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In this article, we develop a Maximum likelihood (ML) approach to estimate parameters from
correlated time traces that originate from coupled Ornstein-Uhlenbeck processes. The most common
technique to characterize the correlation between time-series is to calculate the Pearson correlation
coefficient. Here we show that for time series with memory (or a characteristic relaxation time), our
method gives more reliable results, but also results in coupling coefficients and their uncertainties
given the data. We investigate how these uncertainties depend on the number of samples, the
relaxation times and sampling time. To validate our analytic results, we performed simulations over
a wide range of correlation coefficients both using our maximum likelihood solutions and Markov-
Chain Monte-Carlo (MCMC) simulations. We found that both ML and MCMC result in the same
parameter estimations. We also found that when analyzing the same data, the ML and MCMC
uncertainties are strongly correlated, while ML underestimates the uncertainties by a factor of 1.5
to 3 over a large range of parameters. For large datasets, we can therfore use the less computationally
expensive maximum likelihood method to run over the whole dataset, and then we can use MCMC
on a few samples to determine the factor by which the ML method underestimates the uncertainties.
To illustrate the application of our method, we apply it to time series of brain activation using fMRI
measurements of the human default mode network. We show that our method significantly improves
the interpretation of multi-subject measurements of correlations between brain regions by providing
parameter confidence intervals for individual measurements, which allows for distinguishing between
the variance from differences between subjects from variance due to measurement error.

A. Introduction

In many fields of science one is interested in whether two sets of data are linearly correlated. One of the simplest
statistical tool for such a case is to calculate the Pearson correlation coefficient ρ. By calculating the Pearson
correlation coefficient we assume that the samples are identically and independenly drawn from a bivariate Gaussian
distribution. Unfortunately, the Pearson coefficient is frequently used for data that falls outside this condition. In
particular, when applying Pearson correlations to time-series that may be distributed normally but where adjacent
time points are not independent. In this article, we are developing a method to characterize correlations between
two time-series that exhibit short-term memory or relaxation. In particluar, we will restrict ourselves to the simplest
random process that results in a fluctuating time series with a characteristic relaxation time: the Ornstein-Uhlenbeck
(OU) process [1]. A OU process with mean zero can be expressed by the following Langevin equation:

ẋ = −k
γ
x+

1

γ
ξ(t) (1)

where k is the spring constant, γ is the friction coefficient and ξ(t) is a randomly fluctuating force. We and others
have recently published maximum likelihood methods to estimate parameters from an OU process time series [2–4],
and here we attempt the same for coupled OU processes.
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B. Coupled Oscillators

We consider a system of two overdamped oscillators, characterized by a friction coefficient γ and spring constant k,
that are coupled by a spring with a spring constant c. The Langevin equations can be written in the following way:

ẋ1 = −k
γ
x1 −

c

γ
(x1 − x2) +

1

γ
ξ1(t)

ẋ2 = −k
γ
x2 −

c

γ
(x2 − x1) +

1

γ
ξ2(t)

(2)

This system can be decoupled by the two eigenfunctions 2y1 = x1 + x2 and 2y2 = x1 − x2, which results in

ẏ1 = −k
γ
y1 +

1

γ
ξ3(t)

ẏ2 = −k + c

γ
y2 +

1

γ
ξ4(t)

(3)

where y1(t) and y2(t) are two Ornstein-Uhlenbeck processes with different relaxation rates. The equipartition theorem
yields < y21 >= A1 = kBT

k and < y22 >= A2 = kBT
k+c . The other important relationships are: diffusion coefficient

D = kBT
γ , relaxation times τ1 = A1

D and τ2 = A2

D . If the friction coefficients γ are different for x1 and x2 one can

still decouple the system of differential equations by finding the eigenvectors and eigenvalues [5]. For simplicity we
assume that both processes have the same friction coefficient or diffusion coefficient D.

In many fields, the Pearson Correlation Coefficient ρ is used to characterize the correlation between two time-series.
The connection between our coupling coefficient c and ρ is:

ρ =
〈x1x2〉
σ1σ2

=
〈(y1 + y2)(y1 − y2)〉√
〈(y1 + y2)2〉 〈(y1 − y2)2〉

=

〈
y21
〉
−
〈
y22
〉

〈y21〉+ 〈y22〉
=

c

2k + c
(4)

As expected, for c = 0 we obtain ρ = 0, and c = ∞ results in ρ = 1. Often correlation analysis are performed on
normalized samples. It therefore makes sense to define a unitless coupling coefficient C = c/k which can be calculated
by estimating A1 and A2 from the data:

C =
A1 −A2

A2
=
c

k
(5)

We can extend this procedure to negative coupling coefficients. For example, c = −k would results in ρ = −1, but at
this c (see eq. 3) y2 becomes unbound. In order to map the normalized coupling coefficient C in the range from −∞ to
+∞ to the Pearson correlation coefficient ρ = −1 to ρ = 1 we suggest the following procedure: From two normalized
samples x1 and x2, we calculate 2y1 = x1 − x2 and 2y2 = x1 − x2. From y1 and y2, we estimate the amplitudes A1

and A2. If A1 > A2 then the coupling coefficient C > 0 and can be calculated using C = (A1 − A2)/A2. If on the
other hand A1 < A2 then the coupling coefficent is negative and C = (A1 − A2)/A1. Reversing the process, we can
use this procedure to create artificial time-series, by simulating two independent OU processes (eq. 3) to produce
two coupled OU processes x1 = y1 + y2 and x2 = y1 − y2 with a well-defined positive coupling C or ρ. One obtains
negative coupling coefficients by using x2 = y2 − y1.
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FIG. 1: Relationship between coupling coefficient C and Pearson correlation coefficient ρ. The solid line represents
eq. 5, whereas the data points represent the parameter estimation by MCMC simulation on artificial data of length
N = 1000. The errorbars indicate the distribution of estimated Cs.

C. Maximum likelihood solution

In this section we will express the likelihood (see for example [6]) of two correlated time-series x1 and x2 in terms

of A1, A2 and Bk ≡ B(∆t,D,Ak) = exp
(
− D
Ak

∆t
)

assuming uniform priors for all parameters.

p ({x1,i(ti)} , {x2,i(ti)} |D,A1, A2 ) ∝ 1
√

2πA1
N

1√
(1−B2

1)
(N−1)

(6)

× exp

(
− 1

2A1

(
x1,1

2 +

N−1∑
i=1

x21,i+1 − 2x1,i+1x1,iB1 + x21,iB
2
1

(1−B2
1)

))

× 1
√

2πA2
N

1√
(1−B2

2)
(N−1)

(7)

× exp

(
− 1

2A2

(
x2,1

2 +
N−1∑
i=1

x22,i+1 − 2x2,i+1x1,iB2 + x22,iB
2
2

(1−B2
2)

))

In order to find the maximum likelihood it is convenient to take the logarithm of p and then take the derivatives with
respect to A1, A2 and D.

Φ = ln (p ({x1,i(ti)} , {x2,i(ti)} |D,A1, A2 ))

= C − N

2
ln(A1)− N

2
ln(A2)− N − 1

2
ln
(
1−B2

1

)
− N − 1

2
ln
(
1−B2

2

)
− 1

2A1
Q1(B1)− 1

2A2
Q2(B2)

(8)

with

Qk(Bk) = xk,1
2 +

N−1∑
i=1

x2k,i+1 − 2xk,i+1xiBk + xi
2B2

k

(1−B2
k)

=
x2k,1 + x21,N

1−B2
k

+
1 +B2

k

1−B2
k

N−1∑
i=2

x2k,i −
2Bk

1−B2
k

N−1∑
i=1

xk,ixk,i+1

(9)
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with C representing an unimportant constant. Qk(Bk) reveals the fundamental statistic - the only terms that exclu-
sively contain the data {xk,i} with k = 1, 2:

ak,EndPoints = ak,EP = x2k,1 + x2k,N

ak,SumSquared = ak,SS =
N−1∑
i=2

x2k,i

ak,Correlation = ak,C =
N−1∑
i=1

xk,ixk,i+1

(10)

We find the maximum likelihood parameters Ak,max and Dmax by finding the roots of the first derivatives with respect
to the three parameters. The derivative with respect to Ak results in the following two conditions:

∂

∂Ak
Φ

∣∣∣∣
Ak,max,Dmax

= − N

2Ak,max
+

1

2A2
k,max

Q(Bk,max) (11)

+
∂Bk
∂Ak

(
Bk,max(N − 1)

1−B2
k,max

− 1

2Ak,max

∂Q(Bk)

∂Bk

)∣∣∣∣∣
Ak,max,Dmax

= 0 (12)

with

∂

∂Bk
Qk(Bk) =

2

(1−B2
k)2

(
Bkak,EP + 2Bkak,SS − (1 +B2

k)ak,C
)

(13)

and

∂Bk
∂Ak

=
BkD∆t

A2
k

(14)

The derivative with respect to D can be written:

∂

∂D
Φ

∣∣∣∣
Ak,max,Dmax

= (15)(
B1(N − 1)

1−B2
1

− 1

2A1

∂

∂B1
Q1(B1)

)
∂B1

∂D

∣∣∣∣
A1,max,Dmax

(16)

+

(
B2(N − 1)

1−B2
2

− 1

2A2

∂

∂B2
Q2(B2)

)
∂B2

∂D

∣∣∣∣
A2,max,Dmax

= 0 (17)

with

∂Bk
∂D

= −Bk
∆t

Ak
(18)

From these three equations we need to find A1,A2 and D, which can be done using numerical root finding algorithms
that are implemented in standard numerical libraries (e.g. Powell hybrid method implemented in MINPACK [7]). In
order to estimate the parameter uncertainties, we need to calculate the Jacobian. Here the only non-zero terms are:

∂2

∂A2
k

Φ =
N

2A2
k

− Qk(Bk)

A3
k

+
N − 1

1−B2
k

(
Bk

∂2Bk
∂A2

k

+

(
∂Bk
∂Ak

)2
1 +B2

k

1−B2
k

)
− 1

2Ak

∂2Qk(Bk)

∂A2
k

+
1

A2
k

∂Qk(Bk)

∂Ak

= − N

2A2
k

+
N − 1

1−B2
k

(
Bk

∂2Bk
∂A2

k

+

(
∂Bk
∂Ak

)2
1 +B2

k

1−B2
k

+
2Bk
Ak

∂Bk
∂Ak

)
− 1

2Ak

∂2Qk(Bk)

∂A2
k

∂2

∂Ak∂D
Φ =

1

2A2
k

∂Qk(Bk)

∂D
− 1

2Ak

∂2Qk(Bk)

∂Ak∂D
+
N − 1

1−B2
k

(
Bk

∂2Bk
∂Ak∂D

+
∂Bk
∂Ak

∂Bk
∂D

1 +B2
k

1−B2
k

)
∂2

∂D2
Φ =

N − 1

1−B2
1

(
B1

∂2B1

∂D2
+

(
∂B1

∂Dk

)2
1 +B2

k

1−B2
k

)
+
N − 1

1−B2
2

(
B2

∂2B2

∂D2
+

(
∂B2

∂D

)2
1 +B2

k

1−B2
k

)

− 1

2A1

∂2Q1(B1)

∂D2
− 1

2A2

∂2Q2(B2)

∂D2

(19)
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with

∂2Bk
∂A2

k

=
BkD∆t

A3
k

(
D∆t

Ak
− 2

)
∂2Bk
∂Ak∂D

=
Bk∆t

A2
k

(
1− D∆t

Ak

)
∂2Bk
∂D2

= Bk
∆t2

A2
k

∂2Qk(Bk)

∂Ak∂D
=
∂2Qk(Bk)

∂B2
k

∂Bk
∂D

∂Bk
∂Ak

+
∂Qk(Bk)

∂Bk

∂2Bk
∂Ak∂D

∂2Qk(Bk)

∂D2
=
∂2Qk(Bk)

∂B2
k

(
∂Bk
∂D

)2

+
∂Qk(Bk)

∂Bk

∂2Bk
∂D2

∂2Qk(Bk)

∂A2
k

=
∂2Qk(Bk)

∂B2
k

(
∂Bk
∂Ak

)2

+
∂Qk(Bk)

∂Bk

∂2Bk
∂A2

k

∂2Qk(Bk)

∂B2
k

=
6Bk + 2

(1−B2
k)3

(ak,EP + 2ak,SS)− 4B3
k + 12Bk

(1−B2
k)3

ak,C

(20)

Using these terms, we can now express the Hessian H as:

H =


∂2

∂A2
1
Φ 0 ∂2

∂A1∂D
Φ

0 ∂2

∂A2
2
Φ ∂2

∂A2∂D
Φ

∂2

∂A1∂D
Φ ∂2

∂A2∂D
Φ ∂2

∂D2 Φ

 (21)

whose negative inverse determines the parameter’s covariance matrix C = −H−1(A1,max, A2,max, Dmax) (see for
example [6]). In order to get a better sense of how the parameter estimation errors behave we can calculate the
expectation values of the second derivaties considering N → ∞: 〈ak,EP 〉 = 2Ak,〈ak,SS〉 = (N − 2)Ak, and 〈ak,C〉 =
(N − 1)AkBk. This results in the following expectation values of the derivatives of Qk(Bk):

〈Qk(Bk)〉 = NAk〈
∂

∂Bk
Qk(Bk)

〉
=

2NAkBk
1−B2

k〈
∂2Qk(Bk)

∂B2
k

〉
= − 4NAk

(1−B2
k)3

(
B4
k + 3B2

k − 3Bk − 1
) (22)

From this, we can express the Hessian using the following second derivatives:

∂2

∂A2
k

Φ = − N

2A2
k

− N

(1−B2
k)2

(
∂Bk
∂Ak

)2(
1 +B2

k +
6Bk

1 +Bk

)
+

2NBk
Ak(1−B2

k)

∂Bk
∂Ak

∂2

∂Ak∂D
Φ =

NBk
Ak(1−B2

k)

∂Bk
∂D
− N

(1−B2
k)2

∂Bk
∂Ak

∂Bk
∂D

(
1 +B2

k +
6Bk

1 +Bk

)
∂2

∂D2
Φ = − N

(1−B2
1)2

(
∂B1

∂D

)2(
1 +B2

1 +
6B1

1 +B1

)
− N

(1−B2
2)2

(
∂B2

∂D

)2(
1 +B2

2 +
6B2

1 +B2

) (23)

These equations allow us to express how the uncertainties/errors of the parameters depend on the sampling interval
∆t/τ given that we measure N samples. In Fig. 2 we plot the relative errors of A1, A2 and C as a function of ∆t/τ1
and ρ for large fixed N (N = 106) using eqs. 23. For example, in Fig.2a we can see that the optimal sampling interval
as given by ∆t/τ1 is reducing as ρ is increasing. This is most likely due to the fact that the relaxation τ2 is decreasing
as ρ is increasing which will affect the uncertainty of both A1 and A2. We also observe a shift in behavior for larger
ρ > 0.25 where no minimum ∆t/τ1 for A1 and C exists. This is in contrast to our finding for a single OU process
[2] where the relaxation time τ had a minimum of approximatly ∆t = 0.7τ and dA continuously decreased as ∆t/τ
decreased.
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ρ A1 (MCMC) A1 (ML) A2 (MCMC) A2 (ML) C (MCMC) C (ML) dC (MCMC) dC (ML)
0.1 1.02 ± 0.09 1.00 ± 0.08 0.84 ± 0.07 0.82 ± 0.06 0.24 ± 0.15 0.23 ± 0.14 0.14 ± 0.018 0.068 ± 0.0076
0.25 1.02 ± 0.09 1.00 ± 0.08 0.61 ± 0.04 0.60 ± 0.04 0.70 ± 0.18 0.67 ± 0.17 0.19 ± 0.02 0.09 ± 0.009
0.5 1.02 ± 0.08 1.00 ± 0.08 0.33 ± 0.02 0.33 ± 0.02 2.00 ± 0.29 2.05 ± 0.30 0.31 ± 0.039 0.144 ± 0.013
0.75 1.02 ± 0.08 1.00 ± 0.08 0.145 ± 0.006 0.144 ± 0.005 6.1 ± 0.6 6.0 ± 0.6 0.69 ± 0.08 0.37 ± 0.03
0.9 1.02 ± 0.08 1.00 ± 0.08 0.053 ± 0.002 0.053 ± 0.00003 18.4 ± 1.9 17.97 ± 1.5 1.9 ± 0.24 1.3 ± 0.11

TABLE I: Comparison of parameter estimates using maximum likelihood and Markov-Chain Monte-Carlo methods
for different ρ at D = 1, A1 = 1,∆t = 0.3, N = 1000

(a) Amplitude errors dA1 and dA2 as function of
∆t/τ

(b) Relative coupling coefficient error dC as func-
tion of ∆t/τ

FIG. 2: Dependence of relative errors on ∆t/τ for large N (N = 106) using eqs. 23

D. Validation by Simulation

In this section, we create artifical correlated time-series employing the method mentioned in B to validate our
Maximum-Likelihood method against parameter estimation by Markov-Chain Monte-Carlo (MCMC) methods [8].
Probabilistic calculations using MCMC were carried out in python and Julia, using the anaconda distribution of
python [9] with PYMC3 [10] and Julia 1.53 [11] with Turing.jl [12]. For the following table and figures, we created
400 correlated time-series pairs for Pearson Correlation coefficients of 0.9, 0.5, 0.25, and 0.1 for N = 1000 at D =
1, A1 = 1,∆t = 0.3. Since the problem is symmetric with respect to the sign of the correlation coefficient we
don’t need to simulate negative correlation coefficients. Fig. 3 shows the proability distributions of A1 and A2

for N = 1000 and ρ = 0.5 estimated by maximum likelihood (ML) and Markov-Chain Monte-Carlo (MCMC). The
results of the simulations are summarized in Table I. In terms of uncertainties we find that MCMC correctly estimates
parameter uncertainties consistent with the distribution over a large sample, but that the maximum likelihood method
underestimates the uncertainty by a constant factor that depends on the degree of correlation ρ or C. In Fig. 4 we
show using a scatter plot that the individual uncertainties of MCMC and ML are correlated. This fact is important
since MCMC is much more computationally expensive. For large datasets, we can use the maximum likelihood method
to run over the whole dataset, and then we can use MCMC on a few samples to determine the factor by which the ML
method underestimates the uncertainties. In our example, maximum likelihood underestimates the uncertainties by
a factor of 1.5-2 over a wide range of ρ. We believe this underestimation results from the fact that the distributions
in Fig. 3 are not Gaussian. The ML method assumes that all posterior distributions are Gaussian and that the
width can be determined by the second derivative of the log likelihood. This is clearly not the case. The fact that
we underestimate the uncertainties indicates that the curvature of our distribution at the maximum is greater than
a corresponding Gaussian distribution.
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(a) p(A1) vs A1 (b) p(A2) vs A2

FIG. 3: Comparison of MCMC and maximum likelihood for ρ = 0.5 and D = 1, A1 = 1,∆t = 0.3, N = 1000. The
vertical bar indicates the true expected value

(a) dA1,ML vs dA1,MCMC (b) dA2,ML vs dA2,MCMC

FIG. 4: Correlation between the uncertainties of A estimated by maximum likelihood and MCMC for ρ = 0.5 and
D = 1, A1 = 1,∆t = 0.3, N = 1000. The dotted line represents a linear fit. For this ρ the maximum likelihood
underestimates the errors by a factor of 2

E. Application to resting-state functional Magnetic Resonance Imaging

To illustrate the power of our correlation method, we analyzed functional Magnetic Resonance Imaging (fMRI) time-
series data from control 7T-fMRI resting-state experiments that were taken from [13]. In particular, we extracted
neural activation time-series from four brain regions that make up the default mode network [14] ( LLP = left lateral
parietal cortex, RLP = right lateral parietal cortex, MPFC = medial prefrontal cortex, PCC = posterior cingulate
cortex) that activates when individuals are focused on their internal mental-state processes, such as self-referential
processing, interoception etc. and not performing a specific task. Fig. 5 shows the time series of a single subject.
Traditially, correlations between brain regions are evaluated using Pearson correlation coefficients. To ensure that
our coupled OU model is applicable, we determined the skewness and kurtosis of all time series to show that they
are Gaussian. None of the distributions had an absolute value of skewness/kurtosis of more than 0.5, which is
considered safe for applying Gaussian statistics (see for example [15]). Next, we have to show that the time series
exhibit an exponentially decaying autocorrelation function. For this, we applied our maximum likelihood method
for OU processes to determine the relaxation times for all time series. We found that τMPFC = 4.8 ± 0.7sec,
τPCC = 4.8 ± 0.7sec, τRLP = 4.1 ± 0.5sec, τLLP = 3.8 ± 0.5sec. The decay-times of all brain regions are in within
one or two standard deviations of each other, justifying the assumption made in eq. 3. Fig. 6 shows the coupling
coefficients of five subject estimated by our method. Here we show the estimates from MCMC, but the same mean
values are obtained by using the maximum likelihood method with uncertainties that are about a factor of 3 smaller
than the MCMC estimates (see the Discussion in Simulation section). We chose four of six possible pairings of brain
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regions to illustrate the additional information that our method provides over Pearson correlations. By obtaining
not only the strength of coupling but also the uncertainties of the value given the data, we can distingish between
variance due to measurement and variance due to difference between subjects. Panel (a) illustrates a case where the
uncertainty of the measurements is smaller than the variance of the mean. In this case this is due to an outlier. Here
the traditional analysis would have sufficient to detect an outlier. In Panel (b) and (d) the variance of the mean is
in between the variances of the individual datapoints and because we know each measurements uncertainty, we can
determine how much of the variance of the mean is due to the variance between subjects and due to measurement
error. Panel (c) illustrates a case where the uncertainty of the measurement is larger than variance of the mean.

FIG. 5: Time series of fMRI-BOLD signals of four brain regions that constitute the default mode network ( LLP =
left lateral parietal cortex, RLP = right lateral parietal cortex, MPFC = medial prefrontal cortex, PCC = posterior
cingulate cortex)
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(a) Coupling coefficients between MPFC and LLP (b) Coupling coefficients between MPFC and PCC

(c) Coupling coefficients between PCC and LLP (d) Coupling coefficients between LLP and RLP

FIG. 6: Coupling coefficients between default mode network brain regions across several subjects and the mean and
standard deviation between subjects. For comparison to Pearson correlation coefficients we can use ρ = C/(2 + C)
(ρ = 1/3 for C = 1, ρ = 0.6 for C = 3, and ρ = 0.75 for C = 6). The coupling coefficients and their uncertainties
were determined by MCMC. We obtained the same mean coupling coefficients using the maximum likelihood method
but with uncertainties that are about a factor of 3 smaller than the MCMC estimate.

F. Summary

In the previous sections we developed and validated a maximum likelihood method to estimate the correlation
between time series with an intrinsic relaxation time (OU process). As compared to Pearson correlation, our method
not only estimates the correlation parameter, but also its confidence interval, which in our opinion is the most useful
feature of our method. Knowing the confidence interval of individual measurements allows us to distingish between
measurement error (confidence in a single measurement) and the variance that results from the variance of the sample.
In the biological sciences, we often find large biological variance that is manifested in cell-cell variability of genetically
identical cells or in the variance in the measurement of brain circuitry between (different subjects) but also within
subjects (same subject at different days). In order to characterize these biological variances, biophysical methods have
to be developed that are capable of measuring quantities accurately enough as to distingish between measurement
error and biological distributions. Only if the individual error of a measurement is known we can attempt such a
deconvolution. We hope that our method will help in achieving this goal.
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