentality for future reward seeking, as 199 
normatively prescribed. To our knowledge, the bias in information seeking under the 200 
reward asymmetry is a novel theoretical prediction that has not yet been directly tested. 201 
 202 
Behavior 203 
We examined participants’ information-seeking behavior, and in particular, whether it 204 
was biased due to the reward asymmetry as predicted. If participants sought to improve 205 
their subsequent bet choice and maximize rewards, the frequency of information 206 
seeking (i.e., how often they drew at least one bead) should be biased towards a 207 
negative beads difference, i.e., when more low-reward beads have been drawn than 208 
high-reward beads. 209 
 210 
Observed information-seeking behavior was biased in the predicted direction (Fig. 3A). 211 
In both baseline and scale blocks, the frequency of drawing an additional draw was 212 
highest when more low-reward beads had been drawn than high-reward beads. 213 
Sensitivity to the reward asymmetry was also confirmed by the bet on the jar type in the 214 
bet-only trials (Fig. 3B); the frequency of betting on the high-reward jar increased with 215 
the beads difference, and the indifference point (the point at which participants were 216 
equally likely to bet on either jar) was shifted towards a negative beads difference. 217 
These results show that participants incorporated both the current evidence and reward 218 
asymmetry in reward-seeking and information-seeking choices. 219 
 220 
A notable deviation from the theoretical prediction is that participants’ information 221 
seeking was not sensitive to the reward scale manipulation. In our framework, the 222 
theoretical VOI is smaller when the rewards are scaled down (even though its peak 223 
location remains the same) while it is unaffected by a reward baseline shift (Fig. 2F). 224 
Thus, if our participants were perfectly sensitive to the reward structure on a trial-by-trial 225 
basis, their information seeking should be affected by trial-wise reward manipulation in 226 
the scale block but not in the baseline block. To test this, we examined how information-227 
seeking behavior differed across reward conditions and blocks. To characterize the 228 
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 9 

relationship between information seeking and the beads difference without assuming its 229 
functional form, we used Gaussian Process (GP) logistic regression (Rasmussen & 230 
Williams, 2006). We fit four models to participants' behavior; Model 1 assumed 231 
sensitivity to the scale manipulation but not to the baseline manipulation, as normatively 232 
prescribed; Model 2 assumed sensitivity to both manipulations; Model 3 assumed a 233 
difference between blocks but no sensitivity to manipulation in either block; and Model 4 234 
assumed no difference between blocks or reward conditions. We found that Model 3 235 
outperformed other models, including Model 1, according to both leave-one-participant-236 
out cross validation (LOPO CV; log likelihoods [LL] = −1216.93, −1216.15, −1214.73, 237 
and −1232.15) and leave-one-trial-out cross validation (LOTO CV; LL = −1143.61, 238 
−1143.76, −1142.25, and −1166.17). Therefore, participant’s information-seeking 239 
behavior was systematically different between blocks, even though they did not change 240 
their strategy based on the reward structure on a trial-by-trial basis. 241 
 242 

 
 

Fig. 3. Behavior. Participants’ information-seeking and reward-seeking behavior was biased by the 
reward asymmetry as predicted. (A) Participants’ information seeking, or the frequency at which they 
drew at least one bead, peaked when more low-reward beads had been drawn than high-reward 
beads. (B) In the bet-only trials, the frequency with which they bet on the high-reward jar increased 
with the beads difference and was biased by the reward asymmetry. Lines indicate the best-fit model, 
which assumed sensitivity to blocks but not to reward manipulations within blocks. Error bars: 
bootstrap SD resampling participants. 
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We speculate that shifting information-seeking strategies on a trial-by-trial basis was too 243 
cognitively taxing for our participants, because we also manipulated the beads 244 
difference and the trial type (information-seeking or bet-only). Despite this limitation, we 245 
observed that participants’ information seeking exhibited a clear bias in both blocks. 246 
Indeed, we observed that Model 3, which allowed asymmetry in information seeking, 247 
performed better than another model (Model 5) that assumed symmetric information 248 
seeking (baseline block LOPO CV LL = −666.82 [Model 3] vs. −679.52 [Model 5]; LOTO 249 
CV LL = −630.87 vs. −645.10; scale block LOPO CV LL = −547.92 vs. −548.13; LOTO 250 
CV LL = −511.68 vs. −512.53). Furthermore, analysis on betting choices also preferred 251 
Model 3 to Models 1 and 2 (comparison between Models 3 and 4 is equivocal; LOPO 252 
CV LL = −287.01, −285.67, −283.56, and −281.19; LOTO CV LL = −267.77, −266.25, 253 
−265.26, and −268.46), showing that participants were insensitive to trial-wise reward 254 
manipulation not only in information seeking but also in reward seeking. These results 255 
are qualitatively consistent with our theoretical prediction and lend support to the 256 
general notion that people seek information to improve their subsequent choices and 257 
maximize rewards. 258 
 259 
Neural representation of VOI 260 
Next, we examined how the VOI was represented in the brain. Although previous fMRI 261 
studies reported VOI representations in a set of regions including DLPFC, VMPFC, and 262 
striatum, most of these studies focused on situations where participants obtained 263 
information that would not be useful for future decisions (i.e., information seeking for its 264 
own sake), and one study that examined instrumentality-driven information seeking 265 
used a one-shot paradigm that did not involve any updating (Kobayashi & Hsu, 2019). 266 
Thus, it remains unknown to what extent the neural representation of VOI is 267 
generalizable across tasks and decision contexts, and whether previously reported 268 
regions also represent and update the VOI in our experimental paradigm. 269 
 270 
To look for brain regions that represent the VOI, we empirically estimated subjective 271 
VOI from the information-seeking behavior. We used the winning model of our GP 272 
logistic regression analysis (Model 3) to obtain the latent value function, which varied 273 
smoothly with the beads difference and differed between blocks (Fig. 4A). We then 274 
looked for regions where neural responses at the presentation of initial beads covaried 275 
with the subjective VOI. 276 
 277 
We found a cluster in the right DLPFC representing subjective VOI (Fig. 4B; cluster-278 
forming threshold p < .001, cluster-mass p < .05, whole-brain FWE corrected; peak MNI 279 
coordinate = [48, 42, 24]). Activation in this cluster peaked when more low-reward 280 
beads had been drawn in both blocks, consistent with the prediction (Fig. 4C). This 281 
cluster is the only one that survived our whole-brain statistical threshold (we also 282 
observed a cluster in the right anterior insula at a more lenient threshold, p < .10; peak 283 
MNI coordinate = [30, 24, 4]; Fig. S1). 284 
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 285 
Interestingly, the DLPFC cluster overlaps with a VOI cluster reported in a previous study 286 
that examined one-shot instrumentality-driven information seeking (Kobayashi & Hsu, 287 
2019) (Fig. S1), providing converging evidence that the right DLPFC represents the VOI 288 
across decision contexts, at least when information is primarily acquired based on its 289 
instrumentality for future value-guided decisions. 290 
 291 
Updating of VOI representation 292 
We then turned to our final question: how is the VOI updated upon the arrival of 293 
additional evidence in the brain?  When the evidence available to agents changes, they 294 
need to track the up-to-date VOI in order to seek information adaptively over time. 295 
Specifically, we examined how the right DLPFC responds to the extra bead presented 296 
after the initial beads but prior to the information-seeking choice (Fig. 5A). We derived 297 
the VOI updating, or the difference between the posterior and prior VOI, as a function of 298 
the difference in the initial beads (the prior evidence) and the type of the extra bead (the 299 
evidence that causes updating). For instance, if participants have observed many more 300 
low-reward beads than high-reward beads (the beads difference < −5), an extra high-301 
reward bead would positively update the VOI, as it slightly increases the uncertainty on 302 
the bet, while an extra low-reward bead would negatively update the VOI, as it further 303 
decreases the uncertainty on the bet. The directionality of updating is the opposite when 304 
more high-reward beads have been observed (the beads difference > 0). 305 
 306 

 
 

Fig. 4. Neural representation of the VOI. (A) The subjective VOI was estimated for each block based 
on information-seeking behavior (Fig. 3A). (B) The right DLPFC represented the subjective VOI 
(cluster-mass p < .05, whole-brain FWE corrected; the peak MNI coordinate: [48, 42, 24]). (C) As 
predicted, the right DLPFC activation peaks at a negative beads difference in both blocks. Error bars: 
SEM. 
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We hypothesized that the right DLPFC tracks the up-to-date VOI over time, such that it 307 
responds not only to the VOI based on the initial beads but is dynamically updated to 308 
the appropriate updated VOI after observation of the extra bead. To test this, we 309 
estimated the effects of the initial VOI and VOI updating on BOLD signals from the 310 
region of interest (ROI) defined above (Fig. 4B). In order to avoid a strong assumption 311 
about the time course of the updating process, we estimated the effects of initial VOI 312 
and VOI updating across time using finite impulse response (FIR) functions aligned to 313 
the presentation of the extra bead (Fig 5, top). We included three FIRs in a GLM, one 314 
parametrically modulated with the initial VOI, one modulated with the VOI updating, and 315 
one without parametric modulation (intercept). Since the ROI was originally defined 316 

 

 
 

Fig. 5. Updating of the VOI representation. The right DLPFC tracks VOI as it is updated by an extra 
bead, presented after the initial beads but prior to information seeking. (A) The VOI updating was 
calculated as the signed difference between the VOI after the extra bead and the VOI before the extra 
bead. (B) Time courses of the initial VOI signal (grey) and the VOI updating signal (purple) in the right 
DLPFC. The right DLPFC responds not only to the initial VOI but also to the updating of VOI (temporal 
cluster-mass p < .05, FWE corrected). Since the region of interest was defined based on the initial VOI 
signal, estimation of the initial VOI signal is biased, but estimation of the updating signal is unbiased. 
Error bars: SEM. 
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based on its response to the initial VOI (albeit in an earlier time window), the estimated 317 
effect of the initial VOI is biased, but the estimated effect of the VOI updating depends 318 
critically on the exact bead that was drawn, and thus is independent of our ROI 319 
selection process (Fig 5A). 320 
 321 
The estimated time courses are shown in Fig. 5B. As expected, the right DLPFC 322 
represents the initial VOI early on. Importantly, the right DLFPC also positively 323 
responded to the VOI updating (cluster-forming threshold p < .05, cluster-mass p < .05, 324 
FWE corrected across time). The rise of the VOI updating signal lags behind the initial 325 
VOI signal in time, but they go back to the baseline in parallel. The estimated time 326 
courses look somewhat sluggish, which presumably reflects the nature of our 327 
experimental paradigm in which participants had several seconds to complete 328 
information seeking. 329 
 330 
This evidence demonstrates that neural representations in right DLPFC shift from the 331 
initial (a priori) VOI to the updated (a posteriori) VOI, suggesting that this brain region 332 
dynamically tracks the VOI based on the up-to-date evidence in service of adaptive 333 
information seeking over time.  334 
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Discussion 335 
 336 
In order to make better decisions, we need to seek information adaptively based on 337 
what we already know (up-to-date decision evidence) and what is at stake (reward 338 
structure). When our knowledge is updated, we need to update the VOI accordingly to 339 
decide whether to seek further information. Deficits in updating the VOI could lead to 340 
excessive repetition of information seeking even after enough evidence is accumulated 341 
(Hauser et al., 2017), or conversely, premature jumping to conclusions without enough 342 
evidence (Dudley et al., 2016; Ross et al., 2015). Despite its importance and ubiquity in 343 
the real world, we know little about how people evaluate and update the VOI. In this 344 
study, we used a variant of the beads task, in which decision evidence was 345 
parametrically manipulated on a trial-by-trial basis, to examine how information seeking 346 
is shaped by current evidence and asymmetric reward structure, and how the VOI is 347 
represented and updated in the brain. 348 
 349 
We theoretically derived, and empirically verified, the normative prediction that 350 
information seeking should be biased by reward asymmetry. Participants were more 351 
likely to seek information when the current evidence preferred the less rewarding state 352 
due to high uncertainty on which state to bet. While the current study used asymmetric 353 
monetary rewards, our theoretical framework can be generalized beyond economic 354 
decision making based on the notion that the people assign intrinsic values to beliefs 355 
that they can hold (Kunda, 1991; Sharot & Garrett, 2016). If people are incentivized to 356 
hold certain beliefs, they will be more motivated to seek information when the current 357 
evidence supports the less desirable belief, even without extrinsic reward asymmetry 358 
(e.g., people check the latest number of COVID-19 cases more often when it is 359 
increasing than decreasing). It is worth noting, however, that the current study only 360 
examined reward structures where a correct bet yields asymmetric rewards but an 361 
incorrect bet does not, while outcomes of an incorrect prediction could also be 362 
asymmetric in some real-world scenarios (e.g., it would be more punishing to 363 
underestimate the chance of COVID-19 transmission and end up causing a 364 
superspreader event than to overestimate it and avoid a social gathering). More 365 
comprehensive, generalizable predictions would be obtained by expanding our findings 366 
to various reward structures. 367 
 368 
Our theoretical and behavioral findings may provide some insight into confirmation 369 
biases observed across domains. Confirmation bias is commonly framed as biases in 370 
updating processes and/or decision criteria due to reward asymmetry or other factors 371 
such as pre-commitment (Gesiarz et al., 2019; Leong et al., 2019; Luu & Stocker, 2018; 372 
Talluri et al., 2018). We showed that, even without biases in updating or decision 373 
criteria, information seeking should be biased by reward asymmetry. The current study 374 
was not designed to test conventional confirmation bias; our behavioral measure of 375 
information seeking is not sensitive to a bias in updating, and a bias in decision criteria 376 
is not distinguishable from non-neutral risk attitude in our paradigm. Future research 377 
may examine how confirmation bias in updating and/or decision criteria affects 378 
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information seeking, and conversely, how the information seeking bias would strengthen 379 
or weaken the effects of confirmation bias. Another exciting question for future research 380 
would be whether people exhibit an information-seeking bias upon sampling evidence 381 
from internal representations rather than the external world, such as episodic memory 382 
(Shadlen & Shohamy, 2016). 383 
 384 
Our finding of the VOI representation in DLPFC is consistent with a previous fMRI study 385 
on instrumentality-driven information seeking (Kobayashi & Hsu, 2019), despite a 386 
number of key differences in task design. First, our paradigm required probabilistic 387 
inference on the hidden jar composition based on observable evidence, while 388 
Kobayashi & Hsu (2019) provided explicit and unambiguous visual presentation of 389 
outcome probability. Second, while Kobayashi & Hsu (2019) manipulated the 390 
information’s diagnosticity and cost on a trial-by-trial basis, the current paradigm did not 391 
(the participant always drew one bead at a time, which incurred a small constant cost). 392 
Third, and most importantly, unlike Kobayashi & Hsu (2019), the current study 393 
manipulated decision evidence available to the participant at the beginning of each trial 394 
and examined its effect on information-seeking behavior and underlying neural signals. 395 
Thus, the current study not only replicates but also critically extends Kobayashi & Hsu 396 
(2019)’s findings by showing that DLPFC is sensitive to the current evidence and biased 397 
by reward asymmetry, a key theoretical prediction of the instrumentality-driven VOI. 398 
Along with neuroimaging evidence that DLPFC is also activated upon information 399 
seeking driven by factors other than instrumentality (Gruber et al., 2014; Kang et al., 400 
2009; Jepma et al., 2012), these results suggest that DLPFC is critical for adaptive 401 
information seeking across decision contexts and domains. 402 
 403 
Unlike previous studies, we did not find VOI representation in reward regions (e.g., 404 
striatum or VMPFC) or ACC (Bromberg-Martin & Hikosaka, 2009, 2011; Brydevall et al, 405 
2018; Charpentier et al., 2018; Gruber et al., 2014; Kaanders et al., 2020; Kang et al., 406 
2009; Krebs et al., 2009; Lau et al., 2020; White et al., 2019). It is possible that we 407 
lacked statistical power to detect signals in these regions; indeed, we found a VOI 408 
cluster in anterior insula at a liberal threshold (Fig. S1), which often coactivates with 409 
ACC in task-based and resting-state fMRI (Fox et al., 2005; Menon & Uddin, 2010; 410 
Seeley et al., 2007). Alternatively, the involvement of these regions could depend on 411 
task and decision context. For instance, striatum and/or VMPFC may be more important 412 
when the information-seeking cost is larger and variable, which would demand online 413 
cost-benefit analysis (Lau et al., 2020; Kobayashi & Hsu, 2019). On the other hand, 414 
ACC may be more involved in evaluating uncertainty or conflict in the action space 415 
(Kennerley et al., 2011; Rudebeck et al., 2008; Rushworth & Behrens, 2008; Shenhav 416 
et al., 2016), which is tightly coupled with the VOI in many cases, particularly in 417 
situations that involve an exploration-exploitation tradeoff (Kaanders et al., 2020; Kolling 418 
et al., 2012; Shenhav et al., 2014). One possible reason that we did not observe 419 
representation of the VOI in ACC, at least at the standard statistical threshold we used, 420 
is that our experimental paradigm decoupled action uncertainty from the VOI 421 
computation in three ways: first, information-seeking trials were intermixed with bet-only 422 
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trials and the participant could not tell the trial type upon the presentation of the initial 423 
evidence (the epoch where we observed the VOI representation; Fig. 4); second, the 424 
action uncertainty could not be evaluated until the presentation of the extra bead; and 425 
third, the information-seeking decision was mapped to different actions (left vs. right) 426 
across trials. Further research is needed to understand the extent to which functional 427 
localization of the VOI is dependent on task and decision context, and furthermore, how 428 
neural representation of the VOI is related to other forms of information seeking, 429 
including exploration and curiosity. 430 
 431 
Importantly, we showed that DLPFC not only represents the VOI based on the initial 432 
evidence but also updates it when additional evidence is supplied, or in other words, 433 
DLPFC tracks the up-to-date VOI based on the most recent evidence. Such DLPFC 434 
signals may be critical for adaptive information seeking in situations where the agent 435 
accumulates decision evidence over time, either because it is gradually supplied from 436 
the environment or because the agent sequentially acquires multiple pieces of 437 
information. DLPFC may be well suited for sustained and dynamically updated 438 
representation of the VOI, as DLPFC neurons are known to exhibit sustained activity for 439 
working memory retention (Funahashi et al., 1989; Fuster & Alexander, 1971; 440 
Sreenivasan & D’Esposito, 2019). Critically, the VOI updating in DLPFC is distinct from 441 
information prediction error (IPE) signals observed in the dopaminergic reward system 442 
and habenula (Blanchard et al., 2015; Bromberg-Martin & Hikosaka, 2009, 2011; 443 
Charpantier et al., 2018); IPE encodes the probabilistic delivery of information itself, 444 
while the VOI updating is concerned with how the delivered information increases or 445 
decreases the instrumentality of further information. Exciting open questions for future 446 
research include whether VOI signals in DLPFC play a causal role in information-447 
seeking behavior, and how they are adjusted when evidence acquired in the past 448 
becomes less relevant in a dynamic environment (Behrens et al., 2007; McGuire et al., 449 
2014; Nassar et al., 2019). 450 
 451 
Our results may have important implications for information-seeking deficits in clinical 452 
populations. For instance, schizophrenia has been associated with the tendency to 453 
make premature decisions without enough information seeking (Dudley et al., 2016; 454 
Ross et al., 2015; but see Baker et al., 2019), which could be accompanied by DLPFC 455 
hypoactivity (i.e., too low VOI signals) (Barch & Ceaser, 2012) and/or the lack of 456 
DLPFC’s sensitivity to current decision evidence and reward asymmetry. Similarly, OCD 457 
patients exhibit excessive information seeking (Hauser et al., 2017), which could be 458 
caused by hyperactivity in DLPFC (i.e., too high VOI signals) (Eng et al., 2015) and/or 459 
the lack of VOI updating in DLPFC. Our experimental and theoretical framework 460 
provides a novel approach to characterization of key components in instrumentality-461 
driven information seeking, namely the sensitivity to current decision evidence, updating 462 
caused by additional evidence, and a bias due to reward asymmetry, which can be 463 
readily applied in future research with typical and clinical populations.  464 
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Materials and Methods 465 
 466 
All procedures were approved by the Institutional Review Board at the University of 467 
Pennsylvania. 468 
 469 
Participants 15 people (11 female, 4 male, age: 18-28, mean = 21.27, standard 470 
deviation = 2.79) participated in the experiment. They provided informed consent in 471 
accordance with the Declaration of Helsinki. 472 
 473 
Task design We adopted a variant of the beads task (Furl & Averbeck, 2011; Huq et 474 
al., 1988; Phillips & Edwards, 1966); the participant was presented with a jar containing 475 
two types of beads and asked to guess its composition (i.e., which type made up the 476 
majority of the beads) by drawing some beads from the jar (Fig. 1A). Our variant had 477 
three important features. First, the participant was rewarded for identifying the correct 478 
jar composition, but the reward structure was asymmetric, such that the participant 479 
could earn more rewards by correctly betting on one jar type than the other (Fig. 1B). 480 
Second, a variable number of beads was drawn from the jar and presented to the 481 
participant at the beginning of each trial, empirically manipulating the evidence available 482 
to the participant before they seek information. Third, an extra bead was presented on a 483 
subset of trials to update the initial evidence. These features allowed us to examine how 484 
the brain represents and updates the VOI based on evidence that changes over time. 485 
 486 
The experiment consisted of two interleaved trial types, bet-only trials and information-487 
seeking trials (Fig. 1C). In the bet-only trials, the participant was first presented with a 488 
number of beads drawn from the jar. Each bead was depicted as a rounded picture of a 489 
face or a house (one picture for face or house each was used throughout the 490 
experiment). Beads marked with a face were presented to the left and those marked 491 
with a house to the right. The participant was told that these beads were drawn from 492 
one of two jars: a face-majority jar, which consisted of 60% face beads and 40% house 493 
beads, and a house-majority jar, which consisted of 60% house beads and 40% face 494 
beads. Rewards for correct and incorrect bets (in points) were also presented, in green 495 
and gray, respectively. Rewards for a bet on the face-majority jar were shown above the 496 
face beads, and rewards for a bet on the house-majority jar above the house beads. 497 
Rewards for a correct bet on one jar were numerically larger than rewards for a correct 498 
bet on the other jar (reward asymmetry), while an incorrect bet on either jar yielded the 499 
same rewards (Fig. 1B). After the presentation of the initial beads for 3 seconds, the 500 
participant was asked to make a bet. During the bet phase of the task, face and house 501 
beads were separately outlined by magenta boxes, and the participant could press the 502 
left or right button on a response box to bet on the face- or house-majority jar, 503 
respectively. Trials in which the participant did not make a bet within 3 seconds were 504 
terminated and discarded from the analysis. 505 
 506 
In the information-seeking trials, the participant was first presented with the initial beads 507 
screen (same as the bet-only trials), followed by a blank screen (0-2 seconds). Next, an 508 
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extra bead drawn from the jar was presented, either marked with a face or a house (1 509 
second), which was added to the corresponding group of beads on the initial screen (0-510 
2 seconds). The participant was then asked to decide whether to draw more beads from 511 
the jar before making a bet on its composition (information-seeking phase). Two choices 512 
appeared on the screen, “draw” and “bet”, and the participant pressed one button to 513 
draw one more bead and another button to terminate the information-seeking phase 514 
and proceed to the bet (the sides of the options were randomized across trials). The 515 
participant was allowed to draw as many beads as they wanted within 5 seconds, and a 516 
face or house bead was added to the screen every time they pressed the “draw” button. 517 
The participant was told that each draw incurred a constant small cost (0.1 points). 518 
Once they pressed the “bet” button (or when 5 seconds have passed), they were 519 
presented with the bet screen (same as the bet-only trials). 520 
 521 
The task was programmed in Matlab (The MathWorks, Natick, MA) using MGL 522 
(http://justingardner.net/mgl/) and SnowDots (http://code.google.com/p/snow-dots/) 523 
extensions.  524 
 525 
Procedure In a separate task session before scanning, participants received extensive 526 
training on the task, in which various aspects of the task were gradually introduced 527 
(betting on the jar composition, asymmetric rewards, costly draws, and multiple reward 528 
structures). During the subsequent session, participants completed the task inside the 529 
scanner. Participants made responses using an MRI-compatible button box. They were 530 
compensated based on the total points they acquired in the scanning session (500 531 
points = $1). 532 
 533 
The scanning experiment consisted of two blocks, which differed in reward structure 534 
(Fig. 1B). In the first block (the baseline block), one of the two reward structures, 535 
(𝑅! , 𝑅" , 𝑅#) = (70, 10, 0) or (170, 110, 100), was randomly presented in each trial, 536 
where	𝑅! is the reward for a correct bet on the high-reward jar, 𝑅" is the reward for a 537 
correct bet on the low-reward jar, and 𝑅# is the reward for an incorrect bet; thus, the 538 
participant earned a baseline reward of 100 points irrespective of their bet in half of the 539 
trials. In the second block (the scale block), one of the two reward structures, (𝑅! , 𝑅" , 𝑅#) 540 
= (70, 10, 0) or (7, 1, 0), was randomly presented in each trial; thus, the participant 541 
earned a tenth of the rewards in half of the trials. Each block consisted of two scanning 542 
runs, one where the high-reward jar was the face-majority jar and one where the high-543 
reward jar was the house-majority jar; their order was counterbalanced across 544 
participants. 545 
 546 
On each trial, the participant was presented with 20 or 30 initial beads from the jar. The 547 
difference in the number of initial beads marked with a face or house was uniformly 548 
sampled from a discrete set of values ranging from -10 to 10 in increments of 2. 549 
Unbeknownst to the participant, the true jar type was stochastically determined following 550 
the Bayesian posterior conditional on the initial beads difference (see Eq. 1 below). In 551 
the information-seeking trials, the type of the extra bead presented and of all additional 552 
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beads drawn by the participant (face or house) were stochastically determined based on 553 
the hidden jar type. The participant was not provided with feedback on their bet 554 
accuracy or rewards on a trial-by-trial basis. They were however informed of the total 555 
number of points they had accumulated at the end of each run. 556 
 557 
Theory Normative predictions about the VOI, or how much an optimal agent should pay 558 
for information, were derived under assumptions that the agent conducts full-Bayesian 559 
inference on the jar type, deterministically makes an optimal choice to maximize the 560 
expected value (EV), is risk neutral, and optimally seeks information based on its 561 
instrumentality, or how much it would improve the EV of the subsequent bet choice. Our 562 
theoretical framework did not consider any additional information-seeking motives, such 563 
as curiosity, savoring, dread, or uncertainty reduction. 564 
 565 
Let 𝑠! be the state where the true jar is the high-reward jar and 𝑠" the state where it is 566 
the low-reward jar. Let 𝑎! be the action to bet on 𝑠!  and 𝑎"  the action to bet on 𝑠". Let 567 
us further refer to the majority beads in the high-reward jar as high-reward beads and 568 
the majority beads in the low-reward jar as low-reward beads (for instance, if the high-569 
reward jar is the house-majority jar, a house bead is a high-reward bead and a face 570 
bead is a low-reward bead; note that the beads were not directly associated with 571 
rewards per se). The goal for the agent is to choose between 𝑎! and 𝑎" to maximize EV 572 
given the current evidence (i.e., the number of high-reward beads 𝑛! and low-reward 573 
beads 𝑛" drawn from the jar so far) and the reward structure (𝑅! , 𝑅" , 𝑅#). 574 
 575 
The likelihood of drawing a high-reward bead 𝑏! or a low-reward bead 𝑏" conditional on 576 
the jar type is known to the agent: 577 
 578 

𝑃(𝑏!|𝑠!) = 	𝑃(𝑏"|𝑠") = 𝑞 579 
𝑃(𝑏"|𝑠!) = 	𝑃(𝑏!|𝑠") = 1 − 𝑞 580 

 581 
where 𝑞	 = 	0.6. Assuming that the agent has a flat prior on the jar type (𝑃(𝑠!) =582 
	𝑃(𝑠") = 0.5), the posterior follows 583 
 584 

𝑃(𝑠!|𝑛! , 𝑛")
𝑃(𝑠"|𝑛! , 𝑛")

=
𝑃(𝑛! , 𝑛"|𝑠!)𝑃(𝑠!)
𝑃(𝑛! , 𝑛"|𝑠")𝑃(𝑠")

=
4$!%$"$!

5𝑃(𝑏!|𝑠!)$!𝑃(𝑏"|𝑠!)$"

4$!%$"$"
5 𝑃(𝑏!|𝑠")$!𝑃(𝑏"|𝑠")$"

= 6
𝑞

1 − 𝑞7
$!&$"

	 585 

 586 
therefore 587 
 588 

𝑃(𝑠!|𝑛! , 𝑛") = 1 − 𝑃(𝑠"|𝑛! , 𝑛") =
4 𝑞
1 − 𝑞5

$!&$"

4 𝑞
1 − 𝑞5

$!&$"
+ 1

			 (𝟏) 589 

 590 
which is a function of the beads difference, 𝑛! − 𝑛" (e.g., the posterior is the same 591 
when (𝑛!, 𝑛") = (5, 2) or (15, 12)) (Fig. 2a, b). 592 
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 593 
Given the posterior, the agent makes a choice among three options: to bet on 𝑠!, to bet 594 
on 𝑠", or to seek information and draw an additional bead from the jar, which incurs a 595 
cost 𝑐'()* (0.1 points). The agent should decide whether to draw an additional bead 596 
based on the VOI, or the improvement in the bet’s EV thanks to the next bead: 597 
 598 

𝑉𝑂𝐼(𝑛! , 𝑛") = 𝐸𝑉'()*(𝑛! , 𝑛") − 𝐸𝑉+,-(𝑛! , 𝑛")			 (𝟐) 599 
 600 
where 𝐸𝑉'()* is the highest EV that the agent could achieve after drawing the next bead 601 
(without considering the information-seeking cost), and 𝐸𝑉+,- is the highest EV that the 602 
agent could achieve by making a bet without any further information. The agent should 603 
draw a bead if and only if the VOI is higher than the drawing cost 𝑐'()*. 604 
 605 
𝐸𝑉+,- is the higher of the two bet EVs based on the current evidence, namely 606 
 607 

	𝐸𝑉+,-(𝑛! , 𝑛") = max
.
𝐸𝑉(𝑎|𝑛! , 𝑛") 608 

 609 
where 𝑎 ∈ {𝑎! , 𝑎"} and 610 
 611 

𝐸𝑉(𝑎!|𝑛! , 𝑛") = 𝑅! ∙ 𝑃(𝑠!|𝑛! , 𝑛") + 𝑅# ∙ 𝑃(𝑠"|𝑛! , 𝑛") 612 
𝐸𝑉(𝑎"|𝑛! , 𝑛") = 𝑅" ∙ 𝑃(𝑠"|𝑛! , 𝑛") + 𝑅# ∙ 𝑃(𝑠!|𝑛! , 𝑛") 613 

 614 
Since the posterior is determined by the beads difference (Eq. 1), the bet EVs are also 615 
determined by the beads difference. 616 
 617 
In order to evaluate 𝐸𝑉'()*, we have to take into account two important facets of our 618 
information-seeking paradigm: first, the content of information (the type of the next 619 
bead, 𝑏! or 𝑏") is stochastic, and second, the agent can decide whether to draw yet 620 
another bead or not after observing the next bead. Therefore, we have to evaluate the 621 
likelihood of the next bead type and combine it with the EV of an optimal choice 622 
conditional on each bead type. The likelihood of the next bead type based on the 623 
current evidence is evaluated according to the posterior on the jar type: 624 
 625 

𝑃(𝑏!|𝑛! , 𝑛") = 𝑃(𝑏!|𝑠!)𝑃(𝑠!|𝑛! , 𝑛") + 𝑃(𝑏!|𝑠")𝑃(𝑠"|𝑛! , 𝑛") 626 
𝑃(𝑏"|𝑛! , 𝑛") = 𝑃(𝑏"|𝑠!)𝑃(𝑠!|𝑛! , 𝑛") + 𝑃(𝑏"|𝑠")𝑃(𝑠"|𝑛! , 𝑛") 627 

 628 
If the next bead is 𝑏!, it would update the evidence from (𝑛! , 𝑛") to (𝑛! + 1, 𝑛"). Then 629 
the agent can either make an optimal bet and achieve 𝐸𝑉+,-(𝑛! + 1, 𝑛") or pay the cost 630 
to draw another bead and achieve 𝐸𝑉'()*(𝑛! + 1, 𝑛") − 𝑐'()*. Similarly, if the next bead 631 
is 𝑏", it would update the evidence to (𝑛! , 𝑛" + 1), based on which the agent can either 632 
make an optimal bet and achieve 𝐸𝑉+,-(𝑛! , 𝑛" + 1) or draw another bead and achieve 633 
𝐸𝑉'()*(𝑛! , 𝑛" + 1) − 𝑐'()*. Therefore, the highest EV that the agent can achieve after 634 
drawing an additional bead is 635 
 636 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.431038doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.431038
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

𝐸𝑉'()*(𝑛! , 𝑛") = 𝑃(𝑏!|𝑛! , 𝑛") ∙ max[𝐸𝑉+,-(𝑛! + 1, 𝑛"), 𝐸𝑉'()*(𝑛! + 1, 𝑛") − 𝑐'()*]
+	𝑃(𝑏"|𝑛! , 𝑛") ∙ max[𝐸𝑉+,-(𝑛! , 𝑛" + 1), 𝐸𝑉'()*(𝑛! , 𝑛" + 1) − 𝑐'()*] (𝟑) 637 

 638 
In Eq. 3, 𝐸𝑉'()*(𝑛! , 𝑛") in the left-hand side depends on 𝐸𝑉'()*(𝑛! + 1, 𝑛") and 639 
𝐸𝑉'()*(𝑛! , 𝑛" + 1) in the right-hand side due to the aforementioned sequentiality of 640 
information seeking. We thus solved Eq. 3 by backward recursion. Specifically, we 641 
arbitrarily assumed that the agent cannot draw more than 200 beads, set 642 
𝐸𝑉'()*(𝑛! , 𝑛") = 0 where 𝑛! + 𝑛" = 200, and used Eq. 3 to obtain 𝐸𝑉'()*(𝑛! , 𝑛") where 643 
𝑛! + 𝑛" = 199. We then used Eq. 3 recursively to obtain 𝐸𝑉'()*(𝑛! , 𝑛") for all cases 644 
where 0 < 𝑛! + 𝑛" < 200. Although the obtained 𝐸𝑉'()*(𝑛! , 𝑛") depends on 𝑛! + 𝑛", it 645 
reaches an asymptote over the course of recursion quickly (Fig. S2). We substituted the 646 
asymptotic 𝐸𝑉'()* to Eq. 2 and obtained the theoretical VOI as a function of the beads 647 
difference. 648 
 649 
The VOI obtained for each of the three reward structures, (𝑅! , 𝑅" , 𝑅#) = (70, 10, 0), (170, 650 
110, 100), and (7, 1, 0), is shown in Fig. 2F. The baseline shift affects both 𝐸𝑉'()* and 651 
𝐸𝑉+,-	by the same amount, which is canceled out in Eq. 2 and does not affect the VOI. 652 
On the other hand, since 𝑐'()* was not scaled along with rewards and remained the 653 
same across conditions (0.1 points), the scale manipulation affects not only the 654 
magnitude but also shape of 𝐸𝑉'()* (Eq. 3) and thus the VOI (Eq. 2). 655 
 656 
The most important prediction of this theoretical framework is that information seeking 657 
should be biased due to the reward asymmetry. The VOI takes an inverted-U shape as 658 
a function of the beads difference, and its peak is at a moderate negative beads 659 
difference (𝑛! − 𝑛" = −5). This is because the information would directly improve the 660 
subsequent bet choice; when 𝑛! − 𝑛" = −5, 𝐸𝑉(𝑎!|𝑛! , 𝑛") is close to	𝐸𝑉(𝑎"|𝑛! , 𝑛"), but 661 
the next bead would increase their difference in either direction (if a high-reward bead 662 
𝑏! is observed, 𝐸𝑉(𝑎!|𝑛! + 1, 𝑛") > 𝐸𝑉(𝑎"|	𝑛! + 1, 𝑛"); if a low-reward bead 𝑏" is 663 
observed, 𝐸𝑉(𝑎! 	|	𝑛! , 𝑛" + 1) < 	𝐸𝑉(𝑎"	|	𝑛! , 𝑛" + 1)). Therefore, the agent can bet on 𝑠! 664 
after 𝑏! and bet on 𝑠" after 𝑏", and such flexibility improves the overall EV. In contrast, 665 
the VOI is effectively zero when the beads difference is positive (𝑛! − 𝑛" > 0), because 666 
the agent would bet on 𝑠! irrespective of the next draw. The VOI is also effectively zero 667 
when low-reward beads outnumber high-reward beads by a large enough margin (𝑛! −668 
𝑛" < −7), because the agent would bet on 𝑠" irrespective of the next draw. 669 
 670 
This qualitative prediction, a bias in information seeking towards a negative beads 671 
difference, does not depend on most of our assumptions (e.g., choice optimality, risk 672 
neutrality). Information seeking would be biased as far as the agent is sensitive to the 673 
rank order of rewards and the bead difference. On the other hand, if an agent is not 674 
motivated to maximize rewards but to maximize the accuracy of the prediction (i.e., their 675 
utility function 𝑈 follows 𝑈(𝑅!) 	= 	𝑈(𝑅") 	> 	𝑈(𝑅#)), they would exhibit unbiased 676 
information seeking; the uncertainty about the jar type is determined by |𝑛! − 𝑛"| and is 677 
highest when 𝑛! = 𝑛", which is when the agent would draw beads most frequently. 678 
Therefore, a bias in information seeking would suggest that information seeking is 679 
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motivated by information’s instrumentality for future reward seeking. 680 
 681 
Behavioral data analysis In order to examine information-seeking behavior, we 682 
analyzed the frequency at which participants drew at least one bead as a function of the 683 
beads difference. We specifically focused on whether they drew the first bead as a 684 
function of the current evidence and examined if it was biased by the reward asymmetry 685 
as theoretically predicted. The relationship between information-seeking behavior and 686 
the beads difference was analyzed using Gaussian Process (GP) logistic regression 687 
(Rasmussen & Williams, 2006). GP logistic regression estimates a latent function that 688 
smoothly varies with the independent variable (the beads difference) and yields 689 
likelihoods of binary choices (whether participants drew a bead in each trial), and the 690 
estimated latent function can be interpreted as the subjective VOI function (the higher 691 
VOI is, the more likely participants draw a bead). The latent function with isotropic 692 
squared exponential covariance was estimated using Variational Bayes approximation, 693 
as implemented in Gaussian Processes for Machine Learning toolbox, version 4.2 694 
(https://github.com/alshedivat/gpml) (Rasmussen & Nickisch, 2010). 695 
 696 
To test whether information-seeking behavior systematically differed across blocks and 697 
reward conditions within each block, we compared four models. Model 1 implemented 698 
the theoretical prescription that information seeking is sensitive to the scale 699 
manipulation but not to the baseline manipulation. It thus consisted of three separate 700 
latent value functions, one used in all trials in the baseline block, one used in trials 701 
where (𝑅! , 𝑅" , 𝑅#) = (70, 10, 0) in the scale block, and one used in trials where 702 
(𝑅! , 𝑅" , 𝑅#) = (7, 1, 0) in the scale block. We constructed several alternative models. 703 
Model 2 postulated different value functions for reward conditions not only in the scale 704 
block but also in the baseline block, one for trials where (𝑅! , 𝑅" , 𝑅#) = (70, 10, 0) and 705 
another for trials where (𝑅! , 𝑅" , 𝑅#) = (170, 110, 0) (i.e., four value functions in total); 706 
Model 3 postulated the lack of sensitivity to reward conditions in both blocks but a 707 
separate value function for each block (i.e., two value functions in total); and Model 4 708 
postulated one common value function for all trials in both blocks. These models were 709 
compared based on leave-one-participant-out cross validation (LOPO CV) and leave-710 
one-trial-out cross validation (LOTO CV). We also adopted the same analytic approach 711 
to the bet choices, comparing the performance of Models 1-4.  712 
 713 
We found that Model 3 outperformed other models for both information-seeking and bet 714 
choices (see Results). To test whether information-seeking behavior was biased by the 715 
reward asymmetry, we next compared Model 3 with another model (Model 5) that 716 
assumed value functions that are symmetric with respect to the beads difference (i.e., 717 
value functions that only vary with the absolute value of beads difference). We found 718 
that Model 3 fit information-seeking behavior better than Model 5, supporting a bias in 719 
information seeking (see Results). 720 
 721 
The fact that Model 3 performed better than Models 1, 2, and 4 suggests that, while 722 
participants did not change their behavioral strategies based on the trial-by-trial reward 723 
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manipulation, they adapted to the different reward statistics across blocks. However, 724 
such changes across blocks could potentially reflect time-induced behavioral changes 725 
as well, such as boredom or fatigue, since all participants completed the baseline block 726 
first and the scale block second. To examine the possibility that the population-level 727 
behavioral pattern was not stationary over time, we tested another model (Model 6) that 728 
assumed distinct value functions between the first and second scanning runs within 729 
each block (one value function for each run, four functions in total). Model 6 performed 730 
worse than Model 3 (information-seeking choices: LOPO CV log likelihood [LL] = 731 
−1222.05 vs. −1214.73, LOTO CV LL = −1145.39 vs. −1142.25, bet choices: LOPO CV 732 
= −288.55 vs. −283.56, LOTO CV LL = −266.00 vs. −265.26), suggesting that changes 733 
in participants’ behavior were systematically driven by reward statistics rather than time. 734 
 735 
MRI data acquisition MRI data was collected using a Siemens (Erlangen, Germany) 736 
Trio 3T scanner with a 32-channel head coil at the University of Pennsylvania. A 3D 737 
high-resolution anatomical image was acquired using a T1-weighted MPRAGE 738 
sequence (voxel size = 0.9375 x 0.9375 x 1 mm, matrix size = 192 x 256, 160 axial 739 
slices, TI = 1100 msec, TR = 1810 msec, TE = 3.51 msec, flip angle = 9 degrees). 740 
Functional images were acquired using a T2*-weighted multiband gradient echoplanar 741 
imaging (EPI) sequence (voxel size = 2 x 2 x 2 mm, matrix size = 98 x 98, 72 axial 742 
slices with no interslice gap, 400 volumes, TR = 1500 msec, TE = 30 msec, flip angle = 743 
45 degrees, multiband factor = 4), followed by Fieldmap images (TR = 1270 msec, TEs 744 
= 5 msec and 7.46 msec, flip angle = 60 degrees). 745 
 746 
MRI data analysis MRI data were analyzed using FSL (FMRIB Software Library, 747 
version 6.0) (Jenkinson et al., 2012; Smith et al., 2004). MPRAGE anatomical images 748 
were skull-stripped using FSL BET. EPI functional images were slice-time corrected, 749 
motion corrected (FSL MCFLIRT), high-pass filtered (cutoff = 90 sec), geometrically 750 
undistorted using Fieldmap images, registered to the MPRAGE anatomical image, 751 
normalized to the MNI space, and spatially smoothed (Gaussian kernel FWHM = 6 mm). 752 
 753 
To look for regions that represent the subjective VOI upon the initial beads presentation, 754 
we ran a GLM analysis (GLM 1). The regressor of interest modeled the initial beads 755 
presentation (3-second boxcar) and was parametrically modulated by the trial-by-trial 756 
subjective VOI, which was the latent function estimated in the winning model (Model 3) 757 
of GP logistic regression on the information-seeking behavior. GLM 1 also included 758 
nuisance regressors that modeled the initial beads presentation (unmodulated), the 759 
extra bead presentation, and button presses. The regressors were convolved with the 760 
canonical double-gamma hemodynamic response function (HRF). GLM 1 additionally 761 
incorporated six head motion parameters (3 translations and 3 rotations, estimated by 762 
MCFLIRT) as confound regressors. GLM 1 was run following the standard approach of 763 
FSL FEAT; the GLM was first fit to BOLD signals in each run (first level) and the 764 
estimated coefficients of interest were combined across runs (second level). Individual-765 
level T-statistics were entered into the population-level inference using FSL randomise, 766 
in which clusters that showed positive response to subjective VOI were defined at the 767 
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voxel-wise cluster-forming threshold of p < .001 and evaluated by sign-flipping 768 
permutation on cluster mass. A cluster that survived whole-brain family-wise error 769 
(FWE) corrected p < .05 is reported in Fig. 3B; another cluster that survived a more 770 
lenient threshold (p < .10) is reported in Fig. S1. 771 
 772 
To illustrate how the cluster’s activation varied as a function of the beads difference, we 773 
ran another GLM (GLM 2) using FSL FEAT, which included a regressor for each level of 774 
beads difference separately, along with the same nuisance regressors as GLM 1. T-775 
statistics for each regressor of interest were then averaged across runs within each 776 
block and then averaged across all voxels in the right DLPFC cluster defined as above 777 
(Fig. 3B). 778 
 779 
Lastly, to examine how the DLPFC responds to the updating of VOI, we ran another 780 
GLM (GLM 3) using FSL FEAT to estimate the time course of signals related to the 781 
initial VOI and the VOI updating, which were derived from Model 3 of GP logistic 782 
regression. The VOI updating was calculated as the signed difference between the 783 
posterior VOI, which depends both on the initial beads and the extra bead, and the prior 784 
VOI, which depends only on the initial beads (Fig. 4A). GLM 3 included three sets of 785 
finite impulse response (FIR) function, one unmodulated (intercept), one parametrically 786 
modulated by the initial VOI, and one parametrically modulated by the VOI updating. 787 
These FIRs were aligned to the onset of the extra bead and sampled every 1.5 seconds 788 
(equal to TR) for the total duration of 21 seconds. GLM 3 also included nuisance 789 
regressors that modeled the initial beads presentation and button presses, convolved 790 
with the canonical HRF, along with head motion parameters. T-statistics of 791 
parametrically modulated FIR sets were averaged across all voxels in the right DLPFC 792 
cluster for each participant. Population-level inference on the updating signal was 793 
conducted at the cluster level across time; clusters were defined at the event-wise 794 
cluster-forming threshold of p < .05 and evaluated by sign-flipping permutation on 795 
cluster mass, correcting for FWE across time.  796 
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Supplementary Figures 
 

 
 
Fig. S1. (A) At a liberal threshold (cluster-forming threshold p < .001, cluster mass p < .10, corrected for 
whole-brain FWE), the subjective VOI was positively associated with activations in right anterior insula. 
(B) The DLPFC cluster identified in the current dataset (Fig. 4b) overlaps with a subjective VOI cluster 
reported in Kobayashi & Hsu (2019). 
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Fig. S2. The theoretical VOI was numerically estimated by backward recursion (up to 200 steps). The VOI 
reached an asymptote at each level of beads difference over the course of recursion. Moreover, the VOI 
was highest with a negative beads difference (−5) throughout recursion. 
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