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Abstract  

Prostate cancer is profoundly heterogeneous and patients would benefit from methods that 
stratify clinically indolent from more aggressive forms of the disease. We employed 
single-cell assay for transposase-accessible chromatin (ATAC) and RNA sequencing in 
models of early treatment response and resistance to enzalutamide. In doing so, we 
identified pre-existing and treatment-persistent cell subpopulations that possess 
transcriptional stem-like features and regenerative potential when subjected to treatment. 
We found distinct chromatin landscapes associated with enzalutamide treatment and 
resistance that are linked to alternative transcriptional programs. Transcriptional profiles 
characteristic of persistent stem-like cells were able to stratify the treatment response of 
patients. Ultimately, we show that defining changes in chromatin and gene expression in 
single-cell populations from pre-clinical models can reveal hitherto unrecognized molecular 
predictors of treatment response. This suggests that high analytical resolution of pre-clinical 
models may powerfully inform clinical decision-making. 

 

Introduction  

Prostate cancer (PC) relies on androgen receptor (AR) signaling for development and 
progression. Progression on androgen deprivation therapy (ADT) or AR signaling inhibitors 
(ARSIs) leads to castration resistant (CRPC) or treatment-induced neuroendocrine prostate 
cancer (NEPC) (Beltran et al., 2016). The most frequently characterized mechanisms of PC 
or CRPC resistance to ARSIs, ADT, or both, revolve around re-establishing AR signaling 
e.g. via overexpression of AR or AR mutations (Abida et al., 2019; Alumkal et al., 2020; 
Devlies et al., 2020; He et al., 2018). Additionally, forms of resistance that are indifferent to 
AR (Handle et al., 2019), more dependent on FGF signaling (Bluemn et al., 2017) or that are 
AR negative with NEPC-like features (Beltran et al., 2014) are being identified.  
 
PC is profoundly heterogeneous (Haffner et al., 2020; Løvf et al., 2019; Tomlins et al., 2015; 
Woodcock et al., 2020) and patients would benefit from methods that differentiate between 
clinically mild disease and more aggressive forms. To date, most studies characterizing 
genetic mutations causing drug resistance (Gerhauser et al., 2018; Grasso et al., 2012; 
Taylor et al., 2010) point at the selection of a single dominant clone to identify molecular 
predictors (Haffner et al., 2020). However, non-genetic effects linked to transcriptomic 
changes, although more common (Abida et al., 2019; Alumkal et al., 2020; Devlies et al., 
2020; He et al., 2018), are less understood. Moreover, most RNA sequencing data has been 
obtained from the bulk of the tumors, which cannot account for PC heterogeneity. The tumor 
transcriptome is the result of several biological processes contributing to differential gene 
regulation that is not necessarily in sync in all cells within the bulk (Su et al., 2020; Zhang et 
al., 2020). Non-genetic effects linked to epigenetics in PC drug resistance are even less 
understood. Chromatin structure and DNA accessibility to transcription factor (TF) DNA 
binding motifs is the first layer of gene regulation (Sönmezer et al., 2020; Strickfaden et al., 
2020). For example, expression and activity of the Glucocorticoid Receptor and the 
pluripotent stem cell transcription factor Sox2 have been shown to promote enzalutamide 
(ENZ) resistance  (Crona and Whang, 2017; Isikbay et al., 2014; Li et al., 2017a; Mu et al., 
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2017). Moreover, exposure to ENZ can alter activity of other chromatin regulators (Beltran et 
al., 2016).  
 
Only a few studies to date have used single-cell sequencing technology on human PC tumor 
specimens (Chen et al., 2021; Cyrta et al., 2020; Dong et al., 2020; He et al.; Karthaus et al., 
2020; Ma et al., 2020b; Song et al.). Although these approaches characterize features of 
individual tumors, they do not allow for elucidation of the temporal sequence of events 
occurring during the evolution of drug resistance. To explore how heterogeneous PC cells 
respond to ARSIs, we analyzed the evolution of resistance in the epithelial-derived 
component of PC in models of ENZ exposed and resistant PC cell lines at a single-cell level . 
Through deconvolution of transcriptional signals from molecular gene classifiers derived in 
this study, we show evidence of treatment-persistent and pre-existing PC cells that can 
predict treatment response in both primary and advanced patients. 

 
Results 

Chromatin reprogramming underpins enzalutamide resistance 
To study molecular consequences of AR signaling suppression and drug resistance 
dynamics in PC, we used LNCaP parental and LNCaP-derived ENZ-resistant cell lines 
RES-A and RES-B generated via long-term exposure to AR-targeting agents (Handle et al., 
2019)(see Methods), as well as other independently generated LNCaP and VCaP-derived 
models (Figure 1A). Both castration- and ENZ-resistant prostate cancer are characterized 
by increased AR signaling (Formaggio et al., 2021; Watson et al., 2015). Along with others, 
we previously reported that AR overexpression is associated with chromatin reprogramming 
(Braadland et al., 2019; Jia et al., 2006; Tewari et al., 2012; Urbanucci et al., 2017). As 
transcriptionally permissive chromatin in open conformation is the first layer of gene 
regulation (Sönmezer et al., 2020; Strickfaden et al., 2020), we hypothesized that chromatin 
structure would be reshaped in ENZ-resistant cells and lead to modification of the 
transcriptome.  
 
To extrapolate the contribution of chromatin structure to ENZ resistance, we performed 
single-cell (sc) assays for transposase-accessible chromatin and sequencing (scATAC-seq) 
on four samples: (1) LNCaP parental cells (LNCaP), (2) LNCaP exposed to short-term (48 
hours) ENZ (10 μM) treatment (LNCaP-ENZ48), (3) RES-A and (4) RES-B (Figure 1A). We 
first analyzed the scATAC-seq data as if it would have been sequenced in bulk cells (see 
Methods ). The ATAC-seq signal at transcription start sites (TSS) decreased in 
ENZ-resistant cells compared to parental, particularly in RES-B cells (average enrichment 
score 4.8 in RES-B vs 6.2 in LNCaP, p < 0.001, t-test) (Figure 1B ). RES-A and RES-B cells 
shared a large proportion (14% in RES-A and 17% in RES-B) of “ENZ-resistant-specific” 
open chromatin regions not found in parental LNCaP. Additionally, RES-A cells had a higher 
proportion of unique open sites compared to RES-B (19% vs 5%, P < 0.001, chi-square test) 
and LNCaP (19% vs 7%, P < 0.001, chi-square test) (Figure 1C). These findings are 
consistent with TSS non-targeted opening (Jiang and Zhang, 2021) of the chromatin upon 
enzalutamide resistance. 
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We confirmed the extent of chromatin opening and reprogramming in ENZ-resistant cells by 
performing formaldehyde-assisted isolation of regulatory elements (FAIRE) sequencing 
(Giresi et al., 2007) on the parental LNCaP and RES-A cells subjected to androgen 
starvation, or exposed to androgens, ENZ, or both agents (Figure S1A-D)(see Methods ). 
Even in this bulk assay, ENZ and androgen starvation appeared to be more significant 
drivers of reprogramming in RES-A than in parental LNCaP. While there was no difference in 
the total number of open chromatin sites, ENZ-resistant samples had a higher proportion of 
unique open sites compared to parental in the presence of androgens (24% vs 12%, P < 
0.001, chi-square test) (Figure S1E) and in androgen-deprived (castrate) conditions (27% vs 
9%, P < 0.001, chi-square test) (Figure S1C). Read distribution analysis (see Methods) 
demonstrated that the chromatin of ENZ-resistant cells is more open in castrate conditions 
(p = 0.018, t -test) (Figure S1D ) but not in presence of androgens (p = 0.239, t-test) (Figure 
S1F), and that ENZ has an additive effect on castration in inducing chromatin compaction in 
parental ENZ-sensitive cells that is counteracted by androgens (Figure S1D, Figure S1F).  
 
Next, we used all samples with scATAC-seq to generate cluster visualizations of cell 
subpopulations with different chromatin (see Methods) (Figure 1D ). We identified clusters 
which we termed “unique” or “shared” across the samples (Figure 1E). Unique clusters were 
specific to RES-A, RES-B, or both (named “ENZ-induced clusters”), or specific to the 
untreated and/or short-term ENZ-treated parental line (named “initial clusters”). Shared 
clusters were present at similar proportions across the samples and were named “persistent 
clusters” (Figure 1E ). We compared each cluster to all other clusters to determine its unique 
chromatin profile based on differentially accessible chromatin regions (DARs).  
 
The most prevalent chromatin-based scATAC-seq clusters (0, 1, and 2) were persistent 
(Figure 1E ) and defined by fewer than 20 unique DARs, suggesting that 74% of the cells 
during development of ENZ-resistance share an overall similar chromatin accessibility 
profile. We then assessed changes in cluster chromatin DARs between the parental LNCaP, 
LNCaP-ENZ48, and in RES-A and RES-B. The RES-A specific cluster 6 (Figure 1E; 9% of 
the cells) had DARs at the MYC 5’UTR, TP53 locus, and proximal to genes involved in 
steroidogenesis and cholesterol synthesis, consistent with activation of MYC and tendency 
to AR signaling re-activation. Conversely, the RES-B specific cluster 7 (10% of the cells) had 
DARs proximal to PTPN12, CD177, and ADCY7 genes with functions in capturing external 
signaling and energy sources through membrane associated processes.  
 
In line with studies on PC cell lines cultured for an extended time without androgens, which 
tend to display neuroendocrine-like phenotypes (Braadland et al., 2019; Fraser et al., 2019), 
the largest fold changes in chromatin accessibility based on average signal from all cells 
showed enrichment for neural system and neurite development processes between the 
parental (LNCaP-ENZ48 or DMSO) and resistant cells (RES-A or RES-B) (p < 0.001 in 
RES-A and p = 0.001 in RES-B). Using Gene Set Variation Analysis (GSVA) for gene 
expression scoring (see Methods), we found elevated expression of NEPC-derived 
signatures among upregulated genes (Braadland et al., 2019; Tsai et al., 2017) in RES-A 
and RES-B cells (particularly EZH2, AURKA, STMN1, DNMT1, and  CDC25B), as well as 
increased expression of NEPC-downregulated genes in initial clusters (Figure S1G). 
Interestingly, in the same cell lines, deconvolution of bulk RNA-seq data with NEPC 
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signatures showed high NEPC signal in RES-A cells only (Figure S1H), reflecting the lower 
resolution of bulk RNA-seq with respect to identifying signals from a small number of cells. 
Overall, these data show extensive chromatin reprogramming during emergence of 
resistance to AR-targeting agents. 
 

 
 
Figure 1. Chromatin reprogramming in enzalutamide resistance. (A) Overview of the 
cell lines models, assays, and treatments included in the study. Boxes with sample names 
are colored according to the data types generated from the sample (single-cell ATAC-, 
single-cell RNA-, bulk RNA-, and/or FAIRE-sequencing). (B) LNCaP parental, 
LNCaP-ENZ48, RES-A, and RES-B single-cell (sc) ATAC-seq  enrichment score in a 2kb 
window around the transcription start site (TSS). Enrichment scores at each TSS (position 0 
in the plot) were used as the enrichment values and compared between pairs of samples. 
Each sample comparison is indicated using colored dots within the plot and the t-test p-value 
is shown with asterisks (*** p-value < 0.001). (C) Venn diagram of shared and unique 
chromatin regions in LNCaP parental, LNCaP-ENZ48, RES-A, and RES-B according to bulk 
analysis of scATAC-seq. (D) UMAP scATAC-seq clustering visualization of LNCaP parental, 
LNCaP-ENZ48, RES-A, and RES-B. (E) Proportions of cells in scATAC-seq clusters. 
Clusters are colored according to cluster type: initial (present in prevalence in LNCaP 
parental and LNCaP-ENZ48), ENZ-induced (present in prevalence in RES-A or RES-B), or 
persistent (present in similar proportions in all samples). See also Figure S1. 
 
Enzalutamide resistance reconfigures availability of TF binding DNA motifs in the 
chromatin  
Chromatin accessibility determines transcriptional output by exposing a footprint of TF DNA 
motifs. As ENZ resistance was associated with increased chromatin opening, we 
hypothesized that this would change the footprint of TF DNA motifs exposed. To this end, we 
first used AR and MYC binding site maps in LNCaP cells (Barfeld et al., 2017) and explored 
the relationship between open chromatin sites according to the bulk FAIRE-seq data in 
RES-A cells. Using read distribution analysis, we observed a significant increase in open 
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chromatin at MYC binding sites in ENZ-resistant cells (p < 0.001 in castrate conditions and 
with androgens, t-test) (Figure 2A, Figure S2A ), as well as a reduction of open chromatin at 
AR binding sites (p < 0.001 in castrate conditions and with androgens, t-test) (Figure 2B, 
Figure S2B ). These findings suggest that chromatin dysregulation in ENZ-resistance is 
associated with reconfiguration of AR and MYC chromatin binding, consistent with previously 
reported increased MYC and reduced AR transcriptional activity in these cells (Handle et al., 
2019). 

 
To resolve how chromatin reprogramming affects TF DNA motif exposure at the single-cell 
level, we performed TF motif enrichment analysis on the marker DARs characterizing the 
scATAC-seq cell clusters in each sample (Figure 2C). This analysis confirmed enrichment of 
motifs for several PC-associated TFs such as AR and MYC, as well as GATA2, HOXB13, 
and others in persistent clusters 3 and 5 in parental and LNCaP-ENZ48 (Figure 2C). In stark 
contrast, only cluster 3 in RES-A and cluster 5 in RES-B showed enrichment of a subset of 
the same TFs motifs (Figure 2C ), suggesting  divergent TF dependencies for AR, CREB1, 
CTCF, E2F1, ETS-like, FOXA1, GATA2, JUND, MYC, and ZFX in these cell clusters in 
ENZ-resistant cells.  
 
Between pairs of samples, DARs were predominantly opening in cluster 3 compared to all 
other clusters (8% vs 4% DARs differentially opening, p < 0.001, chi-square test) and 
predominantly closing in cluster 4 (11% vs 8% DARs differentially closing, p < 0.001, 
chi-square test) (Figure S2C). We performed selective TFs motif enrichment analysis in 
DARs opened (Figure 2D) and closed (Figure S2D) between pairs of samples (see 
Methods ). While we observed no enrichments after short-term ENZ-treatment 
(LNCaP-ENZ48 vs parental; Figure 2D), comparing open DARs in RES-A or RES-B vs 
LNCaP parental retrieved distinct sets of TFs, with MYC and ESR1 being the most common 
across all clusters in RES-A and RES-B, respectively (Figure 2D). Similarly, comparing 
open DARs in RES-A or RES-B vs LNCaP-ENZ48 showed enrichment of most of the 
PCa-related TF motifs tested in most clusters (Figure 2D), and to an even greater extent 
when considering closing DARs between sample conditions (Figure S2D). 
 
These analyses demonstrate that ENZ-resistance is associated with reconfiguration of TF 
DNA motif footprints, which is consistent with alteration of TFs activity (Hankey et al., 2020). 
DNA motifs for pioneer factors such as FOXA1 and GATA2 (Wang et al., 2007; Zhao et al., 
2016) were not enriched in differentially open regions but were enriched in all clusters in the 
differentially closed regions (Figure S2D), possibly indicating a loss of activity at these sites 
(Hankey et al., 2020; Sahu et al., 2011). This is consistent with distinct chromatin-related 
mechanisms of ENZ-resistance observed in other bulk models (Zhang et al., 2020), meaning 
chromatin structure reprogramming in ENZ resistance might therefore be associated with TF 
binding reprogramming in a small subset of PC cells. 
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Figure 2. Contribution of enzalutamide treatment-mediated chromatin reprogramming 
to transcription factor DNA motif footprint. (A-B) Mean FAIRE-seq read count distribution 
in androgen-deprived conditions within a 2kb interval around MYC binding sites (A) and AR 
binding sites (B) in LNCaP cells. (C) Prostate cancer-associated  transcription factor (TF) 
motif enrichment in open differentially accessible regions (DARs) for each scATAC-seq 
sample. Enrichments with a Benjamini-Hochberg method adjusted hypergeometric test 
p-value < 0.05 are shown in colors, while non-significant enrichment are shown in white. The 
barplots above the matrices indicate the number of open DARs found for each cluster in 
each sample. (D) TF motif enrichments in open DARs observed comparing the indicated 
conditions. Enrichments with a Benjamini-Hochberg method adjusted hypergeometric test 
p-value < 0.05 are shown in colors, while non-significant enrichment are shown in white. See 
also Figure S2. 
 
Transcriptional patterns of enzalutamide resistance are induced by divergent 
chromatin reprogramming 

To study transcriptional patterns in relation to reconfiguration of chromatin structure at the 
single-cell level, we additionally performed scRNA-seq in the LNCaP parental, RES-A and B 
models (Figure 1A). Visualizing clusters of cell subpopulations for the four samples (Figure 
3A) showed 7 persistent, 3 ENZ-induced, and 3 initial cell clusters (Figure 3B) defined by 
sets of marker differentially expressed genes (DEGs; between 17 and 283 DEGs in the 13 
clusters). To confirm that these cell subpopulations would be relevant in other independent 
models of ENZ-resistance, we validated the scRNA-seq clustering by using cluster label 
transfer (see  Methods ) to three additional scRNA-seq datasets (Figure 1A). We queried for 
matching cell populations in an additional LNCaP parental sample, LNCaP ENZ-treated for 1 
week (LNCaP-ENZ168), and an independent ENZ-resistant, LNCaP-derived cell line 
(RES-C). Transferring scRNA-seq cluster labels confirmed the presence of initial clusters 4, 
6, and 10 in RES-C (Figure S3A). We could find 79% of RES-B-specific ENZ-induced 
cluster 3 in LNCaP-ENZ168, suggesting that one week of ENZ treatment is sufficient to give 
rise to this cluster prior to the development of resistance (Figure S3B). Moreover, 17% of 
RES-C cells are coinciding with RES-B-specific ENZ-induced cluster 3, indicating that 
RES-B and RES-C lines share cells with similar characteristics. Most importantly, we could 
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retrieve persistent subpopulations of cells in the alternative LNCaP-parental sample (4%; 
Figure S3C ), in LNCaP-ENZ168 (13%), and in RES-C (31%), suggesting that these 
persistent cells are consistently found during emergence of ENZ-resistance. 

 
We then sought to determine whether the observed scRNA-seq clusters (Figure 3A) could 
be the result of enriched TFs binding activity in alternative open DARs. Using annotated 
databases, we queried the transcriptional targets of the enriched TFs in the open DARs 
when comparing RES-A or B to the parental LNCaP (Figure 2D) in the matching scRNA-seq 
samples (see Methods).  Chromatin remodeling affected TF activity and consequently 
DEGs in the scRNA-seq for up to a maximum of 11% in cluster 0 in RES-A and 7.1% in 
cluster 1 in RES-B (Figure 3C). While target DEGs for TFs such as MYC, JUND, and E2F 
where promiscuously found in most clusters in both RES-A and B, other target DEGs for TFs 
such as AR, RELA (a NFkB subunit), and GRHL2 seemed more specific to RES-A or B, 
consistent with proposed stoichiometric models of TFs chromatin binding (Klemm et al., 
2019). This analysis confirmed that alternative open DARs in ENZ-resistance can activate 
divergent transcriptional programs. 
 
Next, we retraced scRNA-seq clusters to their scATAC-seq clusters. We took advantage 
once again of a label transfer approach to identify matching scRNA- and scATAC-seq cell 
states in the same sample conditions (see Methods). In this process, we assigned cell 
labels within the scRNA-seq to the scATAC-seq clusters, or vice versa (Figure S3D). We 
found that a chromatin state can correspond to multiple transcriptional states (96% in 
scATAC-RNA vs 48% in scRNA-ATAC of cells assigned on average across all samples, p < 
0.001, chi-square test). Querying the integrated scRNA-seq clusters (Figure 3A-B) from the 
scATAC-seq data, we could find matching cell states in the scATAC-seq for scRNA clusters 
9, 10, and 11 (Figure S3E). Across the sample conditions, 95% of the cells projected to 
belong to scRNA-seq cluster 10 belonged to scATAC-seq cluster 4, while 72% of cells 
projected to belong to scRNA-seq cluster 9 or 11 belonged to scATAC-seq cluster 3 (Figure 
3D). Taken together, these data show that transcriptional configuration of ENZ-resistant 
cells, especially cells persisting during treatment, emerges from processes driven partially by 
chromatin structure and TF-mediated transcriptional reprogramming. These processes affect 
a number of important regulators of cell fate, consistent with lineage commitment recently 
observed in tissue development (Ma et al., 2020a).  
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Figure 3. Chromatin states of enzalutamide resistance can result in multiple 
transcriptional programs. (A) UMAP clustering visualization of single-cell RNA sequencing 
(scRNA-seq) of LNCaP parental, LNCaP-ENZ48, RES-A, and RES-B. (B) Proportions of 
cells in clusters identified from scRNA-seq. Clusters are colored according to cluster type: 
initial (present in prevalence in LNCaP parental and LNCaP-ENZ48), ENZ-induced (present 
in prevalence in RES-A or RES-B), or persistent (present in similar proportions in all 
samples). (C) Proportion of differentially expressed genes in each scRNA-seq cluster for the 
indicated sample comparisons that is composed of enriched transcription factor (TF) target 
genes. The contributions of enriched TFs identified in the scATAC-seq are shown as a 
stacked barplot. (D) Identification of matching cell clusters between the scRNA and scATAC 
-seq data visualized as heatmap. The heatmap shows the proportions of scATAC-seq cells 
across all sample conditions assigned to each scRNA-seq cluster as part of the label 
transfer process. The proportions were calculated for each scRNA-seq cluster, with the total 
as the number of cells from the scATAC-seq that could be confidently assigned to a 
scRNA-seq cluster (confidence score > 0.4). See also Figure S3. 
 
Prostate cancer cell subpopulations with features of stemness precede enzalutamide 
resistance 
Cell cycle phase can be a strong determinant of the integrative clustering of our scRNA-seq 
data. Accordingly, we found that persistent clusters 8, 9, and 11 scored highly for S and 
G2/M phase related genes using cell cycle scoring in Seurat (see Methods) (Figure 4A ), 
suggesting that cells in these clusters are more actively cycling and proliferative. However, 
we found that cells in clusters 9 and 11 were characterized not only by cell cycle genes, but 
also by expression of genes involved in chromatin remodeling and organization (CTCF, 
LAMINB, ATAD2), increased cell cycle turnover and stemness (FOXM1, (Ketola et al., 
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2017), and DNA repair (BRCA2, FANCI, RAD51C, POLQ) (Figure 4B). Clusters 5 and 11 
showed high expression of a gene set, which we named “Stem-Like”, composed of 
stemness-related genes mainly from Horning et al (Horning et al., 2018) (Figure 4C ). 
Karthaus et al recently identified activated luminal prostate cells able to regenerate the 
epithelium following castration (Karthaus et al., 2020). We extracted (see Methods) the 
gene expression profile associated with these prostate luminal cells, and used it to score 
each scRNA-seq cluster. We found cluster 10, an initial cluster, to score highly for this gene 
signature, which we renamed PROSGenesis (Figure 4D).  

 
We then set out to reconstruct the trajectories of how these clusters of interest were 
generated during the development of ENZ-resistance. Based on cytoTRACE (Gulati et al., 
2020), cells in clusters 10 and 11 were the least differentiated across most of the sample 
conditions (Figure 4E), suggesting that the other cells could derive from cells in these 
clusters. RNA velocity analysis estimated cluster 10 as a precursor of the 
enzalutamide-induced clusters (Figure 4F), concordant with a state derived from activated 
regenerative luminal prostate cells as previously suggested (Karthaus et al., 2020). 
Cluster-specific differential velocity analysis in RES-A and RES-B revealed downregulation 
of many PC-related genes, such as ATAD2, as well as upregulation of genes such as 
UBE2T, PIAS2, PFKFB4, and EGFR (Figure S4A-B) . ATAD2 and UBE2T were otherwise 
upregulated in persistent clusters 8, 9, and 11 (Figure S4B), suggesting additional 
transcriptional reprogramming in ENZ-induced clusters.  
 
These analyses point at two distinct subpopulations of PC cells which precede ENZ 
resistance: one persistent cell cluster (cluster 11) matching “Stem-Like” and one initial 
cluster (cluster 10) matching PROSGenesis, a signature derived from tissue regeneration 
(Karthaus et al., 2020). Collectively, our data suggest that there exists a small number of PC 
cells within the bulk with stem-like and regenerative potential.  
 
Model-based characterization of gene signatures in prostate cancer bulk RNA 
sequencing 
The use of molecular gene classifiers or signature scores is an attractive strategy to select 
cancer patients for treatment (Doultsinos and Mills, 2021; Eggener et al., 2020). Effectively, 
gene expression deconvolution methods are based on the use of gene signatures to assign 
cell tissue types from bulk RNA-seq (Wang et al., 2018). According to an unbiased 
enrichment and differential expression analysis of hallmark gene sets (see Methods), most 
of the persistent clusters and cluster 10 also showed significant enrichment of E2F targets, 
G2M checkpoint, and MYC target genes (Figure S4C). These data are largely concordant 
with the bulk RNA-seq data on the same cells in our previous study (Handle et al., 2019), 
reflecting the fact that signals from subpopulations of cells can be retrieved in bulk RNA-seq 
data. Differential expression within clusters (Figure S4D-F) further revealed that oxidative 
phosphorylation was immediately upregulated in LNCaP-ENZ48, and this process is 
maintained highly selectively in RES-A but not in RES-B. Moreover, genes regulated by 
activated mTORC1 signaling were consistently upregulated in most of the clusters as ENZ 
resistance develops (Figure S4D-F), in agreement with previous reports showing its 
activation during ENZ treatment in patients (Ma et al., 2020a). 
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We therefore used a collection of signatures derived from the scRNA-seq analysis to 
describe features of the same cells in bulk RNA-seq datasets. In addition to Stem-Like and 
PROSGenesis, we included (1) NEPC markers (Figure S1G), (2) a BRCAness gene 
signature (Li et al., 2017b), as RES-A and RES-B maintain sensitivity to PARP inhibition 
(Handle et al., 2019) and the persistent cluster 11 is characterized by markers of DNA repair 
(Figure 4B ), (3) gene sets as proxies of AR signaling activation (He et al., 2018), including 
activation of AR splice variants (AR-Vs), (4) the DEGs defining our scRNA-seq clusters, and 
(5) gene sets for mTORC1 signaling and MYC targets (Figure S4C-F). 

 
 
Figure 4. Transcriptional states of stemness in enzalutamide resistance. (A) Average 
expression of cell-cycle related genes (S and G2/M phases) in cells from the scRNA-seq 
data. (B-C) Dot plot of average gene expression of the (B) indicated genes and of the (C) 
genes within the Stem-Like signature in each scRNA-seq cluster. The size of the dot reflects 
the percentage of cells in the cluster that express each gene. (D) UMAP visualization 
showing the average expression score of each cell for the genes in the PROSGenesis gene 
signature derived from Karthaus et al (Karthaus et al., 2020). (E) Predicted differentiation 
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states of cells in the four LNCaP scRNA-seq samples. Each cell is a dot colored according to 
its differentiation state. The scRNA-seq clusters are labeled with numbers. (F) RNA 
velocities based on scRNA-seq depicted as streamlines. Clusters are shown in different 
colors and are numbered. See also Figure S4. 
 
In the bulk, the ENZ-induced DEGs selectively appeared in the RES-B cells but not in 
RES-A (Figure 5A ). Similarly, the persistent clusters were associated with the Stem-Like 
signature only in RES-A or RES-B, selectively when induced with DHT (Figure 5A). On the 
other hand, the PROSGenesis signature was elevated only in RES-B (Figure 5A). The 
NEPC features in RES-A were associated with MYC activation (Figure 5A). Consistent with 
both lines still being responsive to PARP inhibitors (Handle et al., 2019), we found a high 
BRCAness score, especially in presence of ENZ (Figure 5A), which is known to 
downregulate DNA repair machinery (Li et al., 2017b). BRCAness was associated with the 
AR-V signature as previously shown (Kounatidou et al., 2019) (Figure 5A). 
 
To confirm the properties of different signatures, we used VCaP cells to develop an 
independent model of resistance to AR signaling-targeted treatments including ADT, 
bicalutamide, ENZ, and bicalutamide/ENZ multi-resistant sublines, and performed bulk 
RNA-seq (Figure 1A). These VCaP-based sublines did not show NE features (Figure 5B). 
Only ENZ-resistant VCaP cells scored highly for the ENZ-induced DEGs, confirming the 
specificity of this signature to ENZ treatment and resistance. Parental and ENZ-resistant 
VCaP cells scored highly for the PROSGenesis signature, while the scores of the persistent, 
Stem-Like, mTORC1 signaling, and MYC targets signatures scored high selectively in 
resistant VCaP sublines (Figure 5B). This suggests a convergent mechanism of resistance 
to these agents in this independent model.  
 
Next, we scored xenografts of AR+/NE-, AR-/NE+, or AR-/NE- CRPC and NEPC tumors 
resistant to ENZ (Labrecque et al., 2019; Lam et al., 2020) with the same signature sets 
(Figure S5A ). AR+/NE- xenograft samples clustered into two separate clusters. AR- tumors 
clustered together with a series of AR+/NE- tumors due to low mTORC and MYC signaling, 
while one cluster of AR+/NE- scored highly for all of the gene sets except for markers 
upregulated in NEPC “NEPC upregulated”. Interestingly the PROSGenesis signature, along 
with initial clusters and ENZ-induced clusters, scored particularly high in AR+ tumors while 
the Stem-Like signature, along with the persistent clusters, scored high in both AR+/NE- and 
AR-/NE+ tumors (Figure S5A ), suggesting that the two signatures capture different tumor 
biologies. In a transcriptome dataset based on an independent xenograft model (King et al., 
2017), we found ENZ resistance to be uniquely associated with higher AR activity, higher 
expression of MYC target genes, PROSGenesis high score, and high expression of 
ENZ-induced cluster gene sets (Figure S5B). This data suggest that the Stem-Like status is 
independent of the AR status and that persistent cells might mediate the development of 
both AR positive CRPCs and negative NEPCs. Collectively, the persistent, initial, 
PROSGenesis, and Stem-Like derived gene signatures show potential for identifying 
aggressive regenerative features of PC from bulk RNA-seq.  
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Figure 5. Gene signatures derived from single-cell RNA sequencing capture important 
features of prostate cancer models and stratify advanced PC patients. (A) Heatmap of 
gene signature GSVA enrichment scores in bulk RNA-sequencing of LNCaP treated with 
DHT or enzalutamide, and either sensitive or resistant to enzalutamide. (B) Heatmap of 
gene signature GSVA enrichment scores in bulk RNA-sequencing from VCaP subline 
derivatives VCaP-T (long term cultured with 10 uM testosterone), VCaP-CT (VCaP-T long 
term cultured with 0.1 nM testosterone), VCaP-CT-ET (VCaP-CT cultured long term with 10 
µM enzalutamide), VCaP-CT-Br (VCaP-CT cultured long term with bicalutamide), and 
VCaP-CT-Br-ER (VCaP-CT-Br long term treated with enzalutamide upon reaching 
bicalutamide insensitivity). (C) Kaplan-Meier curves for Alumkal et al patients stratified into 
two groups based on median GSVA score for Stem-Like and NEPC upregulated gene 
signatures. Log-rank p-value is indicated above the curves. (D) Kaplan-Meier curve for 
abiraterone and enzalutamide-naive patients from SU2C (bone metastasis samples 
excluded) stratified into two groups based on median GSVA score for the Stem-Like gene 
signature. Log-rank p-value is shown above the curve. See also Figure S5. 

Transcriptional signal deconvolution identifies treatment persistent cells and 
prognostic gene signatures in prostate cancer patients 
We then hypothesized that we could systematically use gene signatures as a proxy for the 
presence of PC cells with different transcriptional features in clinical settings. We first 
interrogated clinical data of CRPC patients treated with ENZ reported in Alumkal et al. 
(Alumkal et al., 2020). The patients aggregated into two clusters based on our complete 
signature set (Figure S5C), but patients in neither cluster had significantly shorter 
progression-free survival (PFS; p > 0.05, log-rank test). However, excluding AR-related and 
BRCAness gene sets from our signature set allowed us to identify the majority of ENZ 
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non-responders with particularly poor PFS (p < 0.001) (Figure S5D). Utilizing a stepwise 
variable selection process we identified five significant signatures (NEPC, PROSGenesis, 
MYC targets, AR activity, and ARV) that are able to identify patients with significantly shorter 
PFS (Figure S5E ). Moreover, PFS analysis of individual gene signatures revealed 
association with shorter time to progression for patients scoring high for the Stem-Like 
signature (p = 0.045, log-rank test) or for genes upregulated in NEPC (p < 0.001, log-rank 
test) (Figure 5C ), while patients with longer PFS scored highly for MYC target genes (p < 
0.001 for V1 and p = 0.026 for V2 MYC target gene sets, respectively, log-rank test) (Figure 
S5F). 
 
None of the cluster marker gene sets showed a significant difference between Stand Up To 
Cancer (SU2C) CRPC abiraterone/ENZ-naive and abiraterone/ENZ-exposed patients (Abida 
et al., 2019) according to their latest treatment regime, suggesting that differences between 
the tumors based on the signatures may be difficult to retrieve using bulk sequencing from 
heavily pre-treated patients. Despite the challenges of applying single-cell derived signatures 
to bulk data however, Stem-Like was still significantly associated with poor overall survival in 
these patients (Figure 5D), supporting the potential significant activity of the persistent cells 
in this group of patients. Similarly, we could not stratify patients that developed resistance to 
ENZ in the SU2C West Coast DT Quigley et al dataset (Figure S5G ) (Quigley et al., 2018), 
although in this case, ENZ-sensitive patients had higher expression of PROSGenesis (p = 
0.034, Wilcoxon rank-sum test) (Figure S5H). 
 

 

Gene signature 

Alumkal et 
al  

(PFS) 
(n = 24) 

SU2C CRPC 
(OS)(capture, 

ABI/ENZ-naive, 
bone excluded) 

(n = 33) 

SU2C CRPC 
(OS)(capture, 

ABI/ENZ 
naive) 

(n = 56) 

Quigley et 
al (OS)  
(n = 96) 

TCGA- 
PRAD 
(PFS)  

(n = 271) 

ICGC- 
EOPC 
(PFS) 

 (n = 85) 
Initial clusters Good*  Poor*    
PROSGenesis     Good**  

Cluster 10 Good**    Good**  
Cluster 4 Good**      
Cluster 6 Good*      

ENZ-induced 
clusters Good*    Good***  
Cluster 2 Good*      
Cluster 3 Good**    Good***  
Cluster 7    Good**   
Persistent 
clusters     Poor**  

Stem-Like Poor* Poor*   Poor*  
Cluster 11     Poor***  
Cluster 9     Poor***  
Cluster 5     Poor***  
Cluster 0     Poor**  
Cluster 1     Good***  
Cluster 8     Poor**  

AR activity    Good* Good*  
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Table 1. Summary table of gene signature GSVA score associations with PFS or OS in               
the clinical datasets. Only gene signatures significantly associated with progression-free          
survival (PFS) or overall survival (OS) in one or more datasets are shown. Good indicates a                
higher score for the signature (a score higher than the median) is associated with better               
survival outcome, while poor indicates that a higher signature score (a score higher than the               
median) is associated with worse survival outcome. Log-rank p-values are shown with            
asterisks (* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001). For each dataset, the                 
header indicates the number of samples included, along with other qualifying information of             
the dataset. We used abiraterone (ABI)/ENZ naive patients from the Stand Up To Cancer              
(SU2C) CRPC dataset, either including or excluding samples from bone metastases.  
 
These data show that the Stem-Like signature associated with persistent cells (cluster 11) 
from our single-cell analysis of ENZ resistance is a consistent classifier with the potential of 
stratifying patients for response to second line AR-targeted treatments (Table 1). The 
findings also support the presence of a small number of cells within the tumor that score high 
for Stem-Like and PROSGenesis, with the potential ability to regenerate the bulk during 
treatment (Zahir et al., 2020). 
 
Using PC specimen tumor DNA, we recently showed the presence of subclones within the 
primary tumors that preserve the ability to expand and metastasize years after treatment and 
are found interlayered within different lesions of multifocal tumors (Woodcock et al., 2020). 
Similarly, a recent work studying lung cancer metastases found that metastatic capacity 
arises from pre-existing and heritable differences in gene expression (Quinn et al., 2021). 
Therefore, we hypothesized that the persistent cluster 11, Stem-Like, initial cluster 10, and 
PROSGenesis signatures could be able to capture signals from such types of pre-existing 
subclones with metastatic potential in primary untreated tumors.  
 
To this end, we took advantage of a recently published scRNA-seq dataset on clinically 
relevant PCs specimens (Figure S6A) (Chen et al., 2021). We used GSVA score to highlight 
our 13 scRNA-seq clusters in 36424 cells from primary untreated PC specimens of 13 
patients (Figure S6B). The analysis showed that our LNCaP model-derived cell clusters 
scored higher in luminal and basal/intermediate cells compared to fibroblasts (average score 
-0.07 vs -0.20, p = 0.047, t -test) (Figure S6B ). Additionally, luminal cells had higher 
expression of genes associated with our initial scRNA-seq clusters compared to the 
basal/intermediate cells (average score 0.23 vs -0.12, p = 0.02, t-test) and compared to 
fibroblasts (average score 0.23 vs -0.39, p < 0.001, t-test). 

 

ARFL     Good*  
ARV  Good*     

NEPC 
upregulated Poor***      

NEPC 
downregulated      Good* 
MYC targets V1 Good***      
MYC targets V2 Good*      

BRCAness     Poor**  
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We then scored the cells for expression of genes from the Stem-Like and PROSGenesis 
signatures, along with the associated clusters (11 and 10, respectively) and control 
signatures linked to AR activity (ARV, AR-FL, and AR activation), BRCAness, and NEPC 
(Figure 6A ). We defined a high score for a gene signature to be above the 90th percentile. 
48% percent of the cells that scored highly for the Stem-Like signature were luminal cells 
(Figure 6B ). Cells scoring highly for the PROSGenesis signature were mostly 
basal/intermediate (78% of high scorers) (Figure 6C). Each single patient harbored on 
average 8% of cells scoring high for the Stem-Like signature (ranging from 2% in patient 173 
to 23% in patient 156) and 8% of cells scoring high for the PROSGenesis signature (ranging 
from 0.9% in patient 153 to 33% in patient 172) (Figure 6D). 
 
To reconcile the presence of these cells and their relative histopathological position, we 
assessed gene expression within 2 sections of primary untreated PC with spatial 
transcriptomics (see  Methods). We reconstructed the gene expression signal from stromal 
and epithelial components in an average of 1682 spots per sample using clustering analysis 
and annotated the tissue architecture in 5 clusters of different morphologies of benign 
stromal tissue (BT), benign prostatic hyperplasia (BPH), prostate intraepithelial neoplasia 
(PIN), and adenocarcinoma (PC-AC) (Figure 6E, Figure S6C). PROSGenesis and 
Stem-Like signatures, as well as the companion model-derived cluster 10 signature, showed 
high expression scores compared to scores from a housekeeping gene signature (Figure 
6F, Figure S6D ). We compared the score distributions of our signatures to the 
housekeeping gene set score distributions, and determined the 90th percentile as a score 
cutoff for high expression by allowing for 5% false positives (see Methods). Spots with high 
signal were found interspersed in all 5 clusters (Figure 6G, Figure S6E). However, we 
observed enrichment for spots scoring highly for the Stem-Like signature in the PT-AC 
cluster compared to benign tissue (18% vs 11% high scoring spots, p = 0.005, chi-square 
test). Spots scoring highly for PROSGenesis were enriched in the PIN and PT-AC clusters 
compared to benign tissue (p < 0.001 in both cases, chi-square test), while spots scoring 
highly for cluster 10 were enriched in the PIN cluster compared to all other tissue regions (p 
< 0.001 for each comparison, chi-square test) (Figure 6G). Taken together these data 
suggest the presence of treatment-persistent cells interspersed within the primary untreated 
prostate tissue of PC patients with high metastatic potential. 
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Figure 6. Transcriptional signal deconvolution identifies treatment persistent cells in 
prostate cancer. (A) GSVA enrichment scores from single-cell RNA-seq data for gene 
signatures in luminal, basal/intermediate, and fibroblast cells in specimens from 12 
treatment-naive prostate cancer (PC) patients (Chen et al., 2021). GSVA enrichment scores 
were generated from the average expression profile of each cell type. See Figure S6 for the  
tSNE visualization of the cell types. (B-C) tSNE plot of PC cells colored according to their 
average expression of the genes in (B) the Stem-Like signature and in (C) the 
PROSGenesis signature. The adjacent histograms show the distribution of average 
expression scores in the cells, with a red dotted line denoting the 90th percentile of scores. 
(D) Percentage of cells scoring at or above the 90th percentile for the Stem-Like and 
PROSGenesis signatures belonging to each patient.  (E-G) Spatial transcriptomics (ST) from 
a prostate cancer tissue section, Prostate A.  (E) H&E staining of the tissue section (left most 
panel), UMAP visualization (central panel) of the clusters of the spots on the ST slide (right 
most panel). Each cluster is also labeled according to its histological tissue type, with 
clusters 0 and 1 corresponding to stroma, cluster 2 corresponding to prostatic intraepithelial 
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neoplasia (PIN), cluster 3 corresponding to the prostate adenocarcinoma, and 4 
corresponding to benign prostatic hyperplasia (BPH). (F) Sensitivity analysis of Stem-Like 
and PROSGenesis signatures scores in ST against the score distributions of control 
housekeeping gene signatures (see Methods). (G) The leftmost panel shows the ST UMAP 
clusters of spots overlaid on the H&E slide. Each spot was scored according to its 
expression of genes in the Stem-Like, PROSGenesis, and cluster 10 signatures. For each 
signature, spots scoring at or above the 90th percentile (“high”) are colored in red, while 
spots scoring below the 90th percentile (“low”) are colored in yellow. The barplots indicate 
the percentage of spots in each cluster scoring high or low for each signature. See also 
Figure S6. 
 
We finally verified whether we could predict recurrence in primary PC patients using the 
signal derived from the signatures in these cells. We interrogated legacy primary tumor 
TCGA PRAD (https://www.cancer.gov/tcga) (Figure 7A)  and early onset PC (EOPC) ICGC 
(Gerhauser et al., 2018) gene expression data (Figure S7A) for our gene signatures of 
interest. Using all signatures for clustering the TCGA PRAD cohort separated 54% of 
Gleason score (GS)-7 and 15% of GS-8+ patients which would not benefit from additional 
treatment, as they had relatively good prognosis (Figure 7B). A similar trend was also 
observed in the ICGC cohort (Figure S7B). ENZ-induced (Figure 7C), PROSGenesis 
(Figure 7D ), Stem-Like (Figure 7E ), and persistent (Figure 7F) gene signatures were the 
most significant (p < 0.05, log-rank test) contributors to cluster separation in the TCGA 
cohort, while NEPC downregulated genes were the major determinant in the ICGC cohort 
(Figure S7C ), reflecting the different biology of these GS-7-enriched EOPCs. In the ICGC 
cohort, the persistent and PROSGenesis signatures significantly stratified GS-7 patients (p < 
0.05, log-rank test) (Figure S7D-E), suggesting the ability of these signatures to further 
refine GS-based risk stratification in these patients and avoid overtreatment. High 
PROSGenesis score was associated with good prognosis together with the gene set from 
the initial cluster 10 (Table 1). In line with previous reports (Alumkal et al., 2020), signatures 
reflecting AR activity (AR activity and full length) in these tumors were consistently 
associated with longer time to progression in the TCGA cohort (Figure 7G-H), suggesting a 
better response to inhibition of AR signaling in AR driven tumors. Individually, 8 out 13 
clusters-derived signatures showed association with PFS in the TCGA cohort (Table 1), 
pointing at the utility of these signatures in PC patient risk stratification. 
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Figure 7. Transcriptional signal from persistent prostate cancer cells can be used to 
stratify untreated patients. (A)  Heatmap of GSVA enrichment scores for all 
single-cell-derived gene signatures in the TCGA-PRAD cohort, including the marker gene 
sets for each scRNA-seq cluster. Hierarchical clustering of the GSVA scores was used to 
separate the samples into two groups, marked Branch 1 and Branch 2. (B) Kaplan–Meier 
survival curve for TCGA-PRAD patients stratified into two groups as indicated in Panel A. 
(C-H) Kaplan-Meier survival curves for TCGA-PRAD patients stratified into two groups 
based on median GSVA score for signatures of ENZ-induced cluster, PROSGenesis, 
Stem-Like, persistent cluster, AR activity, and ARFL. In each plot, the log-rank p-value is 
indicated above the plotted curves. See also Figure S7. 
 

Discussion 

In this study we provide a molecular perspective of the evolution of resistance to AR targeted 
treatment at a single-cell level. Karthaus and colleagues recently found that luminal prostate 
cells that persist after ADT in a mouse model can contribute to tissue regeneration of the 
normal prostate epithelium by assuming stem-like transcriptional properties (Karthaus et al., 
2020). Similar phenotypic features important for routing and rates of metastasis formation in 
lung cancer models have been found to be driven by differences in gene expression (Quinn 
et al., 2021). Similarly, here we find that during exposure to AR targeting agents, a small 
proportion of persistent cells remain transcriptionally unperturbed by the treatment, 
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consistent with our recent findings of subclones with high metastatic potential interlayered 
within the primary untreated lesions (Woodcock et al., 2020). 
 
We visualized these cells in primary untreated PC specimens and located them interspersed 
in cancerous regions of histopathologically relevant tumors as well as pre-lesions PIN and 
even in apparent benign tissue using spatial transcriptomics. Our data show evidence of a 
hierarchical model of emergence of resistance to enzalutamide (Maitland, 2021) in which 
treatment-persistent cells are able to regenerate the bulk of the resistant ones. We describe 
the properties of the persistent cells using RNA velocity and show different intermediate 
states in alternative trajectories of treatment resistance. This process is partially driven by 
chromatin remodeling, which is consistent with chromatin accessibility lineage-priming (Ma 
et al., 2020a; Martin et al., 2020). In PC, gain of function of bromodomain containing proteins 
such as BRD4 (Asangani et al., 2014; Urbanucci et al., 2017) and ATAD2 (Morozumi et al., 
2016; Urbanucci et al., 2017), as well as loss of function of chromatin remodeler CHD 
(Zhang et al., 2020), have been shown to contribute to PC progression and lineage plasticity 
in therapy resistance. This process is likely accompanied by chromatin reprogramming 
(Braadland et al., 2019; Urbanucci et al., 2017; Uusi-Mäkelä et al.). While many groups 
focused on the effect of AR-targeted treatment on chromatin associated factors such as 
CREB5 (Hwang et al., 2019), or TFs such as GR (Arora et al., 2013) and AR (Yuan et al., 
2019), in this study we found that exposure to AR-targeting agents increases the overall 
relaxation of the chromatin. The single-cell level analysis of the chromatin revealed that 
subpopulations of cells with different chromatin states lead to multiple transcriptional 
configurations, including those of persistent cells. Using different cell line models mimicking 
alternative trajectories of treatment-resistance, we infer that differential DNA motif exposure 
determined by chromatin structure may partially contribute to TF activity-mediated 
transcriptional reprogramming in the different cell subpopulations induced by exposure to 
enzalutamide. According to this analysis, specific subpopulations of PC cells are more 
subjected than others to TFs activity reprogramming. This is consistent with recent studies 
showing simultaneous detection of multiple transcription factors on single DNA molecules 
and TFs co-occupancy frequently occurring at sites of competition with nucleosomes 
(Strickfaden et al., 2020). 
 
We show that treatment-persistent cells have high cell cycle turnover, compatible with high 
regenerative potential (Poli et al., 2018; Wang et al., 2020), and assume states of stemness 
from their transcriptional profiles. As these features have been associated with more 
aggressive tumors, we developed transcriptional signatures derived from two states in 
particular: one state derived in ADT-treated mice prostate cells by Karthaus et al. (Karthaus 
et al., 2020), which we renamed PROSGenesis and which tightly associated with initial and 
enzalutamide-induced clusters in our model of enzalutamide resistance, and one that we 
called “Stem-Like”, associated with persistent cells during evolution of enzalutamide 
resistance. Different signatures can capture different tumor types and inform treatment 
response. PROSGenesis, Stem-Like, and associated signatures derived from our 
enzalutamide-resistant models stratify ARSI exposed CRPC patients' outcome. Moreover, 
we show that in primary PC patients undergoing ADT treatment, high signature scores in 
treatment-naive specimens are associated with short time to PFS (biochemical recurrence). 
Interestingly, in primary naive patients, high score for PROSGenesis is associated with 
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longer lasting response to ADT, possibly due to a stronger contribution of AR activity in 
these tumors. Overall, we profile subpopulations of treatment-persistent cells with stem-like 
and regenerative properties that foster alternative evolutions of AR-targeted treatment 
resistant PCs. 
 

Methods 

Cell lines and culture 
LNCaP cell lines were obtained from American Type Culture Collection (ATCC; LGC 
Standards) and authenticated periodically (HPA cultures or Eurofins). RES-A and RES-B 
cells were generated as described previously by prolonged exposure to the 
second-generation anti-androgens enzalutamide and RD-162 as described earlier (Handle et 
al., 2019). LNCaP parental (ATCC), RES-A, and RES-B cells were cultured in RPMI 1640 
(Sigma R0883) supplemented with 10% FBS (Sigma F7524), 2 mM Alanyl-glutamine (Sigma 
G8541), 1 mM sodium pyruvate (Merck TMS-005-C), 2.5 g/L glucose (Sigma G8769), and 
1x Antibiotic-Antimycotic (Gibco, 15240062) in a humidified 37°C incubator with 5% CO2. 
RES-A and RES-B cells additionally received 10 µM enzalutamide (MedChemExpress 
HY-70002) with each cell splitting/feeding. For experimental treatments, ~1x10 6 cells were 
seeded into 5 cm culture plate dishes, and allowed to settle before exposure to 10 µM 
enzalutamide or DMSO vehicle control (0.1%) for 48 h or 168 h. The additional LNCaP cells 
(ATCC) and RES-C cells were cultured in a humidified CO2-incubator at 37°C in Gibco™ 
RPMI 1640 (1X) media (Thermo Fisher Scientific) supplemented with 10% FBS (Gibco 
standard FBS, Thermo Fisher Scientific), 2 mM L-Glutamine (Gibco®, Thermo Fisher 
Scientific), and a combination of 100 U/ml Penicillin and 100 μg/ml Streptomycin (Gibco® 
Pen Strep, Thermo Fisher Scientific). The enzalutamide resistant LNCaP RES-C cell line 
was generated by passaging of LNCaP cells with continuous treatment with 10 µM 
enzalutamide for 9 months and maintained in the same medium as LNCaP except for the 
supplementation with 10 µM enzalutamide.  

Generation of resistant VCaP subline derivatives and RNA-seq 
Androgen-sensitive VCaP prostate cancer cell line (passage (p.) 15.) was a gift from Dr. 
Tapio Visakorpi, Tampere University, Finland. Cells were cultured in RPMI 1640 
supplemented with 10 % DCC-FBS, 1 % L-glutamine, 1 % A/A, and 10 nM testosterone (T) 
for seven months to establish T-dependent subclone VCaP-T. VCaP-T cells were then 
cultured at low testosterone (0.1 nM) for 10 months to establish VCaP-CT, an 
androgen-independent cell line able to grow despite low testosterone. VCaP-CT were then 
cultured at 10 µM enzalutamide until the cells regained ability to grow despite enzalutamide, 
creating enzalutamide resistant cell line VCaP-CT-ET. Another cell line was created by 
incubating first VCaP-CT cells with bicalutamide and subsequently with enzalutamide upon 
reaching bicalutamide insensitivity. Ultimately these cells also gained the ability to grow 
despite enzalutamide, creating the multiresistant cell line VCaP-CT-Br-ER. 

RNA sequencing was performed with Illumina HiSeq 3000. We sequenced 3 replicates, 
obtaining an average of 111 million paired-end reads per sample. Reads were aligned using 
STAR aligner version 2.5.4b and Ensembl reference genome GRCh38. Genewise read 
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counts were quantified using featureCounts version 1.6.2 and Gencode annotations release 
28.  

Single-cell samples preparation and sequencing 
LNCaP parental, treated for 48 hours with enzalutamide or DMSO, RES-A, and RES-B cells 
were harvested with 0.05% Trypsin-EDTA (Sigma T3924). After neutralization with complete 
medium, centrifugation (300 x g for 5 min), and resuspension in PBS/0.5% BSA, the cells 
were filtered through a 35 µm Cell Strainer (Corning 352235) and a single-cell suspension of 
living cells was acquired through sorting on a FACS Aria II cell sorter. The cell concentration 
of the single-cell suspension was assessed with a Countess II FL Automated Cell Counter 
and ~3 x 10 4 cells were pelleted (300 x g for 5 min) for further processing for using the 
Chromium Single Cell 3’ Library, Gel Bead & Multiplex Kit, and Chip Kit (v3, 10x Genomics).  

For the additional LNCaP parental and RES-C cells, 1 million cells were thawed in RPMI 
(Gibco) with 10% FBS (Gibco) and centrifuged at 300g for 5 min. The cells were then 
suspended in PBS with 0.04% BSA (Ambion) and filtered with Flowmni™ cell strainer 
(Bel-Art). Before loading, the cells’ viability and concentration was determined using Trypan 
blue with Cellometer Mini Automated Cell Counter (Nexcelom Bioscience). Chromium Single 
Cell 5` RNA-seq was performed using the 10X Genomics Chromium technology, according 
to the Chromium Next GEM Single Cell V(D)J Reagent Kits v1.1 kit User guide CG000208 
Rev D with loading concentration of 1000-200 cells/µl. 

The LNCaP-ENZ168 single-cell RNA-seq sample was performed with Drop-seq (Macosko et 
al., 2015) using the Dolomite cell encapsulation system (Dolomite Bio). Cells were 
trypsinized with TrypLETM Express Enzyme (ThermoFisher Scientific, #12604021), spun 
down (5 min at 300xg) and washed with 0.1% BSA-PBS. After pelleting, the cells were 
resuspended in plain PBS and passed through a 40-micron filter. The number of viable cells 
was estimated with the use of trypan blue staining and Fuchs-Rosenthal hemocytometer 
chamber. The concentration of cells was brought down to 3x105 cells/mL in 0.1% BSA-PBS. 
For single-cell encapsulation, single-cell suspension, beads in lysis buffer and oil were 
connected with the loops and tubing to the Mitos P pumps and run through the glass 
microfluidic chip at the following flow rates: 100μL/min (Oil channel), 20μL/min (Bead 
channel); 350 mbar (Cell channel). Droplets were separated by centrifugation and beads 
counted with the use of Fuchs-Rosenthal hemocytometer chamber and up to 90000 beads 
were collected into one tube for Reverse Transcription reaction, exonuclease treatment, and 
amplification of cDNA library according to the original protocol (Macosko et al., 2015). 
Tagmentation of cDNA was performed with the Nextera XT DNA Library Preparation Kit 
(Illumina, #FC-131-1024). The PCR product was cleaned-up with AMPure XP beads, eluted 
in 10μL H2O and sequenced using Illumina HiSeq 2500 Rapid run. 

For scATAC-seq, cell nuclei were isolated following the 10x Genomics Demonstrated 
Protocol for Single Cell ATAC Sequencing (CG000169-Rev C). Briefly, the cell suspension 
was washed once in PBS/0.04%BSA, and 2 x 10 5 cells were pelleted (300 x g for 5 min), 
resuspended in 100 µl freshly prepared Lysis Buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 
mM MgCl 2, 0.1% Tween-20, 0.1% NP40 Substitute, 0.01% Digitonin, 1% BSA), and 
incubated on ice for 4 min (LNCaP parental cells), 6 min (RES-A), or 5 min (RES-B). The 
lysates were diluted with 1 ml wash buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM 
MgCl 2, 0.1% Tween-20, 1% BSA), and the nuclei were pelleted (500 x g for 5 min) and 
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resuspended in 30 µl 1x Nuclei Buffer (10x Genomics PN-2000153). Successful preparation 
of intact, isolated nuclei was confirmed through visual inspection in a phase-contrast 
microscopy, and nuclei concentration was assessed with a Countess II FL Automated Cell 
Counter, before  proceeding immediately to processing for Single Cell ATAC sequencing 
using 10x Chromium, 10x Genomics library preparation and the Chromium Single Cell ATAC 
Reagent Kits (v1) User Guide (CG000168 Rev D).  

Sequencing was performed on the Illumina NextSeq500 instrument at the genomics core 
facility at the Oslo University Hospital, while sequencing of the additional LNCaP parental 
and RES-C was performed with Novogene Company Limited, Cambridge, UK´s sequencing 
core facility was used with a PE150 NovaSeq sequencer, aiming at 50000 reads per cell. 

For scRNA-seq, sequencing reads were processed into FASTQ format and single-cell 
feature counts using Cell Ranger v3.0.2 (Zheng et al., 2017). Similarly, Cell Ranger ATAC 
v1.1.0 (Satpathy et al., 2019) was used to process sequencing reads from scATAC-seq into 
FASTQ format and peak-barcode counts. The LNCaP-ENZ168 Drop-seq sample was 
pre-processed, aligned, and processed to a cell count matrix using Drop-seq tools v2.3.0 
(Macosko et al., 2015). We utilized the human reference genome version GRCh38, along 
with NCBI RefSeq gene annotations for genome build GRCh38.p12.  

Formaldehyde-assisted isolation of regulatory elements (FAIRE) sequencing and 
analysis 
FAIRE was performed on parental and LNCaP-ResA cells in biological triplicate according to 
the standard protocol (Simon et al., 2012). Prior to FAIRE-seq, cells were cultured for three 
days in RPMI medium supplemented with 5% DCC FBS and 10 µM enzalutamide was 
added only to the resistant cell line. Both sublines were then treated with DMSO (control), 
DHT (10nM; Sigma Aldrich ), enzalutamide (10 µM, Selleckchem), or a combination of DHT 
and enzalutamide for 18 hours. The DNA fragments isolated by FAIRE were used for library 
preparation with the Roche KAPA library prep kit according to the manual and sequenced on 
the Illumina HiSeq 2500 to produce 50 bp single-end reads at the Genomics core (KU 
Leuven) and aligned using bwa 0.7.8-r455 against hg19. Duplicates were marked & 
Realigned using Picard 1.118. Peak calling was performed on the aligned files using MACS2 
v2.1.0. MSPC v4.0.2 was used to jointly analyze the peaks called in the three replicates from 
each sample and to derive a common peak set across replicates. DiffBind v2.14.0 was used 
to explore peak overlaps and differential accessibility between samples. Read distribution 
analysis around transcription start sites, MYC binding sites, and AR binding sites was 
performed by counting the average number of reads across replicates for each sample 
condition in 100bp bins extending 1kb in either direction of the site. The value at the center 
of the resulting distributions was compared between samples using the t-test to assess for 
differences in chromatin openness at these sites.  

 
Software 
Analyses were performed using R v3.6.3 and Python v3.7.0. 
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Statistical testing 
Statistical testing was performed using R v3.6.3. Statistical tests used are indicated in the 
text and in figure legends. The Shapiro-Wilk test was used to test for normality. 

 
Single-cell RNA pre-processing and quality control 
The Cell Ranger output was used as the input to Seurat v3.2.0 (Butler et al., 2018; Stuart et 
al., 2019) for further analysis. For each sample, poor quality cells were filtered based on the 
number of detected genes, the total number of molecules detected, and the percentage of 
reads arising from the mitochondrial genome. Specific thresholds for each were adjusted per 
sample to preserve a maximal number of cells. To address the effects of cell cycle 
heterogeneity in the data, each cell was scored for its expression of genes associated with S 
or G2/M phases (gene sets provided within Seurat) using the Seurat CellCycleScoring 
function. The difference between the G2/M and S phase scores was regressed out using 
sctransform (Hafemeister and Satija, 2019).  

 
Single-cell RNA clustering 
The mutual nearest neighbor approach fastMNN (Haghverdi et al., 2018) was used to 
integrate the four LNCaP samples using 2000 integration features and account for batch 
effect. Clustering and UMAP non-linear dimensionality reduction were performed using 
Seurat v3.2.0. The marker genes of each cluster were determined by identifying genes 
differentially expressed in each cluster compared to all other clusters based on the 
generalized linear model MAST framework v1.12.0 (Finak et al., 2015) and using the number 
of RNA reads as a latent variable. A gene was considered to be differentially expressed with 
Bonferroni corrected p-value < 0.01, at least 10% of the cells in the cluster expressing the 
gene, and an average log-fold change of at least 0.25.  

 
Cluster and sample characterization 
We utilized hallmark gene sets from the Broad Institute MSigDB (Liberzon et al., 2015) to 
characterize clusters and samples based on their differentially expressed genes. Gene set 
variation analysis (GSVA) was performed using the GSVA package v1.36.2 to characterize 
each cluster overall using gene read counts, Poisson kernels, and the gsva method. To 
characterize the gene expression changes within each cluster between samples, all genes 
making up the integrated dataset were ranked based on their average log-fold change. The 
fgsea package v1.14.0 was then used to perform gene set enrichment analysis for the 
MSigDB hallmark gene sets using 1000 permutations. The RNA velocities of single cells in 
the scRNA-seq samples were assessed using scVelo v0.2.2 (Bergen et al., 2020). 
Differentiation states of each cell in each sample were predicted using cytoTRACE v0.3.3 
(Gulati et al., 2020). 

 
Single-cell ATAC pre-processing and quality control 
The output of the Cell Ranger ATAC pipeline was used as the input to Signac package 
v0.2.5 for further analysis. For each sample, poor quality cells were filtered based on the 
following features: strength of nucleosome binding pattern, transcription start site enrichment 
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score as defined by ENCODE, total number of fragments in peaks, fraction of fragments in 
peaks, and percentage of reads in ENCODE blacklisted genomic regions. Specific 
thresholds for each adjusted per sample. Data normalization and dimensionality reduction 
was done using latent semantic indexing (LSI), consisting of term frequency-inverse 
document frequency (TF-IDF) normalization and singular value decomposition (SVD) for 
dimensionality reduction using the top 50% of peaks in terms of their variability across the 
samples. The first LSI component reflected sequencing depth across the samples and was 
not utilized in downstream analyses.  

 
Single-cell ATAC clustering 

Integrated clustering of the scATAC-seq samples was performed with harmony v1.0 
(Korsunsky et al., 2019) using LSI embeddings. The resulting harmony-adjusted cell 
embeddings were used as input for UMAP non-linear dimensionality reduction and clustering 
using default parameters and the smart local moving (SLM) algorithm for modularity 
optimization. A “pseudo-bulk” analysis of changes in chromatin accessibility in the 
scATAC-seq samples was performed by pooling the reads from all good-quality cells in each 
sample. 

 
Visualization of peak overlap between samples was generated using R package ggradar 
v0.2. Differentially accessible regions in the clusters were identified using logistic regression 
with the total number of peaks as a latent variable. Differentially accessible regions were 
annotated with their closest gene and Reactome pathway enrichment analysis was 
performed on the result using R package ReactomePA v1.32.0. 
 
Transcription factor motif enrichment 
Transcription factor motif enrichment was performed in differentially accessible regions 
between sample conditions utilizing R package TFBSTools v1.26.0 and JASPAR database 
position frequency matrices retrieved from the R JASPAR2018 data package v1.1.1. The 
hypergeometric test was used to test for significant enrichment of motifs, taking into account 
sequence characteristics of the peaks (e.g. GC-frequency). Chromatin states in scATAC-seq 
(as defined by the enriched TFs in differentially open chromatin regions) were connected to 
transcriptional outputs in the scRNA-seq by assessing for overlap between the target genes 
of enriched TFs and differentially expressed genes in the scRNA-seq clusters. TF target 
genes were obtained using the GTRD database v18.06. 
 
Integration of scRNA-seq datasets and scRNA- and scATAC-seq datasets using label 
transfer 
The clusters identified from the integrated clustering of scRNA-seq from LNCaP, 
LNCaP-ENZ48, RES-A, and RES-B (Figure 1I) were queried in additional scRNA-seq 
samples (alternative LNCaP parental, LNCaP-ENZ168, and RES-C) (Figure 1A). The 
additional scRNA-seq samples were individually clustered and anchors were identified for 
each additional scRNA-seq sample and the LNCaP integrated clusters. This was done using 
the FindTransferAnchors function with principal component analysis (PCA). The anchors 
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were used to transfer cluster label identifiers between the two data types using the 
TransferData function.  

 
LNCaP, LNCaP-ENZ48, RES-A, and RES-B had scRNA-seq and scATAC-seq data 
available from each sample (Figure 1A). These data types were integrated using the cluster 
label transfer procedure as implemented in Signac v0.2.5 and Seurat v3.2.0. Each 
scRNA-seq sample was clustered individually and its cluster labels were projected onto the 
matching, individually clustered scATAC-seq sample, or vice versa. The clustering resolution 
of each sample was assessed and decided using clustree v0.4.3 (Zappia and Oshlack, 
2018). Briefly, RNA-seq expression levels were imputed from the scATAC-seq data by 
defining for each gene a genomic region including the gene body and 2kb upstream of the 
transcription start site and taking the sum of scATAC-seq fragments within the region. 
Anchors were identified for condition-matched scRNA- and scATAC-seq samples using the 
FindTransferAnchors function and canonical correlation analysis (CCA) was performed on 
the scRNA expression values and the scATAC imputed gene expression values. The 
anchors were used to transfer cluster label identifiers between the two data types using the 
TransferData function.  
 
Gene sets and clinical data analysis 
Each gene signature or set was assessed for enrichment and scored in a sample using the 
GSVA package v1.36.2. In cases where the expression of a gene set was assessed at the 
single-cell level, the GetModuleScore function in Seurat was used to generate an average 
expression score per cell. Survival analyses were performed using the survival package 
v3.2-3 and Kaplan-Meier curves were plotted using the survminer package v0.4.8. For single 
signature survival analyses, median GSVA score was used to stratify patients into low and 
high expressing groups for the signature. For survival analyses of multiple signatures, 
samples were clustered using their GSVA enrichment scores for each signature using 
Euclidean distance and hierarchical clustering. The clustering result was then used to define 
the two-group split of samples for the survival analysis. To generate the PROSGenesis 
signature, we extracted the gene expression profile associated with the regenerative mouse 
prostate luminal 2 cells reported in Karthaus et al and found 78 genes with homologues in 
humans that have been profiled in our scRNA-seq dataset. 

 
Spatial transcriptomics analysis of primary prostate cancer tissue 
Two sections of cryopreserved prostate cancer tissue from one patient (pT=2b, T1c, 
Gleason 6, PSA 3.5 ng/mL) were profiled for spatial transcriptomics using the Visium Spatial 
library preparation protocol from 10x Genomics with a resolution of 55 µm (1-10 cells) per 
spot. The tissues were cryosectioned at 10 µm thickness to Visium library preparation slide, 
fixed in ice-cold 100% methanol for 30 min, H&E stained with KEDEE KD-RS3 automatic 
slide stainer and the whole-slide was imaged using Hamamatsu NanoZoomer S60 digital 
slide scanner. 
 
Sequencing library preparation was performed according to Visium Spatial Gene Expression 
user guide (CG000239 Rev D, 10x Genomics), using 24 min tissue permeabilization time. 
Sequencing was done on the Illumina NovaSeq PE150 sequencer at Novogene Company 
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Limited, Cambridge, UK´s sequencing core facility, aiming at 50,000 read pairs per tissue 
covered spot.  
 
Sequenced data was first processed using Space Ranger v1.2 from 10x Genomics to obtain 
per-spot expression matrices for both sections. Downstream processing and clustering was 
then performed using Seurat v3.2.0. Normalization of the data was performed with 
sctransform to account for differences in sequencing depth across spots. Clustering was 
performed using the FindClusters function using a resolution parameter value of 0.8. The 
resulting clusters were found to correspond to histological characteristics of the tissue. The 
GetModuleScore function of Seurat was used to score the spots for our scRNA-seq derived 
gene signatures, as well as length-matched random housekeeping gene signatures from the 
Housekeeping and Reference Transcript Atlas (Hounkpe et al., 2021). The distributions of 
the gene expression scores for the housekeeping gene sets and our scRNA-seq signatures 
were compared to determine the 90th percentile as a score cutoff at which we considered a 
spot to have high expression of the scRNA-seq signature, allowing for 5% false positives 
(spots scoring above the threshold for housekeeping gene sets). 
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