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Abstract 15 

There is considerable debate over how visual speech is processed in the absence of sound and 16 

whether neural activity supporting lipreading occurs in visual brain areas. Surprisingly, much of this 17 

ambiguity stems from a lack of behaviorally grounded neurophysiological findings. To address this, 18 

we conducted an experiment in which human observers rehearsed audiovisual speech for the 19 

purpose of lipreading silent versions during testing. Using a combination of computational modeling, 20 

electroencephalography, and simultaneously recorded behavior, we show that the visual system 21 

produces its own specialized representation of speech that is 1) well-described by categorical 22 

dissociable from lip movements, and 3) predictive of lipreading ability. 23 

These findings contradict a long-held view that visual speech processing co-opts auditory cortex after 24 

early visual processing stages. Consistent with hierarchical accounts of visual and audiovisual speech 25 

perception, our findings show that visual cortex performs at least a basic level of linguistic processing.  26 
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Introduction 1 

The ability to exchange complex concepts and meaning through oral communication is a defining 2 

feature of human cognition. Although spoken language is primarily transmitted via acoustic signals, 3 

visible cues such as gestures and mouth movements are generated during speech production and 4 

play a prominent role in shaping our speech and language perception. In challenging listening 5 

environments when audible speech becomes contaminated by noise or other distractors, it is almost 6 

instinctual for listeners to look to the face for support. In doing so, both comprehension [1,2] and the 7 

ability to focus attention toward the speaker [3,4] are improved. These benefits are likely mediated in 8 

part by enhanced cortical tracking of speech acoustics [3,5] derived from correlated dynamics of 9 

mouth movements [6,7]. In contrast, visible speech cues can alter the phonemic perception of audible 10 

speech (i.e., the McGurk-McDonald Effect [8]) whereby incongruent audiovisual speech inputs (e.g., a 11 

visible /ga/ and an audible /ba/) combine to produce a percept that is absent in the speech signal (e.g., 12 

/da/), providing evidence for somewhat independent linguistic representations from acoustic and 13 

visible speech. Moreover, in other situations such as lip-reading, visible cues can form the entire basis 14 

of language comprehension [9]. 15 

Exactly how vision and the visual system contribute to the reception of spoken language, especially in 16 

very noisy conditions or in the absence of an acoustic cue, is a matter of debate. One view [10 14] 17 

which has garnered renewed attention holds that visual speech perception co-opts the specialized 18 

speech processing machinery of the auditory system and does so in early sensory processing stages 19 

(i.e., after extracting the temporal dynamics of lip movements). Recent accounts propose that auditory 20 

regions can e  a representation of the unheard acoustic speech envelope from the temporal 21 

dynamics of lip movements [15], which is possible due to the inherent correlation between acoustic 22 

and visible speech signals [6]. However, this view is complicated by two caveats. First, even when a 23 

speech signal can be heard, cortical envelope tracking does not guarantee comprehension. Although 24 

it does vary with intelligibility [16 18], envelope tracking has been observed during unintelligible 25 

speech [18] and non-speech signals [19]. Envelope tracking is also easily dissociable from 26 

comprehension when the envelope and temporal fine structure do not match (i.e., speech-speech 27 

chimeras [20]) and thus likely reflects general acoustic processing more so than speech processing. 28 

Second, the rise of this view, which was contemporaneous with our emerging understanding of broad 29 

and early multisensory interactions across neocortex [21,22], is consistent with the modulation of 30 

auditory cortical activity by generic (i.e., non-speech) signals from other modalities [23 25] and other 31 

non-specific multisensory enhancements bestowed by correlated temporal dynamics [26 31]. 32 

Therefore, it is unclear if visually-evoked envelope tracking in auditory cortex support language 33 

processing or if it simply reflects the dynamics of visual speech meant to enhance the processing of an 34 

acoustic signal that is typically present [7,32].  35 

A separate view, supported by a trove of behavioral evidence, suggests that the visual system does its 36 

own heavy lifting during speech perception [33]. According to this perspective, each level of the 37 

speech hierarchy that is conveyed through acoustics are also available to the visual system and visual 38 

cortex contains the necessary machinery to extract and interpret the rich visible cues of speech. This 39 

view is further supported by two independent proposals. One [34] proposes that visual speech 40 

contains two distinct forms of information in relation to acoustic speech, viz. redundant and 41 

complementary information, and another [35] suggests that audiovisual speech processing occurs in a 42 

multistage process that includes early and late components. Redundant cues are those in which vision 43 

echoes the temporal dynamics of the articulatory patterns that form speech (i.e., correlated temporal 44 
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information contained in lip movements, as discussed above) that are likely integrated in an early 1 

multisensory stage. In contrast, complementary cues supplement under-specified features of the 2 

acoustic speech and convey higher-level information to be integrated with acoustic cues in a late 3 

stage of integration. Phonemes that are easily confused acoustically can often be disambiguated by 4 

their visible articulations (e.g., /b/ and /d/, which begins to explain the McGurk-MacDonald effect). 5 

These complementary visual speech cues   form a compelling basis for lipreading 6 

[36,37]. It is plausible, if not likely, that visual cortex itself is performing some linguistic processing but 7 

there are few results in the literature that speak directly to how or even whether the different levels of 8 

speech that can be perceived visually [33], are represented in visual cortex. One study suggests that 9 

visual cortex does indeed track these so-called visemes in on-going speech [38] while another [39] 10 

provided evidence that visual cortex can easily discriminate perceptually-distant visemes, hinting at 11 

the idea that visual cortex does indeed perform some level of linguistic processing.  12 

Recently, numerous studies have explored how the dynamics of silent visual speech are reflected in 13 

neural data [15,38 42]. In doing so, these studies have made great strides toward our understanding 14 

of the neural underpinnings of visual speech processing. However, their ability to speak to linguistic 15 

processing of visual speech comes with some important caveats. They have largely been limited by 16 

naturally poor lipreading skill, which limits the extent of measurable linguistic activity in 17 

the brain; they have often lacked critical behavioral measures, limiting the ability to relate neural 18 

activity to language reception, which is highly variable across individuals [33]; and perhaps most 19 

importantly they often utilize an impoverished proxy measure of visual speech (e.g., the acoustic 20 

speech envelope), which limits the potential to disentangle contributions of different hierarchical 21 

processing stages during the processing of visual speech. In the current experiment, we address these 22 

caveats to probe whether linguistic processing of visual speech occurs in visual cortex. To this end, we 23 

asked human observers to rehearse a set of audiovisual videos of a speaker with the intent of 24 

lipreading them later. We then recorded EEG from the participants as we replayed silent versions of 25 

the rehearsed videos and new set of videos without sound. Finally, we asked participants to detect 26 

target words during the silent videos and asked them to subjectively rate their intelligibility. In our 27 

paradigm, lipreading ability was improved by the rehearsal. We find neurophysiological evidence that 28 

speech-specific (lip movements) and language-specific (visemes) visual features were represented in 29 

separable components of ongoing brain activity. Of all the features we tested, only the linguistic 30 

feature was enhanced by the rehearsal and that enhancement was reflected across participants31 

lipreading scores.  32 
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Results 1 

Occipital electrode recordings reflect the encoding of linguistic features during silent speech 2 

 

Figure 1 | Modeling different features of visual speech. a. We recorded EEG signals while participants watched minute-
long videos of silent speech and attempted to lipread. b. From the videos we extracted several features to serve as 
regressors in our TRF analysis. c. An extracted feature, or a combination, was regressed against EEG activity across a series of 
time lags on a subset of data. The resulting TRFs (average across the twenty occipital scalp electrodes shown here) could 
then be used to predict EEG on left-out data. These predictions could be used to evaluate the models (black arrows) or could 
be subtracted from the original EEG to remove contributions of that feature (grey arrows) before predicting other features. 
To standardize the predictions across features, we used the same time lags (0  300 ms, grey boxes) for each model 
prediction. d. To compare across models, we calculated the average prediction accuracy across a set of 20 occipital 
electrodes. 

 3 
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We recorded 128-channel EEG from sixteen 1 

participants as they watched new and 2 

previously rehearsed silent videos of 3 

continuous natural speech of a male speaker 4 

discussing political and economic topics 5 

(Figure 1a). To relate their EEG responses to 6 

the speech, we first extracted several features 7 

of the visual stimulus (Figure 1b) including 8 

motion flow (M), vertical and horizontal lip 9 

movements (L), and a set of 12 visemes (V). 10 

Using linear modeling, we then derived a 11 

temporal filter relating each stimulus feature 12 

to the low-frequency EEG (Figure 1c). This 13 

filter  the temporal response function (TRF)  14 

describes how fluctuations of a stimulus 15 

feature impacts neural activity across a set of 16 

time lags and can be envisioned as analogous 17 

to the more conventional event related 18 

potential (ERP). Using a cross-validated 19 

approach, we quantified how well each 20 

feature was represented in the neural data, 21 

aiming to directly compare the quality of 22 

each representation. We fit a TRF using a 23 

subset of trials and then predicted EEG data 24 

from left out trials by passing the stimulus 25 

features of that trial through the TRF. We 26 

measured the accuracy of predictions, 27 

channel-by-28 

correlation between the real EEG and the 29 

predicted EEG signals.  30 

Our first analysis sought to replicate and extend a previous finding [38] demonstrating that visemes 31 

are represented in neural activity. Focusing our analysis on 20 electrodes over occipital scalp (Figure 32 

1d), we quantified the ability of each visual feature to predict EEG activity recorded while participants 33 

viewed five previously unseen silent videos. By comparing these predictions to a permuted null 34 

distribution, we found that neural activity in occipital electrodes could be reliably predicted by models 35 

derived visemes (V; T(15) = 2.94, p = 0.010), lip movements (L; T(15) = 4.78, p = 0.00024, and visual 36 

motion flow (M; T(15) = 4.37, p = 0.00054). 37 

An important consideration in this analysis is that these features share some temporal structure (i.e., 38 

they are correlated). So, to better disentangle the contribution of visemic encoding in neural activity, 39 

we took a bi-faceted approach. First, in line with similar work in the acoustic domain [43] we 40 

constructed a family of models consisting of combinations of each feature. The logic behind this 41 

approach suggests that if a joint-feature model (e.g., ML) out-performs its constituent single-feature 42 

model (M or L), then EEG indexes the processing of both features. Indeed, we found that when adding 43 

V to either low-level feature (M or L) or their combination (ML), model performance improved (Figure 44 

 
Figure 2 | Visual responses recorded while participants 
viewed novel v representation of 
visemes. a. Comparison of prediction accuracy from the full 
family of models during novel video presentations. Notably, 
adding visemes (V) to any model (M, L, or ML) improved EEG 
predictions, suggesting separable contributions of visemes and 
the low-level features in brain activity. b. Topographic 
representation reveal a robust representation of visemes in EEG 
activity recorded over occipital scalp. The color bar shows the 
scale of all topographic plots in this article c. Partialing motion 
(M) and/or lip movements (L) reduced the strength of viseme-
based predictions, yet those predictions remained significantly 
above chance indicating robust viseme tracking. 
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2a; MV vs. M: T(15) = 4.26, p = 0.00068; LV vs. L: T(15) = 4.55, p = 0.00038; MLV vs. ML: T(15) = 4.84, p = 1 

0.00022). Second, we utilized the predictive power of our TRF analysis to construct and remove 2 

predictions of EEG activity related to lip movements and general motion flow from the EEG signal 3 

[after 44]. This approach effectively eliminates the EEG signature of the partialed-out feature (see 4 

Methods and Table 2). We then predicted the residual EEG using visemes (Figure 2c). The performance 5 

was unsurprisingly lower in these reduced models due to the removal of the covariant activity yet 6 

remained reliably better than shuffled permutations when removing motion flow (T(15) = 2.65, p = 7 

0.018), lip movements (T(15) = 2.44, p = 0.028), or both (T(15) = 2.15, p = 0.048). Taken together, these 8 

results give support to the idea that visual cortex is capable of modest linguistic processing even with 9 

minimal language comprehension. 10 

Successful lipreading reflects improved visual linguistic processing 11 

Prior to the EEG session, we asked participants to 12 

mentally rehearse five videos with sound with the goal 13 

of being able to later identify target words based on 14 

tracking the  visible speech articulations. 15 

During the EEG session, participants viewed silent 16 

versions of these rehearsed videos along with the 17 

previously described unseen videos. During each trial, 18 

participants detected target words given at the start of 19 

the trial and gave a subjective intelligibility rating of 20 

that trial at its conclusion. Both the objective 21 

T(15) = 3.45, p = 0.0036) and the 22 

subjective intelligibility rating (T(15) = 3.27, p = 0.005) 23 

were higher for rehearsed videos suggesting that 24 

participants were able to better lip-read those videos 25 

(Figure 3). 26 

With this evidence that our rehearsal paradigm was 27 

behaviorally successful, we next turned our attention tow  28 

improved ability to read lips. First, we compared the prediction accuracy of a family of models across 29 

features and rehearsal conditions. We performed a two-way, repeated measures analysis of variance 30 

(ANOVA) which found significant main effects for both feature (F(2,30) = 8.98, p = 0.00088) and 31 

rehearsal condition (F(1,15) = 4.80, p = 0.045). Importantly, this analysis also found a significant 32 

interaction (F(2,30) = 4.82, p = 0.015), suggesting that rehearsal might be preferentially affecting the 33 

encoding of certain features. Follow-up pairwise comparisons showed that this was indeed the case 34 

(Figure 4a): viseme encoding improved with rehearsal (T(15) = 2.96, p = 0.0097) as did motion flow 35 

(T(15) = 2.17, p = 0.046), but lip movement encoding did not(T(15) = 1.08, p = 0.29). Viseme encoding 36 

was stronger than motion flow (T(15) = 3.75, p = 0.0020) and lip movements (T(15) = 4.93, p = 0.00033) 37 

during the rehearsed videos while visemes (T(15) = 2.18, p = 0.046) and lip movements (T(15) = 2.17, p 38 

= 0.047) were better predictors of EEG than motion flow during novel videos. These results suggest 39 

that rehearsal confers an advantage to the encoding of linguistic features (visemes) but not speech 40 

features (lip movements). 41 

As before, we took a complementary and more direct approach to unravel the neural consequence of 42 

rehearsal involving isolating the contribution of a feature of interest by regressing out the 43 

 
Figure 3 | Speech rehearsal improved lipreading 
and subjective intelligibility during silent speech. 
During the silent videos, participants were asked to 
report their detection of a target word with a button 
press. After each video, they also rated the subjective 
intelligibility of the speech. Rehearsal improved both 
measures across participants. 
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contributions of other features. These analyses were necessary to account for correlated structure and 1 

shared predictive power between the features and to clarify ambiguous findings related to how 2 

motion flow encoding varies with rehearsal. As expected, there were no rehearsal-based 3 

improvements to neural tracking of motion flow (T(15) = 1.14, p = 0.27) or lip movements (T(15) = 0.15, 4 

p = 0.90) after regressing out the contributions of visemes (Figure 4b). But importantly both features 5 

were still robustly encoded above chance during both rehearsed (M vs shuffled M: T(15) = 5.30, p = 6 

0.000089; L vs shuffled L: T(15) = 4.80, p = 0.00024) and previously unseen videos (M vs shuffled M: 7 

T(15) = 4.76, p = 0.00026; L vs shuffled L: T(15) = 5.31, p = 0.000088). Conversely, the benefit of 8 

rehearsal on viseme tracking remained intact (Figure 4c) after partialing out motion flow (T(15) = 3.17, 9 

p = 0.0064) and lip movements (T(15) = 3.24, p = 0.0055) separately and in combination (T(15) = 3.47, p 10 

= 0.0034). These analyses suggest that although there is likely some neural overlap of the processing 11 

of visual speech features and visual language, we are able to index them separately and observe that 12 

linguistic processing is preferentially improved when participants can lipread silent speech. 13 

 
Figure 4 | Visemes are preferentially improved after lip-reading rehearsal. a. Topographic representation of the scalp 
show EEG prediction accuracy (left) when predicting from each stimulus feature (S = motion [M], lip movements [L], or 
visemes [V]) during novel (grey) and rehearsed (red) conditions. Box and whisker plots (right) of the average prediction 
accuracy over a set of 20 occipital electrodes show that rehearsal preferentially improved the representation of visemes. b. 
Topographic representation of each stimulus features (S = M, L, or V) after partialing visemes from EEG show the 
contributions of motion flow and lip movements separate from linguistic units. Importantly, we were able to observe 
residual responses to both low-level features, and neither showed any rehearsal-based enhancement over occipital scalp. 

-
EEG (bottom; see also Table 2). c. Topographic representation (left) of the viseme predictions after partialing S (S = M, L, or 
ML). Box and whisker plots of the average prediction over occipital scalp show that viseme predictions are enhanced by 
rehearsal even after partialing contributions of other visual features. 

 14 

The previous analyses identify viseme tracking over occipital scalp as the likely driver of lipreading 15 

ability. To explore this possibility more directly, we examined behavioral scores across participants in 16 

the context of the neural signature of viseme processing. Specifically, we quantified improvement in 17 

the word detection task and improvements in viseme tracking and tested their relationship. This 18 

comparison revealed a robust positive correlation (Figure 5a; r = 0.60, p = 0.015). This relationship was 19 

not abolished after partialing motion flow (r = 0.57, p = 0.021), lip movements (r = 0.55, p = 0.028), or 20 

both (r = 0.52, p = 0.040) from the EEG. Thus, we take this as evidence that neural activity specific to 21 

the processing of visual linguistic information is crucial to supporting lipreading. 22 
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 1 

Specific individual visemes contribute to improved linguistic processing in visual responses 2 

Having established a connection between lipreading and the neural activity that tracks visemes in 3 

ongoing speech, we undertook an exploratory analysis to unravel contributions of individual viseme 4 

categories. We predicted EEG activity from individual (i.e., univariate) viseme models and evaluated 5 

the strength of those predictions. To account for dependencies between visemes, we first fit a 6 

multivariate viseme TRF for all viseme analyses up to this point), then separated that 7 

model into individual univariate TRFs [after 45], and finally predicted left-out EEG data with each 8 

univariate model (Figure 5b, novel shown). We submitted the resultant prediction accuracies to a 9 

repeated-measures ANOVA (with factors viseme category and rehearsal condition). A significant main 10 

effect of viseme category indicated that individual visemes do not contribute equally to the EEG signal 11 

(F(11,165) = 11.00, p = 4.1×10-15) with some being more strongly encoded than others. We wondered if 12 

this differential encoding of visemes may be indicative of a mapping between lip movements and 13 

 
Figure 5 | Individual viseme analysis. a. Across participants, the viseme-based EEG prediction and lipreading 
improvements related to rehearsal were correlated. b. We fit a multivariate TRF that predicts EEG activity from visemes 
(left) before separating into individual viseme TRFs and predicting EEG with each. With those univariate TRFs, we 
predicted left-out EEG data and measured their individual prediction accuracies (right). Shown is prediction accuracy 
during novel videos. Visemes vary in their individual contribution to the EEG signal. c. Individual viseme encoding 
improvements conferred by rehearsal. Darker colored bars represent the average improvement across participants and 
conditions. Three visemes were significantly better EEG predictors after rehearsal. Black line and light shaded region 
represent the expected improvements based on shuffled permutations. d. We fit TRFs to predict visemes from vertical 
(left) and horizontal (middle) lip movements. Here, the TRF represents the average lip movements for each viseme. The 
ability of lip movements to predict visemes (right) were variable across visemes in a manner similar to (b). Dark colored 
bars represent the average across stimuli while black lines and light shaded regions represent the mean and standard 
error of shuffled permutations of these predictions. e. The extent that each viseme is encoded in brain activity is largely 
predicted by how well it is specified by lip movements, especially during novel videos (black line). This relationship is 
disrupted somewhat by rehearsal (red line), owing to changes (red arrows) that were unrelated to the lip-viseme 
relationship described in (d). 
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visual linguistic units that participants could be reinforcing during the rehearsal. That is, we sought to 1 

reveal any potential relationship between lip movements and visemes and test whether rehearsal 2 

reinforced that representation in brain activity. We fit TRFs that predict visemes from horizontal and 3 

vertical lip movements and found that like EEG predictions from visemes, visemes are differentially 4 

predicted on the basis of lip movements (Figure 5d; F(10,140) = 90.01, p = 4.69×10-56). Note that we 5 

removed the fourth viseme ({ɔɪ}) in this analysis due to its under-representation in four of the fifteen 6 

video clips. In a complementary analysis, we removed those four video clips from the analysis (keeping 7 

all visemes), which yielded the same result (F(11,110) = 68.52, p = 3.66×10-44). In fact, the degree to 8 

which EEG encodes each viseme individually is highly correlated to how well those visemes are 9 

described by lip movements (Figure 5e, grey line; r = 0.87, p = 2.04×10-4) for the unrehearsed videos, 10 

suggesting that linguistic processing in the absence of successful lip reading may be largely 11 

attributable to how well lip movements are encoded in brain activity. However, when observers can 12 

successfully lipread, this relationship is perturbed slightly (Figure 5e, red line; r = 0.60, p = 0.019). 13 

Importantly, this interruption is driven by the enhancement of individual visemes in a manner that is 14 

unrelated to the lip-viseme mapping (Figure 5c and Figure 5e, red arrows; r = 0.07, p = 0.82), 15 

suggesting rehearsal was not reinforcing this mapping. Specifically, three viseme categories 16 

({ɔ,aɪ,ə,ɑ,ʌ,j}, {f,v}, and {l,n,k,g,h,ɳ}) drive this enhancement derived from rehearsal (T(15) = 2.50, 2.38, 17 

and 2.64; p = 0.025, 0.031, and 0.019, respectively). Taken together, these exploratory analyses suggest 18 

that participants do not simply learn to categorize lip movements when they learn to read lips. Instead, 19 

it seems more likely that rehearsal-based improvements rely more on lip shape, as suggested by 20 

Campbell [34]. Future studies with better representation of individual visemes and more powerful 21 

analyses will be needed to confirm these findings. 22 

 23 

Discussion 24 

In the current study, we recorded brain activity over occipital scalp during silent speech and related it 25 

to a set of visual features derived from the speech signal. We were able to isolate the activity related to 26 

linguistic features from activity related to lip movements and other motion present in the videos. In 27 

doing so, we show that this linguistic representation is robustly tracked in ongoing brain activity, 28 

replicating and extending previous work from our group [38]. We found that brief, directed rehearsal 29 

of speech promotes an improvement in lipreading and preferentially improves the representation of 30 

visual linguistic features of that speech. Finally, we linked behavioral improvements across 31 

participants to stronger tracking of linguistic content in visual brain regions, contrary to the 32 

suggestion that lipreading is supported by activity in auditory cortex [10 15].  33 

Recently, a flurry of studies have made substantial contributions to our understanding of the neural 34 

processing of visual speech and its contributions to audiovisual speech processing [15,38 42]. 35 

Although some provide promising evidence of specialized speech processing in visual cortex 36 

[38,40,41], none have yet to provide a link between meaningful reception (i.e., lipreading) and visual 37 

brain activity. For example, several studies have related the tracking of an unheard acoustic envelope 38 

to phonological processing [15,40], though even during acoustic speech recpetion the specificity of 39 

envelope tracking to linguistic processing is questionable. Neural signals track the envelope of both 40 

non-speech signals [19] and unintelligible speech [18,46]. Envelope tracking does not necessarily 41 

index anything beyond energetic fluctuations [20] since the broadband amplitude envelope derived 42 

from speech signals does not provide enough information to support phonological processing or 43 

comprehension [18,47]. Due to shared dynamics between acoustic envelope and lip movements [6], 44 
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these visual speech studies are potentially indexing activity related to lip movements, which is not 1 

affected by lipreading according to our findings. One study contrasted forward and reversed visual 2 

speech as a proxy for comprehension [40] although it is unclear if there is any meaningful intelligibility 3 

to be lost by reversing visual speech or if neural differences could be explained by the unnatural 4 

temporal dynamics of reversed movement. Another study found that responses to visual speech were 5 

enhanced in mouth-responsive regions in visual cortex [41], yet these enhancements likely represent 6 

attentional preference to task- and context-relevant signals rather than linguistic processing. Finally, 7 

one study indexed linguistic processing directly [38], but provided no measurement of speech 8 

reception. Here we replicate and further validate this previous work from our lab by introducing a 9 

necessary control variable related to lip movements and extra analytical controls.  10 

Across each of these studies, the meaningfulness of the reception is uncertain given the lack of 11 

behavioral measurement and when considering how poor and variable human lipreading is [48,49]. 12 

Our approach brings a crucial behavioral measure that was lacking in this literature. By relating our 13 

neural findings to simultaneously acquired behavior, we find strong evidence to support a basic level 14 

of linguistic processing in visual cortex. Previous investigators have suggested that a novel area in 15 

visual cortex, which was given the moniker temporal visual speech area (TVSA), exhibits activity 16 

patterns suggestive of specialized speech processing [50]. Using contrasts across several stimulus 17 

conditions, they found no support for specialized speech processing in other brain areas engaged in 18 

processing visual motion (e.g., middle temporal visual area) or face (e.g., fusiform face area) that have 19 

been reported to be active during visible speech [33,51]. We are limited by the (lack of) spatial 20 

resolution of our approach and cannot precisely localize visemic processing to specific visual regions. 21 

However, we were able to dissociate the neural signature of visual linguistic processing from activity 22 

related to lip movements themselves (Figure 4b,c), consistent with findings from Bernstein et al [50], 23 

although their claim stops short of crediting TVSA with visual speech categorization duties. It seems 24 

possible that TVSA is indeed involved in this process. It is also very probable that this process requires 25 

coordination from higher-order brain regions [40]. Regardless, some form of visual linguistic 26 

categorization is evident within visual brain areas. 27 

Our findings also corroborate several findings and propositions related to audiovisual speech. Visible 28 

speech cues are important in the context of acoustic speech processing and have been described as 29 

providing two types of information  redundant and complementary  during audiovisual speech 30 

integration [34]. Redundant information refers to the correlated dynamics of visual and acoustic 31 

speech [6]. Visual timing [7,27]. 32 

However, the benefits of correlated [52,53], they also 33 

encourage perceptual object formation [54 57], and promote attentional selection [3,4,28,58]. These 34 

effects have been demonstrated in low-level sensory cortex [59]. Therefore, it is likely that visual 35 

dynamics do not provide any linguistic information on their own but need to be transformed into 36 

such. becoming clear from the current findings and others [38,39] that visual cortex performs that 37 

transformation, encoding a complementary 38 

mode. Complementary visual information refers to cues that are underspecified in the acoustic stream 39 

but conveyed more effectively in visible signals. For example, some speech units (e.g., /b/ and /d/ or 40 

/m/ and /n/) can be acoustically ambiguous, especially in noisy conditions, but their visible articulatory 41 

patterns are distinct and robust to noise. Although there is yet to be direct evidence for the 42 

integration of viseme and phoneme cues, indirectly the enhancement of acoustic representations (i.e., 43 

spectrogram) is similar in noisy and noise-free conditions while the enhancement of phonetic 44 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2021. ; https://doi.org/10.1101/2021.02.09.430299doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430299
http://creativecommons.org/licenses/by-nc-nd/4.0/


information appears to be more pronounced in noisy conditions [60], consistent with the role of 1 

complementary visual cues.  2 

The processing of acoustic speech has been shown to be hierarchically organized, with distinct neural 3 

signatures of different levels of the linguistic hierarchy [43,61 63]. Our findings of separable visual 4 

speech and linguistic components suggest that visual speech perception is similarly hierarchical, at 5 

least up to the basic linguistic units. Together, these findings support the concept of a hierarchical 6 

structure of audiovisual speech integration [34,35]. Early integration and binding [56] may take the 7 

form of redundant visual cues modulating acoustic processing through direct connections between 8 

early visual and auditory cortices [64 66] while late integration may be related to the perceptual 9 

system deriving a language representation by drawing from independent and complementary 10 

acoustic- and visual-based linguistic signals. Further, these dual roles of visual speech may explain the 11 

co [48]. As speech becomes contaminated 12 

by low to moderate leve13 

acoustic stream [7] in tandem with an increase weighting of the visual speech representation [67], 14 

leading to a peak in visual enhancement of acoustic speech at a signal-to-noise ratio of about -12 dB. 15 

But as noise levels increase further, the acoustic stream may become too corrupted for visual timing 16 

cues to repair them and observers are forced to rely exclusively on visual speech cues. 17 

There are a couple of caveats to our findings that are worth noting. First, it is possible that attention 18 

could explain the improvement in our neural measures [68]. According to this explanation, 19 

participants would be more engaged with a speech video that they were familiar with. Because of the 20 

nature of our rehearsal paradigm, it is impossible to monitor for this effect in behavior. We therefore 21 

performed control analyses to exclude the possibility of an attentional effect. If participants were 22 

attending more to the rehearsed videos, we would expect improved tracking of each of our visual 23 

features in the rehearsed condition [56,69,70]. Yet, even after we leveraged the predictive ability of our 24 

modeling framework to isolate activity specific to each feature, we found no evidence of improved 25 

representation of a general stimulus feature (motion flow) or a more specified task-relevant feature 26 

(lip movements). Any rehearsal-related improvements were consistently restricted to linguistic 27 

representations. We therefore think attentional effects are unlikely to be driving our findings. Second, 28 

it is possible that we are under-characterizing the non-linguistic speech features in our study. We 29 

made a decision to capture the dynamics information related to lip movements than some previous 30 

endeavors (i.e., by measuring horizontal and vertical dimensions [e.g., 15] rather than a one-31 

dimensional measure of mouth area [e.g., 6,42,58]) due to the correlation between certain dimensions 32 

to distinct acoustic features (e.g., horizontal expansion and contraction co-varying with phonetically-33 

relevant spectral cues [7]). It is still possible that a more complete characterization of the articulators 34 

(e.g., tongue movements) may account for some of the performance benefit of our viseme model. 35 

Since tongue movements are manifested in speech acoustics, characterizing their dynamics is surely 36 

to be informative on the nature of redundant multisensory interactions. But because the identity of 37 

any particular viseme does not depend on the visibility of the tongue, we think characterizing its 38 

movements is unlikely to account for the activity related to our viseme model or its improvement 39 

derived from lipreading. By their very nature, complementary visual cues such as visemes describe 40 

features orthogonal to speech dynamics, so features that de of speech dynamics or measure that is a 41 

derivative thereof [after 71] is unlikely to fully account for effects ascribed to complementary cues. 42 

Instead, a principled and stimulus-based description of the shape of the articulators is more likely to 43 

be fruitful in this endeavor. 44 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2021. ; https://doi.org/10.1101/2021.02.09.430299doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430299
http://creativecommons.org/licenses/by-nc-nd/4.0/


Conclusions 1 

Here, we have provided evidence for specialized categorical linguistic processing in the visual system. 2 

This idea is strongly supported by multitude of behavioral observations suggesting a visual linguistic 3 

structure that reflects its acoustic counterpart [33] but with its own idiosyncratic structure that is a 4 

consequence of phoneme confusion [72,73]. Such a correspondence between auditory and visual 5 

speech processing hierarchies, which itself is a reflection of the common source of acoustic and visual 6 

speech cues, is essential to multistage integration of audiovisual speech [35]. In this multistage 7 

integration, low-level visual cues (such as lip movement dynamics) do have an entry into early 8 

auditory cortex [e.g., 15], but this convergence of redundant visual cues likely serves more general, 9 

non-linguistic processes that benefit speech perception: to increase auditory cortical sensitivity to 10 

upcoming events [74], to perceptually restore degraded acoustics [7,27], and to facilitate attentional 11 

selection of auditory signals [3,4,28]. The higher-order complementary linguistic representation 12 

demonstrated here is surely a major contributor to the late integration stage of  where 13 

it would be aptly suited to constrain the inference of the identity of a spoken utterance. Finally, we 14 

find evidence that a rudimentary lipreading ability is supported by the neural tracking of visemes. 15 

Thus, this neural activity may be the brick and mortar of visual language. It will be interesting for 16 

future work to shed light on how the visual system builds upon these basic linguistic representations 17 

and how far the sophistication of spoken language processing in the visual system extends. We also 18 

look forward to understanding the similarities and differences of visual linguistic processing in 19 

lipreaders who are deaf or hard of hearing. 20 

 21 

Methods 22 

Participants 23 

Sixteen individuals (age = 25 ± 6.3, 9 females) participated in the current study. All participants 24 

reported normal or corrected-to-normal vision and normal hearing and were right-handed. The study 25 

was conducted in accordance with procedures approved by the University of Rochester Human 26 

Subjects Review Board. Informed written consent was obtained from all participants prior to any 27 

procedures. When applicable, participants were given monetary compensation for participation. 28 

Apparatus and Stimuli 29 

The stimuli used in the current experiment consisted of videos of a well-known male speaker. The 30 

The speech was 31 

conversational and directed at the camera, and the linguistic content focused on political policy. 32 

Fifteen 60-s videos were rendered into 1280 x 720-pixel movies in VideoPad Video Editor (NCH 33 

Software) at 30 frames-per-second. Audio was digitized at 48000 kHz with 16-bit resolution. A very 34 

brief (10 ms) audible click was inserted at the beginning of the audio track for EEG synchronization 35 

(see below). 36 

Videos were presented via Presentation Software (Neurobehavioral Systems) on a desktop computer 37 

38 

ZOWIE XL2411P) at a refresh rate of 60 Hz. Audible stimuli were presented diotically through a set of 39 

open-back circumnaural headphone (Sennheiser HD650) at a moderate listening level. During the 40 

experiment, participants were seated comfortably in a dark, sound-attenuated, and electrically 41 

shielded room (Industrial Acoustics Company) approximately 70 cm from the video screen. 42 
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Procedure 1 

The experiment was divided into two parts: rehearsal and testing. In the rehearsal phase, five videos 2 

were selected for a participant to learn (randomized across participants). Each of these videos was 3 

presented to the participant ten times in a random order with its accompanying audio soundtrack. 4 

Participants were instructed to watch and listen attentively and were aware that they would be tested 5 

on silent versions of the video after rehearsal. The rehearsal was self-paced with participants 6 

advancing to the next trial with a button press. After rehearsal, participants were offered a 10-minute 7 

break before testing. 8 

During the testing phase, we collected EEG from participants as they were presented the same five 9 

videos encountered during testing plus five new videos (also randomized across participants). The 10 

speech audio was stripped from each video (the click was left intact). These silent videos, five 11 

12 

the presentation of each silent rehearsed video, the same video was played with its audio intact to 13 

ial, participants were given a target word to detect in the 14 

upcoming speech. The target word (see Table 1 for a random selection) was unique across repetitions 15 

of a video. Participants were instructed to press the space bar as soon as they perceived the speaker 16 

uttering the target. Presses within 2 seconds of target-word utterances were considered a hit (H) and 17 

all other presses were recorded as false alarms (FA). We calculated a sensitivity index from hit and false 18 

alarm rate using the formula:  19 

𝑑′ = 𝑧(𝐻) + 𝑧(𝐹𝐴) 20 

Immediately following each trial, participants were asked to rate the subjective intelligibility of the 21 

speech on a ten-point scale, based on the percentage of words they felt they understood.  22 

Table 1. Random selection of target words 23 

organization decade political healthcare  

influence congress hospital foreign 
cost special citizen administration 
people plan funding issue 
economy stability profit lower 

 24 

EEG Acquisition and Preprocessing 25 

Continuous EEG data were acquired (Figure 1a) using an ActiveTwo system (BioSemi) from 128 scalp 26 

electrodes + 2 reference electrodes adhered to the skin over the mastoids. The data were low pass 27 

filtered online below 134 Hz and digitized at a rate of 512 Hz. Triggers were sent by an Arduino Uno 28 

microcontroller which detected the audio click at the start of each soundtrack to indicate the start of 29 

each trial. Subsequent pre-processing was conducted offline in MATLAB: the data were imported and 30 

re-referenced to the average reference, bandpass filtered between 0.3 Hz and 15 Hz, and noisy 31 

channels were interpolated. To identify channels with excessive noise, the time series were visually 32 

inspected in Cartool [75], and the standard deviation of each channel was compared with that of the 33 

surrounding channels in MATLAB. Channels contaminated by noise (twice the average standard 34 

deviation of the surrounding electrodes) were replaced by spline-interpolating the remaining clean 35 

channels with weightings based on their relative scalp location in EEGLAB [76]. Finally, the EEG was 36 

epoched and downsampled to 64 Hz. 37 
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Speech Representations 1 

To investigate the links between visual speech and low frequency EEG, we quantified a set of features 2 

intended to capture the information in redundant and complementary cues [34] (Figure 1b). As a 3 

measure of the redundant visual cue, we extract lip movements (L) using 4 

Features mode in Adobe After Effects, which provided x- and y-coordinates of a series of facial 5 

landmarks (namely the center of both lips, corners of the mouth, nose, chin, and both cheeks). A time-6 

series of Euclidean distances between the center of the upper and lower lips defined vertical mouth 7 

movements while the distances between the left and right corners of the mouth defined horizontal 8 

mouth movements. To account for occasional changes in the camera position we divided vertical lip 9 

distance obtained in each frame by the average nose-to-chin distance during the current camera 10 

position. Horizontal movements were similarly normalized by the average cheek-to-cheek distance. To 11 

capture complementary visual information, we labeled the occurrence of visemes (V) during the 12 

speech. Visemes are defined in terms of groupings of phonemes based on perceptual similarity 13 

[72,73]. To derive this visemic representation for our videos, we first obtained their phonemic 14 

representation [after 43], and mapped each of the 39 phonemes to one of 12 visemes based on the 15 

correspondence defined by Auer and Bernstein [37]. There are fewer visemes than phonemes because 16 

of the difficulty of distinguishing, for example, a /p/ from a /b/ visually. We also quantified a control 17 

measure, motion flow (M), to capture general visual motion in the scene. Briefly [after 38], for each 18 

19 

matching algorithm [77]. Motion flow was the sum of all motion vector lengths in each frame [78]. This 20 

n or gaze 21 

22 

23 

speaker aside from occasional cuts. This signal was then upsampled from 30 Hz to 64 Hz to match the 24 

rate of the EEG data. Continuous features  motion flow and lip movements  were normalized by 25 

taking their z-score along the time dimension. Visemes were represented as discrete binary variables 26 

indicating the presence (1, blue in Figure 1b) or absence (0) of each viseme at a given time point. 27 

Temporal Response Function Analysis 28 

In order to relate continuous EEG to the speech representations introduced above, we used a ridge 29 

regression analysis that describes the mapping from a stimulus feature of interest to the EEG response 30 

in each electrode. This mapping, known as a Temporal Response Function (TRF), was computed and 31 

cross-validated using a custom-built toolbox in MATLAB [79]. Because the effect of an event in the 32 

environment is not evident in brain activity until after the even and lasts for several hundred 33 

milliseconds, we compute the TRF across a series of time lags. To normalize TRFs for comparison 34 

across stimulus features, we selected a range of time lags (0-300ms; Figure 1c, shaded regions) that 35 

contained the major components of the TRF across features. We constructed a family of TRF models 36 

derived from single features or combinations of features and measured their ability to predict new 37 

EEG data to estimate the representation of each stimulus feature, or combination of features (Figure 38 

39 

predicted EEG signals. Where applicable, TRF prediction accuracies were tested against a null 40 

distribution generated by iteratively fitting TRFs on shuffled stimulus/response pairings and then 41 

evaluating on matched data. 42 

Due to inherent correlations between stimulus features, it was necessary to isolate the effects of single 43 

features. To this end, before fitting and evaluating TRFs as described above, we partialed out the 44 
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contributions of other features from the EEG using the following procedure. First, TRFs were fit to the 1 

to-be-partialed feature(s). These TRFs were then used to generate EEG predictions which were 2 

subtracted from the original EEG signal. The resultant residual EEG was then used in place of the 3 

original EEG in further TRF analyses as described above (Figure 1c, grey arrows). To quantify how well 4 

the partialing procedure worked, we measured how well a feature (M, L, or V) can predict residual EEG 5 

after partialing (pares; data for V are shown in figure 4b, bottom row). Although the partialing 6 

procedure did not reduce prediction accuracy to the level of the noise floor (pares,null; all T(15) > 2.40; all 7 

p < 0.03), it does substantially reduce prediction accuracy (Table 2) compared to predicting the 8 

original EEG (pafull; values from data shown in figure 4a) we calculated this reduction as: 9 

(𝑝𝑎𝑟𝑒𝑠 − 𝑝𝑎𝑓𝑢𝑙𝑙)

𝑝𝑎𝑟𝑒𝑠
× 100 10 

Table 2. Mean prediction accuracy across occipital channels before and after partialing procedure, the 11 

respective percent change, and the noise floor. 12 

 novel  rehearsed 

 pafull pares % change pares,null  pafull pares % change pares,null 
M 0.039 6.1×10-8 -99.99998 1.5×10-9  0.048 1.1×10-7 -99.9998 5.9×10-11 
L 0.049 0.00031 -99.38 9.0×10-6  0.054 0.00030 -99.51 5.4×10-6 
V 0.049 2.2×10-6 -99.994 8.4×10-8  0.065 2.7×10-6 -99.997 1.3×10-7 
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