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Abstract  

Objective. Polygenic prediction of type 2 diabetes in continental Africans is adversely 

affected by the limited number of genome-wide association studies (GWAS) of type 2 

diabetes from Africa, and the poor transferability of European derived polygenic risk scores 

(PRS) in diverse ethnicities. We set out to evaluate if African American or multi-ethnic 

derived PRSs would improve polygenic prediction in continental Africans. 

 

Research Design and Methods. Using the PRSice software, ethnic-specific PRSs were 

computed with weights from the type 2 diabetes GWAS of the Million Veteran Program 

(MVP) study. The  South African Zulu study (1602 cases and 976 controls) was used as the 

target data set. Replication and assessment of the best predictive PRS association with age at 

diagnosis was done in the Africa America Diabetes Mellitus (AADM) study (1031 cases and 

738 controls) . 

 

Results. The African American derived PRS was more predictive of type 2 diabetes 

compared to the European and multi-ethnic derived scores. Notably, participants in the 10th 

decile of this PRS had a 3.19-fold greater risk (OR 3.19; 95%CI (1.94-5.29), p = 5.33 x10-6) 

of developing diabetes and were diagnosed 2.6 years earlier compared to those in the first 

decile.  

 

Conclusions African American derived PRS enhances polygenic prediction of type 2 

diabetes in continental Africans. Improved representation of non-Europeans populations 

(including Africans) in GWAS, promises to provide better tools for precision medicine 

interventions in type 2 diabetes. 
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Introduction  

The global prevalence of diabetes mellitus in 2019 was estimated to be 463 million 

individuals(1), of which 19.4 million are from Africa and 90% of them had type 2 diabetes. 

African countries are adversely affected by limited resources to manage this burden. 

Nonetheless, by 2045 it is projected that Africa will experience the largest increase of 

diabetes prevalence in the world of 143% (1; 2). In addition, the highest proportion of 

undiagnosed (59.7%) people living with diabetes in the world reside in Africa(1). Therefore, 

urgent strategies and resources for improving screening and early identification interventions 

are required to help curb this pandemic in Africa. 

 

Type 2 diabetes is a multifactorial disease, that is hypothesised to be increasing in prevalence 

due to the interaction of genetic and environmental factors(3). Although the genetic factors 

are stable overtime, the surge in diabetes prevalence over the past decades is thought to be 

caused by urbanization, and adoption of westernized lifestyles characterised by consumption 

of energy dense foods and physical inactivity(3; 4). However, diabetes has been noted to be 

preventable and its onset delayed for 15 years by diet and exercise interventions in the 

Diabetes Prevention Program(5). Since diet and exercise strategies are readily accessible and 

relatively low-cost, coupling these lifestyle interventions with approaches that identify people 

more susceptible to develop diabetes earlier, might effectively lower the diabetes burden. The 

use of polygenic risk scores for early identification of people that are more genetically 

susceptible to develop type 2 diabetes is such an approach(6). Recent studies conducted in 

Europeans have indicated that individuals in the 10th decile have 5.21-fold higher risk 

(OR=5.21; 95% CI 4.94–5.49) of developing diabetes compared to those in the first decile(7). 

However, evidence exists of the poor transferability European derived polygenic scores in 
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diverse populations. For example, Martin et al. 2019 reported that European PRSs had a 4.9-

fold reduced predictive in Africans Americans across 17 traits. There is a now a concern that 

African ancestry and other similarly under-studied population groups may not benefit from 

the clinical translation efforts of these risk polygenic scores and thereby further exacerbate 

existing health disparities (8; 9).  

 

Large multi-ethnic cohorts such as the Million Veteran Program improve the representation 

of African Americans in GWAS and offer a promise of improved polygenic prediction in this 

group (10). However, the representation of continental African in GWAS is still very low, 

both in the number of studies and the total number of study participants. For example, Type 2 

diabetes GWAS studies with over a million Europeans participants are being reported while 

the sample sizes of continental Africans remain under 10,000 (7; 11). Therefore, continental 

Africans face a much worse threat than African Americans of under-representation in 

precision medicine efforts for type 2 diabetes(9). It has been reported that multi-ethnic PRS 

(compared to European only PRS) might enhance prediction in diverse populations(12; 13). 

However, the predictive ability of the multi-ethnic derived PRS and that of African 

Americans (who have ~80% African admixture) is yet to be evaluated in continental Africans 

(12; 13). We set up this study to evaluate the predictivity of European, African American and 

multi-ethnic derived polygenic risk scores  for type 2 diabetes in continental Africans.  

 

Methods 

Study participants 

Participants were from the Durban Case Control (DCC) study (1602 cases) and 976 controls 

from the Durban Diabetes Study (DDS) and collectively there are regarded as the South 

African Zulu study (14). These individuals were above 18 years, not pregnant, and from 
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urban black African communities in Durban, South Africa(14). The WHO criteria was used 

to define type 2 diabetes status. The replication study participants were from the AADM 

study which has been described in detail elsewhere(15-17). The 1031 cases and 738 controls 

from this study were enrolled at university medical centers in Nigeria, Ghana and Kenya(17). 

In this study, diabetes was defined based on oral glucose tolerance test, fasting glucose or 

exhibiting symptoms of diabetes(17) . Written informed consent was completed by the study 

participants. The respective studies were approved by relevant ethics committees under the 

following references DCC (BF078/08), DDS (BF030/12) and AADM (14/WM/1061). 

  

Genotyping and Imputation 

Participants in the South African Zulu study were genotyped using the Illumina Multi-Ethnic 

Genotyping Array (Illumina, Illumina Way, San Diego, CA, USA). The Affymetrix Axiom 

PANAFR SNP array or Illumina Multi-Ethnic Genotyping Array was used to genotype 

participants in the AADM study. Detailed quality control and imputation for these studies has 

been described elsewhere(11; 18). A minimum MAF threshold of 0.5% and imputation 

information score > 0.4 was applied(11). 

 

Statistical Analysis 

PRSice 2 software was used to implement the clumping and threshold approach for 

developing PRS. Clumping distance of 500kb and r2 of 0.5 were parameters used for 

computing PRS. GWAS summary statistics from the Million Veteran Program (MVP) 

study(7) were used as the base (discovery) while genotype data from the South African Zulu 

study and AADM was used as the target data and replication datasets respectively as 

illustrated in Table 1. The receiver operating curves were computed in R using the pROC 

package to evaluate the discriminative ability of the PRS from the selected ethinicities. The 
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best predictive PRS was selected based on the Nagelkerke R2 (Supplementary Table 1) and 

the area under the curve (AUC)  see Table 1. Logistic regression models were used to 

evaluate the predictive capacity of the PRS as shown in Figure 1A and C. These models were 

corrected for age, sex, body mass index (BMI) and residual population 

structure using principal components. Finally, a linear regression model was used to evaluate 

whether age of diagnosis in patients with diabetes (n=1031) is affected by PRS in AADM 

study , of which the results are shown in Figure 1B. 

 

Results 

The African American derived PRS had the best predictive capability for type 2 diabetes in 

continental Africans compared to the European, and the multi-ethnic PRS (Table 1). 

Comparable odds ratios were noted for this PRS in the South African Zulu study (OR 1.58; p 

= 4.8 x 10-9) and AADM study (OR 1.56, p = 4.81 x 10-21) independent of the fact that 

participants originate from different geographical regions of Africa.  

 

Table 1 Comparisons of the predictive ability of ethnically derived PRS on type 2 

diabetes in continental Africans 

 Ancestry 

 Multiethnic African 
American 

European African American 
Replication 

DiscoveryDataset     
Cases 228,499 24,646 148,726 24,646 
Controls 1,178,783 31,446 965,732 31,446 
Target Data Set     
Cases 1,602 1,602 1,602 1,031 
Controls 981 981 981 738 
PRS parameters     
P-value threshold 3 x 10-4 5 x 10-8 0.406 5 x 10-8 
Number of SNPs 41,815 65 1,441,315 60 
#AUC % 56.5 58.6 56.2 58.8 
*OR(95%CI) 1.29 (1.16-1.43) 1.58 (1.36-1.84) 1.01 (1.00-1.01) 1.56 (1.47-1.66) 
*P-value 3.52 x 10-6 4.80 x 10-9 9.54 x10-6 4.81 x 10-21 
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*models adjusted for ancestry indicated by 5 principal components, age, sex and BMI; OR = odds ratio; CI = confidence interval. 
#AUC = area under the curve; for the PRS adjusted for ancestry indicated by five principal components 

 

The participants in the 10th decile of the African American derived PRS had a more than 3-

fold higher risk for developing type 2 diabetes compared to those in the first decile in both 

the South African Zulu study (OR = 3.19; p = 5.33 x 10-6) and in the AADM study (OR 

=3.11;p = 7.59 x 10-14). Contrariwise, the European derived PRS had a lower predictive 

ability in continental Africans. The participants in the 10th decile of this PRS had 1.83-fold 

(OR = 1.83; p = 0.015) higher risk of type 2 diabetes compared to those in the first decile 

(Figure 1A). On average, participants in the 10th decile of the African American PRS in the 

AADM study were diagnosed with type 2 diabetes 2.6 years earlier (Beta = -2.61; p = 0.046) 

than participants in the first decile (Figure 1B). 

 

The median of the African American PRS  distribution in the cases was 60% and 50% 

controls indicating that more cases were in the upper deciles of the score compared to 

controls in the South African Zulu study as shown in Figure 1C. The model with the 

conventional risk factors of age, BMI, and gender had an area under the curve (AUC)/C -

statistic of 85.6% while that of the African American PRS and five PCs was 58.6% (Figure 

2). The AUC for prediction of type 2 diabetes increased by 0.6% with the addition of the PRS 

to the conventional risk factors.  
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Figure 1 A. Shape plot for the difference in odds ratio for type 2 diabetes (adjusted for age, 

sex, BMI and five principal components) in reference to the 1st decile for the African 

(African American), European derived PRS in the South African Zulu study and the 

replication of the African American derived PRS in the AADM study. B. Shape plot for the 

difference of age at diagnosis for type 2 diabetes in the AADM study for the African 

American derived PRS. C. Box plots showing the distribution of the Africa American derived 

PRS in type 2 diabetes case  and controls of the South African Zulu study.  
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Figure 2. Receiver operating curves for the African Americans derived PRS and 

conventional risk factors for the prediction of type 2 diabetes in the South African Zulu 

study. Abbreviations; AUC= area under the curve, 5PCs = five principal components . 

 

Conclusions 

 

Our study set out to assess the predictive value of type 2 diabetes PRS in continental 

Africans. In this study, we set out to compare the polygenic prediction of African American, 

European and multi-ethnic PRSs for type 2 diabetes in continental Africans. The PRS with 

the best prediction was derived from an African American restricted GWAS(7). Participants 

in the 10th decile of this PRS had a more than 3-fold increased risk of developing type 2 

diabetes and were diagnosed 2.6 years earlier on average as compared to those in the first 

decile. 
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Limited studies of candidate SNP PRS have been performed in continental Africans. 

Previously we reported a genetic risk score with weights from Europeans that was associated 

with OR = 1.21, 95%CI (1.02–1.43) for type 2 diabetes in black South Africans(19). This 

GRS had an AUC of 0.665 together with conventional risk factors for type 2 diabetes (19). 

However, this study was limited due to the small sample size (n = 356), the availability of 

only genotyped SNPs, and the use of weights that were derived from European-only studies. 

In our current study we have substantially expanded the sample size (n = 1,690), enhanced 

genome coverage by imputing to 1000 Genomes and local African Ancestry whole 

genomes(18), and used a multi-ethnic discovery dataset GWAS that included 1.4 million 

individuals which included people of African American ancestry. All these factors helped to 

enhance the predictive capability of PRS in our current study.  

 

Nonetheless, polygenic predictions of European derived PRS in Europeans are still higher 

compared to that of the African Americans in continental Africans(7). Notably, participants 

in the top decile of a European derived PRS have recently been reported to have a greater 

than 5-fold risk for developing type 2 diabetes compared to those in the first decile in 

Europeans(7).  Failure to reach predictions denoted in Europeans might be due to that in our 

study, the African American derived PRS are from an admixed population group that is not 

representative of the genetic diversity and linkage disequilibrium patterns of continental 

Africans(13; 20). In addition, vast improvements in sizes of the European cohorts that are 

now over a million individuals, is indicative of substantial power compared to African 

diabetes cohorts that are still below the 10 thousand mark (21). More investments are thus 

required to increase the representation of continental Africans in GWAS of type 2 diabetes. 
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The utility of polygenic risk scores is an issue of paramount importance for clinical 

translation(6). The African American PRS, though it was predictive for type 2 diabetes in 

continental Africans, only improved the AUC of conventional risk factors by 0.6% and  when 

combined with PCs its AUC was 58.6% while that of the conventional risk factors was 

85.6%. Similarly, in a Swedish type 2 diabetes study, the European derived PRS increased 

the AUC by 1% compared to conventional risk factors (22). Basing on the AUC, the 

prediction of type 2 diabetes in our study by conventional risk factors (age, sex and BMI) was 

more clinically useful, as it was greater than the accepted threshold of 80%(6). However, the 

use of AUC as a measure to evaluate clinical utility of polygenic prediction is being debated, 

as it is regarded as less sensitive metric(23). There are ongoing efforts to develop better 

metrics (24), nonetheless, findings from this study that  people with type 2 diabetes and a 

high PRS are typically diagnosed at an earlier age and have a 3 fold risk of developing 

diabetes are of clinical importance. They may be useful in prevention and treatment of 

diabetes. 

 

Our study was limited by the limited number of GWAS of type 2 diabetes of continental 

Africans. Nonetheless, the African American derived PRS improved disease classification in 

this population. The clumping and thresholding approach used to compute the genome-wide 

PRS did not account for environmental factors such as diet, exercise that might confound the 

predictive accuracy of these measures. The strengths of our study include validation of the 

African American PRS in the AADM study and the fact that we used GWAS summary 

statistics of varied ethnicities from the same study which minimized bias due to genotyping 

and GWAS study designs. 
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In summary, an African American derived PRS seems to be the best predictor for type 2 

diabetes in continental Africans, as compared to a European and multiethnic PRS. More 

studies are required to determine whether using continental African GWAS might further 

enhance these predictions and reach a similar accuracy as in Europeans. Although the PRS 

prediction of diabetes had low specificity and sensitivity, patient stratification by PRS may 

prove clinically useful. 
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Supplementary Table 1 The predictive performance of selected polygenic risk scores 

Ethnicity 
P value 

Threshold 
Nagelkerke R2 P value 

Number of 

SNPs 

European 5 x 10
-8

 0.003 0.002 6335 

European (Best 

PRS) 
0.406 0.007 2.57e-06 1441315 

Multiethinic 5 x 10
-8

 0.007 2.65e-06 7809 

Multiethnic 

(Best PRS) 
3 x 10

-4
 0.008 1.26e-06 41815 

African America 

(Best PRS) 
5 x 10-8 0.011 1.80e-08 65 
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