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ABSTRACT 

Single-cell RNA sequencing (scRNA seq) generates highly dimensional transcriptome 

data to understand cellular phenotypes. Due to high cost and volume of data obtained from these 

experiments, most studies analyze few unique samples. Pre-analytical tissue processing and 

different sequencing techniques can alter quantity and phenotype of cells being examined. This 

study used existing ‘human liver’ scRNA seq datasets to determine if heterogeneity exists 

between datasets and if these data could be integrated to define phenotypes across leukocyte 

subpopulations in healthy human liver. CD45+ cells from three published studies reporting scRNA 

seq data from human livers were analyzed and leukocyte subpopulations were examined. All 

three datasets co-clustered, but with differing cell proportions. Expression correlation 

demonstrated similarity across all studies. Detailed analysis of differential expression identified 

meta-signatures for each hepatic immune subpopulation. Herein, we introduce a novel and 

rigorous framework for meta-analysis of scRNA seq datasets and highlight profiles of liver immune 

homeostasis.  
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INTRODUCTION 

Single cell RNA sequencing (scRNA seq) has led to rapid advances in our understanding 

of cellular phenotypes of in situ human tissues in recent years.1,2 Application of scRNA seq to 

human liver tissue to examine both healthy and pathogenic states at the molecular level has 

proven useful to identify heterogeneity among various cell types, including immune cell 

populations and epithelial progenitors.3–5 Generation of these libraries through high-throughput 

sequencing techniques such as 10x Genomics or Drop-seq generates highly dimensional data, 

which is suitable to both answer and also to rapidly generate hypotheses. Given the relatively 

high cost of scRNA seq, a typical human study only analyzes a small number of unique samples 

(as few as three unique patients), despite the known genetic heterogeneity across individuals.6,7 

In 2018, the NIH updated the policy for data access of genomic datasets, with the goal of 

enhancing researchers’ ability to perform pooled analyses or meta-analyses on genomics data 

particularly in human specimens.8 More recently, there are several NIH Requests for applications 

specifically targeted at secondary and integrated analytic approaches to harness the power of 

these existing, funded datasets.9       

The liver is an immunologically complex organ with an abundance of resident leukocytes 

which comprise a significant proportion of residing nonparenchymal cells.10,11 A unique but poorly 

understood feature of the liver is its immunotolerance, which is thought to be the result of the 

organ receiving much of its dual blood supply from the portal vein. The portal vein shuttles blood 

to the liver via the enterohepatic circulation, which carries both nutritionally-derived and bacterial 

antigens without causing an untoward inflammatory response.12 This immunotolerance has 

implications for a vast array of disease processes of the liver including autoimmune hepatitis, 

cholangiopathy, transplantation and the tumor microenvironment of intrahepatic malignancy, 

among others.13  

Combining liver-specific immune cell subsets of scRNA seq datasets yields a higher 

number of cell libraries across a larger sample of patients, which is crucial when considering that 
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knowledge generated from these human “atlases” may be used to understand biochemical 

mechanisms of disease and to develop therapeutics for clinical use. One major drawback of 

combining unique studies is that differences in technique have been demonstrated to lead to 

unexpected alterations in sequencing results.14,15 A study by Bonnycastle et al used scRNA seq 

in human pancreatic islet cells and compared different tissue processing techniques (including 

fresh, fixed and cryopreserved tissues). Despite processing tissue samples from the same source, 

this analysis demonstrated differences among cell type proportions recovered as well as changes 

in gene expression signatures across different processing techniques.16 Thus, combining multiple 

human liver scRNA datasets has the potential to account for more biological variability across 

different patients, potentially attenuating the effects of pre-analytical variables that are not 

biologically meaningful.   

The aim of this study was to perform a meta-analysis of integrated datasets of normal 

human liver scRNA seq specimens from high-quality peer-reviewed studies. An extensive 

comparison was performed across studies in order to establish whether generalizability across 

datasets would be meaningful. Finally, we characterize expression profiles from the pooled 

datasets across four major immune subpopulations in order to provide a description of immune 

homeostasis in the healthy human liver.  
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RESULTS 

Integration of liver immune cell scRNA seq datasets 

To begin, immune-specific subsets of human liver tissue were identified and extracted 

from three unique studies: “LACEe”, “Lnb” and “LCD45e” (Figure 1).3–5 Techniques used for the 

RNA sequencing of individual datasets are summarized in Table 1. The combined dataset 

included single-cell RNA sequencing of 17 normal human liver samples with approximately 

32,000 hepatic CD45+ cells.  

Clustering analysis was performed on all three datasets individually to detect differences 

in global cellular phenotypes (Figure 2a-c). Projection of all three datasets to the same UMAP 

coordinates revealed a homogeneous interdigitation of each cluster, however the LCD45e subset 

comprised the majority of cells (~24,000 cells compared to ~4,000 cells in each of the other two 

studies; Figure 2d). Pairwise gene expression correlation analysis was performed which revealed 

that the LACEe dataset had less concordance with both the Lnb (R=0.81; Figure 2e), and LCD45e 

datasets (R=0.79; Figure 2f). Lnb and LCD45e, both obtained using the 10x platform, 

demonstrated a more idealized relationship (R=0.95; Figure 2g).    

 

Frequency and proportion of immune cell subpopulations across liver scRNA seq datasets 

Next, leukocyte subpopulations were identified based on expression of major cell-specific 

lineage marker genes and compared across the individual datasets (Supplemental Figure 1). 

Clusters were then designated as NK and T cells (combined), myeloid cells, B cells and plasma 

cells, representing the four major groups of interest for our study (Figure 3a-b).  

When compared across all three datasets there were differences in proportions of each 

immune cell subpopulation (Χ2 test, p<0.01 for each cell type; Figure 3d). Pairwise analysis 

between datasets also revealed differences in cell-type composition, and only two conditions did 

not reach statistical significance: comparison of LCD45e and Lnb in plasma cells (Χ2 test, p=0.16) 

and comparison of Lnb and LACEe in B cells (Χ2 test, p=0.08), which may be a consequence of B 
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cells and plasma cells representing the smallest populations of cells across datasets. This 

observed scarcity of liver resident B cells and plasma cells is consistent previous reports of liver 

immune cell composition.11 Despite some differences in cell-type recovery, the ranking of 

abundance of each cell type was preserved between datasets, such that NK and T cells were the 

most numerous (ranging from 51%-69% of cells), followed by myeloid cells (18%-32%), plasma 

cells (4%-14%), and then B cells (2%-7%; Figure 3c). 

 

Phenotypic analysis of leukocyte subpopulations across datasets 

 A deeper analysis of gene expression profiles within immune cell subpopulation was 

conducted to identify differences in cellular phenotypes. Initially, analysis of housekeeping genes 

was conducted, as housekeeping gene expression should provide an internal control of biological 

noise and thus serve as a marker of technical noise across studies.17 Expression analysis was 

performed on an established set of human housekeeping genes across immune cell 

subpopulations and across datasets using log normalized expression values  (Supplemental 

Figure 2). Despite a relatively good agreement between means, comparison with one-way 

ANOVA yielded significant differences in housekeeping gene expression (p<0.01). Pairwise 

analysis also showed significant differences in expression levels, which is likely the result of the 

large number of cells included and is thus a highly powered test.  

 Differences in gene expression profiles across immune cell subpopulations are anticipated 

due to their distinct biological functions. The number of differentially expressed (DE) genes was 

quantified between individual immune cell subpopulations (Supplemental Figure 3). Volcano 

plots were used to illustrate meaningfully DE genes, which were plotted as blue dots and indicate 

a fold-change ratio in expression of either <0.8 or >1.25 and Bonferroni corrected p-value<0.05. 

Non-DE genes were plotted as red dots. B cells had the fewest DE genes across all studies, 

whereas cells of the myeloid lineage had the most DE genes. No individual dataset was an outlier 

with respect to the quantification of differential expression, but the LCD45e dataset had the highest 
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number of DE genes in B cells and myeloid cells, and the lowest number in plasma cells and NK 

and T cells.  

Due to heterogeneous gene expression between leukocyte subpopulations 

(Supplemental Figure 3) and differences in cell proportions (Figure 3c-d), both of which could 

potentially bias dataset correlation analysis, pairwise expression correlation between datasets 

was performed and stratified by leukocyte subpopulation (Figure 4a-d and Supplemental Figure 

4). Comparison of Lnb and LCD45e showed a more idealized relationship (R=0.93-0.96 depending 

on leukocyte subpopulation, Figure 4a.vi.-d.vi), while LACEe correlated less with the other two 

studies (Figure 4a.iv,v-d.iv,v). The pattern of gene expression correlation was also analyzed 

using Rank-Rank Hypergeometric Overlap (RRHO) heatmaps (Figure 4a-d, panels i-iii).18 This 

technique uses heatmaps to indicate the degree of ranked differential expression agreement, 

where yellow indicates strong statistical overlap and blue represents no statistical overlap 

between corresponding axes. These panels represent overlap of differential expression in ranked 

form such that the bottom left of the panel represents the most upregulated genes, and genes in 

the upper right portion of the panel represent the downregulated genes (thus a higher rank 

corresponds to downregulation). When comparing NK and T cell expression patterns in LACEe 

versus Lnb, there are two heatmap regions with a high degree of statistical overlap (Figure 4a). 

Examination of the remaining two pairwise comparisons in NK and T cells from different datasets, 

the overlap among the more highly expressed genes is evident, but genes at lower expression 

levels have less overlap. Plasma cells and B cells also exhibit RRHO agreement between studies. 

For myeloid cells, LACEe and Lnb have better RRHO for the most highly expressed genes, 

whereas Lnb and LCD45e have better agreement in genes expressed at lower levels. There is a 

bimodal agreement between LACEe and LCD45e (Figure 4b).  

 

Differential gene expression in leukocyte subpopulations across datasets 
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 The RRHO analysis demonstrated that there was relatively strong correlation with genes 

at the highest levels of expression. To begin to identify the dominant phenotype for each leukocyte 

subpopulation, the top 100 most abundant transcripts were identified for each cell type in Lnb 

which was the dataset with the most agreement with the other two datasets based on correlation 

(Figure 2e-g). A comparison was performed to determine if the same genes were present as the 

top 100 most abundant transcripts for each immune cell subpopulation of the other two studies. 

Depending on leukocyte subpopulation, LCD45e had between 87 and 94 out of 100 ‘top genes’ in 

agreement. Alternately, LACEe had rather poor agreement with top matching genes for each 

leukocyte subpopulation (Supplemental Figure 5).     

Analysis was then performed across datasets in order to quantify how many genes were 

DE in each immune cell subpopulation (Figure 5b). In this analysis, DE genes with a fold change 

ratio <0.8 or >1.25 and a Bonferroni corrected p-value <0.05 are represented in volcano plots and 

compare individual gene expression level within an immune cell subpopulation, across datasets.16 

Some comparisons yielded a high number of DE genes between datasets (e.g., 3526 genes when 

comparing LCD45e and LACEe in myeloid cells). In contrast, when comparing the Lnb dataset to 

the LCD45e dataset among the B cell population, there were only 767 DE genes and the myeloid 

cell population between these two datasets had 924 DE genes, again demonstrating fewer 

expression differences between Lnb and LCD45e relative to LACEe.  

To better characterize the heterogeneity in gene expression, the difference of differences 

was calculated between datasets (pairwise) and stratified by leukocyte subpopulation (particular 

versus all other). This metric involved calculating a gene’s expression difference between the cell 

subpopulation of interest and all other cell types and then comparing that difference to the 

difference seen in another dataset (Figure 5a). For example, a B cell in the LACEe dataset has a 

difference of expression of the gene CD25 compared to all other cell types (represented as Δ1), 

the difference in CD25 expression between B cells and other cell types in Lnb is Δ2. Subtracting 
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Δ2 from Δ1 yields the difference of differences (DoD, Figure 5) which we used to approximate the 

proportion of DE genes where expression alteration could be explained by changes relative to 

other immune cell subpopulations (DoD significance defined as: DE with a fold change ratio <0.8 

or >1.25 with P-adjBonfcorr<0.05 and DoD P-adjBonfcorr<0.05). We also anticipate that due to 

comparison across different studies and across differing technical platforms (10x Genomics 

versus mCel-seq) that there will be differences in the depth of sequencing, a phenomenon which 

has been known to affect differential expression analysis when comparing scRNA seq datasets.19 

Given this, we propose that our DoD analysis “explains”, or at least accounts for, some of the 

differential expression. Figure 5c lists the number of DE and DoD genes for each analysis as well 

as a percent total. The last column in the table shows the proportion of DoD genes relative to the 

number of DE genes. Notably in plasma cells, there are a high number of DE genes, but over 

50% of these are also DoD genes.  This suggests that approximately half of the observed 

differences of plasma cells between Lnb and LCD45e were accounted for by comparing to the 

average expression level in the remaining cells of each dataset. 

 

Concordance of dominant gene expression profiles for immune cell subpopulations 

across datasets 

Once DE genes were identified, the most significantly DE genes were chosen among each 

dataset to determine if an integrated dataset could identify dominant gene expression signatures 

associated with each immune cell subpopulation within human liver. The top 10 most DE genes 

for each leukocyte subpopulation in each individual dataset were identified. All three datasets’ 

candidate genes were combined to create a master list of top DE genes for each immune cell 

subpopulation (Figure 6d). Expression levels were plotted as a heatmap for each individual cell 

and organized by immune cell subpopulation (Figure 6a-c). Some heterogeneity was expected 

within cell type, as the myeloid and NK and T cell populations represent a variety of unique 

subsets. Despite this, the heatmaps demonstrate that candidate genes listed are indeed DE and 
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represent reproducible markers for each immune cell subpopulation, regardless of processing 

technique. Furthermore, the expression patterns outlined in the heatmaps have excellent 

agreement across studies.  

 

Differential gene expression profiles between datasets reveal signaling pathways affected 

by scRNA seq pre-analytical tissue processing and techniques 

 After identification of all the genes that had a statistically significant differential expression 

(log fold change <0.8 or >1.25 and adjusted p<0.05 as shown in volcano plots from Figure 5b) 

among the three datasets, a canonical pathway analysis was performed using the Ingenuity 

Pathway Analysis software (IPA, Qiagen). The association study was performed for each 

leukocyte subpopulation: NK & T cells, B cell, plasma cell and myeloid cells. Input of the DE gene 

name, average log fold change and p values provided an output of canonical pathways which 

were ranked on their likelihood to be altered between pairwise datasets. The probability that a 

signaling pathway was affected by differences across datasets was represented as a -log(P value) 

and a cutoff of 7.0 was set in order to establish those canonical pathways which were most 

different. Disease-specific pathways of no relevance to immune-specific subpopulations were 

excluded (e.g., Atherosclerosis Signaling, Bladder Cancer Signaling) as they were extraneous to 

this analysis.    

 Across immune cell subpopulations, there was general agreement between the canonical 

pathways affected based on the pairwise dataset comparison and therefore NK & T cell subsets 

and B cell subsets are shown as examples (Figure 7a-c and Figure 7d-f respectively) as myeloid 

and plasma cells demonstrated the same pathways which were affected, albeit to varying 

degrees.   
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The analysis of DE genes in NK and T cells for LACEe vs Lnb pair identified three pathways: 

EIF2 signaling (-log(P value)=14.7, 20 DE genes involved), oxidative phosphorylation (-log(P 

value)=8.8, 11 DE genes involved), and regulation of eIF4 and 70S6K signaling (-log(P value)=7, 

11 DE genes involved; Figure 7a). B cell DE genes between LACEe vs Lnb, showed a similar 

result with the addition of mTOR signaling. Of note, many of the genes that led to the presumptive 

alterations of these pathways were ribosomal proteins with the exception of the oxidative 

phosphorylation canonical pathway, where genes affected were NADH dehydrogenase subunits, 

cytochrome c oxidase subunits and ATP synthase subunit F0 subunit 6.  

The LCD45e versus LACEe pairwise comparison of canonical pathways was reminiscent 

of the altered pathways seen in the LACEe versus Lnb differential comparison. The expression 

analysis between Lnb and LCD45e, which was the pairwise comparison with the best transcriptome 

concordance and the fewest DE genes, actually had the highest number of altered canonical 

pathways (Figure 7c,f). Even though many different canonical pathways were identified as having 

been altered between these two datasets (Lnb vs LCD45e) many of the DE genes that made up 

the pathway differences were the same in each pathway. For instance, ALB or the protein albumin 

was counted as being a DE molecule in six out of the eight canonical signaling pathways. 

Likewise, genes such as APOA1, APOA2, ORM1, ORM2 and SERPINA1 contributed to the 

majority of canonical pathway alterations. In fact, most of the molecules identified were redundant 

downstream effectors of the pathways and thus do not necessarily reflect true perturbations of 

the signaling pathway between datasets.  

In characterizing the canonical pathways that differed across studies, the major 

differences were noted among pathways which involved protein synthesis, cell death and 

apoptosis signaling. Signaling pathways related to immunologic functions, which are the functions 

that are of relevance to this study were largely preserved. For example, the T cell receptor 

signaling pathway, CD28 signaling in T helper cells and IL-6 signaling pathways all had 2 or fewer 
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genes which contributed to differences noted which supports the idea that these pathways were 

largely comparable between studies and that proceeding with a combined meta-dataset is 

feasible.  

 

Phenotypic characterization of immune cellular landscape in normal human liver 

 Given that gene expression correlation was high across datasets and differential gene 

expression was relatively low, with conservation of phenotypically relevant genes and signaling 

pathways, we established meta-signatures for each immune cell subpopulation. Genes which 

were DE from one leukocyte subpopulation versus cells of all other subpopulations, but not DE 

across studies were identified. This is in contrast with the prior analysis, which used genes DE 

across datasets. These candidate genes comprising a list of 45 to 146 total genes depending on 

leukocyte subpopulation were generated and run through the Ingenuity Pathway Analysis 

Software (Qiagen).  The output of this software identified a series of genes with linked cellular 

functions to determine which canonical pathways were affected.  

Pathway analysis output generated characterizations of various cellular biochemical 

functions. Functions were sub-divided into types including general inflammatory response, cell 

signaling and interaction, cell death and survival, cell function and maintenance, cell growth and 

proliferation and cellular movement. Z-score values of whether expression was upregulated or 

downregulated were used to formulate a heatmap for each function across individual leukocyte 

subpopulations, establishing a functionality signature for each cell type (Figure 8). Most functions 

were downregulated across all leukocyte subpopulations. There was very mild upregulation of 

cell functions including apoptosis and colony formation in myeloid cells, development in NK and 

T cells, and proliferation in B cells and NK and T cells. Cell death of cancer cells and membrane 

potential of mitochondria were the only functions that were moderately upregulated in B cells. 

Overall, these results indicate a general low-activity state of liver immune cells. 
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These pathway analysis data were then transferred for further tertiary analysis in R using 

the Circlize package to produce meta-signatures as chord plots which relate specific cell functions 

to individual genes having differential expression. In order to reduce complexity of the figures, 

redundant cell functions and functions related to disease states noted to be irrelevant to immune 

subpopulations were excluded. The resulting chord diagrams link genes associated with specific 

cellular functions, allowing for visualization of the immune phenotype for each leukocyte 

subpopulation.  

NK and T cells represented the largest proportion of cells in our study, but only had the 

second largest number of DE genes identified by our analysis, with plasma cells having the most 

genes. For this immune cell subpopulation, 68 genes were identified as being DE, representing 

14 major immunologically relevant diseases and functions (Figure 9a). Of the DE genes in NK 

and T cells, only the GTPase GIMAP7 (average log fold change (log_FC)=1.1), perforin 1 (PRF1, 

log_FC=1.7) and SH2 domain 1A molecule implicated in NK signaling, SH2D1A (log_FC=0.9) 

were upregulated. The majority of genes were downregulated, which correlates with data in Figure 

8. The myeloid lineage was marked by a gene expression signature involving 37 genes across 

the relevant diseases and functions (Figure 9b). Upregulation of the following DE genes was 

shown: brain protein I3 (BRI3, log_FC=1.0), cystatin c (CST3, log_FC=2.9), the autophagy 

associated protein cathepsin D (CTSD, log_FC=1.2), dual specificity phosphatase 1 (DUSP1, 

log_FC=0.4) among others. Again, the majority of genes were downregulated in the myeloid cells, 

with the most notably downregulated DE genes being CD2 (log_FC= -1.3), CD3E (log_FC= -1.3), 

CD69 (log_FC= -1.5) and granzyme K (GZMK, log_FC= -1.4; all p values < 0.001).  

Plasma cells with 120 DE genes shown in the chord diagram demonstrated upregulation 

of endoplasmic reticulum lectin 1 (ERLEC1, log_FC=1.0), and immunoglobulins: IGLC7 

(log_FC=2.3), IGLV1-40 (log_FC=0.6) and IGLV6-57 (log_FC=1.2; all p values < 0.001). 

Downregulated genes included cell-cycle regulator BTG anti-proliferation factor 1 (BTG1, 
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log_FC= -1.7), complement proteins C1QA (log_FC= -1.6) and C1QB (log_FC= -1.6), CST3 

(log_FC= -1.8), ID2 (log_FC= -1.6), interleukin 7 receptor (IL7R, log_FC= -1.6) and killer cell lectin 

like receptor D1 (KLRD1, log_FC= -1.7; Figure 9c). Lastly, the B cell meta-signature was 

comprised of 52 DE genes (Figure 9d). Upregulation was seen in Rho GTPase activating protein 

24 (ARHGAP24, log_FC=0.8) which is implicated in actin cytoskeleton signaling, baculoviral IAP 

repeat containing 3 (BIRC3, log_FC=1.3), CD19 (log_FC=0.8), CD22 (log_FC=1.1), CD24 

(log_FC=1.1), CD37 (log_FC=1.4), Fc receptor like A (FCRL2, log_FC=0.7), FCRL5 

(log_FC=0.5), FCRLA (log_FC=0.9), HLA-DQB1 (log_FC=1.2), TNF receptor superfamily 

member 13C (TNFRSF13C, log_FC=1.2, all p values < 0.001). Genes which were downregulated 

(log_FC< -1.5) included: complement proteins C1QA (log_FC= -1.5) and C1QB (log_FC= -1.5), 

C-C motif chemokine ligand 4 (CCL4, log_FC= -1.8) and cystatin c (CST3, log_FC= -1.7), all p 

values < 0.001). A detailed report of genes implicated in leukocyte subpopulation homeostasis is 

summarized in Supplemental Table 1.  
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DISCUSSION 

In this study, meta-analysis of three high-quality scRNA seq studies representing 17 

distinct ‘normal human liver’ samples enabled deep characterization liver immune cell function 

and features related to immune homeostasis. Focused examination of immune cell types, 

proportions, and gene expression profiles of revealed that significant differences exist between 

datasets created from ‘normal human liver’ samples. Despite these differences, the overall 

ranking of abundance of immune subsets was preserved, with NK and T cells dominating and 

plasma and B cells being relatively rare. Further analysis of gene expression profiles involving 

the most DE genes in the integrated dataset provided the opportunity to minimize the effect of 

technical ‘noise’ and establish the gene expression signature of human liver immune 

homeostasis. These results have the potential to serve as a key reference point for future studies 

using scRNA seq designed to characterize immune-based pathologies within the liver, such as 

autoimmune disease, the tumor microenvironment in primary liver malignancies, or liver allograft 

rejection and tolerance. 

To establish validity of performing a meta-analysis of an integrated dataset using scRNA 

seq data generated in three distinct labs with different tissue handling, processing, and 

sequencing techniques, visualization of the integrated data with co-clustering of cell populations 

was performed (Figure 2). This approach was based on the work of Bonnycastle et al, who 

specifically studied the impact of tissue processing and handling on the integrity of scRNASeq 

data.16 In our analysis, immune cell proportions and expression profiles differed somewhat across 

datasets, with highest correlation between the Lnb and LCD45e studies (Figure 4). This is not 

particularly surprising, as these two datasets used the same 10x Genomics technique for the 

scRNA seq. It is important to note that extraction of the CD45+ population and combination with 

other non-liver derived CD45+ cells did not appear to impact the integrity of the data, as was the 

case with the LCD45e. While various scRNA seq techniques have the potential to introduce noise 

and bias into the transcriptome data, the Seurat pipeline has been designed to correct for some 
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of these differences by re-aligning cell clusters based on nearest neighbor correction and allowing 

for integrated downstream analyses.20,21 This would suggest that differences we observed in 

expression analyses could be the result of pre-analytical variables such as tissue processing. We 

further characterize noise with the quantification of an established set of human housekeeping 

genes.17 There were differences noted in expression of human housekeeping genes within an 

immune cell subpopulation across studies, however, mean expression values were not 

substantially altered and differences noted here are likely the result of large sample sizes. A 

potential explanation for differences in cellular proportions may be related to sample size effect 

as well. The LACEe dataset encompasses the largest sample of human tissues, derived from nine 

total liver specimens, which likely introduces a higher degree of biological variation than Lnb and 

LCD45e which have five and three liver donors, respectively. The clinical scenario also differs 

between LACEe, which was created using partial hepatectomy specimens from patients with liver 

malignancy, and the other two studies, which involve specimens derived from adult brain-dead 

organ donors. Despite attempts at correction, there were differences noted in gene expression 

analysis, yet immune subpopulations still co-clustered with good interdigitation across studies and 

DE analysis showed good agreement with heatmaps (Figures 2 and 8). As such, we proceeded 

with deeper immune profiling using the integrated dataset.  

Differences in tissue handling and processing has been shown to prompt transcriptional 

changes within the cell.15,16,22 A major novelty of our study is the in-depth characterization of 

differential expression between datasets with identification of relevant canonical pathways 

affected. Our results indicate that pathways involved in oxidative phosphorylation and cell stress 

were primarily affected and that immunologically relevant pathways were largely preserved. We 

suspect that non-immune function related changes may be the consequence of pre-analytical 

tissue processing. Known pre-analytical variables related to each technique used for the 

generation of each dataset are summarized in Table 1. Unknown variables of potential 

importance could include the time interval of ‘Pringle’ clamp time during resection or from the 
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moment of tissue resection to cell processing and sequencing, which could lead to significant 

ischemic insults and thus impact transcription profiles. In ischemic injury of rodent and human 

cortex, insult has been demonstrated to promote pro-inflammatory gene expression 

alterations.23,24 The fact that these ischemia-induced pro-inflammatory changes are not 

demonstrated in this study shows that either ‘Pringle’ time in liver specimens captured in these 

datasets were either not significant enough to cause ischemia, or that liver ischemia does not 

produce as profound an inflammatory response as cortical ischemia. Overall, the observation that 

immune pathway profiles for each subpopulation were relatively conserved supports the use of 

this novel meta-analysis approach to examine existing datasets in order to understand immune 

homeostasis in human livers.   

Immunotolerance is a unique feature of hepatic homeostasis and is thought to be a 

consequence of the constant stream of antigens being delivered to the liver from the gut. This 

involves regulation of both the adaptive and innate immune systems to prevent an uncontrolled 

inflammatory cascade in response to foreign antigens in the portal circulation which gain access 

to the liver.10,25 One potential theory is that effector T cells are regularly destroyed in the liver. Our 

profile analysis did not show increased genes involved in apoptosis among NK and T cells and 

“cell death” as a gene function category was also downregulated. Notably however, this 

phenomenon would be difficult to capture with scRNA sequencing due to exclusion of dead (but 

perhaps not dying) cells from liver tissue suspensions as producing individual libraries is 

expensive and sequencing is ideally performed only on living cells. There was a slight increase in 

apoptosis genes noted among myeloid cells, but this trend did not extend to any other cell type 

(Figure 8). Another hypothesis surrounding immune tolerance of the liver is a milieu of anti-

inflammatory cytokines and inhibitory regulators. In our analysis, the overall cellular functions in 

the immune system tended to be downregulated indicating that liver-specific immune cells are 

potentially in a state of globally decreased activity. This provides a potential explanation of the 

environment of liver immune cell tolerance at the single cell level.  
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There are limitations to this study. Further differences in scRNA seq technique (comparing 

10x Genomics to mCel-seq) likely introduces a differing amount of bias into the sequencing 

datasets. In addition, because this study explored pre-existing datasets, there was no ability to 

control for patient-specific parameters in this study design such as inclusion/exclusion based on 

liver function studies or other potentially relevant clinical factors including duration and storage of 

samples prior to processing. Despite this, combining scRNA seq and other genomics datasets for 

the characterization of normal physiology and disease processes will become a more prevalent 

practice and further efforts should be made to standardize the processes of pre-analytical 

processing variables as well as to enhance the integration abilities during data analysis.  

In conclusion, our results present an integrated dataset of scRNA seq results of the liver 

immune environment from ~32,000 cells across 17 human livers making it the largest human liver 

meta-dataset thus far. We generated immune subset expression profiles that describe the 

landscape of liver immune function and the phenotype of liver immune homeostasis. These 

results can be incorporated into future RNA sequencing studies and has implications for 

understanding mechanism of disease and identifying new therapeutic targets in immune-related 

diseases of the liver.  
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METHODS 

Institutional Review Board approval was not required for this study, as deidentified, publicly 

available data obtained from human subjects was analyzed. Data is available in the public domain 

as outlined below. 

Systematic Review and Data Acquisition 

A COMPREHENSIVE review of the literature for scRNA seq studies involving normal human liver 

yielded three recent publications: 1. Aizarani et. al., and based on the methods used in the study, 

it was referred to as “Liver Atlas, Cholangiocyte and Endothelial enriched” (LACEe), 2. Zhao et. 

al., referred to as “Liver CD45+ enriched” (LCD45e), and 3. MacParland et. al., referred to as 

“Non-biased Liver” (Lnb).3–5 Each raw dataset was found in the Gene Expression Omnibus, LACEe: 

GSE124395, LCD45e: GSE125188, Lnb: GSE115469.26  Datasets were imported into R as UMI 

count matrices using the RStudio interface. The workflow for isolation of our cell populations of 

interest from each dataset is summarized in Figure 1. Briefly, the CD45+ cell compartment was 

isolated in the LACEe and Lnb studies in order to extract the leukocyte population and exclude 

hepatocytes and other non-parenchymal cells. For LCD45e, the CD45 population was isolated 

prior to sequencing, and included cells derived from liver, spleen, and peripheral blood that had 

been barcoded for source identification. In this case, only the liver cells were extracted for 

analysis. Authors from each dataset were contacted for clarification on aspects of the datasets as 

needed in order to ensure the accuracy of our analysis.  

Data Analysis and Visualization 

The Seurat version 3.0 R toolkit was used for all data analysis due to its ability to integrate across 

datasets; the data analysis pipeline followed the tutorial outlined by the package developers.20,21 

To normalize the data, UMI counts were scaled by library size and a natural log transformation; 

gene counts for each cell are divided by the total UMI count of that cell, scaled by a factor of 
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10,000, and then transformed via a natural log plus 1 function (“NormalizeData”). For downstream 

analysis, normalized data is additionally scaled so that the mean expression across cells is 0 and 

the variance is 1 (“ScaleData”). In order to reduce the dimensionality of the data for clustering 

functions, Principal Component Analysis (PCA) was utilized, and we determined the first 30 

principal components explained sufficient observed variance (“RunPCA”). Next, to identify 

clusters within the reduced dimensional space, cells were embedded in a k-nearest 

neighborhood-based graph structure (“FindNeighbors”) and were then partitioned into clusters 

(“FindClusters”). Finally, to aid in visualization, Uniform Manifold Approximation and Projection 

(UMAP) was run over the reduced dimensional space (‘RunUMAP”) and identified clusters were 

projected on to the UMAP plot. Accounting for noise and batch differences between the three 

studies was done by using reference cells from each. These anchors were identified 

(“FindIntegrationAnchors”), which represent pairs of cells from each dataset identified and scored 

based on their close proximity using k-nearest neighborhood approach. These anchors are then 

used to measure the expression difference between studies (“IntegrateData”), which is then 

removed from the corresponding normalized data. Integration is run between the normalization 

and scaling steps.21  

 Utilizing the UMAP plot of the integrated data, we were able to manually identify four major 

immune subpopulations by plotting expression of known biomarkers and grouping previously 

identified clusters: myeloid cells, NK&T cells, B cells, and plasma cells (Supplemental Figure 1). 

CD3D was used to identify T lymphocytes, and NK cells were identified by expression of KLRF1 

and FCGR3A. The myeloid cell lineage was identified using FCGR3A and the specific marker, 

CD14. The B cell cluster was classified using the CD19 marker, and plasma cells were identified 

by SDC1 (CD138) expression.27–31 After clustering, immune cell proportions were quantified and 

characterized across studies using a Chi-squared test (α=0.05). Gene correlation analysis was 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430976doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430976


21 
 

performed across studies as pooled cell types and additionally with stratification by major cell type 

using both standard linear regression and rank-rank hypergeometric overlap (RRHO).  

Differential expression analysis  

DE genes were identified across immune cell subpopulations (i.e., between a particular cell 

subpopulation and all other cell subpopulations) within a dataset. Log normalized gene expression 

were used, averaging over all cells in a given subpopulation for a specific gene and taking the 

difference to the same of all other cell subpopulations (“FindMarkers”), using the Wilcoxon rank-

sum test for significance. Genes that were DE were examined both within an immune cell 

subpopulation and across studies. Similarly, DE genes were identified across datasets (i.e., 

pairwise between datasets) within a particular cell subpopulation using the same methods. To 

account for some technical variation between dataset, we calculated the difference of differences 

of a particular subpopulation between datasets and all other cell subpopulations between 

datasets. Log normalized gene expression was used as described above taking the difference of 

differences between dataset (pairwise) and cell subpopulation (particular versus all other), using 

a t-test for significance. 

The candidates for immune profile of human liver across our major cell types of interest were 

identified by applying differential expression analysis across immune cell subpopulations, while 

identifying genes which were not DE across datasets and pooling expression values.     

Pathway analysis 

Gene IDs, expression fold changes and p-values generated from differential expression analyses 

were imported into Ingenuity Pathway Analysis software (IPA, Qiagen). Core expression analysis 

was performed which generated canonical pathways which were upregulated or downregulated 

based on these data. Gene function heatmaps were also generated in order to provide a 

comprehensive expression profile.  
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Volcano Plots 

Pairwise comparisons of genes between data sets or cell types were conducted using Seurat 

“FindMarkers” function with default Wilcoxon Rank Sum test. Volcano plots were constructed 

using these results; genes were identified and colored based on P-adjBonfcorr<0.05 and a ratio of 

expression (exponentiated log fold change) ≥1.25 or ≤0.8. Additionally, differences of differences 

were calculated in a similar way comparing the differential expression between datasets and the 

differential expression between immune cell subpopulations. T-tests were performed to determine 

significance and genes were colored based on the previous criteria plus P-adjBonfcorr<0.05 of the 

difference of differences effect. 

Correlation Analysis 

Expression levels were averaged over cells and plotted pairwise between datasets. Scatter plots 

were fit with linear and quadratic regression models to show potential relationships. Additionally, 

genes were ranked based on their differential expression between cell types and these rankings 

were compared between datasets. Correlation between the rankings was assessed multiple 

ways. First via scatter plots and Spearman’s correlation coefficient. Second using Rank-Rank 

Hypergeometric Overlap from the RRHO package in R and constructing heatmaps showing 

regions of significant overlap between the ranked lists.32 

Heatmaps 

The top 10 DE genes between cell types were identified and combined between each dataset. 

Raw expression values for these genes were then normalized by subtracting the mean expression 

and dividing by the standard deviation of a given gene over all cells. Heatmaps were constructed 

based on these values; identified genes are shown as rows while cells are shown as columns. 

Cells are grouped based on cell type while genes are grouped based on the cell type differential 

expression from which they were identified.  
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Chord Plots 

Results from the pathway analysis were used to select cell functions that were relevant to the 

immune subpopulations. Cell functions and genes were linked to represent the presence of a 

connection between the two, yes/no. From there, plots were constructed (Circlize 

“chordDiagram”) by connecting selected cell functions to the genes that were identified performing 

them, grouping by cell function. 

 

 

 

 

 

 

DATA AVAILABILITY 

Data used in this study are publicly available in the Gene Expression Omnibus, LACEe: 

GSE124395, LCD45e: GSE125188, Lnb: GSE115469.  

 

CODE AVAILABILITY 

R code used for data analysis and creation of graphics is available upon request and can be 

accessed via github.  
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TABLES 

Table 1. Comparison of methods across three peer-reviewed single cell RNA sequencing studies of the liver  
 

LACEe Lnb LCD45e 
Samples 9 liver resection pts mCRC ICC 5 caudate lobes of DBD Ltxp donors 3 adult Ltxp donors blood, spleen & liver 
Perfusate HEPES HTK solution, then HBS + EGTA  Not addressed 
Cell fractionation PHHs and NPCs isolated, mixed then FACS  None Cell filtration, centrifugation and Ficol 
Removal of non-viable cells Gradient centrifugation Trypan blue exclusion eFluor 450 exclusion 
Preservation method Mix of cryopreserved and fresh Fresh Fresh 
Cell enrichment Yes - FACS None Yes - FACS 
Enrichment for Lymphocytes No No Yes - marker CD45 
Enrichment for LSECs Yes - marker CLEC4G No No 
Enrichment for MaVECs Yes - marker CD34, PECAM No No 
Enrichment for 
Cholangiocytes 

Yes - marker EPCAM No No 

Removal of low-quality cells Yes - excluded >2% KCNQ1OT1 transcripts Removed >50% mitochondrial content No 
Number of cells scRNA seq 10,372 8,444 70,706 
scRNA seq technique mCEL-Seq2 10x 10x 
Identification of cell types RaceID3 (mintotal = 1000, minexpr = 2, 

minnumber = 10, outminc = 2, cln = 15) 
Not addressed Seurat v3 

Samples across pts Co-clustered  Co-clustered  Co-clustered  
Different preps within pts Co-clustered Not applicable Not applicable 
Cell doublets Not addressed Not removed Removed 
LACEe Aizarani et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors 
Lnb MacParland et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations 
LCD45e Zhao et al. Single-cell RNA sequencing reveals the heterogeneity of liver-resident immune cells in human 
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Figure 1: Combining liver-specific scRNA seq data to create a meta-analysis of human liver immune cells. 

Schematic diagram summarizing the number of subjects and major pre-analytical variables pertaining to scRNA sequencing of human liver. Post-
experimental analysis performed in this study is highlighted in the shaded region. CD45+ cells were selected from the LACEe and Lnb studies. CD45+ 
cells (which were already pre-selected for in the LCD45e dataset) which were of liver origin were post-experimentally extracted as splenic and 
peripheral blood cells were also included in the original dataset. The scRNA seq analysis pipeline (Seurat v3 in R) was applied, then clustering and 
differential expression analysis were used to assess the ability to combine scRNA seq techniques and generate datasets for tertiary pathway analysis 
of immune function in the normal human liver. Created with BioRender.com.  
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Figure 2: Data visualization with clustering and gene expression correlation across datasets.  

a-c. UMAP plots of individual studies. d. Plot showing co-clustering across three single cell datasets. e-g. Gene expression correlation plots with 
solid lines showing linear and quadratic regressions. Dashed line representing idealized relationship. 
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Figure 3: Cell type composition over CD45-selected liver single cell RNA seq datasets. 

a. Cell clustering color-coded by each individual dataset repeated from Figure 2 for side-by-side comparison with panel 3b. b. Cell clustering color-
coded by major cell population based on immune cell subpopulation-specific markers. c. Bar graph representation of immune cell proportions across 
each individual dataset. d. Χ2 comparison showing significant differences in proportions of immune cell subpopulations. With pairwise analysis, most 
chi-squared values reached statistical significance except for plasma cells in LCD45e versus Lnb and for B Cells in Lnb versus LACEe (indicated by 
blue rectangles).  
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Figure 4: Correlation of gene expression based on immune cell subpopulation. 

Pairwise expression correlation analysis was made for each cell type. a. Gene expression among NK and T cells was compared between datasets. 
The black and gray panels show how well genes correlate between the three datasets and the dashed diagonal line represents an idealized 
relationship. The straight solid blue line represents the linear best fit and the curved solid blue line shows the quadratic relationship with linear 
correlation coefficients listed. Colored diagrams show heatmaps of the rank-rank hypergeometric overlap. Yellow regions indicate that for these 
pairwise comparisons, NK and T cells have a higher amount of agreement or overlap among the more highly expressed genes (lower left quadrant of 
the graph) and also with a good amount of agreement in genes that are expressed at lower levels (top right quadrant of the graph). b. The same 
analysis is repeated for myeloid cells. RRHO shows differing amount of overlap depending on the ranked gene expression. c. Correlation analysis for 
plasma cells. The best correlation is among genes with mid-to-low ranked expression. d. Correlation analysis for B cells. Correlation is maximized in 
the genes expressed at lower levels. 
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Figure 5: Differential gene expression analysis across datasets. 

a. Schematic diagram for identification of a differentially expressed (DE) gene. The blue cells represent different expression levels for a gene in each 
leukocyte subpopulation (e.g., expression in B cells) and the purple cells represent the expression levels of that same gene, but in all other cell 
subpopulations. Differential expression only takes levels from the B cell into account. We also examine the Difference of Differences (DoD) which 
takes the difference in expression between B cells and all other cell types for dataset #1 and subtracts it from the differences in expressed between 
B cells and all other cell types for dataset #2 which may help categorize the differential expression that is accounted for by technical differences 
between studies (such as sequencing depth) rather than biologically relevant changes. b. Volcano plots showing the number of DE genes (blue dots) 
and DoD genes (green dots) for each dataset condition as pairwise comparisons between studies and stratified by cell type. c. Lists of differential 
gene expression numbers, DoD genes and then the percent of DoD genes out of the number of DE genes.  
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Figure 6: Heatmap representation of dominant differentially expressed genes across each immune cell subpopulation.  

a. Heatmap of the most DE genes across leukocyte subpopulation plotted using cells from the LACEe dataset. b. Heatmap of the most DE genes 
across immune cell subpopulation plotted using cells from the Lnb dataset. c. Heatmap of the most DE genes across leukocyte subpopulation plotted 
using cells from the LCD45e dataset. For all heatmaps, z-scores are shown representing standardized, log normalized expression across cells for a 
given gene. d. Table of the list of genes used for heatmap analysis for each leukocyte subpopulation. Immune cell subpopulations are grouped from 
left to right: NK&T, myeloid cells, plasma cells then B cells and the gene lists going from top to bottom are ranked in the same order. The same gene 
lists were used to analyze cells from each of the three datasets. 
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Figure 7: Characterization of differentially expressed genes points to signaling pathways that differ 
between datasets. 
a. Pathway analysis of NK and T cells based on differential expression between the LACEe and Lnb datasets. b. 
Identification of canonical pathways altered between LCD45e and LACEe. c. Pathway analysis of NK and T cells 
based on differential expression between Lnb and LCD45e in NK and T cells. d-f. B cell pathway analysis as in a-
c. The same comparisons were made for myeloid cells and plasma cells and were largely similar to what is 
shown for the immune subpopulations represented in this figure. Bars represent -log(P values) of each canonical 
pathway’s likelihood of being altered between comparisons and was obtained with Ingenuity Pathway Analysis 
Software (Qiagen).   
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Figure 8: Phenotypic classification of CD45+ cells in normal human liver points to a low-activity 
cellular milieu. 
Genes that were DE when comparing one leukocyte subpopulation with other subpopulations were identified. 
From this set of genes, those which were not DE across three datasets were listed as candidate genes of interest. 
The expression values across datasets were pooled, and pathway analysis was applied to identify upregulation 
versus downregulation of diseases and functions with ‘activation Z scores’ (calculated from IPA software) for 
each of the liver immune cell subpopulations: B cells, myeloid cells, NK and T cells and plasma cells. P<0.05 
was used to establish significance. Gray rectangles denote functions which were not significantly altered within 
the particular cell type as a result of the DE analysis.  
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Figure 9: Gene Meta-signatures reveal differential expression signatures among immune cell 
subpopulations.  
a-d. Chord plots representing 14 immune cell-specific diseases or functions (Systemic Autoimmune Syndrome, 
Signal Transduction, Proliferation, Neoplasia, Inflammation, Infection, Differentiation, Chronic Inflammatory 
Disorder, Cell Viability, Cell Death, Cell Proliferation, Cell Movement, Binding, Activation) with links to the 
respective genes which have been identified as DE between the leukocyte subpopulation listed versus all 
others.  
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