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Abstract

Background. Cell-free methylated DNA immunoprecipitation-sequencing (cfMeDIP-seq) identifies genomic regions

with DNAmethylation, using a protocol adapted to work with low-input DNA samples and with cell-free DNA (cfDNA).

This method allows for DNAmethylation profiling of circulating tumour DNA in cancer patients’ blood samples. Such

epigenetic profiling of circulating tumour DNA provides information about in which tissues tumour DNA originates, a

key requirement of any test for early cancer detection. In addition, DNAmethylation signatures provide prognostic

information and can detect relapse. For robust quantitative comparisons between samples, immunoprecipitation

enrichment methods like cfMeDIP-seq require normalization against common reference controls.

Methods. Toprovide a simple and inexpensive reference for quantitativenormalization,wedevelopeda set of synthetic

spike-in DNA controls for cfMeDIP-seq.These controls account for technical variation in enrichment efficiency due to

biophysical properties of DNA fragments. Specifically, we designed 54DNA fragments with combinations ofmethylation
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status (methylated and unmethylated), fragment length (80 bp, 160 bp, 320 bp), G+C content (35%, 50%, 65%), and

fraction of CpG dinucleotides within the fragment (1/80bp, 1/40bp, 1/20bp).We ensured that the spike-in synthetic

DNA sequences do not align to the human genome.We integrated unique molecular indices (UMIs) into cfMeDIP-seq

to control for differential amplification after enrichment. To assess enrichment bias according to distinct biophysical

properties, we conducted cfMeDIP-seq solely on spike-in DNA fragments. To optimize the amount of spike-in DNA

required, we added varying quantities of spike-in control DNA to sheared HCT116 colon cancer genomic DNA prior to

cfMeDIP-seq. To assess batch effects, three separate labs conducted cfMeDIP-seq on peripheral blood plasma samples

from acute myeloid leukemia (AML) patients.

Results. We show that cfMeDIP-seq enriches for highlymethylated regions, capturing≥99.99%ofmethylated spike-in

control fragmentswith≤0.01%non-specific binding and preference for both highG+C content fragments and fragments

with more CpGs. The use of 0.01 ng of spike-in control DNA total provided sufficient sequencing reads to adjust for

variance due to fragment length, G+C content, and CpG fraction. Using the known amount of each spiked-in fragment,

we created a generalized linear model that absolutely quantifies molar amount from read counts across the genome,

while adjusting for fragment length, G+C content, and CpG fraction. Employing our spike-in controls greatly mitigates

batch effects, reducing batch-associated variance to ≤ 1% of the total variance within the data.

Discussion. Incorporation of spike-in controls enables absolute quantification of methylated cfDNA generated from

methylated DNA immunoprecipitation-sequencing (MeDIP-seq) experiments. It mitigates batch effects and corrects

for biases in enrichment due to known biophysical properties of DNA fragments and other technical biases.We created

an R package, spiky, to convert read counts to picomoles of DNA fragments, while adjusting for fragment properties

that affect enrichment. The spiky package is available on GitHub (https://github.com/trichelab/spiky) and

will soon be available on Bioconductor.

Contact: michael.hoffman@utoronto.ca

1 Introduction

Cell-freemethylatedDNA immunoprecipitation-sequencing (cfMeDIP-seq) identifiesDNAmethylationusing low-input

samples of cell-free DNA (cfDNA).This method detects DNAmethylation patterns reflective of distinct cancer types

from circulating tumour DNA, which arises from tumour cells shedding DNA into an individual’s blood.1,2 cfMeDIP-seq
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proves ideal when assessing peripheral blood plasma from cancer patients, where one may obtain only a small amount

of circulating tumour DNA and no indication of from where the circulating tumour DNA originates.

Sequencing assay methods, such as cfMeDIP-seq or RNA-seq, require a control for more accurate quantitative

comparison across samples and batches. Reference controls for sequencing assays have consisted of spike-in reference

DNA or RNA fragments of known sequence.3–7Without spike-in controls, one must assume that a given amount of

assayed material produces equal DNA or RNA yields in different experimental conditions, and that this also holds true

across all genomic regions.4 By normalizing quantification to a known amount of spike-in DNA put into a sample, we

can overcome this assumption, leading to more accurate results.4When carefully designed, spike-in controls can adjust

for specific technical biases.

In addition to adjusting for technical biases, spike-in controls act as experimental standards for quality control. The

addition of spike-in controls dramatically changes the interpretation of RNA-seq, chromatin immunoprecipitation-

sequencing (ChIP-seq), and other genomic assay results.3–7 As such, all quantitative genome-wide assays would benefit

from the addition of spike-in controls.4

Themost common approach to normalizing sequencing assay data consists in dividing the number of reads at

each genomic region by the total number of reads genome-wide.This approach addresses technical variance due to

sequencing depth, but it can mask differences in biological variables of interest. Normalizing data to a known amount

of spike-in DNA for each sample allows for more accurate detection of differences and adjustment of biophysical

properties of DNA fragments that can influence results.4,5

While other genomic assayshave longutilized spike-in controls,methodsmeasuring genome-wideDNAmethylation

have rarely used them.The previous cfMeDIP-seq protocol uses methylated and unmethylated Arabidopsis thaliana

DNA as a spike-in control to assess immunoprecipitation and binding efficiency to methylated DNA.2This approach

cannot correct for properties of specific methylated DNA fragments likely to influence results, such as G+C content,

fragment length, and CpG fraction. Other controls used in DNA methylation enrichment methods include setting

aside and sequencing a portion of input DNA without the enrichment procedure.8 This provides a reference point

to assess enrichment of DNA methylation overall. Sequencing input DNA, however, cannot adjust for properties of

individual fragments that can affect enrichment. Spike-in controls for bisulfite conversion methods for assaying DNA

methylation9,10 have no use in bisulfite-free enrichment methods, like cfMeDIP.

Here, we introduce new synthetic DNA spike-in controls for cfMeDIP-seq. Our synthetic spike-ins can measure

how DNA fragment properties, such as length, G+C content, and number of CpGs, can affect the number of reads

produced by some known amount of fragment. Our spike-in controls assess non-specific binding, an integral part of
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cfMeDIP-seq analysis. The spike-in controls also mitigate technical effects such as experiments performed by different

labs.We also use unique molecular indices (UMIs) to adjust for polymerase chain reaction (PCR) bias. To calculate

methylation specificity, we compare methylated fragments to unmethylated fragments after cfMeDIP-seq.We add a

knownmolar amount of spike-in controls to each sample.With this information, we apply a generalized linear model

to calculate molar amount, accounting for fragment length, G+C content, and CpG fraction.These spike-in controls

generate an absolute quantitativemeasure of methylated DNA, allowing for more robust comparisons between samples

and experiments.

2 Methods

2.1 Designing synthetic DNA spike-in controls

We used public paired-end, whole genome cfDNA sequence data to assess typical cfDNA fragment properties including

fragment length, G+C content, and the number of CpG dinucleotides.11We considered the number of CpGs as a fraction

of fragment length.

From the observed distribution of cfDNA fragment properties, we set the following spike-in fragment parameters:

• 3 fragment lengths: 80 bp, 160 bp, and 320 bp

• 3 G+C contents: 35%, 50%, and 65%

• 3 CpG fractions: 1/80bp, 1/40bp, and 1/20bp

These parameters generate 27 fragment combinations (3 fragment lengths×3 G+C contents×3 CpG fractions= 27).

We set the CpG fraction parameters so that every fragment length would have an integer number of CpGs. For exam-

ple, the 80 bp fragments have 1, 2, or 4 CpG dinucleotides, and the 160 bp fragments have 2, 4, and 8 CpG dinucleotides.

We used GenRGenS version 2.012 to construct 27 different first-order Markov models that generate sequences with

the desired parameters. For eachMarkovmodel, we generated numerous sequences.We then identified those sequences

that fulfilled two criteria: (1) no alignment to human genome and (2) no potential secondary structures.

Using blastn,13 we searched for alignment of the generated sequences to the human reference genome

(GRCh38/hg38).14We ensured no alignment of each synthetic sequence to the genome, and selected the sequences

with the lowest E-values in each search.

We used UNAFold software15 (Integrated DNA Technologies (IDT), Coralville, IA, USA) to check for secondary

DNA structure for 80 bp and 160 bp fragments. For 320 bp fragments, we used RNAstructure version 6.216 to check for

secondary DNA structures.
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We picked two sequences from those fulfilling our criteria for each of the 27 Markov models. We selected one

sequence for a methylated fragment, and one for an unmethylated fragment. This produced 54 desired spike-in control

sequences.

2.2 Synthetic fragment preparation

We acquired synthetic fragments for the spike-in control sequences from a commercial service (IDT, Coralville, IA, USA).

For the 80 bp and 160 bp fragments we used 4 nmol Ultramer DNA Oligonucleotides. For the 320 bp fragments we used

gBlocks Gene Fragments, obtaining 250 ng of each designed fragment.The two 160 bp fragments with 35% G+C content

and 1/20bp CpG fraction failed commercial design procedures, leaving us with 52 spike-in control fragments (Supple-

mentary Table 1).

We amplified the synthetic fragments by PCR.We used the High-Fidelity 2X Master Mix (New England Biolabs,

Ipswich, MA, USA, Cat #M0492L) and the fragments’ optimal annealing temperatures (Supplementary Table 1).We

purified amplified fragments using the QIAquick PCR Purification Kit (Qiagen, Hilden, Germany, Cat #28104). We

determined concentration of each synthetic fragment via NanoDrop (Thermo Fisher Scientific,Waltham, MA, USA).

For each fragment designed for methylation, we took 1 µg of synthetic DNA fragment, and methylated usingM.SssI

CpGmethyltransferase (Thermo Fisher Scientific,Waltham, MA, USA, Cat #EM0821).We incubated the methylation

reaction at 37 ∘C for 30min, then 65 ∘C for 20min.We purified the methylated product using the MinElute PCR Purifica-

tion Kit (Qiagen, Hilden, Germany, Cat #28004). To verify methylation, we digested the original PCR amplicon and the

methylated PCR amplicon with either HpyCH4IV, HpaII or AfeI restriction enzyme, depending on the cut sites each

fragment contained (Supplementary Table 1). We considered methylation successful when, after restriction digest,

the PCR amplicon had a single band when run on a 2% agarose electrophoresis gel. Then, using the known relative

molecular mass of each synthetic fragment, we determined its molar amount using the Qubit dsDNA HS Assay Kit and

a Qubit 2.0 Fluorimeter (Thermo Fisher Scientific,Waltham, MA, USA).

2.3 Assessing technical bias

To assess the performance and any potential biases of synthetic fragments as spike-in controls, we performed

cfMeDIP-seq using solely the spike-in control DNA pools as the input. The input pool consisted of 9.99 ng synthetic

spike-in DNA, with equimolar amounts of each fragment size within each fragment size pool, and equimolar amounts

of each methylation status (Supplementary Table 1).

We performed cfMeDIP-seq as previously described2 with slight modifications, detailed here. To account for PCR
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amplification bias, we used xGen Stubby Adapter and unique dual indexing (UDI) primer pairs (IDT, Coralville, IA, USA,

Cat #10005924).We performed adapter ligation overnight at 4 ∘C, adjusting final adapter concentration to 0.09 µmol by

dilution.

Figure 1: Experimental design using synthetic spike-in control DNA to (A) assess technical bias and (B) optimize
the synthetic DNA amount. Figure made with BioRender.

For each sample, we saved 10% of the DNA denaturation product as input (Figure 1, samples 1A and 2A). For

each sample, we amplified both input and outputs followed by purification and dual size selection using AMPure

XP beads (Beckman Coulter, Brea, CA, USA) selecting for fragments between 200 bp–500 bp, including the 120 bp

of adapters. These post-ligation fragment sizes reflect an original fragment length between 80 bp–380 bp. Samples

underwent sequencing (Princess Margaret Genomics Centre, Toronto, ON, CA) on a MiSeq 2.0 Nano flowcell (Illumina,

San Diego, CA, USA), paired-end 2×150bp, 1 million reads per flowcell (Figure 1).

2.4 Optimizing synthetic DNA amount

We determined the optimal amount of spike-in control DNA needed per experiment by adding varying amounts of

spike-in controls to sheared mycoplasma-free HCT116 genomic DNA (American Type Culture Collection, Manassas, VA,

USA, RRID: CVCL_0291). Optimizing the amount of spike-in control DNA added to an experiment avoids using a large

portion of the sequencing reads on spike-in fragments, saving most reads for the biological sample.We sheared the
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HCT116 genomic DNA using an LE220 ultrasonicator (Covaris,Woburn, MA, USA). Using AMPure XP beads (Beckman

Coulter, Brea, CA, USA), we size selected to ∼150 bp in length to mimic cfDNA input.We created 3 replicate samples

of sheared HCT116 cfDNA mimic with masses of synthetic spike-in control DNA of 0.1 ng, 0.05 ng, and 0.01 ng. We

performed the cfMeDIP-seq experiment as previously described.2 Samples underwent sequencing (Princess Margaret

Genomics Centre, Toronto, ON, CA) on a NovaSeq 6000 (Illumina, San Diego, CA, USA), paired-end 2×100bp, 60 million

single-end reads per sample (Figure 1).

2.5 Bioinformatic preprocessing

We performed the same bioinformatic preprocessing on all samples from all experiments.We trimmed adapters using

fastp version 0.11.517 --umi --umi_loc=per_read --umi_len=5 --adapter_sequence=AATGATACGGCGACCAC

CGAGATCTACACATATGCGCACACTCTTTCCCTACACGAC --adapter_sequence_r2=CAAGCAGAAGACGGCATACGAGAT

ACGATCAGGTGACTGGAGTTCAGACGTGT.We removed reads with a Phred score18 <20, the default of Bowtie2.We aligned

reads to the sequences of our designed fragments using Bowtie219 version 2.3.5 bowtie2 --local --minins 80

--maxins 320, writing unaligned reads to a separate file.We subsequently aligned the previous unaligned reads to our

synthetic DNA to the human reference genome (GRCh38/hg38).14 In every sample, over 98% of reads aligned to either

spike-in control sequences or to the human genome.We discarded read pairs when at least one read in the pair did

not align or had low quality, defined as Phred score18 <20.We collapsed fragments with the same UMI files counting

them as one fragment.We used samtools20 version 0.10.2 to convert sequence alignment/map (SAM) files to binary

alignment/map (BAM) files.20

2.6 Absolute quantification from spike-in control data

We created a Gaussian generalized linear model to predict molar amount from deduplicated spike-in control read

counts based on UMI consensus sequence, G+C content, CpG fraction, and fragment length. Using this method, we

can absolutely quantify cfDNA. To do this, we used the stats package in R21 version 3.4.1. Our model estimates molar

amount 𝜂 for each DNA fragment present in the original sample using regression coefficients 𝛽 learned for each

experiment. For each fragment, this model directly includes read count 𝑥reads, fragment length 𝑥len, G+C content 𝑥GC,

and CpG fraction 𝑥CpG fraction. The final model estimates the molar amount 𝜂,

𝜂 = 𝛽0+𝛽reads𝑥reads+𝛽len𝑥len+𝛽GC𝑥GC+𝛽CpG fraction 3√𝑥CpG fraction.

To reduce the left skew of CpG fraction, we used a cube root transformation.
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To calculate the proportion of a given fragment that overlapped with the defined 300 bp windows, we used bedtools

version 2.29.2 intersect.22We calculated an adjusted molar amount 𝜂′ to only consider the portion of the window each

fragment overlapped. For this calculation, we multiplied the molar amount 𝜂 by the length of the overlap between the

fragment and the genomic window ℓ ∈ [1bp,300bp], divided by the window size ℓ∗ = 300bp:

𝜂′ =
ℓ
ℓ∗

𝜂.

2.7 Identifying regions to be filtered

To assessmultimapping reads thatmight influence themolar amount estimate, we usedUmap23multi-readmappability

scores.We used k100 mappability scores, representing the largest read lengths available.We annotated each 300 bp win-

dow with its minimum mappability score. We assessed the relationship between molar amount and mappability

scores.

We calculated standard deviation ofmolar amount between the two replicate samples for whichwe spiked 0.01 ng of

synthetic DNA into 10 ng of HCT116 genomic DNA.We assessed the relationship between standard deviation of molar

amount between replicates, excluding 1 070 387 simple repeat regions,24 239 461 regions listed in the Encyclopedia of

DNA Elements (ENCODE) Project25 blacklist,26 345 647 regions with mappability score ≤0.5, and 9 587 560 regions with

standard deviation ≥0.25. This left 4 551 870 genomic windows in the analyses.

We used HOMER27 version 4.10.4 to investigate whether specific transcription factor binding motifs associated

with molar amount outliers.We compared the outliers to HOMER generated randomized genomic background with

window size 300 bp.

2.8 Correlation between picomoles andM-values

We removed simple repeat regions,24 regions listed in the ENCODE blacklist,26 regions with Umap k100-multi-read

mappability ≤0.5, and regions with standard deviation of molar amount ≥0.25. As described above, we estimated molar

amount, using a generalized linear model (𝑟2 = 0.93).We prioritized models that performed better on 160 bp fragments,

as we physically size selected for these fragments.

To comparemolar amount to another complimentarymeasure of DNAmethylation, we had genomic DNA from the

cell line HCT116 profiled (Princess Margaret Genomics Centre, Toronto, ON, CA) using the InfiniumMethylationEPIC

BeadChip array (Illumina, San Diego, CA, USA). We prepared these samples as technical replicates of the HCT116

genomic DNA that we later spiked with 0.01 ng spike-in control.We normalized and preprocessed array data using
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sesame28 version 1.8.2.We annotated CpGs on the array to our 300 bp genomicwindows.When>1CpGprobe annotated

to a window, we calculated the mean probe M-values across the window.

We assessed correlation between array M-values and picomoles, and between array M-values and read counts.

We compared to M-values rather than 𝛽 values because 𝛽 values have high heteroscedasticity.29 As cfMeDIP-seq

preferentially enriches for highly methylated regions, we hypothesized that regions for which the array has more CpG

probes would correlate to both molar amount and read counts better than regions with less CpG coverage. As such, we

assessed the correlation independently at windows containing ≥3, ≥5, ≥7, and ≥10 CpG probes.

2.9 Examining consistency across experimental batches

To experimentally introduce batch effects, we provided a sample of 10 ng of cfDNA obtained from peripheral blood

plasma of 5 acutemyeloid leukemia (AML) patients containing 0.01 ng of our spike-in controls to 3 independent labs.We

obtained the deidentified patient samples, previously included in Shen et al.,1 from the Leukemia Tissue Bank, Princess

Margaret Cancer Centre, University Health Network with informed consent following approval by the University Health

Network Research Ethics Board (01-0573). Blood was collected at the time of diagnosis in EDTA tubes. Samples were

spun and plasma frozen in Eppendorf tubes at −80 ∘C until use. As a blood cancer, leukemia generates a high amount of

plasma cfDNA, allowing us to have sufficient cfDNA to divide into three technical replicates of 10 ng each.

Each lab performed the cfMeDIP-seq method described by Shen et al,2 with a variety of procedural modifications,

detailed here.The changes emulated batch effects that would be commonly seen in publicly available data fromdifferent

labs for different studies. Labs 1 and 3 used the same IDT xGen Duplex Seq adapters with 3 bp UMI, as described above.

Lab 2 used custom IDT adapters with 2 bp degenerate UMI, as previously described.30 For ligation of adapters, Labs 1

and 2 incubated at 4 ∘C for 16 h, while Lab 3 incubated at 20 ∘C for 2 h. Labs 1 and 3 used Antibody 1 (Diagenode, Denville,

NJ, USA, Cat #C15200081-100, Lot #RD004, RRID: AB_2572207), while Lab 2 used Antibody 2 (Diagenode, Denville, NJ,

USA, Cat #C15200081-100, Lot #RD001, RRID: AB_2572207). Lab 1 and 2 used 15%methylated lambda filler DNA and

85% unmethylated lambda filler DNA. Lab 3 used 100% unmethylated lambda filler DNA.

For amplifying the final library, the batches had different numbers of PCR cycles. Lab 1 ran 13–15 cycles, optimized

per sample, Lab 2 ran 13 cycles, and Lab 3 ran 11 cycles. Lab 1 and 2 sequenced DNA with a NovaSeq 6000 (Illumina,

San Diego, CA, USA), paired-end 2×100bp. Lab 3 sequenced DNA on a NextSeq 550 (Illumina, San Diego, CA, USA),

paired-end 2×75bp. Lab 1 obtained 60 million reads per sample, Lab 2 obtained 100 million reads per sample, and

Lab 3 obtained 85 million reads per sample.

We assessed whether spike-in controls mitigated batch effects on samples for which we calculated molar amount.
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To do this, we performed principal component analysis (PCA) on four different quantification methods:

1. read counts only, without the use of spike-in controls

2. read counts preprocessed using QSEA version 1.16.0,31 the current standard processing pipeline for the

methylated DNA immunoprecipitation-sequencing (MeDIP-seq) data

3. molar amount, without filtering

4. molar amount, with filtering

To investigate whether known variables associated with any of the principal components, we performed two-way

analysis of variance (ANOVA) between each principal component and each categorical variable. Categorical variables

included: batch, sequencing machine, adapters, samples, and sex (inferred byY chromosome signal).We converted the

resulting F-statistic to an effect size, Cohen’s 𝑑,32 using the compute.es package33 version 0.2.5 and R version 3.4.1.We

adjusted p-values for multiple test correction using the Holm-Bonferroni method.34

3 Results

3.1 Spike-in controls confirm cfMeDIP’s high efficiency and specificity

We performed cfMeDIP-seq directly on the synthetic spike-in control fragments. For each sample, we saved 10% of

the mass before performing cfMeDIP-seq. This acts as an input control (Figure 1). In input samples, we observed

51% of the input fragments methylated and 49% unmethylated. After cfMeDIP, 97% of the output fragments were

methylated (Figure 2A,B). The enrichment for methylated sequences further supports the validity and high efficiency of

cfMeDIP-seq.

After cfMeDIP, signal frommethylated fragments for both the synthetic spike-in control alone (97% of spike-in

control fragments) and 10 ng HCT116 DNA with 0.01 ng spike-in (99.99% of spike-in control fragments) showed an

enrichment of 160 bp fragments.We expected this enrichment due to our size selection step for insert size fragments

between 80 bp–380 bp.We also observed enrichment of fragmentswith higher G+C content and higher CpG fraction (Fig-

ure 2B,C).

Signal from unmethylated fragments for both the synthetic spike-in control alone (3% of spike-in control fragments)

and 10 ng HCT116 DNA with 0.01 ng spike-in (0.01% of spike-in control fragments) had no association with fragment

lengths, G+C content, or CpG fraction (Figure 2B,C).This suggests the low amount of unmethylated fragment signal

arose from random non-specific binding and was not confounded systematically with fragment length, G+C content, or

CpG fraction.
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Figure 2: Assessing biases in fragment length, G+C content, and CpG fraction in (A) input spike-in control DNA
without cfMeDIP-seq, (B) output spike-in control DNA, after cfMeDIP-seq and (C) 0.01 ng spike-in control DNA
added to HCT116 replicates. Blue: methylated fragments; grey: unmethylated fragments. Circle: sample 1; trian-
gle: sample 2. Solid line: mean of the two samples.
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3.2 Low-input spike-in control accounts for technical variance

To determine the optimal amount of spike-in control DNA to be added to each sample, we assessed the the proportion

of reads used towards our spike-in controls.We compared spike-in control reads to the total number of reads used for

our biological sample, HCT116 genomic DNA.We optimized the amount of spike-in controls to be used in subsequent

experiments.This allowed us to maximize reads to our biological sample of interest while obtaining sufficient reads

from the spike-in controls to correct for technical bias. Adding in 0.01 ng of our synthetic spike-in control DNA before

cfMeDIP-seq used <1% of the reads for the spike-in controls.We retained >650 000 reads of spike-in control sequence

for analysis while leaving the rest of the reads for our biological sample. Therefore, we decided to use 0.01 ng of spike-in

control fragments in subsequent experiments.

The 0.01 ng of spike-in control DNA added to 10 ng of HCT116 genomic DNA revealed ≥99.99% specificity of

methylated DNA with ≤0.01% total non-specific binding to non-methylated fragments (Figure 2C). We calculated

methylation specificity by dividing the total number of methylated fragments by the total number of spike-in control

fragments. The cfMeDIP process also enriched for the 160 bp fragments we physically size selected for and for higher

G+C content. Fragments that have CpG present at only 1/80bp in the experiment with 10 ng of HCT116 with 0.01 ng of

spike-in control DNAwere represented by≤1% of reads (Figure 2C).The same patterns persistedwhen spiking in 0.05 ng

and 0.1 ng spike-in control DNA into 10 ng of HCT116 cell line.

3.3 Removing problematic regions eliminates some technical artifacts

From our normalized data, we removed regions containing simple repeats, the ENCODE blacklist regions, and regions

with mappability scores ≤0.5.We noticed that many regions with high molar amount also had high standard deviation

of molar amount between replicate samples. Thus, we removed regions where standard deviation of molar amount

between replicates was ≥0.25.

After removing the high standard deviation regions, we observed no relationship between molar amount and

standard deviation of molar amount, and no relationship betweenmolar amount and mappability. This suggests that

removing regions that have high standard deviation of molar amount between replicates can reduce technical artifacts.

Regions with high standard deviation of molar amount between replicates perform inconsistently, leading to inaccurate

quantification of DNAmethylation.

Eleven genomic windows associated with high predicted molar amount (Figure 3). These regions all had molar

amount≥2 pmol (Table 1). All of these 11 windowsmatch repetitive elements, predominantly short interspersed nuclear

elements (SINEs), mostly from the Alu family. Most of the Alu elements belonged to the older S and J subfamilies36 (Ta-
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Chroma Startb Endb Amount Repeat elementc Repeat familyc Repeat namec

13 95 176 201 95 176 500 78.2 pmol SINE Alu AluJo
2 120 383 401 120 383 700 55.0 pmol SINE MIR MIR_Amn
12 95 476 201 95 476 500 11.7 pmol SINE Alu AluSx
22 20 900 401 20 900 700 6.3 pmol SINE Alu AluJb, AluY
17 1 025 101 1 025 400 5.3 pmol SINE Alu AluYe5, AluSx1
X 44 613 001 44 613 300 4.2 pmol SINE Alu AluSp, AluJr
1 44 582 701 44 583 000 3.8 pmol SINE Alu AluSx1
8 139 704 301 139 704 600 3.7 pmol Low complexity — G-rich
2 224 230 501 224 230 800 2.5 pmol LTR ERV1 HERVH-int
17 3 521 101 3 521 400 2.5 pmol LINE, DNA transposon L2, hAT-Blackjack L2b, MER63D
16 11 578 801 11 579 100 2.4 pmol LINE, SINE L1, Alu L1MD3, AluSp

Table 1:The 11 genomic windows of length 300 bp with predicted molar amount ≥𝟐𝐩𝐦𝐨𝐥. Sorted by decreasing
molar amount.
a Chromosome.
b GRCh38/hg38, genomic position 1-start, fully closed.
c All RepeatMasker35 version 3.0 track repeat elements, families, and names that overlap our 300 bp genomic windows.

Figure 3: Two-dimensional histogram of the number of reads found in 300 bp windows, as binned by molar
amount and either (A) standard deviation of molar amount or (B) Umap k100 multi-read mappability. Only in-
cludes windows that do not overlap with University of California, Santa Cruz (UCSC) simple repeats and the ENCODE
blacklist, and regions with Umap k100 multi-read mappability scores ≤0.5.
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ble 1). We searched HOMER27 for transcription factor binding motifs associated with molar amount, but found no

significant motifs.

3.4 Absolute quantification correlates with M-values

We compared molar amount to M-values from the EPIC array.We used our generalized linear model to calculate molar

amount of cfMeDIP-seq methylated DNA fragments for each 300 bp genomic window. Molar amount significantly

correlatedwith arrayM-values over 300 bp in ourHCT116 genomicDNA samples (𝑟 ≥ 0.63; Figure 4A,C,E,G). Correlation

increased when we restricted analyses to 300 bp windows with ≥5 CpG probes on the array (𝑟 = 0.79; Figure 4C).This

reflected cfMeDIP-seq’s preference for methylated, CpG-dense reads.

We compared the current standard of read counts to M-values (Figure 4B,D,F,H). Molar amount correlated with

M-values similarly to read counts, but provides the advantage of absolute quantification.

3.5 Spike-in controls significantly mitigate batch effects

To determine whether our spike-in controls mitigate batch effects, we provided aliquots of cfDNA samples from 5 AML

patients to three different labs. Each lab performed cfMeDIP-seq on each of the 5 samples with slight variations.

We performed PCA to assess if any batch variables drive any of the top principal components. Principal component 1

explains 78% of the variance and associatedwith processing batch for raw read count data without spike-in controls (Fig-

ure 5A). QSEA normalization only reduced the variance explained by principal component 1 to 75%. Even with QSEA

normalization, principal component 1 associated with the batch variable unmethylated lambda filler DNA (Figure 5B).

The correlation of principal component 1 to unmethylated filler DNA only appeared after QSEA normalization, suggest-

ing that QSEAmay have introduced stochastic variance into the data. QSEA normalization principal component 1 still

associated with batch, although not statistically significantly after multiple test correction.

Using spike-in controls greatly reduced batch effects, even with significantly different protocols between batches.

Quantifying the data by molar amount generated with all genomic regions shifted the association of batch processing

variable to principal component 2, explaining ≤5% of variance (Figure 5C). Our suggested filtering, including removing

simple repeats, the ENCODE blacklist regions, and regions with lowmappability, further shifted the association of batch

processing to principal component 5, explaining only 1% of variance (Figure 5D).

We further investigated principal component 5 using spike-in controls and removing simple repeats, the ENCODE

blacklist regions and regions with lowmappability. Examining the top 10% of windows (𝑁 = 258254) driving the ex-

plained variance, 72%matched to RepeatMasker35 repetitive elements. Of themapped repetitive elements, 72%mapped
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Figure 4: Correlation of two measurements of fragment methylation by cfMeDIP and EPIC array M-value for
300 bp genomic windows. (A,C,E,G) Molar amount calculated fromHCT116 samples correlated to EPIC arrayM-
values. (B,D,F,H)Read counts calculated from the same samples, ignoring the spike-in controls. (A,B) 37 714win-
dows with ≥𝟑 CpG probes represented on the EPIC array. (C,D) 7975 windows with ≥𝟓 CpG probes represented
on the EPIC array. (E,F) 2066 windows with ≥𝟕 CpG probes represented on the EPIC array. (G,H) 158 windows
with ≥𝟏𝟎 CpG probes represented on the EPIC array.
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Figure 5: Principal component analyses of cfMeDIP results normalized through 4 different strategies, and asso-
ciations with experimental variables. (Left) Proportion of the variance explained by each principal component.
(Right) Association between known variables, both technical and clinical, and principal component. Cohen’s 𝑑 is an
effect size of standardized means between variable. *** 𝑝 < 0.001. (A) Raw read counts without any normalization.
(B) Read counts normalized usingQSEA. (C)Data normalized using spike-in controls. (D)Data normalized using
spike-in controls and removing regions in UCSC simple repeats, in the ENCODE blacklist, and with Umap k100
multi-readmappability scores ≤𝟎.𝟓.
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to Alu elements. Batch effects associated with repetitive elements suggest inconsistent or inaccurate measures of DNA

methylation at these regions.

4 Discussion

The data above establish the validity of using our synthetic spike-in control DNA to absolutely quantify cfDNA in

cfMeDIP-seq experiments.We showed that technical bias exists in the cfMeDIP-seq data, and that the use of our spike-

in controls helps mitigate these biases. In cfMeDIP-seq data not using the spike-in controls, the batch effects may be

stark as Lab 3 used unmethylated lambda filler DNA. The spike-in controls successfully mitigated the effect of this

change. One can use the signal from unmethylated spike-in control reads to calculate methylation specificity for each

sample. To reduce technical artifacts, one must remove problematic genomic regions prior to analysis.

Despite removing problematic genomic regions, some remaining regions hadmuch higher predictedmolar amount

than all other genomic regions. The high molar amount genomic regions consisted mostly of repetitive elements,

predominantly SINEs (Table 1).While these regions had high CpG density, our model already adjusted for CpG fraction.

This made CpG density an unlikely driver of high molar amount.

Wemay see over-representation of highmolar amount in some repetitive regions due to the characteristic hyperme-

thylation of these regions.36 Had we not removedmany repetitive regions when removing regions listed in the ENCODE

blacklist and regions with lowmappability, we may have observedmore genomic regions with predicted high molar

amount. Regions with high molar amount that map to repetitive elements contain many extra copies not present in the

reference genome.These regions would appear uniquely mappable, and thus not removed by our previous filtering

steps.

HCT116 likely has problematic genomic regions not found in the ENCODE blacklist. This arises from the relative

dearth of ENCODE data available for the blacklist generation process, compared to cell types in the ENCODETier 1 and

Tier 2 categories.

Depending on the experimental question, some may choose to go beyond our filtering recommendations and

remove all repetitive elements, such as all long interspersed nuclear elements (LINEs) and all SINEs. Given that, after

filtering, only 11 genomic windows had molar amount ≥2 pmol, removing all repetitive elements would not affect

results drastically.

Both molar amount in picomoles and read counts correlated to M-values.The strength of this correlation varied

with the number of CpGs represented on the EPIC array for a genomic window.We expect the increase in correlation

with more CpGs as cfMeDIP-seq preferentially enriches for hypermethylated regions, and picks up fewer fragments in
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CpG-sparse regions. Additionally, if the array has fewer probes representing a 300 bp genomic region than that region

has CpGs, it may poorly represent DNAmethylation for the entire 300 bp.

To facilitate the use of our spike-in controls, we have created an R package, spiky, to help process data generated

from cfMeDIP-seq experiments that include the spike-in controls. This package trains the Gaussian generalized linear

model and predicts molar amount in picomoles on user data. The spiky package is available on GitHub (https:

//github.com/trichelab/spiky) and will soon be available on Bioconductor.37

Incorporating these spike-in controls in future cfMeDIP-seq experimentswill adjust for technical biases andmitigate

batch effects, improving cfMeDIP-seq data overall.

Data availability

We deposited processed data and raw non-human data in the Gene Expression Omnibus38 (GEO accession: GSE166259).

We deposited raw data for the AML samples in the European Genome-phenome Archive39 (EGA).

Code availability

The spiky package is available on GitHub (https://github.com/trichelab/spiky) under the GNU General

Public License version 2 license. Other scripts are available on GitHub (https://github.com/hoffmangroup/

2020spikein) and deposited on Zenodo (https://doi.org/10.5281/zenodo.4533340).
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