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Abstract

The ultimate goal of any upper-limb neurorehabilitation procedure is to improve upper-limb
functioning in daily life. While clinic-based assessments provide an assessment of what a
patient can do, they do not completely reflect what a patient does in his/her daily life. The
compensatory use of the less affected upper-limb (e.g. “learned non-use”) in daily life is
a common behavioral pattern seen in patients with hemiparesis. To this end, there has
been an increasing interest in the use of wearable sensors to objectively assess upper-limb
functioning. This paper presents a framework for assessing upper-limb functioning using
sensors by providing: (a) a set of definitions of important construct associated with upper-
limb functioning; (b) presenting different visualization methods for evaluating upper-limb
functioning, along ways to qualitatively analyze different visualization methods; and (c) two
new measures for quantifying how much an upper-limb is used and the relative bias in the
use of the two upper-limbs. The demonstration of some of these components is presented
using data collected from inertial measurement units from a previous study. The proposed
framework can help guide the future technical and clinical work in this area to realize a valid,
objective, and robust tool for assessing upper-limb functioning. This will in turn drive the
refinement and standardization of the assessment of upper-limb functioning.
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1 Introduction

After neurological injury, individuals require rehabilitation to promote recovery, minimise disability and
maximise independent living. Despite years of research pointing to the benefits of repetitive practice, the time
patients spend in inpatient rehabilitation settings is often much less than the recommended guidelines [1, 2].
Moreover, after discharge, patients do not have enough opportunities to do targeted movement therapy at
home, sometimes leading to a pattern of “learned non-use” [3].

Valid and reliable assessments are crucial for gaining a better understanding of impairments and recovery
potential, and can allow us to tailor intervention strategies or improve health services. While clinic-based
assessments of body function and activity can measure the capability of a patient, they are poor indicators
of the actual use of a limb in day-to-day life [4–6]. Thus, assessment of movement behavior in natural
settings is vital to evaluate recovery and the tangible impact of rehabilitation interventions. In the context of
hemiparesis, such assessments can help gauge the extent to which: (a) true recovery in the more-affected
limb is utilized for daily use, and (b) compensatory strategies with the less-affected limb and other body
parts is used to accomplish day-to-day activities. To this end, assessments such as the motor activity log
(MAL) [7] have been devised to capture upper-limb functioning of patients with hemiparesis.

There are four inter-related aspects that need consideration to depict a comprehensive picture of upper-limb
functioning:

• Question 1. How much is an upper-limb used during daily life?

• Question 2. What is the relative preference for using the more-affected limb over the less-affected
one?

• Question 3. What kind of tasks is an upper-limb is used for?

• Question 4. What is the quality of upper-limb movements?

The first two questions convey information about how much the upper-limbs are used and their relative
preference, the third question provides information about the nature of use of the upper-limb, and the last
question gives insights about the underlying motor control abilities. The MAL is structured to gather this
information [7] where the amount and quality of use are rated on a 6-point Likert scale for a set of pre-selected
tasks. The amount of use of the more-affected limb is reported by comparing it to amount of use of the
less-affected limb. The quality of use of the less-affected limb is reported with respect to the pre-stroke
condition of that limb. However, MAL can only provide a coarse and subjective evaluation of upper-limb
functioning in daily life due to its limited sensitivity and subjective nature as it relies on a patient’s ability to
recall upper-limb use from memory.

There is growing interest in wearable sensors for continuous and objective monitoring of upper-limb functioning
[8–16]. When developing a sensor-based assessment tool, there are a four major interdependent design choices
that influence the nature of the information conveyed by the assessment: (a) the type of sensing modality used
for measurements (e.g., camera-based movement tracking, inertial measurement units), (b) steps involved in
the data processing pipeline (e.g., data segmentation, filtering), (c) properties of measures used to quantify
constructs of interest (e.g., sensitivity to movement changes in the physiological changes, robustness to
measurement noise), and (d) the nature of data visualization methods employed (e.g., temporal evolution of
the measure, scatter plots of different variables). Some of these issues have been highlighted previously for
analysing movement smoothness [17–19].

Inertial sensors composed of accelerometers and gyroscopes have been the preferred modality for assessing
upper-limb functioning in the natural setting, due to their availability, affordability, and compact size [8–16].
Thus far, the focus of sensor-based assessment in hemiparesis has been the quantification of the overall
amount (question 1) and the relative bias (question 2) in using the arms during daily life [8–16]. The current
methods for quantifying the amount of upper-limb use have either used: (a) the magnitude of acceleration
(e.g. activity counting (AC) [8, 11, 20]) or (b) the duration of functional movements detected from sensor
data (e.g. gross movement (GM) score [10,13], machine learning (ML) algorithms [14–16]). Although related,
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movement duration and intensity convey slightly different information about the nature of arm use. Each
of these only provide partial characterization of how much a particular arm is used. A complete measure
of how much an arm is used in daily life requires knowledge of both the duration and the intensity of the
upper-limb movements. Also, there is currently little work using sensor data for determining the nature of
tasks/activities and quantifying the quality of movements performed. These aspects are likely to be explored
in the coming years with the increasing interest in this area, the availability of more data and sophisticated
data analysis methods.

In order to develop rigorous methods to assess different aspects of upper-limb functioning in daily life, now is
an opportune moment to lay a good foundation for this problem through a more formal framework consisting
of: (a) definitions of essential concepts, and (b) recommendations for the development, and analysis of
quantitative measures and (c) visualization methods. Such a framework can help steer future technical
developments in the appropriate direction, and limit work on ill-founded methods and procedures.

This paper presents a framework for sensor-based upper-limb functioning assessment, targeting researchers
developing and validating quantitative methods. Given the multi-disciplinary nature of the community, our
goal is to unify the language with formal definitions, and have attempted to convey the core ideas with as little
mathematical formalism as possible. The framework presented in this paper starts with formal definitions of
the relevant concepts in assessment of upper-limb functioning related to aforementioned questions (Section 2).
This is followed by different approaches for visualizing quantified constructs, such as how much an upper-limb
is used, and the relative bias between the two upper-limbs (Section 3). Additionally, methods for qualitative
understanding of the nature of a visualization approach and its interpretation are also presented. The
proposed visualization methods are also accompanied by quantitative measures that summarize nature of
distribution of data in these methods. The rationale for these measures and the qualitative validation of their
properties are also provided. We conclude the paper with a discussion of the limitations of the proposed
framework, along with important questions that must be addressed to make pervasive, sensor-based objective
assessment of upper-limb functioning in daily-life a clinical reality.

2 Measuring Upper-limb Functioning: Formal definitions

We use our upper-limbs for performing movements and postures [21] for accomplishing various tasks in our
daily life. The nature, amount, intensity, and quality of movements performed with the upper-limbs are
determined by: (a) the types of tasks performed; (b) the overall motor ability; and (c) the hand preference.
This is depicted in Fig. 1. While motor ability can be evaluated through standard clinical assessments
employed in the clinic (e.g., FMA, ARAT), assessments of upper-limb functioning in natural settings is
necessary to evaluate how much and how well the upper-limbs are incorporated in daily life activities. This
can be gauged by investigating the following inter-related aspects:

• Amount of functional versus non-functional use of the upper-limbs.

• Total duration and intensity of use.

• Relative use of one upper-limb over the other.

• Amount of uni- versus bi-manual use.

• Types of tasks performed.

• Quality of movements.

The quantification of these different aspects can help us distinguish between a patient’s true recovery versus
compensation [22]. To promote the development of appropriate methods to quantify these different aspects,
we require clear definitions for these aspects, which is the purpose of this section.

Before getting into the details of the framework, we start with a brief overview of the process of evaluating
the sensorimotor ability/function in the context of neurorehabilitation. This is a hierarchical process with
clinical evaluation at its highest level. We define an evaluation as the process of interpreting the results of
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Figure 1: Different factors affecting the nature of use of the two upper-limbs during daily life. The type of
task, the ability of a subject to perform it, and his/her preference for the particular arm to complete the
task affect the nature and amount of upper limb movements. Sensors record these movements and assess the
overall upper-limb use through quantification of different constructs.

one or more assessments to gauge the sensorimotor condition of a subject with respect to a reference (either
him/herself from a different time point (intra-subject), or another subject (inter-subject)). For instance,
an evaluation is performed when comparing the results of ARAT assessments across different time points,
or comparing smoothness of reaching movements of a patients against normative data. Evaluations can
be aided through visualizations that allow interpretation of assessments. The next level in this hierarchy
are assessments, which we define as the process of quantifying (i.e. putting numbers) abstract theoretical
constructs (e.g., smoothness, coordination, synergies). For instance, the Fugl-Meyer upper-limb assessment
is a process that aims at quantifying the constructs ‘motor function’, ‘synergy’ and ‘coordination’. Unlike
an evaluation, an assessment only deals with quantifying constructs of interest. Assessments require clearly
defined protocols for collecting data (e.g. tasks/movements to be performed), and measures. A measure is a
well-defined mathematical function/formula, a computational algorithm, or a set of processes for mapping
measurements or observations to quantities that have an interpretable meaning in the context of a construct.
For instance, SPARC and LDLJ are measures of the construct ‘movement smoothness’; the rules used for
assigning a score to the flexion synergy task in the Fugl-Meyer assessment is a measure of the construct
‘flexion synergy’. Measures with good properties are essential to obtain valid, reliable, and interpretable
assessments. Finally, measurements are records of variables (e.g.speed, position, orientation, etc.), which
could be obtained through various sensors or through human observation. In this section we define some of
the important terms and constructs associated with the assessment of upper-limb functioning.

2.1 Measurement space

Raw measurements of movement-related variables using sensors form the basis of all sensor-based assessments.
The type of measurements available determine the subsequent steps in the analysis process. It is thus crucial
for any assessment procedure to clearly state the variables that are being used to compute a specific measure.
In the context of the assessing upper-limb functioning, we define measurement space as the following.

Definition Measurement space is the universal set of all possible sensor measurements available from an
upper-limb that is input to a measure.

We denote this set – the measurement space – by M and assume that the same quantities are measured from
both upper-limbs for the given assessment procedure. Inertial sensing is one of the most common modalities
used in the current literature, where the arm movements are measured using wrist-worn accelerometers
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(
M = R3

)
or IMUs2

(
M = R6

)
. For a more elaborate measurement setup consisting of measurements of wrist

endpoint position and orientation, along with k joint angles, M = R3 × SO (3)× [0, 2π)
k; where R3 is the set

of all possible wrist positions, SO (3) is the special orthogonal group of all rotation matrices representing 3D
orientations of the wrist, and [0, 2π)

k is the set of k joint angles.

All measures use measurements made over a finite observation period referred to as the measurement epoch.
LetMl (t) andMr (t) represent the values of the measurements from the left and right upper-limb, respectively,
made at time instant t, where t ∈ [0, T ], and Ml (t) ,Mr (t) ∈M; T is the duration of the measurement epoch.
We use Ml and Mr to represent the entire time series or signal, where Ml,Mr ∈M ([0, T ]); M ([0, T ]) is the
set of all possible measurement signals over a measurement epoch of duration T seconds starting at time t = 0.
In addition to specifying M, it is also essential for the reproducibility of an assessment to clearly specify the
exact sensors used for the measurements, their accuracy, noise characteristics, resolution, sampling rate, etc.
The values of these parameters have practical implications during data analysis and interpretation. These
practical issues will be not be considered in this manuscript, and the mathematical formalism is presented
assuming that we are dealing with measurements that are continuous in time and space.

2.2 Upper-limb use

Definition Upper-limb use is a binary construct indicating the presence or absence of voluntary, meaningful
movement or posture of the limb.

In this definition, the boundary of what constitutes a “meaningful” movement/posture must be defined
apriori. Some examples of meaningful use include reaching and grasping, turning a doorknob, stabilizing
an object with one limb while manipulating it with the other, holding a glass, writing, typing, upper-limb
therapy exercises etc. Under this definition, involuntary and passive upper-limb movements/postures are not
considered meaningful, e.g., resting the arm on a table, upper-limb moved by an external force. There are,
however, cases where the presence/absence of upper-limb use is ambiguous, e.g., arm swing during walking,
passively resting the upper-limb on a book to prevent the pages from turning. Such ambiguities are best
resolved in an application-specific manner, where the set of tasks considered as meaningful are clearly stated
apriori. For instance, in the current upper-limb use literature arm swing during walking is not considered as
meaningful, even though these are unlikely to be purely passive movements [23].

Upper-limb use can be mathematically represented as a binary signal over time, which can be computed
from upper-limb measurements Mi ∈ M ([0, T ]), where i ∈ {l, r}. Let fu be a function representing a
measure that maps a given measurement signal Mi to a binary signal ui over the same temporal domain, i.e.
fu : M ([0, T ]) 7→ B ([0, T ]); B ([0, T ]) is set of Riemann-integrable binary signals in the time interval [0, T ].

ui , fu (Mi) , ui (t) ,

{
0, UL is not in use at time t
1, UL is in use at time t

(1)

where, ui is the upper-limb use signal of the upper-limb i. The choice of fu is determined by several
factors, e.g., the measurement space M, computational complexity of the measure, sensitivity/specificity of
the algorithm. All fu exploit some common structure in functional/meaningful movements present in the
measured data to detect upper-limb use. Some examples of the current methods (fu) are:

• Thresholded activity counting. Activity counting (AC) is one of the most popular methods in
the literature to quantify upper-limb functional and non-functional activity [8,9,11,20]. AC has high
sensitivity, but poor specificity [24]. AC can be used with both accelerometer and IMUs. Upper-limb
use ui is computed from AC by assigning a value of 1, whenever the AC is above a threshold.

• Gross movement (GM) score. The Gross movement (GM) score (a.k.a Gross Counts or Gross
Movement Identification method) proposed by Leuenberger et. al [13] reconstructs the forearm
orientation using a wrist-worn IMU to detect movements that occur in a pre-specified range of
forearm orientations [13]. The GM score is highly specific, but has low sensitivity [24]. The GM

2IMU - Inertial Measurement Unit - consists of an accelerometer and a gyroscope.
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score can only be used with an IMU. The GM score is 1 whenever there are arm movements in a
pre-specified range of forearm orientations.

• Random Forests classifier. Bochniewicz et. al [15] proposed the use of a random forests classifier
to detect upper-limb use from features extracted from an accelerometer. The ML approach can be
used with both accelerometers and IMUs, and has reasonable sensitivity and specificity [16].

The three aforementioned methods are possible measures of upper-limb use and one must be aware of the
properties of these measures while choosing them for the assessment of upper-limb use.

Upper-limb use as defined in this section is an idealised construct, and its detection in practice using sensor
measurements will be error prone due to measurement noise, the natural intra- and inter-subject movement
variability, and the relative sensitivity of the sensor measurements to movements and postures. The nature of
the measurements M and the choice of measure fu will influence how well upper-limb use can be quantified
(e.g., sensitivity and specificity) in practice. For instance, among the three measures currently used in the
literature, AC and GM have low accuracy due to low specificity and sensitivity, respectively [24]. Machine
learning-based approaches such as the random forests classifier appear to perform much better than AC an
GM [10,15].

Uni- and Bimanual upper-limb use. The upper-limb use signals from the two limbs can be used for
defining uni- and bimanual upper-limb use at time t as the following:

Unimanual use of the right limb: ur (t) · (1− ul (t))
Unimanual use of the left limb: ul (t) · (1− ur (t))

Bimanual use of both limbs: ur (t) · ul (t)
(2)

2.3 Instantaneous Intensity of Use (IIU)

Definition Instantaneous Intensity of Use (IIU) is a construct that reflects how strenuous a move-
ment/posture is at a particular instance of time, when the upper-limb is in use.

Some examples of measures (fµ) to quantify IIU include the magnitude of movement velocity, acceleration,
interaction force, muscle activity, etc. Let µi represent the IIU signal for the upper-limb i. It assumes
non-negative values when the upper-limb is used, and is defined to be zero otherwise.

µi , ui · fµ (Mi) (3)

where, µi ∈ R≥0 ([0, T ]), and the function fµ : M ([0, T ]) 7→ R≥0 ([0, T ]) computes IIU signal from the
upper-limb measurement signal Mi.

The exact choice for fµ is application-specific and dictated by M. We also note that results obtained from
different types of measurements and different measures fµ might not be comparable, e.g. the magnitude of
movement velocity can be independent of the magnitude of movement acceleration. Thus, it is imperative to
report the exact fµ and its units when reporting the instantaneous intensity of use. Activity counting, as
defined in [8, 9, 11], is an example of an IIU measure in the current literature.

In general, µi (t) will not be uniformly zero in a continuous interval of time t ∈ [t1, t2] where there is movement
(change in limb position or configuration). However, µi (t) can be uniformly zero in a continuous interval
under two circumstances:

1. ui (t) = 0, ∀t ∈ [t1, t2]: When there is no upper-limb use during this interval.

2. fµ (Mi) (t) = 0, t ∈ [t1, t2]: When the upper-limb is used in a meaningful posture, fµ (Mi) (t)
can be uniformly zero in the interval t ∈ [t1, t2] for some choice of measurement signal and fµ.
For example, activity count, magnitude of movement acceleration/velocity will be zero during an
upper-limb posture. On the other hand, the magnitude of muscle activity controlling the upper-limb
will not be zero even while holding a voluntary posture.

It is important to be aware of these issues when interpreting time intervals where µi (t) is uniformly zero.
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2.4 Windowed Upper-limb Use (WUU)

Definition Windowed upper-limb use (WUU) is a construct that reflects the proportion of time an
upper-limb is used in a given time period D.

WUU at time t, denoted by Ui (t;D), can be computed as the average value of ui in the past D seconds.

Ui (t;D) ,
1

D

∫ t

t−D
ui (x) dx, t ∈ [D,T ] (4)

Ui (t;D) is a smoothed version of ui. We will drop D in the parenthesis in the rest of the manuscript and use
it only if its explicit mention is required. From Eq. 4, we can immediately identify some essential properties
of Ui:

• Ui is a continuous-valued signal that can take on any value in the closed interval [0, 1].

• The value of Ui (t) indicates the proportion of time in the interval (t−D, t] where the upper-limb
was used, i.e. ui (t) was 1. Thus, there are infinitely many uis that can result in the same Ui.

• The value of the parameter D will depend on the application, and controls the amount of smoothing
of ui; larger values of D will results in smoother Ui while compromising time localization of the
information conveyed by Ui. When D = T , then Ui measures the proportion of time the upper-limb i
was used over the entire measurement epoch.

2.5 Windowed Intensity of Use (WIU)

Definition Windowed Intensity of Use (WIU) is a construct that reflects the average intensity of upper-
limb use in a given time period D.

WIU Ii (t) can be computed from measures of upper-limb use ui and measurement signals Mi (t) as the
following,

Ii (t;D) ,


∫ t
t−D µi (x) dx∫ t
t−D ui (x) dx

,
∫ t
t−D ui (x) dx 6= 0

0,
∫ t
t−D ui (x) dx = 0

(5)

where, Ii (t) ∈ R≥0. The same ambiguity as µi (t) exists when Ii (t) = 0 for some time t. Ii (t) = 0 could
mean that the upper-limb was either not used during the time interval (t−D, t] or it was used for performing
upper-limb postures.

2.6 Windowed Upper-limb Activity (WUA)

The amount of use of an upper-limb during a measurement epoch depends on both the duration and intensity
of movements performed during this period, which are captured by Ui and Ii, respectively.

Definition Windowed upper-limb activity (WUA) is a construct that reflects of how long and how
intensely an upper-limb is used in a given time period D.

High amounts of average upper-limb activity correspond to long duration, high intensity movements, while
low activity corresponds to short duration, low intensity movements. Windowed upper-limb activity Ai of
the upper-limb i can be captured by the product of Ui and Ii, which quantifies the co-variation of these two
factors. We thus define Ai as,

Ai (t) , Ui (t) · Ii (t) =
1

D

∫ t

t−D
µi (x) dx, t ∈ [D,T ] (6)

where, Ai (t) ∈ R≥0 assumes non-negative values and is upper-bound by Ii (t). A subject with high values
for Ai would be referred to as more active, than one with lower values of Ai. Visualization of how much an
upper-limb is used during a measurement epoch, and its quantification through a single number using Ai are
discussed in Section 3.2.
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2.7 Task

The four constructs – ui, Ui, Ii, and Ai – are task-agnostic constructs that only depend on whether or not a
meaningful movement or posture is performed, irrespective of its type (e.g., reaching, manipulation, drawing).
To elucidate the nature of upper-limb use, task-specific measures are required, i.e. measures that can classify
the types of tasks being performed, how well these tasks performed, etc. This information could be used to
target therapy to accomplish specific rehabilitation goals. To carry out task-specific analysis, one must first
define a set of tasks of interest that can be identified from the measurements Mi.

Definition Task is any upper-limb movement or postural pattern of interest.

Let the set T , {0, 1, 2, . . . p} ⊂ N be a set of natural numbers representing the p distinct tasks of interest;
the numbers from 1 to p correspond to the p tasks, and 0 represents all tasks other than these p tasks of
interest. Let τi (t) ∈ T ([0, T ]) represent the task performed by the upper-limb i at time t.

τi , fτ (Mi) , τi (t) =

{
n, Task n is being performed by UL i at time t.
0, None of the n tasks of are being performed by UL i at time t.

(7)

The function fτ is a measure that maps the measurement signal Mi to τi, i.e. fτ : M ([0, T ]) 7→ T ([0, T ]).
We assume that, in general, the p tasks of interest are functional in nature, which implies τi (t) can take on a
non-zero value only if ui (t) = 1. The choice of fτ will depend on M and T. Similar to upper-limb use, the
detection of tasks from the measurement data will also be probabilistic in nature due to the natural intra-
and inter-subject movement variability.

2.8 Movement Quality (MQ)

Definition Movement Quality (MQ) is construct that reflects the quality of the underlying sensorimotor
control.

MQ is a high level construct that can be expressed in terms of other constructs such as movement smooth-
ness [18], coordination [25, 26], etc. The components of movement quality include both tasks-specific and
task-agnostic constructs, which need to be computed slightly differently. We note that it might also be
of interest to evaluate the quality of postures, in which case this construct could be generalized to mean
movement or posture quality.

Task-agnostic measures of movement quality could be, e.g., amount of tremor, which could be computed from
the Mi without worrying about the underlying tasks being performed. However, task-specific measures such
as the ones to quantify smoothness, coordination, etc. must be computed only from complete data segments
corresponding to a particular occurrence of a specific task. This is because the appropriate interpretation of
such task-specific MQ measures requires the necessary contextual information, which must include at least
the task being performed. There is currently little work on classifying tasks and estimating movement quality
using sensors for upper-limb assessment in daily life.

3 Visualization of Upper-limb Functioning

Measuring upper-limb movements during daily-life can result in vast amounts of data, which need to be
summarized through appropriate quantitative and graphical means. A well-designed graphical summary can
provide quick and clear insights into data, and allow users to answer specific questions about upper-limb
behavior. In this section, we present three graphical approaches for summarizing different types of behavioral
information: (a) temporal profile of upper-limb functioning; (b) summary of upper-limb activity; and (c)
relative use of the two upper-limbs. All data presented in this section were obtained from a previous
study by David et. al [10]. The measurements were obtained from IMUs donned on each wrist, i.e.

Mi (t) =
[
ai (t)

>
ωi (t)

>
]>
∈ R6 = M and consists of the linear acceleration ai (t) and angular velocity

ωi (t) measured by the triaxial accelerometer and gyroscope, respectively, at time t from the upper-limb i.
Upper-limb use was estimated using the GM score algorithm [13], and instantaneous intensity of upper-limb
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Relationship between constructs in the proposed framework

Figure 2: A directed graph representation of the connections between the different constructs defined in
the proposed framework. The leftmost node represents the measurements, while the rest of the nodes are
constructs of interest in the assessment of upper-limb functioning. The construct at the end of a directed
edge is derived using the construct/measurements at the start of the directed edge. The measures (red color
text) used to quantify a construct from measurements are placed above the directed edge. The blue colored
text next to some of the construct indicate how two constructs are combined to derive the target construct.

use was chosen to be the activity counts [27] derived from the accelerometer data. Windowed upper-limb use
and intensity were computed using D = 60s.

3.1 Temporal profile of upper-limb functioning

The plot of upper-limb use ui (t) over the course of several measurement epoch, allows the user to see
changes in upper-limb use over time. The outcomes from measures of upper-limb use could be presented
in chronological order so that a clinician can see variations in upper-limb use over the course of the day
or days. Sample plots of ul, Ul, µl, Il for a healthy (left column) and an impaired subject (right column)
over a period of 90 minutes are shown in Fig. 3. The left upper-limb use ul is visualized as an event plot
in Fig. 3(a)-(b), where the presence of a vertical line at time t means ul (t) = 1, else it is 0. The windowed
upper-limb use Ul is displayed in a red trace in Fig. 3(a)-(b). Fig. 3(c)-(d) display the corresponding µl and
Il for this period in gray and blue traces, respectively; µl (t) = 0 whenever the upper-limb was not used or
there was a functional posture. Il (t) = 0 when the upper-limb was not used or used in a posture in the last
D seconds, i.e. Ul (t) = 0.

Il (t) only provides a summary of the intensity of left upper-limb use in a temporal segment by computing
the average intensity. A more detailed depiction of movement intensity can be provided by displaying the
relative proportions of time, in an observation window, where the movement intensity is low, medium, or
high; the definitions of the three intensity levels are provided in the figure’s caption for this particular case.
The plots in Fig. 3 can aid clinical evaluation, as they indicate that the overall amount and intensity of use
for the patient (right column) is lower than that of the healthy subject. The patient also has little or no high
intensity movements compared to the healthy participant (Fig. 3(e) and Fig. 3(f)).

3.2 Visualization of upper-limb activity

A visual summary of the amount of upper-limb use during a measurement epoch can be provided through a
scatter plot of Ui (t) versus Ii (t), ∀t, such that Ui (t) 6= 03. This plot will be referred to as the UVI plot, which
provides a simple visual summary to quickly gauge overall upper-limb activity. With no loss of generality, we
have chosen Ii and Ui to be the x and y axes of the UVI plot, respectively. Such a plot has the following
properties:

3This condition ensures that data segments where the upper-limb is at rest or is being used for non-functional
movements are ignored.
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Figure 3: Temporal visualization of constructs related to upper-limb use and intensity. The left and right
columns correspond to data from a healthy participant and a patient, respectively. The top row depicts the
left upper-limb use signal ul as a gray-colored event plot, where the vertical gray line at time t indicates
ul (t) = 1. And the light red colored graph shows the corresponding windowed upper limb use Ul. The middle
row depicts the instantaneous intensity of use µl (gray) and the widowed intensity of use Ii (light blue) for
the left upper-limb. The bottom row depicts the proportion of time the intensity of use was low (orange),
medium (brown), or high (black) in the last 60s. Although not shown in these figure, it would also be useful
to indicate in such plots periods of time where there is no data available, i.e. periods where a wearable sensor
has been removed and is not recording movement data from a subject.

• All points of this scatter plot belong to the set P = {(x, y) | 0 ≥ x , 0 < y ≤ 1}. This a strip of height
1 extending along the positive x axis.

• By definition, the x axis is not part of the plot since only data points where Ui 6= 0 are considered.

• Depending on the measurement signal and the choice of measure fµ, the set of all points
{(0, y) | 0 < y ≤ 1} will correspond to upper-limb postures; this will not be true when Ii (t) 6= 0 for
meaningful postures.

• Scatter points with large values for x and low values for y correspond to short duration high intensity
movements, e.g. swatting a fly.

• Points with values of y close to 1 and low values for x correspond to prolonged low intensity movements,
e.g., writing, typing.

Data from both upper-limbs can be visualized in a single plot by plotting them in the first and second
quadrants as shown in Fig. 4. Here, the right and left upper-limbs are depicted in the first and second
quadrants, respectively; note that the data in the second quadrant are plotted by negating the value of Ii.
The light red colored lines in these plots correspond to constant windowed upper-limb activity lines, i.e.
Ai = Ui · Ii = c, where c is a constant.

Fig. 4(b) and Fig. 4(c) display the UVI scatter plots for a healthy and stroke participant, respectively, using
data collected from a single day (6 to 8 hours) of recording [10]. For the healthy subject, most points are of
short to medium duration (Ui < 0.5) and low intensity (Ii < 50) in Fig. 4(b), with some long duration, high
intensity movements performed with both limbs. In comparison, most movements of the stroke participant
were of relatively shorter duration (Ui < 0.2), with low to medium intensity movements(Ii < 100); high
intensity movements Ii > 100 were rare. This observation is also evidenced by the constant Ai lines that cut
through by the scatter plot in Fig. 4(c) compared to that of the healthy subject.

We can quantitatively summarize the UVI plot using windowed upper-limb activity Ai of the scatter points.
The distribution of points in an UVI plot of a subject can be thought of as a sample obtained from a bi-variate
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Figure 4: Use versus Intensity (UVI) plot to depict the overall amount of use of the upper-limbs. a) This plot
provides the details of a typical UVI plot and highlights some critical elements to help interpretation. The x
axis cannot be part of the plot, and light red colored curves are the constant upper-limb activity lines. If fµ
is the magnitude of acceleration as is the case in (b) and (c), then the y axis represents meaningful/functional
postures where the intensity can be zero. (b) UVI plot for a healthy participant using data collected from a
single day. The 1st and 2nd quadrants of the scatter plot depicts the right (blue) and left (red) upper-limbs,
respectively. (c) UVI plot for a stroke participant using data collected from a single day. It is clear that the
stroke participant has a low level of activity compared to the healthy participant.

probability density function of U and I, pI,U (x, y) 4. The univariate probability densities of Ui, Ii, and Ai
can be obtained from pU,I as the following,

pI (x) =

∫ 1

0

pI,U (x, y) dy; pU (y) =

∫ ∞
0

pI,U (x, y) dx; pA (z) =

∫ 1

0

pI,U

(
z

y
, y

)√
1 +

z2

y4
dy (8)

We define a quantitative measure of how much an upper-limb is used, Hq, as the qth percentile of A, which
can be computed from its probability density function pA,

Hq , qA (9)

where, the subscript in q in Hq indicates that the measure is computed using the qth percentile, i.e.∫ qA

0

pA (z) dz = q

4pI,U (x, y) is actually a conditional density function, since we only consider data where U 6= 0.
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Figure 5: Demonstration of the measure Hq for five different simulated scenarios corresponding to different
levels of upper-limb activity. The top row shows the UVI plot for the different scenarios. The shaded areas
(gray) indicate different simulated scenarios from which points are sampled with uniform density. Two of
constant activity lines (light red) in each plot are shown as dashed lines corresponding to Ai = 2 and Ai = 20.
The bottom three rows depict the marginal probability density functions for Ii (second row), Ui (third row),
and Ai (bottom row) for these different scenarios. The black vertical dashed line indicates the qth percentile
(here, q = 90) for these different scenarios with the corresponding value written on the individual plots. Note
that to enable the proper depiction of the density functions for the different scenarios, the scale for the x axis
for the bottom row is adjusted.

Properties of Hq. We demonstrate through a set of simulated scenarios that the measure Hq agrees with
our intuition. Consider the scenarios depicted in Fig. 5, which shows five UVI plots, in the top row, with
different distribution of points. In each of these plots, points are assumed to be uniformly distributed in the
grey regions shown; the light red colored curves are the Ai = c lines, where c is a constant. The rows of plots
below the UVI plots show the univariate probability density functions pI , pI , and pA estimated from the
data points sampled from the corresponding distributions pI,U shown in the UVI plots in the top row; these
plots also display the corresponding qth percentile values of the sample data (q was set to 90).

The following observations can be made about the five scenarios depicted in Fig. 5, which are reflected in the
measure Hq:

• Scenario-1 has the lowest upper-limb activity (Hq = 1.18) among all scenarios, as all movements are
of short duration and low intensity. Ui ∈ [0, 0.2], Ii ∈ [0, 10], and Ai ∈ [0, 2].

• Scenario-5 has the highest upper-limb activity (Hq = 45.64) as all movements are of long duration
and high intensity. Ui ∈ [0.8, 1], Ii ∈ [40, 50], and Ai ∈ [32, 50].

• Scenarios 2, 3, and 4 have the same range of values for Ui and Ii. Ui ∈ [0, 1], Ii ∈ [0, 50].

• Scenario-2 has higher activity Hq = 6.10 than scenario-1 as it contains movements of larger duration
or higher intensity in addition to movements similar to scenario-1. This results in larger values for
Ai ∈ [0, 10] compared to scenario-1.

• Scenario-3 has higher activity Hq = 14.78 than scenario-2 as it has longer duration and higher
intensity movements than scenario-2, resulting in even larger range of values for Ai ∈ [0, 18] than
scenario-2.
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• Scenario-4 has movements with longer duration and higher intensity than scenarios 2 and 3, resulting
in a large interval for the possible values of Ai ∈ [0, 50] compared to scenarios 2 and 3. This results
in a much higher level of activity, Hq = 36.82.

• The difference in upper-limb activity between scenario-4 and scenario-5 is smaller than that of
scenario-4 and scenario-3. Scenario-4 has more long duration and high intensity movements than
scenario-3, but has more shorter duration and lower intensity movements than scenario-5. Scenario-5
only has longer duration and higher intensity movements.

3.3 Visualization of relative use of the upper-limbs

Visualizing the relative use of the upper-limbs has been explored through 2D scatter plots or heat-maps of
different variables related to the use of the two upper-limbs [8, 10]. Relative upper-limb use can be visualized
and quantified using measures of the windowed upper-limb use (Ur,Ul), windowed upper-limb intensity (Ir, Il)
or windowed upper-limb activity (Ar,Al); here, we use windowed upper-limb intensity for demonstration
purposes. Similar to the analysis carried out with the UVI plot, we only consider the data points where at
least one of the two upper-limbs was used, i.e. Ir (t) + Il (t) > 05. It is meaningless to talk about relative use
when neither of the upper-limbs are used.

In general, relative use of the upper-limbs can be visualized by plotting two functions g (Ir, Il) and h (Ir, Il)
of the subject’s data along the x and y axis, respectively. These two function g (·) and h (·) will determine
the nature of distribution of data points in this “gh” scatter plot and the plot’s fundamental properties. A
qualitative understanding of these properties can be obtained by looking at the following four family of curves
L1 to L4 in the gh plot:

Windowed intensity of the left upper-limb is constant− L1 : Il (t) = c

Windowed intensity of the right upper-limb is constant− L2 : Ir (t) = c

Ratio of windowed intensities of the two upper-limbs is constant− L3 : Il (t) = c · Ir (t)
Product of windowed intensities of the two upper-limbs is constant− L4 : Il (t) · Ir (t) = c

(10)

where, c ∈ R≥0. L1 and L2 are particularly useful in explaining the shape of the distribution of points in the
different visualization plots, where the bounding curves of the scatter plot are generated from different L1

and L2 curves. We present the analysis of two visualization methods, one based on the work of Bailey et. al
[8] and the other from David et. al [10]:

1. Bilateral magnitude versus magnitude ratio (BMMR) plot

2. Left intensity versus right intensity (LIRI) plot

In this section we present analysis of these two visualization methods by deriving expressions for the loci
of L1 to L4, and demonstrating the nature of these visualization methods using data from a healthy and
hemiparetic subject [10]. We make use of the Activity Counting measure [27] to compute Ii (t). Three
additional visualization methods based on BMMR and LIRI are presented in Appendix A.

3.3.1 Bilateral-magnitude versus Magnitude-ratio (BMMR) plot

This method proposed by Bailey et al. [8, 9, 12] used activity counting to plot a heatmap. This is a heatmap
between the magnitude ratio (MR) and bilateral magnitude (BM), which we define as the following using Ir
and Il,

x (t) = g (Il, Ir) = MR (t) = log

(
Ir (t)
Il (t)

)
; MR (t) ∈ R

y (t) = h (Il, Ir) = BM (t) = Il (t) + Ir (t) ; BM (t) ≥ 0

(11)

5As discussed earlier, Ii can be zero during functional postures for some measurement signals and function fµ.
Thus, under this scenario the condition Il (t) + Ir (t) = 0 will include data either when both upper-limbs are not used
or when both are used for performing functional postures.
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(a) (b)BMMR Plot LIRI Plot

Figure 6: Analysis of (a) bilateral magnitude versus magnitude ratio (BMMR) plot [8] and (b) left intensity
versus right intensity (LIRI) plot [10] by investigating the nature of the family of four curves L1 (blue), L2

(red), L3 (green) and L4 (black) introduced in Eq. 10.The solid and dashed lines indicate different values of c
for the same curve.

Bailey et. al bounded the value of MR to be within ±7, which we ignore in this discussion. The mathematical
definitions of L1 to L4, and the plot of these curves for different values of c are shown in Fig. 6(a). The
following are some of the essential properties of BMMR plot:

• The vertical line x = 0 corresponds to Il = Ir, divides the plot into two halves x > 0 and x < 0
corresponding to right and left dominated halves, respectively.

• Pure unilateral use Il = 0 or Ir = 0 corresponds to x = ±∞, which was approximated to be x = ±7
by Bailey et. al [8].

• Equal, unbiased use of the two upper-limbs results in a symmetric leaf-like distribution of points (blue
curves in Fig. 7(a) and Fig. 7(b)). The region enclosed by closed blue curve in Fig. 7(a) corresponds
to 5 ≤ Il, Ir ≤ 500.

• Biased use of the upper-limbs results in an asymmetric distribution of points, with more points
located at a larger distance from the x axis on the side with increased use (red curve in Fig. 7(a)
and Fig. 7(c)). The region enclosed by closed red curve in Fig. 7(a) corresponds to 1 ≤ Il ≤ 50 and
1 ≤ Ir ≤ 250.

3.3.2 Left Intensity versus Right Intensity (LIRI) plot

This simple approach was proposed by David et al. [10] where the authors had used the windowed upper-limb
use instead of intensity. Here, we use the windowed upper-limb intensity Ir and Il (Fig. 6(c)),

x (t) = g (Il, Ir) = Ir (t) ; Ir (t) ≥ 0

y (t) = h (Il, Ir) = Il (t) ; Il (t) ≥ 0
(12)

The following are some of the essential properties of LIRI plot:

• The y = x corresponds to Il = Ir and divides the first quadrant into an upper and lower half about
this diagonal line which correspond to relatively high left Il > Ir and right use Il < Ir, respectively.

• Pure right and left unilateral use correspond to points long the x and y axes, respectively.

• Equal, unbiased use of the two upper-limbs in a square shaped region of distribution of points (blue
curve in Fig. 7(g) and Fig. 7(h)); the square is symmetric about the y = x line.

• Biased use of the upper-limbs results in rectangular distribution of points, with the longer side of the
rectangular oriented along the axes corresponding to the upper-limb with increased use (red curve in
Fig. 7(g) and Fig. 7(i)).
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Figure 7: BMMR and LIRI plots of actual data from a healthy participant and a patient. The first column
shows examples of the boundary of scatter plots for (a) BMMR and (b) LIRI plots for symmetric and
asymmetric upper-limb use. This closed curve corresponds to the L1 and L2 curves for different values of
Ir and Il. (a) The symmetric leaf shape (blue) and the asymmetric (red) shape are typical shapes seen
in the plots reported by Bailey et al. [8]. Plots (b) and (c) depict the BMMR scatter plots for a healthy
participant and patient using data collected during a single day. Plots (e) and (f) are the corresponding
LIRI plots for the same subjects. The closed black curves shown in the plots for the healthy participant and
patient correspond to the 2.5th and 97.5th percentiles for Il and Ir.

3.4 Quantification of Relative Upper-limb Use

A quantitative measure of relative upper-limb use should allow us to distinguish between different levels of
relative use of the upper-limbs through a single number. Such a measure should map: (a) the spectrum of
pure unimanual behavior to pure bimanual behavior to a compact interval on the real line, and (b) report
low values for unimanual, and high values for bimanual behaviors.

We can conceive such a quantitative measure of relative upper-limb use through an approach similar to that of
Hq. Consider the joint probability density pIr,Il (r, l) of Il and Ir6. We can compute the marginal densities
of Ir and Il, and the probability density of Ir · Il from pIr,Il (r, l) using the approach in Eq. 8. We define a
measure of relative upper-limb use Rq as the following,

Rq (Ir, Il) ,
qrl

max (q2r , q
2
l )

(13)

where, Rq : R≥0 [0, T ]× R≥0 [0, T ] 7→ [0, 1] maps two time signals Ir and Il to the set [0, 1]. The subscript
q in Rq indicates that the measure is computed using the qth percentiles, and qr, ql and qrl are the qth
percentiles of the probability density functions of Ir, Il, and Ir · Il, respectively. It should be noted that qr
and ql will never be simultaneously zero as we only include data points where Il (t)+ Ir (t) > 0. We also note
that the method for computing the percentiles of the probability density functions might result in different
values; this requires further investigation.

The mapping of different movement behaviors to the interval [0, 1] by this measure is shown in Fig. 8, where
the LIRI plot was chosen for depicting different types of unimanual and bimanual movement behaviors. The
distribution of points in these LIRI plots are indicated by the grey regions, where we assume the points are

6This is again a conditional probability density function as we only consider data points where at least one of the
upper-limbs is used, i.e. Ir (t) + Il (t) > 0.
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Figure 8: Demonstration of the mapping of different types of relative upper-limb use to Rq. The different
types of relative upper-limb use are depicted as LIRI plots grouped together to into different levels of relative
upper-limb use. The leftmost column of three LIRI plots correspond to pure unimanual use. The different
groups of LIRI plots from left to right correspond to reduced bias in using one limb over the other. The
corresponding Rq value for these different scenarios are displayed in the individual LIRI plots, and their
mapping to the continuous interval [0, 1] is shown in the bottom.

distributed with uniform density; plots with just a black line depict scenarios where the points are distributed
uniformly along the line. The red diagonal line in each of these LIRI plots is the x = y line. The value of Rq
for each of these plots is shown in the respective plots, and their location in the interval [0, 1] (thick black
line) on the real-line is shown in the bottom of the figure with colored vertical lines. The Rq measure has the
following properties.

• Pure unimanual use. Rq (Ir, Il) = 0 indicates pure unilateral use, such that Ir (t) · Il (t) = 0, ∀t7.

• Symmetric bimanual use. Rq (Ir, Il) = 1 indicates pure symmetric bimanual use, such that
Ir (t) = Il (t) , ∀t.

• Symmetry about the x = y line. Rq is symmetric about the x = y line, i.e., Rq (Ir, Il) =
Rq (Il, Ir). Two distribution of points that are mirror symmetric to each other about the x = y line
will have the same value for Rq. Thus, low values for Rq only indicate biased use and do not provide
any information about the direction of the bias.

• Bimanual asymmetric upper-limb use. Rq (Ir,m · Il) = Rq
(
Ir, 1

m · Il
)
= m, 0 ≤ m ≤ 1.

• Rq is independent of uniform scaling Ir and Il, i.e. Rq (Ir, Il) = Rq (c · Ir, c · Il) , c > 0 is
the value.

7It should be noted that, depending on the measurements and fµ, pure unimanual does not always mean the other
limb is not used, since Ii can be zero when an upper-limb is used for functional postures.
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The measure Rq only tells us if one limb is preferred over the other, and is silent about which of the two
limbs is preferred. This information can be obtained from the sign of the different between qr and ql, which
is +1 when the right limb is used more than the left, and −1 when it is vice versa. Rq along with the sign of
qr − ql will provide information amount of bias in using the upper-limbs, along with the preferred limb.

4 Discussion

The framework presented here is a step towards a rigorous foundation for sensor-based upper-limb functioning
assessment by formalizing existing ideas/concepts. Lack of rigor is not an uncommon problem in movement
sciences, which is reflected in the literature as ambiguous definitions of constructs, lack of clear specifications
for measures, and absence of theoretical and experimental validation of measures proposed to quantify
constructs of interest. Movement smoothness is a prime example of such a construct that was quantified using
several measures with little or no knowledge about their properties [18, 28]. Given the increasing interest in
assessment of upper-limb behavior using sensors, we strongly believe that the proposed framework can help
guide future developments in this area.

4.1 On the importance of measurements and measures

Measurements and measures form the basis of any assessment procedure. Measurements contain “raw”
information about a behavior, and measures map measurements to numbers that quantify and summarize
constructs of interest. Thus, the choice of measurements and measures determine the quality of information
obtained from an assessment procedure. The proposed general framework did not focus or advocate any
specific measurement or measure to quantify the seven constructs (Fig. 2) defined in the framework. The two
most important constructs in this framework are the upper-limb use ui and instantaneous intensity of use µi,
which form the basis for the three constructs Ui, Ii, and Ai that convey information about how much the
upper-limbs are used and their relative preference.

Upper-limb use ui is computed from the measurement signal Mi using a measure fu, both of which have
implications on the accuracy of upper-limb use detection. Wrist-worn IMUs are the most commonly used
sensing approach for measuring upper-limb use as these are compact, economical, and almost ubiquitous in
today’s world. Although, these are ideal for picking up upper-limb movements, they are poor at detecting
postures. For instance, commonly used measures that can be used to assess upper-limb use – activity
counting [27] and the gross movement score [10] – cannot detect upper-limb use involving postures, or those
involving pure hand movements (e.g. writing, typing). Both these methods have relatively poor accuracy in
detecting meaningful movements/postures due to poor specificity or sensitivity [24]. Recent work on machine
learning based methods [15, 16] have demonstrated better performance in detecting upper-limb use than
existing methods. Future investigation into more sophisticated methods and the availability of more data is
likely to improve this performance in upper-limb use detection. Furthermore, the incorporation of additional
sensing modalities (e.g. radar-on-a-chip for hand movement tracking [29], magnetic ring finger tracking [30],
EMG [31]) along with IMUs can also lead to better detection of upper-limb use. However, such multi-modal
sensing approaches would need to be compact, affordable, and usable on a daily basis to ensure adoption by
the end-users.

Instantaneous intensity of use µi provides information about how strenuousness a movement or posture
is at a particular instance of time. This is a general definition and there can be a variety of measures of µi.
The exact measure of intensity will be dictated by the nature of measurements M. Although there are various
possible measures of µi, as the sensing modality for this application becomes standardized, the measure of
choice for µi and other constructs are likely to converge.

4.2 On task-agnostic and task-specific analysis of upper-limb functioning

Upper-limb use ui and instantaneous intensity of use µi, and their windowed averages (Ui, Ii,Ai) together
provide a measure of how much an upper-limb is used during a measurement epoch. These constructs are
independent of the nature of the task being performed by the subjects by only demarcating “functional” and
“meaningiful” behaviors from non-functional ones. The work presented in the manuscript focused only on
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task-agnostic analysis, given these have been of primary interest in the recent literature. Although, this
is necessary information, it only sheds light on the overall incorporation of upper-limbs in daily life. In
particular, Ii, Ui, and Ai can provide information about upper-limb impairments. A more fine-grained
analysis might be able to provide detailed information about specific limitations in activity and participation,
which require task-specific analysis.

Task-specific fine grained analysis requires the segmentation of functional behavior into specific tasks of
interest. This will allow the estimation of various impairment, activity, and participation level parameters to
help build a comprehensive profile of the subject’s disability due to his/her sensorimotor condition. The details
of the tasks performed during the measurement epoch provide information about limitations at the activity
(e.g. time taken and range of motion while performing a task) and participation levels (e.g. restrictions in
carrying out household and work-related activities). The fidelity of such detailed task-level analysis will again
depend in the nature of the available measurements, and algorithms that can accurately and robustly detect
the tasks of interest. There is currently no work on task-level analysis for assessing upper-limb movement
behavior. This too is likely to change in the coming years with advances in human activity detection from
sensors [32].

Work in the development and validation of algorithms for detecting upper-limb use and tasks are likely to
benefit from the recent advances in machine learning. This work can be fast-tracked though sharing of data
from various studies and groups working on this problem, since: (a) cutting edge machine learning techniques
are data-hungry, and (b) collecting and collating data for validating such algorithms is time and resource
intensive. The availability of such data will allow researchers with expertise in signal processing, machine
learning, statistics etc. to develop algorithms to boost the accuracy of detecting upper-limb use and tasks.

4.3 On the visualization of upper-limb functioning

Visualization of the various aspects of upper-limb functioning is an important step in any evaluation procedure.
When presenting any new visualization method, the elucidation of its fundamental properties is necessary to
allow users to appropriately interpret the data presented by a graph; what constitutes a fundamental property
is dictated by the information being conveyed by the proposed visualization method. These properties can
often be qualitatively described through the locus of family of curves satisfying specific constraints.

The UVI plot proposed in this paper provides information about how much the upper-limbs are used during
the measurement epoch, taking into account both the duration Ui and intensity Ii of movements. The nature
of distribution of points in a UVI plot depends on several factors: (a) the nature of measurements M; (b) the
function fu, fµ used to quantify ui and µ)i; and (c) the window length D (Eq. 4 and Eq. 5) used to compute
Ui and Ii. These issues were not investigated in the work presented.

Two approaches for visualizing relative use of the upper-limbs analysed in this paper. The family of four
curves L1 to L4 (eq. 10) were used to demonstrate some properties of these visualization approaches, which
helped understand the nature of distribution of points in these graphs. To promote the development and
standardization of an appropriate visualization method, we make the following recommendations based on
the work presented in this paper:

• Avoiding complex transformations will make it easier to interpret graphs. The LIRI plot
is simpler than the BMMR plot, as Il and Ir are visualized without any non-linear transformations.
BMMR, MPMR, and BIUNI plots require complex transformations that hinder quick interpretation
of these plots.

• Symmetry about the x = 0 line might be easier to interpret. Plots where the x = 0 line
corresponds to Il = Ir divide the plot into two regions where the use of one upper-limb is higher
than the other. These plots are easier to interpret. For instance, ISID plot in appendix A, which is a
rotated version of LIRI, is probably easier to interpret than LIRI.

• Any new method proposed for visualization of relative upper-limb use must be accompanied by an
analysis of at least the four family of curves L1 to L4 in Eq. 10.
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The visualization and quantification of relative use of the upper-limb were demonstrated using (Ir, Il).
Although the properties of the visualization and quantification using (Ur,Ul) or (Ar,Al) are likely to be
similar, there will be some differences. One must be cautious of these differences to ensure proper interpretation
of the data. For example, unlike Ii and Ai the LIRI plot with (Ur,Ul) is restricted to the square 0 ≤ x, y ≤ 1.

4.4 Limitations

This work is an initial attempt towards a framework for the systematic analysis and interpretation of
upper-limb functioning using sensors. We hope that the ideas presented here form a base for future work in
this area, and anticipate that these ideas will be further refined and improved in the coming years. To aid
this process, we make explicit the limitations of the current work, which are as follows:

• Most of the ideas are only presented conceptually and no algorithms or methods for quantifying the
associated parameters are provided. Good algorithms for realizing the measures fu, fµ, and fτ are
essential for practical implementation, which will be an active area of research in the coming years.

• The components of the proposed framework are chosen based on the authors’ understanding of the
current literature and the clinical needs in neurorehabilitation. The clinical usefulness of many of
these ideas (concepts, measure, and visualization methods) need further validation.

• The ideas presented in the paper have been primarily targeted towards aiding the evaluation of
upper-limb functioning after hemiparesis. Thus, not all of ideas presented here would be relevant for
other conditions, such as those involving tremors, chorea, dystonia etc. Application of this framework
to other condition, e.g. Parkinson’s disease, might require new concepts or revised definitions.

• Assessments of upper-limb functioning using sensors usually results in large amounts of data. The
analysis methods that have been employed in the current literature and proposed in the current paper
are quite simple, and probably only extract a portion of information available in the measured data.
Future work must focus on exploring data mining algorithms for identifying patterns of recurring
behavior across time. Recent developments in computational ethology [33] and automatic behavioral
clustering [34] could be leveraged to identify such patterns. There is also currently little work on
investigating patterns of upper-limb functioning within and across days, which might be useful in
evaluating the participation of a patient in different day-to-day activities and their life roles.

• The current work only addresses questions 1 and 2 presented in the introduction section, which deal
with how much the upper-limbs are used in daily life and the bias in using one limb over the other.
More detailed task-level analysis are likely to be of increasing interest in the future.

5 Conclusion

The paper presented a framework for sensor-based assessment upper-limb functioning in a patient’s natural
setting. The proposed framework provided formal definitions of essential concepts in upper-limb sensorimotor
assessment, methods for visualizing assessments of upper-limb functioning, and two generic measures for
quantifying the amount of upper-limbs use and the bias in using the two limbs. Demonstration of some of
these components were provided through preliminary data obtained from a previous study. We also pointed
out the limitations of the current work which are likely to be addressed in the coming years. We firmly
believe that the work presented here will help steer future research in assessments in neurorehabilitation
towards realizing an objective, accurate, and clinically relevant assessment tool to evaluate the true effect of
neurorehabilitation in patients’ daily life.
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Appendix A

In this section we present analysis of three addition visualization methods by deriving expressions for the
loci of L1 to L4, and demonstrate the nature of these visualization methods using data from a healthy and
impaired participant [10] (similar to Fig. 7).

MPMR Plot(a) ISID Plot(b)

BIUNI Plot(c)

Figure 9: Analysis of MPMR, ISID, and BIUNI plots by investigating the nature of the family of four curves
L1 to L4 introduced in Eq. 10. (a), (b), and (c) show the loci for different curves corresponding to L1 to L4

for the MPMR, ISID, and BIUNI plots, respectively.
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Magnitude-product versus Magnitude-ratio (MPMR) plot

Instead of using the sum of Il and Ir along the y axis, like in BMMR, we can use the log of the product (MP)
of the Il and Ir (Fig. 9(a)).

x (t) = MR (t) = log

(
Ir (t)
Il (t)

)
; MR (t) ∈ R

y (t) = MP (t) = log (Il (t) · Ir (t)) ; MP (t) ∈ R
(14)

Some of the essential properties of the MPMR plot are:

• Like BMMR, the vertical line x = 0 divides the plot into right and left dominated halves (x > 0 for
right and x < 0 for left).

• Pure unilateral use Il = 0 or Ir = 0 corresponds to x = ±∞.

• The use of logarithmic transformation for the x and y axes leads to simpler looking curves for L1

and L2, and consequently simpler bounding regions as seen in Fig. 10(a).

• Equal, unbiased use of the upper-limbs results in a square-shaped region of distribution of points
that is symmetric about the x = 0 line (blue curve in Fig. 10(a) and Fig. 10(b)).

• Biased use of the upper-limbs results in a rotated rectangular region of points, with more of the
rectangle located on one side of the vertical line (red curve in Fig. 10(a) and Fig. 10(c)).

Intensity sum versus Intensity difference (ISID) plot

This plot is derived by rotating the LIRI plot by 45deg counter-clockwise, which results in a plot of the sum
versus the difference between the average upper-limb intensities (Fig. 9(d)).

x (t) = g (Il, Ir) = ID (t) = Ir (t)− Il (t) ; ID (t) ∈ R
y (t) = h (Il, Ir) = IS (t) = Ir (t) + Il (t) ; IS (t) ≥ |ID (t)|

(15)

Because Ii is non-negative, the points y < |x| are not part of the plot, which is shown by the shaded region
in Fig. 9(b). The following are some of the essential properties of ISID plot:

• Like the BMMR, MPMR plots, the x = 0 corresponds to Il = Ir.

• Pure right and left unilateral use correspond to points long the y = x and y = −x lines, respectively.

• The shape of the distribution of points are the same as LIRI but are rotated by 45deg counter-clockwise
(Fig. 10(e)-(f)).

Bimanual versus Unimanual (BIUNI) plot

This plot is obtained through a nonlinear transformation of the LIRI plot such that any point (x, y) in the
LIRI plot with polar coordinates (r, θ) is mapped to a point (r, 2θ).

x (t) = g (Il, Ir) = r (t) · cos (2θ (t)) ; x (t) ∈ R
y (t) = h (Il, Ir) = r (t) · sin (2θ (t)) ; y ≥ 0

(16)

where, r (t) =
√
I2r (t) + I2l (t) and θ (t) = arctan 2 (Il (t) , Ir (t)).

Some of the essential properties of BIUNI plot are:

• Like the BMMR, MPMR, ISID plots, the x = 0 corresponds to Il = Ir.
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(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

Boundaries of scatter plot for 
symmetric and asymmetric use

Actual data - Healthy Actual data - Impaired

Figure 10: MPMR, ISID, and BIUNI plots of actual data from a healthy and impaired participant. The first
column shows ((a), (d), and (g)) examples of the boundary of the distribution of scatter plots for the MPMR,
ISID, and BIUNI plots for symmetric and asymmetric upper-limb use. This closed curve corresponds to
the L1 and L2 curves for different values of Ir and Il. Plots (b) and (c) depict the MPMR scatter plots
for a healthy and impaired participant using data collected during a single day. Plots (e) and (f) are the
corresponding ISID plots for the same subjects. Plots (h) and (i) correspond to the BIUNI plots for the same
subjects. The closed black curves shown in the plots for the healthy and impaired participant correspond to
the 2.5th and 97.5th percentiles for Il and Ir.

• Pure right and left unilateral use correspond to points long the positive and negative x axes,
respectively.

• Equal, unbiased use of the upper-limbs results in a symmetric dome-shaped region distribution
of points (Fig. 10(h)). Biased use of the upper-limbs distorts this shape resulting in more points
distributed along the side of increased use (Fig. 10(i)).
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