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Abstract 

Discovering DNA regulatory sequence motifs and their relative positions are vital to 
understand the mechanisms of gene expression regulation. Such complicated motif 
grammars are difficult to be summarized from shallow models. Although Deep 
Convolutional Neural Network (DCNN) achieved great success in annotating cis-
regulatory elements, few combinatorial motif grammars have been accurately interpreted 
due to the mixed signal in DCNN. To address this problem, we proposed NeuronMotif, a 
general backward decoupling algorithm, to reveal the homo-/hetero-typic motif 
combinations and arrangements embedded in convolutional neurons. We applied 
NeuronMotif on several widely-used DCNN models. Many uncovered motif grammars of 
deep convolutional neurons are supported by literature or ATAC-seq footprinting. We 
further diagnosed the sick neurons that are sensitive to adversarial noises, which can 
guide DCNN architecture optimization for better prediction performance and motif 
feature extraction. Overall, NeuronMotif enables decoding cis-regulatory codes from 
deep convolutional neurons and understanding DCNN from a novel perspective. 
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Fig. 1. The overview of NeuronMotif and existing methods. a, A trained DCNN model can annotate genome 
function with corresponding genome sequence as input. Interpreting regulatory grammar from DCNN includes 
discovering the motif glossary and syntax. The motif is similar to the different word-forms for a lexeme, the 
smallest isolatable meaningful unit. Soft/hard hetero/homo-multimer motif are organized by motif syntax tree. 
b,c, Max activation and saliency map methods adapted from CV. d,e How NeuronMotif decouple a layer-4 
neuron based on the mechanism of DCNN. d, Eight sequences 𝒙!"# matched by two CTCF-6N-DDIT3::CEBPA 
motifs with four different relative positions are sampled by adapted genetic algorithm. In each layer, the masked 
subsequences are detected by the neurons of the corresponding colors . Convolutional neuron combines the 
motif sequence recognized by previous layers (rectangles with black border) and fills the gap between them. 
Max-pooling operation aligns the recognized regions by extending their length. The chaotic signal of nucleotide 

bases in 𝒙!"# with similar function are layer-wisely unified into the similar signal 𝑦!"# = 𝑦!"#
(%)  (feature map 𝒚('), 

only the key components of feature map in layers 𝑙 = 2, 3, 4  are shown in figure). 𝒚!"#
(() , 𝑦!"#

(%) (𝑦!"#)  are 
independent of different motif sequences and shift diversity. e, From layer 4 to 1, feature maps of the sequences 
can be firstly distinguished at layer 2. To reverse the max-pooling operation of size 2, twice kmeans (k=2) are 

applied on feature maps 𝒚!"#
())  reclusively. 𝒙!"# are divided into 4 groups for calculating PPM respectively. A is 

the max activation in each group. 
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Fig. 2. Details of NeuronMotif. a, In experiment like SELEX, the sequences (𝒛) bound by TF are filtered and 
aligned for motif estimation	𝔼𝑿. To simulate this process, enumerating the valid sequence (𝒙) for estimating 
the motif for a neuron is not correct (given distribution of 𝑿). The frequency/weight of sequences should be 
proportional to affinity level (given distribution of 𝑌 in b). Within the whole DCNN structure, DCNN sub-
structure of the neuron in red is equivalent to function 𝑦 = 𝑓(𝒙). The abbreviation 𝑠. 𝑡. means subject to. b, 
Distribution of neuron activation values (𝑦) in a. The sequence collection with a higher activation level contains 
more information in the sequence logo. c, The sequences are sampled during the optimization process of 
seed sequence. d, Two types of latent variables lead to motif mixture in neuron model. The shifted motifs can 
be decoupled under the control of shift latent variable that determine the position 1 and 2. The synonymous 
latent variable determine the different replaceable motif with similar function at the same position. The example 
is the original motif 1 and its reverse complementary motif 2. For some TFs, function is not sensitive to 
orientation. e, Comparing the neuron with (left column) and without (right column) synonymous mixture motif. 
Under the controlling of synonymous latent variable	𝑆 = 𝑆1, 𝑆2, the sequences and corresponding motifs are 
similar in single model but different in mixture model. The sequences with max activation value in two model 
are 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 (𝑓-(𝒙𝟏) > 𝑓.(𝒙𝟐) ≈ 𝑓.(𝒙𝟑)).  Both of the models share consensus sequence (𝒙/).  
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Fig. 3. Use NeuronMotif to annotate Basset model. a, Four motifs of a second-layer neuron decoupled by 
NeuronMotif (row 2-4). The decouple motifs with the same size (the receptive field size of neuron in the second 
layer is 51bp) are aligned with 1bp offsets. They are matched by JASPAR motif NFIB using Tomtom (row 1). 
The interpretation results using methods of Kelley et al., Alipanahi et al. and Saliency Map are shown in row 
row 5-7. b, Motifs of a third-layer neuron decoupled by NeuronMotif (row 2-13). The decoupled 12 motifs with 
the same size (the receptive field size of neurons in the third layer is 132 bp) are aligned with 1bp offsets. 
They are matched by JASPAR motif CEBPB, CTCF and DDIT3::CEBPA using Tomtom (row 1). The 
interpretation results using methods of Kelley et al., Alipanahi et al. and Saliency Map are shown in row row 
14-16. c, The 2 neurons in the second layer learn the reverse complementary motifs. They represent the 
motifs of AAC triplet repeats (row 1-3) and GTT triplet repeats (row 4-6) respectively, which were decoupled 
by NeuronMotif.  
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Fig. 4. NeuronMotif diagnose model defects and guide DCNN architecture design for better performance. a, 
Dead kernel definition. Dead neuron (pink) activation value distribution is negative. It will be filtered by ReLU 
activation function. The output of dead neuron is zero. The downstream neuron output does not depend on 
this neuron. b,c, Diagnosis of motif mixture in the decoupled motifs from Basset, BD-10, DeepSEA and DD-
10 model. Each point is a decoupled motif generate by a sample set of sequence. The points of motifs 
generated by the sample set with less than 100 sequences are marked by red color. Otherwise, they are 
marked by blue color. The distribution of the max activation value is used to show if the relative max activation 
values of most of the motifs are too low. b, Diagnosis of models trained by DeepSEA dataset c, Diagnosis of 
models trained by Basset dataset. Only the max activation value of the decoupled motifs in Fig. 3b are 
significantly higher than the decoupled motifs of other neurons in layer 3 of Basset-3 model. d, The meaning 
of each region in the sub-plots of b,c. e, Schematic for receptive field coupling of previous layer neuron in the 
neuron sub-structure. f,g, Use AUPRC as an indicator to compare the prediction performance of models. For 
each model pair, one-sided t-test of Δ𝐴𝑈𝑃𝑅𝐶 = 𝐴𝑈𝑃𝑅𝐶0"123- − 𝐴𝑈𝑃𝑅𝐶2"123-  is used to access model 
performance difference level. f, Comparison between DeepSEA and DD-10 models. g, Comparison between 
Basset and BD-10 models. 
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Fig. 5. Motif discovery performance for different layers in different models. a, Accuracy analysis for discovered 
motifs of different models. Three columns of box plots describe similarity between neuron motifs and JASPAR 
motifs in Basset, BD-5 and BD-10 model respectively. For each selected layer in the model, -log10(q-values) 
distribution of the top 100 JASPAR motifs matched neuron (q-value < 0.1) are shown with box and jittering 
points. The color of the box means the applied interpretation method. In the first row, it shows the result of 
input (first) layer of Basset model and shallow layers in BD-5 and BD-10 model with similar receptive field 
sizes (18 bp) of the Basset input layer neuron (19 bp). In the second row, it shows the convolutional output 
layer, the convolutional layer in the front of dense layer, result of the three models. b, The number of motifs 
discovered (q-value < 0.001) from the neuron in convolutional output layer of Basset, BD-5 and BD-10 model. 
c, The number of motif discovered (q-value < 0.01) from the neuron in layer 3 of Basset model using different 
interpretation methods including Kelley et al., Alipanahi et al.  and NeuronMotif. d, Discovered motifs from 
the neuron of top convolutional layer in BD-10 model (q-value < 0.01). These motifs can be matched to 
JASPAR database. Only the one with smallest q-value for each JASPAR motif is shown. 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 11, 2021. ; https://doi.org/10.1101/2021.02.10.430606doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.10.430606


 
Fig. 6. Verification of neuron motif. a, Motif syntax represented by a neuron of top convolutional layer (layer 
10) in DD-10 model applied on DeepSEA data. The neuron motifs (144 bp) are matched to TF CTCF and 
DDIT3::CEBPA. CTCF-DDIT3::CEBPA is a hard hetero-trimer. The distance between two CTCF-
DDIT3::CEBPA trimer is flexible. b, Motif syntax represented by another neuron of top convolutional layer 
(layer 10) in DD-10 model applied on DeepSEA data. The neuron motifs (144 bp) are matched to TF NFIX. c, 
Five different cell types’ ATAC-seq data footprinting (500 bp upstream and downstream from the motif matched 
midpoint is shown) of the motifs in a. Cut-site counts of each position are normalized by total cut-site counts 
within 1000 bp window. d, Similar to c, the footprinting of the neuron motif in b. e, CTCF-DDIT3::CEBPA motif 
matched count for each relative motif midpoint position. Soft homodimer of CTCF-DDIT3::CEBPA heterotrimer 
relations are shown at the bottom.. f, NIFX motif matched count for each relative motif midpoint position. Soft 
homotrimer of NIFX relation is shown at the bottom. 
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Introduction 

The DNA sequence is a language of life1. To understand life processes, it is essential to 
decode the grammar of DNA. One of the most important problems is deciphering 
transcriptional cis-regulatory code from functional DNA sequence. Deep sequencing 
techniques such as ChIP-seq, ATAC-seq2, etc. have been developed to discover the 
sequences with specific function or characteristic like Transcription Factor Binding Sites 
(TFBSs), Histone-marks (HMs) and chromatin openness. But the logic of the sequence 
is difficult to summarize directly. With the development of deep learning techniques, a 
growing number of researchers resort to the deep convolutional neural network (DCNN) 
for its significant advantage including automatic extraction of sequence motif (Fig. 1d) 
and higher prediction accuracy3. For example, DeepSEA4 and Basset5 model 
successfully use DNA sequence to predict chromatin-profiling data including TFBSs, 
HMs profiles and DNase I sensitivity. Among these common functions, in cis-regulatory 
modules, Transcription Factors (TF) regulate gene expression through binding or co-
binding to specific preferred DNA sequences that occur at particular genome positions6. 
Accurately characterizing TF binding specificities and interpreting the relative positions 
of TFs from DCNN are vital to understand the logic of gene regulation (Fig. 1a). 
Unfortunately, DCNN is a black-box that is difficult to be interpreted what motif glossary 
or even motif grammar it exactly learns. 
 
Interpretation of DCNN black-box is not as smooth as function annotations. Most existing 
methods4,5,7,8 seek to interpret DCNN by detecting the correlation between the predicted 
genome function as the model output and DNA sequence at the resolution of a single 
nucleotide base as inputs via different approaches adapted from Computer Vision (CV) 
(Fig. 1b, Fig. 1c and Fig S1, see supplementary information for details). However, from 
the viewport of linguistics, letters of nucleotide bases do not have actual meanings 
unless they are combined into various words of motif sequences9. Thus, interpreting the 
meaning of a single nucleotide base while ignoring its the context-dependence is 
polysemous or even meaningless. The average interpretation of polysemous results is a  
confusing mixture. 
 
Due to the lack of interpretation methods, the design of deeper DCNN structure with 
better prediction performance is limited. Different from the deepening DCNNs applied in 
the CV like 16-convolutional-layer VGG-19 and 128-convolutional-layer ResNet10, most 
DCNN models for studying genome functions contain up to 3 convolutional layers to 
guarantee clear interpretations 11,12. The interpretation of the first layer in shallow 3-
convolutional-layer DCNN is more reliable with existing interpretation methods. These 
shallow model avoids serious motif mixing problems in deeper layers13 and motif 
fragmentation happened in the first layer of deeper DCNN14. But the kernel size in the 
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first layer has to be large enough to learn a single complete motif5. However, deeper 
DCNNs show better performance in genomics15,16. Hence, performance and 
interpretation seem to be a trade-off determined by the DCNN architecture to a large 
extent. 
 
Here, we proposed NeuronMotif to decipher transcriptional cis-regulatory grammar from 
DCNN (Fig.1 d,e). This algorithm considers the sequences recognized by an Artificial 
Neuron (AN) as a mixture model depending on latent variables. From the output of AN to 
the input, it automatically backward discovers the latent variables reflecting the neural 
network structure to decouple the AN mixture model for extracting motif grammar. We 
applied NeuronMotif on several existing shallow DCNNs (DeepSEA4 and Basset5). A 
large portion of uncovered motifs and syntaxes of their combinations are supported by 
literature or ATAC-seq profile, which outperforms existing state-of-art methods. The 
results of NeuronMotif reveal the origin of adversarial noise in the model, which can be 
used to guide the design of DCNN architectures to suppress noise. With the help of 
NeuronMotif, we further built and interpreted 10-convolutional-layer deeper DCNNs with 
the help of NeuronMotif. 
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Results 

The NeuronMotif algorithm for uncovering motif and decoupling motif 

mixture from DCNN model 

TFs are proteins that can recognize and bind to specific DNA sequences. The perferred 
sequences bound by a given TF are usually summarized as a motif. Motif is a model 
typically refers to Position Weight Matrix (PWM), which can be converted from Position 
Probability Matrix (PPM)17. At each base position in PPM, the four scores represent the 
probability of the four bases that occur at the relative position of TFBS. The probability 
can be estimated by collecting the DNA sequences binding with TFBS through 
experiments such as Systematic Evolution of Ligands by Exponential Enrichment 
(SELEX)18 (Fig. 2a). This process is similar to sampling sequences (𝒙) of TFBSs with 𝑁-
bases length from an 4 × N random variable matrix 𝑿 ∼ 𝑝𝐏𝐏𝐌𝟒×𝑵(𝒙) to estimate PPM 
(𝔼𝑿) by element-wise average 𝒙, (see Methods). Here, 𝒙 is the 4 × 𝑁 one-hot code of 
the sequence, and each column of 𝑿 is an different independent categorial distribution. 
The sampling process in the experiment reflects TF binding affinities to sequences. The 
sequences with stronger affinities may occur at higher frequency.  
 
Inspired by SELEX screening TF-preferred sequences, we attempted to imitate this 
process by sampling AN-preferred sequences to study AN. The sub-structure of an AN 
processes the sequence input (𝒙) with a non-linear function 𝑦 = 𝑓(𝒙) and then outputs 
an activation value (𝑦) (Fig. 2a and Fig. S4a). This process is quite similar to SELEX 
screening sequences because the sequences (𝒙) with higher activation 𝑦 are preferred 
by the AN for affecting downstream ANs and the final prediction result, which reflects 
sequence affinity. Hence, the input random variable matrix 𝑿 ∼ 𝑝𝐏𝐏𝐌𝟒×𝑵(𝒙) depends on 
the output random variable 𝑌 ∼ 𝑝(𝑦) through 𝑌 = 𝑓(𝑿). To obtain PPM reflecting 
binding affinity rather than binding probability, we adopt a linear function as 𝑝(𝑦) of the 
distribution (Fig. 2b, see Methods for detail explanation). In other words, sampling weight 
or frequency of each unique sequence (𝒙) should be positive proportional to its activation 
value (𝑦) (Fig. 2a and 2b). It can be implemented by sampling 𝑿 at the same level of 𝑦 
to estimate 𝔼(𝑿|𝑌 = 𝑦) (bottom of Fig. 2b) and then taking the weighted average of 
them (𝔼𝑿 = 	𝔼[𝔼(𝑿|𝑌)]) to estimate PPM (Fig.2b, see Methods for details). This method 
precedes previous studies in representing the TF binding affinity to DNA sequences. 
Adapted Back Propagation (BP) methods like Saliency Map and DeepLIFT do not model 
the sequence preference with 𝑿. The importance score (e.g. 𝜕𝑦/𝜕𝒙	) of these methods 
do not directly reflect PPM or PWM (Fig. 1c). While adapted max activation methods like 
the methods developed by Kelley et al. and Alipanahi et al. for interpreting Basset 
model5 and DeepBind model8 try to follow the PPM model but they estimate 𝔼𝑿 by 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 11, 2021. ; https://doi.org/10.1101/2021.02.10.430606doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.10.430606


𝒙		({𝒙|𝑓(𝒙) > 0} or {𝒙|𝑓(𝒙) > 𝑦#$%/2}) without depending on the level of 𝑌 , thus could 
hardly reflect the activation perference.(Fig. 1b). Here, we assumed that TFBS are 
located at the same relative position in the input sequences without shifting, and then we 
can define motif or PPM for the sequences recognized by an AN as 𝔼𝑿 given 
distribution of 𝑌. We called it AN motif or PPM of AN. 
 
 
However, we found that due to the max-pooling operation in DCNN, TFBSs may be 
located at different relative positions in the input sequences to activate the AN. In the 
max-pooling layer, the key input feature maps reflecting the shifting diversity of TFBSs 
will be unified into similar output feature maps (Fig. 1d, 1e and S4b). The downstream 
key ANs including the output AN will share similar activation values (𝑦) for different 
sequences with shifting TFBSs. Hence, the motif sequences of TFBS recognized by an 
AN can be regarded as a latent variable mixture model. To decouple motif mixtures, we 
have to find some shift latent variables that reflecting different positions of the motif 
sequence (the top part of Fig. 2d). Only by controlling these latent variables can we 
obtain the consistent real sequence motifs (𝔼(𝑿|𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)). This key issue is neglected 
by all existing methods (Fig. 1b, Fig. 1c and Fig. S1). 
 
 
We further found that TFBSs in the sequences may not share the same pattern . It 
indicates that we can find more than one motif by stacking TFBSs with grouped 
consistent pattern respectively . One of the cases is the reverse complementary 
sequences (bottom part of Fig. 2d). The mixing of these sequences can be controlled by 
another important type of latent variables in the mixture model named as synonymous 
latent variables, and we called the decoupled motifs as the synonymous motifs. The 
synonymous motifs represented by an AN should satisfy: (1) they are not shifted motifs; 
(2) all or part of input variables 𝑿 are conditionally independent under controlling 
synonymous latent variables; (3) the sampled sequences grouped by synonymous 
motifs should share similar maximun activation values so that they are all preferred by 
the AN. If these conditionally independent positions affect little on activation values, then 
the AN can be regarded as a single model (SM, 𝑦 = 𝑓&(𝒙), the left column of Fig. 2e). 
Otherwise, the motif sequences recognized by the AN is a mixture model (MM, 
𝑦 = 𝑓#(𝒙), the right column of Fig. 2e). Both SM and MM share similar motif (the bottom 
part of Fig. 2e), but the sequences of the maximum activation value (SM: 𝑥'; 	MM:	𝑥(, 𝑥)) 
and the consensus sequences (𝒙*) show their difference. Different from	𝑓&(𝒙*) ≈ 𝑓&(𝒙') 
in the SM, 𝑓#(𝒙*)	in MM usually strongly deviates from 𝑓#(𝒙(), 𝑓#(𝒙)), and could even 
be negative (the top-right part of Fig. 2e). This is because 𝒙* may not match any 
conditionally dependent motifs embedded in the AN (the bottom-right of Fig. 2e). Thus, 
bases flipping at the conditionally dependent positions of the sequence is a kind of 
adversarial noise19 discussed in CV that can dramatically change the AN activation level 
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or even destroy prediction result. In addition, we also proved that severe mixing of 
synonymous motifs in the AN correlates to the lower maximum activation and weights of 
the AN (see Methods). The results above suggested that the mixture of synonymous 
motifs seems to be noise rather than motif signals due to its vulnerable characteristics. 
Hence, for a well-trained model with weak noises, we only need to decouple the signal of 
each AN depending on the max-pooling structure. 
 
One of the most widely-used types of DCNN models is composed of general convolution 
layers and max-pooling layers. We took this type of DCNN as an instance, and 
developed the NeuronMotif algorithm to uncover the motif combinatorial grammar from 
DCNN. First, we designed a sampling algorithm adapted from genetic algorithm to 
optimize seed samples and recorded the intermediate valid sequences as the sampling 
result (Fig 2c, see Methods for details). Second, we used K-means (K is pooling size) to 
decouple the mixture signal from different sequences by clustering the shifting similar 
sub-patterns in the input feature map of the max pooling layer to split the sequences set 
(Fig 1d,e and Fig. S4b). The decoupling process can be performed backward and 
recursively from the deepest layer to the first layer. Third, the algorithm can annotate an 
AN with motifs by estimating 𝔼[𝔼(𝑿|𝑌, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑠𝑢𝑏𝑠𝑒𝑡)] from each subset samples 
clustered by K-means (Fig 1e, see Methods for detail).  
 
The steps above can only decouple the mixture of a single hard AN motif with shifting 
diversity. The hard motif refers to the motif or motifs combination with a fixed gap, which 
characterizes homodimer, heterodimer or multimer TFs that can be considered as a 
stable molecular cluster binding to DNA. However, a large portion of TFs cobinding are 
gapped by flexible intervals. Their sequence pattern is the soft motif that composed of 
more than one hard motif, and the space between any two adjacent hard motifs is in a 
certain range.To decouple the hard motifs in a soft motif represented by AN, users 
should run the decoupling algorithm in NeuronMotif (the second step) iterately for 
several times based on the number of hard motifs (Fig 1e, see Methods for details).  
 

NeuronMotif successfully decouple the motif mixture  

To evaluate the performance of NeuronMotif on decoupling the motif mixture signal, we 
applied NeuronMotif to annotate two well-known models, DeepSEA4 and Basset5, both 
of which are DNA-sequence based DCNN models with 3 general convolutional layers for 
genome function annotation. Basset annotates open chromatin region trained by DNase-
seq data. In addition to chromatin accessibility, DeepSEA also annotates TFBSs and 
HMs trained by ChIP-seq data. NeuronMotif successfully decoupled the shifted mixture 
motifs from layer 2 (L2) and layer 3 (L3) of the both models (see Supplementary 
Information for all results). In the Basset model, the first- and second-layer pooling size 
are 3 and 4, so the numbers of shifted signals are 3 and 3 × 4 = 12 for L2 and L3 ANs, 
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respectively (Fig. 3a-c). In the DeepSEA model, the first- and second-layer pooling size 
are both 4, so the numbers of shifted signals are 4 and 4 × 4 = 16 for L2 and L3 ANs, 
respectively. In Fig 3, all adjacent AN motifs are shifted with 1bp and highly consistent. 
However, the state-of-the-art methods, such as Kelley et al5., Alipanahi et al8 and 
Saliency Map20 , cannot deal with the mixture signal which leads to the much lower 
information content and very noisy signals. 
 
The NeuronMotif-annotated results of Basset and DeepSEA models showed that ANs 
extract various kinds of motifs. Here, we took Basset as an instance. Some ANs extract 
important TF motifs correlated with Basset’s prediction targets (DNase I sensitivity). 
Many motifs of ANs can be matched with the known motifs in the JASPAR21 database 
(Fig. 3a and 3b). Some matched TFs, like NFI and cobinding TFs CTCF-CEBP, are 
highly correlated with chromatin openness22,23. In comparison, the interpretation result of 
existing methods can hardly be matched with any known motifs in JASPAR. Statistically, 
NeuronMotif found more motifs and more accurate motifs from JASPAR database (Fig 
5a and 5c). Besides, some important functional sequence features and their reverse 
complement can also be identified from motifs of AN. One of the typical examples is the 
repeats of AAC triplets feature extracted by the Basset model (Fig. 3c). It has been 
reported that repeated triplets AAC is enriched in intron24. As the intron regions are 
usually open for gene transcription, it is reasonable that the Basset model extract this 
feature. 
 
 

DCNN diagnosis and architecture design guidance 

 
From the NeuronMotif result of DeepSEA and Basset models, we found that the outputs 
of some ANs were always zero no matter how we changed the input sequences. We 
called them dead ANs (Fig 4a). The dead ANs are redundant because they cannot affect 
the downstream network. During the sampling process of annotating DeepSEA model 
via NeuronMotif, we found the sampling algorithm cannot sample even one sequence 
that can activate some ANs in L2 and L3. For example, A total of 150 and 120 ANs in L2 
and L3 are dead ANs in the DeepSEA model.  
 
Another problem is that some ANs may recognize synonymous motifs. We diagnosed 
this problem with two indicators of motifs based on the phenomena that an AN may 
represent synonymous motifs. One indicator is the activation value of motif consensus 
sequence and the other is the maximun activation value of the sampled sequences for 
motif estimation. We found that if the two indicators severely deviate from each other, or 
the max activation value is close to zero, then the corresponding AN may suffer from the 
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synonymous motifs problem. The two indicators of Basset L2 ANs are almost consistent 
(the first column of Fig. 4c). However, in L3, activation values of many decoupled motifs’ 
consensus sequences are negative and severely deviated from the maximum activation 
value (the second column of Fig. 4c). Most problematic motifs are mainly caused by 
stacking sequences of different synonymous motifs with the maximum activation value 
closed to zero (see Methods for details and Supplementary Information for case).  
 
To overcome these problems, the DCNN architecture should be optimized to avoid the 
mixed signals of synonymous motifs. Both of DeepSEA and Basset use large 
convolutional kernel size (> 8) and large pooling size (3 or 4) in each layer. For an AN 
with the certain receptive field, implementing its sub-structure with larger kernel size and 
pooling size tend to cause weaker coupling among sub-structures of the previous layer 
ANs (Fig. 4e). When using the same training set and optimization method for training the 
model, we found that the less coupling among the ANs, the more sensitive to noise 
generated by synonymous motifs (see Methods and Fig. S6). DeepSEA adopted strong 
regularization methods to successfully suppress learning these the noises (Fig. 4b) but 
with the cost of producing dead ANs. In the field of CV, building deeper networks with 
smaller kernels and pooling structures has been found to be a more robust strategy with 
better performance25. Thus, we built 10-convolution-layer new models and trained them 
on the Basset Dataset (BD-10) and the DeepSEA Dataset (DD-10) respectively. The 
synonymous motif problem was significant suppressed in BD-10 and DD-10 (the third 
column of Fig. 4b and Fig. 4c), and few dead kernels were found. Furthermore, Both BD-
10 and DD-10 show much better prediction performance (Fig. 4f and Fig.4g) than the 
original model. These results demonstrate how NeuronMotif can be used to help 
diagnose DCNN and guide architecture design. 
 
 

Accuracy and completeness of motif discovery in different layers of DCNN 

To study which layer is better for motif discovery in a DCNN model, we used 
NeuronMotif to interpreter the shallow convolutional layers with receptive field around 
19bp and the deepest convolutional layers in three models with 3, 5 and 10 
convolutional layers (Basset, BD-5 and BD-10) trained by the same data of Basset 
paper. To measure the interpretation performance, we matched the decoupled motifs to 
the motifs in the JASPAR21 database using Tomtom26. For each AN matched to known 
motifs (q-value < 0.1), we selected the best matched motif in JASPAR and took similarity 
measurement between the found motif and the JASPAR motif (q-value) as the 
performance of the AN. As the numbers of ANs are different in each layer, we only 
selected the q-values of top 100 ANs for further analysis. Given a DCNN model, we 
found that the motifs discovered from the deepest convolutional layer outperform the 
shallow layers with around 19bp receptive field (each column in Fig 5a). We further 
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compared the layers with similar receptive field (the first row in Fig 5a), and the deepest 
convolutional layers (the second row in Fig 5a) among different models. The deeper 
models (BD-5 and BD-10) outperform the Basset model by discovering much more 
known motifs (Fig. 5b) and the motif is matched better to the JASPAR database (each 
row in Fig 5a). Based on the comparison results, we recommand to use deep AN for 
motif discovery and representation. For example, we built a motif dictionary from layer 
10 (L10) in BD-10 model. This dictionary contains 9056 motifs. Among them, 7974 motifs 
are matched to at least one of 399 JASPAR motifs by Tomtom (q-value < 0.01, one of 
the best-discovered motifs matched to each JASPAR motif is shown in Fig 5d) and 
remaining 1082 motifs are novel motifs. 

 

NeuronMotif successfully uncover motif grammar 

In previous works21,27, motif combination grammar is usually represented by the hard 
motif. They depict soft motif by enumerating different intervals among the component of 
hard motif (Fig 5a and 5b). In comparison, DCNN structure is more powerful to describe 
these soft motifs when the receptive field is long enough. Here, we take L10 ANs in DD-
10 as examples to study the AN soft motif. We assume the L10 ANs representing no 
more than two hard motifs, so we run decoupling algorithm twice in NeuronMotif and a 
total of 256 AN motifs are generated (Fig. 6a and 6b, see Methods for details). These AN 
motifs enumerating the combination of hard motifs with various sizes of gap. From these 
AN motifs, we can slice the shared hard motif to build motif dictionary. Based on the 
dictionary and all AN motifs, we can summarize the interval range between arbitray two 
adjacent hard motifs and build the syntax tree (Fig. 6a and 6b). Some of the soft motif 
can be supported by literature. For example, an AN in DeepSEA represents the soft 
CTCF homodimer with around 58 bp interval that play important roles in the 
transcriptional process of cancer and germ cells development28 (Fig. 6a). We also found 
that DDIT3::CEBPA can co-bind with CTCF, which is not reported in previous literatures. 
Interestingly, CTCF-DDIT3::CEBPA is shown to be an conservative hard trimeric motif 
that also occurs in the Basset model (Fig. 3b), which show the reliability of this 
discovery. We further used the ATAC-seq data footprinting to validate the discovered AN 
motif grammars. ATAC-seq uses Tn5 transposes to cut DNA into fragments. If there are 
some TFs or other molecules binding to DNA, the cutting frequency will be affected. For 
each AN, we aligned corresponding Tn5 transposes cutting frequency of top 3000 
sequences (144bp) with max AN activation values in the test dataset. We extended the 
footprinting region to 1000bp in total. Most ANs have their own footprintings generated 
by ATAC-seq data from five cell types or tissue (Fig. 6c and Fig. 6d, see Supplementary 
Information for other ANs). Soft CTCF-DDIT3::CEBPA homodimer footprintings from five 
cell types or tissue share the pattern of three peaks and two valleys (Fig. 6c) but soft NFI 
homodimer footprinting signals are only significant in prostate tissue and LNCaP cell 
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lines which support the notion that NFI family can regulate prostate-specific gene 
expression29 (Fig. 6d). The results indicated that some motif grammars of multimers are 
cell-type specific. To further confirm the footprinting caused by the specific TF binding, 
we calculated the distribution of motif matched positions for both CTCF–DDIT3::CEBPA 
and NFIC motif (Fig. 6e and Fig. 6f). The peaks of motif-matched positions are 
consistent with the footprinting valley. All the results suggested that NeuronMotif 
provides a novel way to discover the soft multimer motif grammar on the genome and to 
better depict multimeric TF motifs. 
 

Discussion 

In summary, we presented NeuronMotif as an effective algorithm to reveal the cis-
regulatory motif grammar learned by DCNN model that use DNA sequence to annotate 
genome function. We proposed the statistical form of AN motif representation and the 
latent variable mixture model to understand each convolutional neuron. Take max-
pooling-convolutional structure as an instance, we uncovered the signal mixing 
mechanism including shifting latent variable and synonymous latent variable. The 
NeuronMotif used a K-means-based algorithm to decouple the latent variable mixture, 
and a sampling strategy adapted from genetic algorithm for motif estimation. We 
eveluated NeuronMotif interpretation performance on DeepSEA, Basset and some in-
house deeper models. Many uncovered motif conbinatotial grammars are supported by 
literature and ATAC-seq data. Finally, we showed that NeuronMotif result can be used for 
model diagnoses and to guide model structure design for better prediction performance 
and motif extraction. 
  
Except for interpretating cis-regulatory motif grammar from DCNN, the application of 
NeuronMotif may be extend to many other problems. DNA sequence is a special one-
dimensional discrete data with four elements. It is possible to apply NeruonMotif to the 
DCNN for amino acid sequence of protein or other continuous sequence like different 
kinds of sequencing profile. There are still some issues that should be addressed to 
further expand the application of NeuronMotif. For instance, NeuronMotif only focuses 
on max-pooling-CNN structure. Many new DCNN structures such as ResNet and 
DenseNet are put forward in recent years. As these structures show better performance 
in CV, it is valuable to adapt the NeuronMotif method for these more general and 
complex DCNN structures in genomics studies.  
 
In the future, we envision that DCNN model interpreted by NeuronMotif will advance our 
ability to discover and summarize the complicated regulatory rule, model transcriptional 
cis-regulatory process and understand DCNN blackbox itself. 
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Methods 

Statistical definition and estimation of PPM represented by a convolutional 

neuron 

An AN has its own sub-structure in the DCNN model (Fig. 2a and S4a). The sub-
structure includes an input 𝒙 and an output 𝑦. The relation between 𝒙 and 𝑦 is 
defined by a non-linear function 𝑦 = 𝑓(𝒙) which depends on the sub-structure of the 
AN, because all upstream ANs in sub-structure can affect the characteristic of AN. The 
input of each AN is the output of AN in the previous layer. The sub-structure also 
determine the receptive field size 𝑁 (the length of 𝒙). 
 
For each valid DNA input sequence (𝒙, s. t. 𝑓(𝒙) > 0), 𝒙 is a 4 × 𝑁 matrix of one-hot 
code. It can be sampled from a random variable matrix 𝑿 ∼ 𝑝(𝒙). 𝑿 contains 4 × 𝑁 
random variables 𝑿+,- 	(𝑏 = A, C, G, T; 𝑗 = 1,2, … ,𝑁). Each column can be modeled as an 
independent multinomial distribution (𝑿∙,-~Multi[1, 𝝅∙,𝒋]), where the 4 × 𝑁 probability 
matrix 𝝅 is the PPM that characterizes the preference of the nucleotide bases for the 
sequence motif. Based on the nature of multinomial distribution, the parameter 𝜋∙,- =
𝔼𝑿∙,- 	so PPM can be estimated through sampling 𝑿∙,- and calculating the element-wise 
average 𝒙∙,-. As the unknown distribution	𝑝(𝒙) is to be estimated, we cannot sample 𝑿 
directly. We know that 𝑿 is not a free random variable, but depends on the free output 
random variable 𝑌~𝑝(𝑦) through 𝑌 = 𝑓(𝑿). Based on the identity equation 𝔼𝑿 =
𝔼[𝔼(𝑿|𝑌)], we can first sample 𝑿|𝑌 = 𝑦 to estimate 𝔼(𝑿|𝑌 = 𝑦), which represents the 
PPM for a specific activation value or affinity (𝑦). Given an arbitrary distribution 𝑝(𝑦), we 
can obtain the PPM by taking a weighted average of these PPMs with different affinities. 

𝔼(𝑿) = 𝔼0[𝔼𝑿(𝑿|𝑌)] = _𝔼[𝑿|𝑌 = 𝑦]𝑝(𝑦)𝑑𝑦
2

'

= lim
#→45

b𝔼c𝑿d𝑌 = 𝑖
𝑚𝐴g 𝑝 h

𝑖
𝑚
𝐴i∆𝑦

#

67(

 

= lim
#→45

b𝔼k𝑿l𝑌 = 𝑦, 𝑦 ∈ c𝑖 − 1𝑚 𝐴, 𝑖𝑚𝐴go 𝑃 h𝑦 ∈ q
𝑖 − 1
𝑚

𝐴,
𝑖
𝑚
𝐴ri	

#

67(

 

Numeric estimation of PPM for an AN needs enough valid sequence (𝒙) samples. In this 
work, we set ReLU[𝑓(𝒙)] = max{𝑓(𝒙), 0} as the activation function of each convolutional 
neuron. Therefore, the valid sequence dataset is 𝑿4 = {𝒙|𝑓(𝒙) > 0 ∧ |𝒙|8 = 𝑁}. Here, 
𝑓(𝒙) > 0 constrains the activation value of a valid sequence to be positive so that it can 
activate the AN, and |𝑥|8 = 𝑁 constrains that the length 𝒙 must match the AN receptive 

field size 𝑁. For convenient, we rewrote the sequence dataset as 𝑋4 = {𝒙6}67(
|:7|		and 
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corresponding activation value set as 𝑉 = {𝑓(𝒙6)}67(
|:7|		. The max activation value is 𝐴 =

max(𝑉). The probability of TF binding to a DNA sequence depends on the binding affinity 
30. To sample the sequences reflecting their affinity levels (𝑦), the sequence with high 
affinity should be sampled in higher frequency. Here, for the ease of calculation, we set 

the probability density function of 𝑌 as a linear function 𝑝(𝑦) = )
28
𝑦, 𝑦 ∈ [0, 𝐴] (Fig. 2b).  

 
In practical, we split interval [0, 𝐴] into 𝑚	(𝑚 = 20) bins to merge sequences with 
similar activation values into PPMs (Fig. 2b). In this way, we can get the average of 
PPMs weighted by activation values. For each bin 𝑖 (𝑖 = 1,2, … ,𝑚), the sequence index 

set is 𝐽6 =	}𝑗d
6;(
#
𝐴 < 𝑓(𝒙6) ≤

6
#
𝐴	⋀	𝒙- ∈ 𝑿4�. Sequences in bin 𝑖 share similar 

activation values. Thus, their average activation value and PPM can be calculated by 

𝑽,
<6;(# 2, 6#2=

=
∑ 𝑓(𝒙𝒋)-∈?9

|𝐽6|
 

 

𝔼 k𝑿l𝑌 = 𝑦, 𝑦 ∈ c𝑖 − 1𝑚 𝐴, 𝑖𝑚𝐴go ≈ 𝐏𝐏𝐌
[6;(# 2, 6#2]

=
∑ 𝒙𝒋-∈?9
|𝐽6|

 

where |𝐽6| is the number of sequences in sequence index set 𝑖. The probability or 
weight for each bin can be estimated by 
 

𝑃 h𝑦 ∈ q
𝑖 − 1
𝑚

𝐴,
𝑖
𝑚
𝐴ri ≈ 𝑃

<6;(# 2, 6#2=
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<6;(# 2, 6#2=

#
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Finally, 𝐏𝐏𝐌B×D of the AN can be estimated by the average of PPMs weighted by the 
activation value. 
 

𝔼(𝑿) = 𝐏𝐏𝐌B×D ≈b𝐏𝐏𝐌
[6;(# 2, 6#2]

#

67(

𝑃
<6;(# 2, 6#2=

 

The estimation above assumes that relative position of TFBS in the input sequence are 
the same and all of them share the same motif. In other words, it only works for SM 
neurons. However, the assumption was not suitable for most ANs especially ANs in 
deeper layer, where the estimation result is a mixture of different motifs. The random 
variable matrix 𝑿 can be considered as a MM. Hence, we first needed to find the latent 
variables that can split the dataset 𝑿4 into subsets 𝑿(4, 𝑿)4, 𝑿E4, …, each of which can be 
consider as an SM. The estimation should be applied on each subset respectively. It will 
generate several motifs 𝐏𝐏𝐌(, 𝐏𝐏𝐌), 𝐏𝐏𝐌E, … which are controlled by different 
conditions of the latent variables. 
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Discovering latent variables in a mixture model of neuron 

The activation value of the AN is the only indicator to show the matching level of a 
sequence. Sequences with high activation values of an AN may be composed of 
completely different key TFBSs at various relative positions due to the powerful 
representation ability of the neural network. This characteristic shows that sequences 
recognized by an AN can be considered as a latent variable mixture model. The 
sequences matched by different sub-models in the MM are available to activate the AN 
at the same level. Hence, the activation value of the AN is the unified or mixed signal 
that cannot distinguish the sequences with different TFBSs. To find the mechanism of 
mixing process for an AN, we can investigate the activation values of all upstream ANs 
(feature maps) that reflects TFBS diversity in the sequences, which define the latent 
variables. Controlling these latent variables, the sampled sequences share the same 
pattern (hard motif). The sequences are only matched by one sub-model in the MM. In 
this way, different sampled sequences shared the similar TFBSs that are located at the 
same relative position. Only obtain these sampled sequences can we estimate the AN 
motif.  
 
In practical, when analyzing the feature maps for sampled sequences, we used K-means 
to cluster the feature maps of the convolutional layer and found shifted signals among 
each cluster. However, these clusters are not able to be rebuilt by the feature map of the 
downstream max-pooling layer. So, the max-pooling operation unify the shifted signals of 
various sequence, which removes the difference among clusters. In other words, AN just 
tries to detect if TFBS exist in sequence, the position of TFBS in the sequences is not 
important to final AN output. Subsequently, we found the best cluster number K (the 
maximum shifting offset) is the same as the max-pooling size. Each offset within K 
defines a shifting latent variable. 
 

The side-effect for the ANs representing different synonymous motifs  

Following the definition of synonymous motifs for an AN, if an AN (𝑦 = 𝑓(𝒙)) represents 
the mixture of two synonymous motifs, let 𝒙(, 𝒙) be the vectors of flattened one hot 
code of the maximum activation sequences for the two motifs respectively, then they 
should satisfy 𝑓(𝒙() ≈ 𝑓(𝒙)) i.e. 𝑓(𝒙() − 	𝑓(𝒙)) → 0. First, we studied the AN in the first 
layer (𝑦 = 𝑓(𝒙) = 𝒌𝒙F + 𝑏). The activation values of 𝒙(, 𝒙) are 

�
𝑦( = 𝒌𝒙(F + 𝑏
𝑦) = 𝒌𝒙)F + 𝑏

 

Where 𝒌 is the weight of the AN, and 𝑏 is the bias or inceptor. Based on these two 
equations, we can easily obtain following equation  

(𝑦( − 𝑦))) = |𝒌|)[|𝒙(|𝟐 − 2𝒙(𝒙)F + |𝒙)|𝟐] 
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where, both |𝒙(|𝟐 and |𝒙)|𝟐 are equal to the length of the sequence. If the difference 
between two synonymous motifs is very great, 𝒙(, 𝒙) matched by these two motifs 
respectively should share much less bases (𝒙(𝒙)F → 0). For an extreme case, the two 
sequence are totally different (𝒙( ⊥ 	𝒙), 𝒙(𝒙)F = 0). Based on the condition above 
including (𝑦( − 𝑦))) → 0, 𝒙(𝒙)F → 0 and the constant value of |𝒙(|𝟐 + |𝒙)|𝟐, we can infer 
that |𝒌|) → 0. Thus, the maximum activation value follows 𝑦 = 𝒌𝒙(F + 𝑏 → 𝑏. The AN 
becomes a dead AN if 𝑏 ≤ 0. So, compared with the AN of SM that cannot represent 
two synonymous motif, the AN of MM representing the mixture of synonymous motifs 
exhibits a lower maximum activation value and a smaller weight. The importance of this 
kind of ANs for downstream ANs will be suppressed.  
 
In a DCNN without the pooling layer, we further investigated an AN representing two 
synonymous motifs in deeper convolutional layers 𝑖. We assumed that there are no AN 
representing the mixture of synonymous motifs in layer 1 to layer 𝑖 − 1. Based on this 

assumption, the feature map (𝒙(
(6;(), 𝒙)

(6;()) of 𝒙(, 𝒙) at layer 𝑖 − 1 are of great 

difference especially for the key features with high activation values. The negative values 

of the feature map are set 0 by ReLU activation function (𝒙(
(6;() ≥ 0, 𝒙)

(6;() ≥ 0).  The 

key feature in 𝒙(
(6;() with high activation may be low activated or 0 in 𝒙)

(6;()	(for key 

feature 𝑗,  �𝒙(-
(6;() − 𝒙)-

(6;()�
)
 will be larger compared to the value of similar sequences). 

It indicated that we were able to distinguish the sequences matched to the two 
synonymous motifs with the feature map of layer 𝑖 − 1. The activation of the AN in layer 
𝑖 is the linear combination of the previous layer feature map (𝑦 = 𝑓(𝒙) = 𝑔[𝒙(6;()] =

𝒌[𝒙(6;()]
F
+ 𝑏). Similarly, for an AN in layer 𝑖, we can obtain the following equation  

(𝑦( − 𝑦))) =b𝒌-) �𝒙(-
(6;() − 𝒙)-

(6;()�
)

-

 

Where 𝑗 is the feature number in layer 𝑖 − 1. If this AN mixed the signals of 

𝒙(
(6;(), 𝒙)

(6;() ((𝑦( − 𝑦))) → 0	), the result is the same with the first layer (∑ �𝒙(-
(6;() −-

𝒙)-
(6;()�

)
↑⇒ |𝒌|) → 0).  

 
However, the AN representing the mixture of synonymous motifs is usually accompanied 
by representing the strong consistent main motif (Fig. 2e). In layer 𝑖 − 1 of this AN, for 
feature 𝑠 representing the strong consistent main motif and feature 𝑗 representing 
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synonymous motifs, they may satisfy 𝒙(&
(6;() ≈ 𝒙)&

(6;() ≫ 𝒙(-
(6;() ≠ 𝒙)-

(6;()	 or 𝒌𝒔 ≫	𝒌𝒋. 

Although |𝒌|) of this kind of AN is smaller compared with the AN cannot recognize 

synonymous motifs, it can still obtain similar activation value 𝑦 = 𝒌[𝒙(6;()]
F
+ 𝑏 in two 

ways rather than becoming a dead kernel. One way is increasing 𝒙(&
(6;() and 𝒙)&

(6;() 

through the weight 𝒌(6;)) of previous layer neurons (�𝒙K
(6;()�

F
= ReLU(𝒌(6;))[𝒙(6;))]

F
+

𝑏)). The other way is increasing 𝒌𝒔 and decreasing 𝒌𝒋, which may greatly reduce the 
side-effect of mixture of synonymous motifs. In a well-trained model, for an AN, 
compared to the large weight on the high activations of subsequence matched by the 
main motif, the signal generated by the subsequence matched by synonymous motif can 
be neglected. Otherwise, AN only representing strong synonymous motifs will destroy 
the robustness of the AN (Fig. 2e). 
 
 

Weighted sampling algorithm adapted from the genetic algorithm 

The sequence sampling process is necessary to estimate the AN motifs. The first 
operation is the initialization of seed sequences. We randomly generated 5000 seed 
sequences that match the receptive field size. For each sequence, we randomly 
replaced a specific sub-sequence with one motif sequence of ANs in the previous layer. 
The position and the previous layer AN were randomly selected based on value of the 
normalized maximum contribution score: 

𝒄6- = max
	
�0,𝒘6-𝐴-� /bmax

	
�0,𝒘6-𝐴-�

6,-

	 

where 𝑖 is the position number, 𝑗	is the previous layer AN number and 𝐴- is the 
maximum activation value of the previous layer AN 𝑗. The second operation is sequence 
optimization. The sequence (𝑥) is discrete so we cannot use the gradient decent method 
directly, so we adopt and adjusted the genetic algorithm. In one generation, we used the 
normalized gradient value 𝒈 =	𝜕𝑓(𝒙) 𝜕𝒙⁄  as the probability to guide randomly select 
better mutation bases: 

𝒈𝒊𝒋N = �
𝒈6- 	, 𝒈6- > 0
𝑒𝒈9:	, 𝒈6- < 0 

𝒑6- = 𝒈𝒊𝒋N /b𝒈𝒊𝒋N
6

 

where 𝑖 is the base of A,C,G,T, and 𝑗 is the position. We kept 10% samples with top 
activation values in each generation. We randomly shifted 20% sequence samples 
based on the DCNN structure. The remaining samples were generated by roulette wheel 
selection and crossover operation. The total number of sequences did not change in 
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each generation. The optimization would not stop until the maximum record of the mean 
activation value of each generation did not increase for 10 iterations. The third operation 
is sampling. At the end of each iteration in the genetic algorithm, sequence with positive 
activations were collected as samples. The duplicated sequences were removed. Based 
on the maximum activation value of existing samples, we split the activation value 
interval into 20 bins. We kept the number of samples in each bin less than 5000. If it was 
overflowed, we randomly selected 5000 samples among them. See Supplementary 
Information for the pseudo code of this algorithm. 

 

Shifting latent variable discovery and decoupling algorithm 

For one AN, we need to design an algorithm to split the sample set according to the 
latent variables depending on the DCNN structure. From deep layers to shallow layers in 
DCNN model, when the result of a convolutional layer was the input of a max-pooling 
layer, the algorithm calculated the feature map of the convolutional layer and used K-
means (K is the max-pooling size) to cluster the sequence samples into K subsets 
according to the features in feature maps. The algorithm would continuously cluster and 
split each subset reclusively once it found the result of convolutional layer was the input 
of the max-pooling layer. Finally, the number of subsets is ∏ 𝑘P8;(

P7(  where 𝐿 is the layer 
number of the AN and 𝑘P is the pooling size of the pooling operation applied on each 
convolutional layer. Based on each subset, we obtained the numerical estimation of 
PPMs. The algorithm can be applied on the newly generated subset again for 
decoupling the secondary important shifting motif if the samples are enough. This 
process has been shown in Fig. 2d and 2e. See Supplementary Information for details 
and the pseudo code of this algorithm. 
 

Algorithm implements 

NeuronMotif were implemented in python. It depends on tensorflow and keras packages. 
Current version of NeuronMotif can only be applied to the DCNN implemented by 
tensorflow or keras. We only implemented the CPU version of NeuronMotif so it does not 
depend on GPU. The scripts are parallelized and can be run across the nodes of the 
computing cluster. The memory consumption depends on the DCNN structure and the 
AN receptive field size. We run the program on 4 servers. Each server contains 2 CPUs 
with 28 cores (Intel E5-2680) and 128GB memory. For each DCNN model mentioned in 
this work, the program can finish the decoupling of all convolutional ANs in about 3 days. 
 

Rebuilding and decoupling the DeepSEA and Basset models 

DeepSEA and Basset are both 3-convolutional-layer models implemented in Torch, 
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which is not compatible to NeuronMotif. We rewrote these two models with tensorflow 
and keras. We tried to keep the architecture, regularization, optimizer and so on 
consistent with the previous studies. We trained the models by the datasets that were 
used for training the original models. The dataset was split into a training set, a 
validation set and a test set according to the original papers. We also followed the 
training strategy described in the papers. We trained these two models with a single 
Nvidia P100 GPU card.  
 
We applied NeuronMotif on DeepSEA and Basset. DeepSEA had (320, 480, 960) 
kernels in each convolutional layer. The max-pooling size was 4 for every convolutional 
layer. Theoretically, we would obtain 320, 480 × 4 = 1920, 960 × 4 × 4 = 15360 AN 
motifs for L1, L2 and L3. However, some of them were absent for the dead kernel or low 
information content motifs that should be excluded. Similarly, Basset had (300, 200, 200) 
kernels and its max-pooling sizes were (3,4,4). Theoretically we would obtain 
300, 200 × 3 = 600, 200 × 3 × 4 = 2400 motifs from the L1, L2 and L3 of Basset Model. 
 
Synonymous motif mixture detection and diagnosis 

To estimate motifs from each sample subset, we calculated its maximum activation value 
and activation value of consensus sequence. The max activation value is obtained by 
feeding all sample sequences to the substructure of the AN. The consensus sequence 
was obtained from the PPM of the motif. For each position, the nucleotide base with the 
largest probability among 4 bases in PPM was selected as the nucleotide in the 
consensus sequence. We fed the consensus sequence to the substructure of the AN 
and got the activation value. For all motifs in the same layer of the DCNN model, we can 
draw a scatter plot to find if serious synonymous motif mixture exists. It can be 
diagnosed by observing if activation values of consensus sequences are deviated from 
corresponding maximum activation values. More low activation values of the consensus 
sequences indicate more synonymous motif mixture in this DCNN model. 
 

Problematic neuron analysis 

We investigated some problematic AN in the Basset model to find which part of the 
discovered motif makes the consensus sequence not be able to activate the AN. This is 
caused by the inconsistent sub-sequences at the certain position of the various sampled 
sequences playing key role in activating the AN. So, the consensus sequence of the 
motif cannot represent these sampled sequences. We call these motifs and their 
consensus sequences to be inconsistent, otherwise we call them to be consistent. 
Among the motif for an AN, consensus sequences of some motifs are consistent, which 
can activate the AN, but the inconsistent ones can’t. It is difficult to distinguish them by 
naked eyes because the information contents at different position are almost the same. 
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Here, we took one inconsistent and one consistent motif consensus sequence as 
examples. We aligned two sequences and used a 51bp window to slide on it. For each 
position, we replaced the sub-sequence (51bp) of the inconsistent consensus sequence 
with the corresponding sub-sequence of consensus sequence that can activate the AN 
to test if it can activate the AN. We found the valid position and tried to find the latent 
variables through clustering the sub-sequence-related feature maps or sub-sequence 
one-hot code that make it becomes mixture. Finally, we found they were the mixture of 
different synonymous motifs rather than the same shifted motif. See Supplementary 
Information for details. 
 

DCNN architecture optimization and deeper DCNN model construction 

We tried to optimize the architecture solely without using regularization methods. 
Following the strategy of small kernels and max-pooling sizes, the kernel size and max-
pooling size were set 3 and 2 respectively. We used ReLU as the activation function for 
each layer except for the last fully-connected layer with the sigmoid function. For Basset, 
we built a 5-convolutional-layer model BD-5 (kernel number and pooling operation: 32, 
pooling, 64, pooling, 128, pooling, 256, pooling, 512) and a 10-convolutional-layer model 
BD-10 (kernel number and pooling operation: 64, 64, pooling, 128, 128, pooling, 256, 
256, pooling, 384, 384, pooling, 512, 512). At the end of convolutional layer, two fully-
connected layers with 1024 and 164 ANs were appended. The number of kernel sizes 
was doubled based on the previous layer because the receptive field size was doubled 
for the deeper AN. In a longer receptive field, more combinations of the motifs need to 
be represented. For DeepSEA, we built a 10-convolutional layer model DD-10 (kernel 
number and pooling operation: 128, 128, pooling, 160, 160, pooling, 256, 320, pooling, 
512, 640, pooling, 1024, 1280). At the end of convolutional layer, two fully-connected 
layers with 925 and 919 ANs were appended. However, the prediction performance of 
DD-10 was similar to DeepSEA. We found that the overlap of the first-layer receptive 
field is very small for the AN of the second layer. If we set the kernel size 3 in the first 
layer (receptive field size is 3bp), then the overlap proportion of the adjacent 3 ANs is 1/5 
(receptive field size is 5bp). We need to get longer overlap by extending the kernel size 
in the first layer. We tried to train DD-10 with the first-layer kernel size equal to 5 (overlap 
proportion: 3/7 ≈ 43%), 7 (overlap proportion: 5/9 ≈ 56%) and 9 (overlap proportion: 
7/11 ≈ 63%). The best one is the model with kernel size equal to 7 in the first layer. This 
result also matched the top convolution-pooling model in the ImageNet competition25. It 
seems to be a trade-off for the first kernel size. If it is too small, the structure is not good 
for training the second layer. On the contrary, the structure is not good for training the 
first layer. Hence, we finally set first-layer kernel size as 7 for the DD-10 and BD-10 
model. 
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Prediction performance comparison 

Five models were involved in this work. They are Basset, BD-5, BD-10, DeepSEA and 
DD-5. After they had been trained on the training set and the validation set, they were 
tested on the test set. For each prediction target, we calculated the value of Area Under 
the Precision-Recall Curve (AUPRC). We used AUPRC rather than Area Under the 
Receiver Operating Characteristic curve (AUROC) because AUPRC is more sensitive to 
the unbalanced data. In the dataset of DeepSEA and Basset, the negative samples were 
much more than the positive samples so AUPRC is a better indicator. To compare and 
test the performance difference between models, we assume that if the performance of 
two model is the same, the difference of AUPRC value of the same prediction target is 
ΔAUPRC	~𝑁(0, 𝜎))	. We did one-side t-test for each pair of models for comparison. 
 

Motif discovery 

For each decoupled motif represented by the AN, we needed to filter and slice the motifs 
for regulatory elements. The decoupled motifs were generated by a sequence set. When 
the number of the sequences is very small, the motif is not reliable. We first applied the 
Laplace smoothing method to the PPMs of decoupled motifs. The smoothed PPM 
(𝐏𝐏𝐌′) can be obtain by  

𝐏𝐏𝐌′ =
𝐏𝐏𝐌× 𝑁 + [0.25]B×8 ×𝑀

𝑁 +𝑀
 

where 𝑁 is the number of sequences that generate the PPM, [0.25]B×8 is the 4 × 𝐿 
matrix with all elements of 0.25, and 𝑀 is the smoothing parameter. A larger 𝑀 means 
a stronger smoothing process. We set 𝑀 = 80 in our work. We regarded the nucleotide 
base position as a part of motif regions if its information content is greater than 1. We 
extended these motif regions with 3 bp at both the upstream and downstream. We 
merged these regions if they were overlapped. Regions longer than 8bp were regarded 
as motifs. We sliced these regions of PPM as the final discovered motifs. A large portion 
of these motifs can be matched with motifs in the JASPAR database. We showed a 
small portion of motifs in Fig. 5d with the motifStack31 package. 
 

Motif syntax discovery and validation 

We used the ANs of layer 10 in BD-10 and DD-10 for the motif syntax discovery. We 
applied the decoupling algorithm twice for each AN and obtain 256 decoupled motifs. 
These decoupled motifs of the same AN usually shared similar shifted motifs. For 
convenient, we summarized the motifs by using Tomtom to match them to motifs in 
JASPAR. Based on the summarized TF motif set, we knew the arrangement of these TF 
motif. For instance, in Fig. 6a, the TF motif set includes CTCF and DDIT3:CEBPA and 
the arrangement of this two motif is CTCF-6N-DDIT3:CEBPA-[18-28N]- DDIT3:CEBPA-
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6N-CTCF, which is the motif syntax of the AN. 
 
Except for literature validations such as JASPAR databases or some published papers, 
we also used ATAC-seq data to valid the motif syntax. If the motif syntax is real on 
genome, the region matched by the motif syntax should interact with some important 
molecules like TFs. Thus, the Tn5 transposes cutting frequency in the aligned regions 
may show footprinting. We collected five ATAC-seq datasets of five cell types or tissue 
including GM128782, H132, K56233, LNCaP34 and prostate35 (GSM1155957, 
GSM2264819, GSM2902637, GSM3632983, GSM3320984). We used the esATAC36 
package developed by us to preprocess the dataset. For a concerned AN, we used it to 
scan the test data of Basset or DeepSEA. We collected the top 3000 activated regions, 
extended the regions to 1000bp and stack their Tn5 cutting frequency. We also counted 
the hard motif matching frequency at each position of these 1000bp regions with 
motifmatchr37. 

 

Code and more relative results 

NeuronMotif code will be available at: 
https://github.com/wzthu/NeuronMotif 
 
 
Relative results will be exibit at: 
https://wzthu.github.io/NeuronMotif 
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