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Abstract  1 

 2 

Spinocerebellar ataxia type 8 (SCA8), a dominantly inherited neurodegenerative 3 

disorder caused by a CTG•CAG expansion, is unusual because most individuals that 4 

carry the mutation do not develop ataxia. To understand the variable penetrance of 5 

SCA8 we studied the molecular differences between highly penetrant families and more 6 

common sporadic cases (82%) using a large cohort of SCA8 families (N=77). We show 7 

that repeat expansion mutations from individuals with two or more affected family 8 

members have CCG•CGG interruptions at a higher frequency than sporadic SCA8 9 

cases and that the number of CCG•CGG interruptions correlates with age at onset. At 10 

the molecular level, CCG•CGG interruptions increase RNA hairpin stability and steady 11 

state levels of SCA8 RAN polyAla and polySer proteins. Additionally, the CCG•CGG 12 

interruptions, which encode arginine interruptions in the polyGln frame increase the 13 

toxicity of the resulting proteins. In summary, CCG•CGG interruptions increase polyAla 14 

and polySer RAN protein levels, polyGln protein toxicity and disease penetrance and 15 

provide novel insight into the molecular differences between SCA8 families with high vs. 16 

low disease penetrance.    17 

 18 

 19 

Key words: cis-modifier / reduced penetrance / sequence interruptions / 20 

spinocerebellar ataxia type 8 (SCA8) / RAN translation 21 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430311doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430311


3 
 

Introduction 1 

Spinocerebellar ataxia type 8 (SCA8) is a microsatellite expansion disorder caused by a 2 

bidirectionally transcribed CTG•CAG repeat expansion mutation within the 3 

ATXN8OS/ATXN8 genes (Koob et al, 1999; Moseley et al, 2006). This slowly 4 

progressive cerebellar ataxia is typically characterized by ataxia, spasticity, dysarthria 5 

and nystagmus; however, extra-cerebellar features including psychiatric disturbances 6 

and developmental delays have been reported (Ayhan et al, 2014; Day et al, 2000; 7 

Juvonen et al, 2000; Kim et al, 2013; Koutsis et al, 2012; Lilja et al, 2005; Stone et al, 8 

2001; Zhou et al, 2019). Although SCA8 is caused by a dominantly inherited mutation, 9 

patients frequently present as single affected individuals with no family history of ataxia. 10 

Despite the negative family history, asymptomatic relatives of these patients often carry 11 

the repeat expansion (Ikeda et al, 2004; Koob et al., 1999; Moseley et al, 2000b; Worth 12 

et al, 2000). Additionally, the age of onset and clinical features of the disease vary 13 

widely among affected individuals, with onset reported from birth to 73 years of age 14 

(Day et al., 2000; Felling & Barron, 2005; Ikeda et al., 2004; Ikeda et al, 2000; Kim et 15 

al., 2013; Koob et al., 1999; Lilja et al., 2005; Samukawa et al, 2019; Silveira et al, 16 

2000). 17 

Repeat associated non-AUG (RAN) proteins, which were first discovered in 18 

SCA8 and DM1 (Zu et al, 2011), have now been described in 11 microsatellite 19 

expansion disorders (Banez-Coronel et al, 2015; Banez-Coronel & Ranum, 2019; 20 

Buijsen et al, 2016; Goodman & Bonini, 2019; Ishiguro et al, 2017; McEachin et al, 21 

2020; Mori et al, 2013; Todd et al, 2013; Zu et al, 2017; Zu et al., 2011). These 22 

repetitive proteins expressed by repeat associated non-ATG (RAN) translation 23 
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accumulate in affected brain regions in SCA8 patients (Ayhan et al, 2018; Zu et al., 1 

2011). RAN translation is a process in which transcripts containing repeat expansions 2 

express proteins in multiple reading frames without the requirement of AUG- or AUG-3 

like close-cognate initiation codons (Banez-Coronel & Ranum, 2019; Cleary et al, 2018; 4 

Nguyen et al, 2019; Zu et al., 2011). The presence of RAN and ATG-initiated expansion 5 

proteins has been previously reported in human SCA8 autopsy brains and SCA8 BAC 6 

transgenic mice (Ayhan et al., 2018; Moseley et al., 2006; Zu et al., 2011). Both ATG-7 

initiated poly-glutamine (polyGln) and RAN poly-Alanine (polyAla) have been found in 8 

Purkinje cells (Moseley et al., 2006; Zu et al., 2011) and polyGln and RAN poly-Serine 9 

(polySer) proteins in the hippocampus, pons and frontal cortex (Ayhan et al., 2018). 10 

Additionally, polySer aggregates are found in the cerebellar white matter and brainstem 11 

nuclei where they are associated with demyelination, axonal degeneration, increased 12 

astrogliosis and a reduction in the number of mature oligodendrocytes (Ayhan et al., 13 

2018).  14 

In contrast to other SCAs, SCA8 is unusual in that there is markedly reduced 15 

penetrance. The reduced penetrance is consistent with the detection of SCA8 16 

expansions in the general population and the variable age of onset (Ikeda et al., 2004; 17 

Koob et al., 1999; Stevanin et al, 2000; Worth et al., 2000), suggesting that genetic 18 

and/or environmental modifiers affect the onset and penetrance of SCA8. One potential 19 

genetic modifier that may affect disease penetrance in SCA8 is the presence of repeat 20 

interruptions. The presence of CCG, CTA, CTC, CCA and CTT interruptions in the CTG 21 

repeat expansion in SCA8 has previously been reported (Hu et al, 2017; Moseley et al., 22 

2000b). These interruptions can vary in number, configuration and the position within 23 
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the repeat tract. Interestingly, one to four CCG interruptions were detected in multiple 1 

configurations among affected members of a large highly penetrant SCA8 family (MN-A) 2 

and the number of interruptions often increases when passed from one generation to 3 

the next (Moseley et al., 2000b). 4 

Repeat interruptions have been reported to have different modifying effects in a 5 

number of other microsatellite disorders. For several of these disorders (SCA1, SCA2 6 

and FXS), sequence interruptions appear to stabilize repeat tracts found on 7 

unexpanded alleles, and the loss of interruptions predisposes repeat tracts to expand 8 

above the pathogenic threshold (Chung et al, 1993; Gunter et al, 1998; Imbert et al, 9 

1996; Kunst & Warren, 1994; Pulst et al, 1996; Sanpei et al, 1996). In other cases, 10 

interruptions do not stabilize normal alleles but are found on expanded alleles and are 11 

associated with changes in disease presentation. For example, CAA interruptions on 12 

expanded alleles are associated with later ages of onset in SCA2 (Sobczak & 13 

Krzyzosiak, 2005) and Huntington disease (Genetic Modifiers of Huntington's Disease, 14 

2019; Wright et al, 2019). In SCA10, patients with ATCCT interruptions are prone to 15 

seizures (McFarland et al, 2014) and in DM1 CCG and GGC interruptions are found in 16 

patients with peripheral neuropathy (Braida et al, 2010), but the molecular basis for 17 

these effects is unclear.  18 

Here, we show that CCG•CGG interruptions are preferentially found on SCA8 19 

alleles in families with increased disease penetrance and that age of onset is inversely 20 

correlated with the number of interruptions and not repeat length. Molecular studies 21 

show CCG•CGG interruptions increase polyAla and polySer RAN protein levels and the 22 

toxicity of the resulting arginine interrupted polyGln expansion proteins. Our 23 
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demonstration that CCG•CGG interruptions increase RAN protein levels and polyGln 1 

protein toxicity and are found in families with increased disease penetrance provides 2 

novel molecular insight into the variable penetrance and risk of developing SCA8.    3 

4 
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Results 1 

Most SCA8 patients have no family history of ataxia 2 

To investigate the effects of sequence interruptions in SCA8, we performed a detailed 3 

genetic evaluation of expanded SCA8 alleles from a large cohort of SCA8 families 4 

(N=77) including 199 expansion carriers (n=111 affected, n=88 asymptomatic). Disease 5 

onset ranged from birth to 79 years with an average age of onset of 33.7 years (Table 6 

EV1). Although the mutation is transmitted in an autosomal dominant pattern, 7 

surprisingly 82% (63/77) of these families had sporadic ataxia with no family history of 8 

disease, 5% (4/77) had family histories that appeared recessive and only 13% (10/77) 9 

showed the expected autosomal dominant inheritance pattern (Fig 1A). Interestingly, 10 

four of the sporadic and two familial cases are homozygous and have two expanded 11 

alleles. These data and previous reports of expansion alleles in unaffected family 12 

members and in the general population (Cellini et al, 2001; Ikeda et al., 2004; Moseley 13 

et al, 2000a; Stevanin et al., 2000; Worth et al., 2000; Zeman et al, 2004) highlight the 14 

need to understand the molecular basis of the variable penetrance found in SCA8 15 

families. 16 

 17 

SCA8 repeat length does not correlate with age of onset or predict disease status 18 

Similar to previous reports (Ayhan et al., 2014; Ikeda et al., 2004; Juvonen et al., 2000; 19 

Zeman et al., 2004), we found no correlation in the number of SCA8 repeats and age of 20 

onset (Fig EV1A), no significant difference in repeat length between affected patients 21 

(median: 113 repeats) and asymptomatic carriers (median: 98 repeats; p=0.0672; Table 22 

EV1) and a wide and overlapping range of repeat lengths in affected (54-1455) and 23 
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asymptomatic individuals (52-1000) (Fig EV1B; Table EV1). The lack of correlation of 1 

repeat length and disease status is often seen in individual SCA8 families. For example, 2 

in Fig 1B, individual I-2 carries an expansion of 1000 repeats yet remains 3 

asymptomatic, while individual II-1 has an expansion of 849 repeats and presented with 4 

disease at one year of age. Similarly, in Fig 1C, individual II-1 presented with disease at 5 

age 40 with 133 combined repeats while her mother and two siblings, who carry SCA8 6 

expansions of similar lengths, remain asymptomatic. Taken together, these data provide 7 

additional evidence that repeat length is not a reliable predictor of disease or age of 8 

onset and suggest other genetic or environmental modifiers contribute to the variable 9 

penetrance of SCA8. 10 

 A potential genetic modifier of SCA8 is the presence of interruptions within the 11 

CAG repeat expansion. In Fig 1D a 25-year-old female (II-2), with no family history of 12 

SCA8, has an expansion mutation containing three de novo CGG interruptions 13 

[(CAG)91(CAGCGG)3(CAG)31(TAG)10]. These interruptions were not found in her 14 

asymptomatic 70-year-old father (I-1; confirmed pure by MspA1I digest) or 46-year-old 15 

brother (II-1; (CAG)118(TAG)10; Fig 1D). The observation that the only affected individual 16 

in this family has CCG•CGG interruptions combined with the previously reported 17 

CCG•CGG interruptions in affected members of an unusually large SCA8 kindred 18 

(Moseley et al., 2000b), suggests that CCG•CGG interruptions are associated with 19 

increased disease penetrance. 20 

 21 
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CCG•CGG interruptions increase disease penetrance and inversely correlate with 1 

age of onset 2 

To better understand the effects of CCG•CGG interruptions on disease penetrance, we 3 

compared the sequences of SCA8 expansion alleles in families with high (≥3 affected) 4 

versus low disease penetrance. The seven-generation MN-A family (Day et al., 2000; 5 

Koob et al., 1999), the largest SCA8 family reported to date, has a much higher disease 6 

penetrance than most SCA8 families (Ikeda et al., 2004) and CCG•CGG interruptions 7 

were reported in all affected individuals (Moseley et al., 2000b). Additional analyses of 8 

this family show CCG•CGG interruptions are found in the high but not a newly identified 9 

low penetrance branch of this family. The left family branch shows an autosomal 10 

dominant inheritance pattern (onset 19-74 years; Fig 1F) while members of the 11 

extended right branch have pure CTG•CAG expansions and no affected individuals. In a 12 

second newly identified multigenerational family, all six affected individuals (onset 35-50 13 

years; Fig 1E) have CCG•CGG interruptions. These interruptions were also identified in 14 

individual II-4 who was not affected at the time of examination but subsequently showed 15 

signs of ataxia and in individual III-5 who was asymptomatic at age 41 (Fig 1E). 16 

CCG•CGG interruptions were found at a higher frequency in families with multiple 17 

affected individuals: 100% (5/5) of families with three or more affected individuals, 18 

28.6% (2/7) of families with two affected individuals and 13.9% (5/36) of sporadic cases. 19 

Overall, CCG•CGG interruptions were found at a higher frequency in SCA8 families with 20 

2 or more affected members compared to sporadic cases (n=48; p=0.0047; Table 1) 21 

and among affected individuals compared to asymptomatic carriers (n=132; p=0.0299; 22 

Table 1. While the position, configuration and number of CCG•CGG interruptions varies 23 
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widely among SCA8 families (Fig 1G), the number of CCG•CGG interruptions is 1 

inversely correlated with, and accounts for 37% of the variation in age of onset 2 

(R2=0.3709; p=0.0016; Fig 1H).   3 

Taken together, these data demonstrate that CCG•CGG interruptions increase 4 

disease penetrance and that the number of interruptions, and not repeat length, is 5 

inversely correlated with age at onset in SCA8.  6 

 7 

CCG•CGG interruptions increase the toxicity of SCA8 CAG•CTG repeat 8 

expansions 9 

To better understand the molecular effects of interrupted alleles we examined if 10 

constructs containing CCG•CGG interruptions are more toxic to cells than pure 11 

expansion constructs. T98 glial cells were transfected with length-matched constructs 12 

containing pure or interrupted expansions cloned from patient DNA and expressed in 13 

the CAG direction (Fig 2A). Interrupted expansions were cloned from individuals from 14 

the high-penetrance multigeneration families shown in Fig 1F (Int.95) and Fig 1E 15 

(Int.102). Int.95 contains an overall CAG repeat length of 95 with 4 consecutive CGG 16 

interruptions near the 3’ end, followed by 3 TAGs which were found in this patient 17 

[(CAG)86(CGG)4(CAG)5(TAG)3]. Int.102 contains 4 mixed CAGCGG interruptions in the 18 

middle of the CAG repeat for a total of 102 interrupted CAGs followed by 6 TAGs 19 

[(CAG)63(CGGCAG)4(CAG)31(TAG)6] (Fig 2A). Cells expressing these interrupted 20 

constructs showed increased death (26.9%, p<0.05 – Int.95 vs Pure 96; 23.5%, p<0.05 21 

– Int.102 vs Pure 104; Fig 2B) and decreased viability (16.5%, p<0.05 – Int.95 vs Pure 22 

96; 15.6%, p<0.05 – Int.102 vs Pure 104; Fig. 2C) compared to length matched 23 
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uninterrupted repeats. These effects cannot be explained by differences in RNA levels 1 

which did not differ in Pure-96 and Int-95 transfected cells and were actually lower in 2 

Int-102 vs Pure 104 transfected cells (Fig EV2). Taken together, these data indicate that 3 

CGG interruptions increase the toxicity of CAG repeats independent of RNA levels. 4 

 5 

Arginine-encoding CGG interruptions increase toxicity of polyGln proteins  6 

Next, we tested the hypothesis that CGG interruptions increase the toxicity of expanded 7 

alleles by affecting RAN and polyglutamine proteins expressed from the CAG repeat. 8 

First, we examined if the arginine interruptions in the polyGln(Arg) proteins increase 9 

their toxicity compared to pure polyGln proteins. To perform these experiments, we 10 

generated minigene constructs to express polyGln and polyGln(Arg) using non-hairpin 11 

forming alternative codons (Fig 3A). This enables the toxicity of pure and interrupted 12 

proteins to be assessed individually and independent of possible effects from CAG 13 

expansion RNAs and RAN proteins. We focused these experiments on pure and 14 

interrupted polyGln proteins because non-hairpin forming alternative codons are 15 

available for both Gln and Arg. Transient transfections in T98 cells show that interrupted 16 

polyGln(Arg) proteins expressed with alternative codons increased cell death by 25% 17 

(p<0.05; Fig 3B) and decreased cell viability by 10% compared to pure polyGln proteins 18 

(p<0.05; Fig 3C), independent of RNA levels (Fig EV3A). Protein blot and 19 

immunofluorescence analyses show that the pure and arginine interrupted polyGln 20 

proteins have different properties. For example, the interrupted polyGln(Arg) proteins 21 

migrate further into the gel (Fig 3D, EV3B) and show droplet-like nuclear staining not 22 

found with pure polyGln proteins (Fig 3G). These changes may contribute to the 23 
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increased toxicity of the polyGln(Arg) proteins. Surprisingly, substantially less 1 

polyGln(Arg) compared to pure polyGln protein was detected by 1C2 antibody (Fig 3D-2 

F). This may be caused by reduced affinity of the 1C2 antibody for the interrupted 3 

protein or incomplete extraction of polyGln(Arg) proteins from nuclear aggregates. 4 

Taken together, these data demonstrate that arginine interruptions increase the toxicity 5 

of polyGln expansion proteins and that the increased toxicity of the interrupted 6 

polyGln(Arg) proteins is independent of possible CAG RNA gain-of-function or RAN 7 

protein. 8 

 9 

CGG interruptions increase polyAla and polySer RAN protein levels 10 

Next, we examined the effects of the CGG interruptions on polySer and polyAla RAN 11 

proteins. Transient transfections with interrupted and pure repeat constructs show CGG 12 

interruptions substantially increase steady state levels of polySer and polyAla RAN 13 

proteins (Fig 4). In the polySer reading frame, the GGC interruptions produce a polySer 14 

protein with glycine interruptions, polySer(Gly). Dot blot analyses showed 93.8% higher 15 

levels of interrupted RAN polySer(Gly) compared to pure RAN polySer proteins (p<0.01; 16 

Fig 4A, B) and immunofluorescence showed RAN polySer(Gly) proteins form globular or 17 

clustered aggregates compared to punctate aggregates formed by pure polySer RAN 18 

proteins (Fig 4C).   19 

Protein blots showed even higher increases (7.8-fold) in steady state levels of 20 

polyAla RAN proteins expressed from interrupted (Int. 95) compared to pure (Pure 96) 21 

CAG repeats (p<0.001; Fig 4D, E). Transfections with constructs containing 22 

interspersed CGG interruptions (Int. 102) showed similar polyAla increases (2.8 fold) 23 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430311doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430311


13 
 

compared to size comparable pure repeats (Pure 104) (p<0.01; Fig EV4A, B). The 1 

increases in polyAla protein levels did not show overt changes in cellular localization of 2 

the polyAla proteins (Fig EV4C) and were not caused by changes in RNA levels (Fig 4F, 3 

EV4D).  4 

Taken together, these data show CGG interruptions increase steady state levels 5 

of polySer and polyAla RAN proteins independent of RNA levels. Additionally, the fact 6 

that pure polyAla proteins are expressed from both interrupted and pure CAG 7 

expansions indicates that the increase in steady state levels of polyAla RAN proteins is 8 

not caused by changes in the nature or stability of the polyAla protein. 9 

 10 

CGG interruptions increase stability of CAG expansion transcript secondary 11 

structure  12 

RAN translation is favored by repeat length and RNA structure (Banez-Coronel et al., 13 

2015; Wang et al, 2019; Zu et al., 2011; Zu et al, 2013) and RNA hairpin stability is 14 

known to increase with repeat length (Napierala et al, 2005; Wang et al., 2019). CGG 15 

interruptions increase the steady state levels of polyAla without altering the amino acid 16 

sequence, suggesting that the increased levels of RAN proteins expressed from 17 

interrupted alleles are caused by changes in RNA structure or stability. Consistent with 18 

this hypothesis, UV melting analyses of RNA oligos with CGG interruptions required 19 

higher melting temperatures than oligos with pure repeats (Fig 5A, EV5).  Additionally, 20 

computational predictions using m-fold (Zuker, 2003) of short RNAs show increased 21 

stability with the presence of CGG interruptions (Fig 5B, EV6A).  Next, we examined the 22 

stability of interrupted alleles found in patients. We used m-fold to compare the stability 23 
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of several highly interrupted full-length CAG-repeat tracts from patients (48-53 repeats), 1 

with length-matched pure repeats. Results from these analyses show that the multiple 2 

predicted hairpin structures, including branched structures, are more stable for alleles 3 

containing CGG interrupted CAG repeats compared to length-matched pure CAGs (Fig 4 

5C, EV6B). Both interruption number and configuration influence RNA structural stability 5 

in computational (Fig 5B) and UV-melting (Fig 5A) analyses. Taken together, these data 6 

are consistent with a model in which increased stability of CGG-interrupted expansion 7 

transcript secondary structures increases RAN translation. 8 

 9 

10 
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Discussion 1 

The markedly reduced penetrance is one of the most puzzling features of SCA8 (Ikeda 2 

et al., 2004; Koob et al., 1999; Stevanin et al., 2000; Worth et al., 2000). Here we show 3 

that 82% of SCA8 families in a large cohort of SCA8 families have only a single affected 4 

individual, even though the repeat expansion mutation is inherited in an autosomal 5 

dominant manner. A much smaller percentage of families (13%) showed the expected 6 

autosomal dominant pattern of disease. Here we show CCG•CGG interruptions in the 7 

CTG•CAG repeat tract are found at a higher frequency in families with multiple affected 8 

individuals and that the number of CCG•CGG interruptions, and not repeat length, 9 

correlates with age at onset. Cell culture studies show CAG expansions with CGG 10 

interruptions are more toxic than pure repeats. At the protein level, CGG interruptions 11 

within the CAG repeat tract increase steady state levels of the SCA8 RAN polyAla and 12 

polySer proteins. This observation is consistent with the increased stability of RNA 13 

structures predicted on CGG interrupted alleles. It will be interesting in future work to 14 

understand if PKR activation, which is activated by structured microsatellite RNAs 15 

(Edery et al, 1989; Tian et al, 2000; Zu et al, 2020) and which has been recently shown 16 

to be a major driver of RAN translation (Zu et al., 2020), is also increased by CGG 17 

interruptions. Additionally, CGG interruptions introduce arginine amino acids into the 18 

polyGln proteins which increases their toxicity. Taken together, these data demonstrate 19 

that CCG•CGG interruptions act as cis-modifiers of SCA8 and provide a molecular 20 

explanation for the dramatic variations in disease penetrance among SCA8 families. 21 

We found CCG•CGG interruptions on expanded alleles in all families in our 22 

cohort with three or more cases of SCA8. CCG•CGG interruptions were also identified 23 
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in sporadic SCA8 cases, but at a lower frequency. Additionally, we confirm that repeat 1 

length in SCA8 is a poor predictor of disease penetrance (Ikeda et al., 2004; Stevanin et 2 

al., 2000; Worth et al., 2000). Taken together, these data indicate that the inclusion of 3 

sequence information during genetic testing, specifically the presence or absence of 4 

CCG•CGG interruptions, will provide patients and families with additional information 5 

relevant to disease penetrance. Sequence analyses will also further our understanding 6 

of the role of additional types of interruptions on disease penetrance in SCA8 and help 7 

identify the causes of high penetrance in other large SCA8 families in the literature for 8 

which the expansion sequences are unknown (Cintra et al, 2017). Additionally, we 9 

identify SCA8 patients with shorter repeat expansions than have been previously 10 

reported, expanding the range of repeats found in individuals affected with ataxia to 54-11 

1455 repeats. 12 

 Here we show that the polyGln proteins produced from interrupted SCA8 13 

transcripts are more toxic and that steady state levels of the RAN polyAla and polySer 14 

proteins are increased. Together it is possible that in SCA8 patients, the CGG 15 

interrupted repeat expansions increase overall cellular toxicity and RAN protein load 16 

which may in turn exacerbate the associated pathologies, including white matter defects 17 

(Ayhan et al., 2018), in SCA8. However, while the data presented here provide insight 18 

into possible molecular consequences of the CCG•CGG interruptions in SCA8 repeat 19 

expansions, further detailed analyses in patient cell lines and postmortem tissue, which 20 

are currently very limited for CCG•CGG interrupted expansions, will be necessary to 21 

fully understand the pathological consequences of the CCG•CGG interruptions. In 22 

addition, directly comparing tissues and cell lines from SCA8 patients with pure and 23 
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CCG•CGG interrupted repeat expansions will help to inform our understanding of the 1 

contribution of repeat expansion proteins to disease. 2 

There is a growing body of evidence that structured RNAs, including RNA 3 

hairpins favor efficient RAN translation (Banez-Coronel et al., 2015; Wang et al., 2019; 4 

Zu et al., 2011).  RAN translation has also been shown to be more efficient with longer 5 

repeat lengths and longer repeats which increase the structural stability of RNA 6 

secondary structures (Banez-Coronel et al., 2015; Napierala et al., 2005; Wang et al., 7 

2019; Zu et al., 2011; Zu et al., 2013). Our data extend these results and show that 8 

CGG interruptions, which increase the stability of RNA hairpins, also lead to elevated 9 

levels of RAN proteins and independently show that increasing RNA stability without 10 

altering repeat tract length increases RAN translation. Additionally, the increased 11 

stability of RNA secondary structures containing CGG interruptions could also lead to 12 

increased toxicity through RNA gain-of-function mechanisms (Daughters et al, 2009) 13 

possibly by the changes in the sequestration of known and novel  RNA binding proteins 14 

by SCA8 expansion transcripts. 15 

While additional types of AT-rich sequence interruptions (e.g. CTT•AAG, 16 

CCA•TGG, CTA•TAG) have been reported in SCA8 (Hu et al., 2017; Moseley et al., 17 

2000b), the lack of highly penetrant SCA8 families with AT-rich interruptions (Moseley et 18 

al., 2000b) makes it unlikely that they increase disease penetrance in a manner similar 19 

to CGG repeats. This is consistent with the prediction that AT-rich interruptions 20 

decrease RNA structural stability of CAG expansion transcripts in contrast to CGGs, 21 

which increase RNA stability. A small number of sporadic cases are homozygous for the 22 

expansions suggesting the presence of two SCA8 expansion alleles may also increase 23 
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disease penetrance (Fig EV1A). The fact that SCA8 is also found with reduced 1 

penetrance in patients with single uninterrupted expansion mutations suggest that, 2 

similar to other neurodegenerative diseases, trans-genetic modifiers and environmental 3 

factors are also likely to contribute to disease (Hosseinibarkooie et al, 2017; Mo et al, 4 

2015). 5 

In summary, CCG•CGG interruptions within the SCA8 CAG repeat tract are 6 

associated with increased penetrance in SCA8 families. At the molecular level 7 

CCG•CGG interruptions increase RNA stability and levels of polyAla and polySer RAN 8 

proteins. Additionally, CCG•CGG interruptions encode alternative amino acids that 9 

increase the toxicity and change the molecular properties of the resulting polyGln(Arg) 10 

proteins. Taken together, these data provide novel insight into the molecular 11 

mechanisms affecting disease penetrance in SCA8. 12 

 13 

14 
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Materials and Methods 1 

Research participants 2 

Informed consent was acquired from all participants in accordance to the Human 3 

Subjects Committee at the University of Minnesota, the Institutional Review Board (IRB) 4 

at the University of Florida, or the equivalent office at collaborators’ institutions. A board-5 

certified neurologist identified SCA8 probands on clinical examination and interested 6 

patients were enrolled into the research study. Family history of ataxia was assessed by 7 

questionnaire and patients were encouraged to inform affected and unaffected relatives 8 

of the research study; volunteers were enrolled into the study. Samples were collected 9 

from 77 independent families.  10 

 11 

Genetic analysis of SCA8 repeat expansions  12 

Genomic DNA (gDNA) was extracted from peripheral blood lymphocytes using 13 

FlexiGene DNA kit (QIAGEN). The number of combined CTG•CAG repeats at the SCA8 14 

locus was determined by PCR across the repeat using CAG-1F (5’ TTT GAG AAA GGC 15 

TTG TGA GGA 3’) and CAG-1R (5’ TCT GTT GGC TGA AGC CCT AT 3’) primers. 16 

PCR bands were extracted using Wizard SV Gel and PCR Clean-Up System (Promega) 17 

and, when possible, sent for direct DNA sequencing using nested primers CAG-3F (5’ 18 

GGC TTG TGA GGA CTG AGA ATG 3’) and CAG-3R (5’ GAA GCC CTA TTC CCA 19 

ATT CC 3’). Expansions too large for direct sequence (approximately >250 repeats) 20 

were digested with MspA1I (New England Biolabs) which ambiguously digests the PCR 21 

products containing either CGG or CTG interruptions in the CAG direction of the repeat 22 

tract. This method does not provide the sequence configuration. If the expansion size 23 
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was too large to perform PCR across the repeat or we were unable to draw blood from 1 

the subject, the repeat length was estimated by a commercial diagnostic company. 2 

Families found to have non-CGG interruptions were excluded from analysis of CGG 3 

interruptions and disease penetrance (n=58 families sequenced in total). 4 

 5 

cDNA constructs 6 

To generate patient derived pure and interrupted SCA8 expansion constructs for 7 

molecular characterization of CGG interruptions, a region containing the ATXN8 open 8 

reading frame was PCR amplified from patients’ gDNA using primers SCA8-F3-Kpn1 (5’ 9 

TTG GTA CCT TTG AGA AAG GCT TGT GAG GAC TGA GAA TG 3’) and SCA8-R4-10 

EcoRI (5’ GCG AAT TCG GTC CTT CAT GTT AGA AAA CCT GGC T 3’). The PCR 11 

fragment was cloned in the CAG direction into the pcDNA3.1-6S-3T vector which has 12 

six stop cassette (two stop codons per reading frame) upstream of the repeat and a 13 

unique C-terminal tag in each reading frame (Zu et al., 2011). Due to the TAG repeat 14 

tract encoding for multiple stop codons after the CAG repeat stretch, there is no C-15 

terminal tag in the CAG frame. Additionally, construct names denote the total CAG tract 16 

length which, due to repeat instability during cloning, may not be the same total tract 17 

length as the patient alleles used to clone the repeat sequences.  18 

To assess toxicity of polyGln proteins, ATG-initiated non-hairpin forming 19 

alternative codon minigenes were synthesized by IDT Technologies and subcloned into 20 

the pcDNA3.1-6S-3T vector. PolyGln is encoded by CAA repeats with AGA-encoded 21 

Arginine interruptions to generate the Alt. polyGln and Alt. Int. polyGln constructs (Fig 22 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.430311doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430311


21 
 

6A). It is not possible to model polyAla or polySer proteins using this system as no non-1 

hairpin forming alternative codons exist for alanine or glycine. 2 

 3 

Cell culture and transfections 4 

HEK293T or T98 cells were cultured in DMEM medium (Corning) supplemented with 5 

10% fetal bovine serum (FBS) (Gibco) and 1X Penicillin-Streptomycin (Gibco). Plasmid 6 

transfections were performed using Lipofectamine 2000 (Invitrogen), according to the 7 

manufacturer’s instructions. Plasmid transfection amounts were optimized for each set 8 

of constructs used for toxicity assays. 9 

 10 

Toxicity and viability assays 11 

Cell toxicity and viability were assessed 42hrs post-transfection using the CytoTox 96 12 

Nonradioactive Cytotoxicity Assay (Promega) or 3-(4,5-dimethyl-thiazol-2-yl)-2,5-13 

diphenyl tetrazolium bromide (MTT) assay (Sigma), respectively, following the 14 

manufacturer’s protocol. Briefly, total LDH release was measured by lysing the cells 15 

with 1% Triton X-100 and absorbance was measured at 490 nm. MTT was added to cell 16 

culture media at a final concentration of 0.5 mg/mL and incubated for 45 minutes at 17 

37°C. Following media removal cells were lysed with 100μl of Dimethyl sulfoxide 18 

(DMSO; Fisher Scientific) and absorbance was measured at 595 nm.  19 

 20 

RNA extraction and RT-qPCR 21 

RNA was isolated from transiently transfected HEK293T or T98 cells using Trizol 22 

Reagent (Invitrogen). RNA was DNase treated using TURBO DNA-free Kit (Ambion), 23 
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following the manufacturer’s instructions. cDNA was synthesized using random 1 

hexamer primers and the SuperScript III Reverse Transcriptase System (Invitrogen) 2 

following the manufacturer’s protocol. Quantification of construct transcript levels was 3 

performed using the 5FLAG (5' GAT TAC AAG GAC GAC GAC GAC 3') and 3HIS (5' 4 

ATG GTG ATG GTG ATG ATG ACC 3‘) primers. Control reactions were performed 5 

using human β-actin forward (5′ TCG TGC GTG ACA TTA AGG AG 3′) and human β-6 

actin reverse (5′ GAT CTT CAT TGT GCT GGG TG 3’) primers. qRT-PCR  results  were  7 

analyzed  using  the  2−ΔΔCT method (Livak & Schmittgen, 2001). 8 

 9 

Immunoblotting 10 

HEK293T cells were washed with 1xPBS 48 hours post transfection and were lysed in 11 

200μl radioimmunoprecipitation assay (RIPA) buffer (ThermoScientific) with 1X 12 

cOmplete Protease Inhibitors (Roche) for 15 min on ice. DNA was sheared by passage 13 

through a 21-gauge needle, lysates were centrifuged at 21,000×g for 15 min at 4°C, and 14 

the supernatant was collected. The protein lysate concentration was quantified using 15 

Pierce BCA Protein Assay Kit (ThermoScientific) and10μg of soluble protein lysates 16 

were separated on a 4-12% Bis-Tris gel (BioRad) and transferred to a nitrocellulose 17 

membrane. The remaining insoluble protein pellet was extracted in 2% SDS by 18 

incubating at 42°C for 3 hours with frequent repeated pipetting and incubated at room 19 

temperature overnight. Insoluble protein lysate was passed through a Dot Blot 20 

Apparatus (BioRad) onto a PVDF membrane. Membranes were blocked for 2 hours at 21 

room temperature in 5% dry milk in 1xPBS containing 0.05% Tween-20 (Sigma) and 22 

probed with anti-FLAG antibody (1:2,000), anti-myc antibody (1:1,000), 1C2 antibody 23 
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(1:10,000), and anti-GAPDH antibody (1:5,000) overnight at 4°C in blocking solution. 1 

The membrane was incubated with species-specific HRP-conjugated secondary 2 

antibody (Amersham) in blocking solution, and bands were visualized with the ECL plus 3 

Western Blotting Detection System (Amersham). Quantification of protein expression 4 

was performed using Image J. For dot blot quantification, Myc antibody signal for empty 5 

vector transfections was used to perform background reduction. All protein levels are 6 

normalised to pure repeat expansion protein levels.  7 

 8 

Immunofluorescence (IF) 9 

HEK293T cells were fixed 48 hours post-transfection with 4% paraformaldehyde (PFA; 10 

Sigma) in 1xPBS for 15min and permeabilized with 0.5% Triton X-100 (Sigma) in 11 

1xPBS for 30 min. Cells were blocked in 1% Normal Goat Serum (NGS) for 30 minutes 12 

and incubated overnight at 4°C with 1C2 antibody (1:10,000) or anti-FLAG antibody 13 

(1:1,000), or for 1hr at 37°C with anti-myc antibody (1:1,000). Cells were incubated with 14 

AlexaFluor conjugated secondary antibodies for 1 hour at room temperature and were 15 

mounted with ProLong Gold Antifade (ThermoScientific). Representative images were 16 

taken using the ZEISS LSM 800 confocal microscope.  17 

 18 

UV melting 19 

RNA oligonucleotides were purchased from IDT. Absorbance of each RNA substrate at 20 

260nm was monitored between 25°C and 95°C, recorded at 1°C intervals. Three UV 21 

melting curves were generated per RNA substrate at a concentration of 2 µM in 22 

1xDPBS without calcium or magnesium. 23 
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 1 

Statistical Analysis 2 

All statistical analyses were performed using GraphPad Prism 6.0 software. Statistical 3 

relationship of CCG•CGG interruptions and disease penetrance was calculated using 4 

Fisher’s exact test. Linear regression analyses were performed to assess the 5 

relationship between age of onset and repeat length or interruption number. All other 6 

statistical analyses were performed using unpaired two-tailed Student’s t-test or a one-7 

way ANOVA with a Tukey’s multiple comparison test, as appropriate. Data are reported 8 

as mean ± SEM or mean ± SD. 9 

10 
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Figure Legends 1 

Figure 1. SCA8 alleles with CCG•CGG interruptions are found in families with high 2 

disease penetrance 3 

A Summary of family history of SCA8 disease presentation in the clinic for the 77 4 

SCA8 families in our cohort. 5 

B-F Pedigrees of SCA8 families: squares represent males, circles represent females, 6 

diamonds mask gender. Filled symbols represent affected individuals, symbols with 7 

inner black dot represent asymptomatic expansion carriers, open symbols represent 8 

individuals with non-expanded alleles, diagonal line indicates a deceased individual. 9 

Combined repeat number of expanded alleles, age (y - years old) at onset (Onset) or 10 

age still asymptomatic, and interruption status (Pure or Int. [CCG•CGG interrupted]) are 11 

noted below the symbols. (F) Abbreviated pedigree, for complete pedigree see Koob et 12 

al., 1999. 13 

G SCA8 allele configurations in the CAG direction as determined by sequencing. 14 

Family or individual and affected status indicated on left: Sporadic 1 - figure 1D, Family 15 

1 - figure 1F, Family 2 - figure 1E; A – affected, AS – Asymptomatic; CGG interruptions 16 

are represented by black boxes. 17 

H Age of onset correlates with the number of CCG•CGG interruptions, n=24, 18 

p=0.0016. Red squares indicate the average expansion size for individuals with two 19 

expanded alleles, individual allele repeat lengths are: 84/114, 92/100. 20 

G, H Individuals identified as having CCG•CGG interruptions by restriction digest are 21 

not included. 22 
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 1 

Figure 2. Clustered and interspersed CCG•CGG interruptions increase toxicity of 2 

CTG•CAG expansions 3 

A Schematic diagram of constructs used to express patient- derived pure and 4 

interrupted SCA8 repeat tracts with predicted protein products and C-terminal epitope 5 

tags. * Due to TAG encoded stop codons polyGln proteins do not contain epitope tags. 6 

CGG interruptions and the encoded interruption amino acids are indicated in red. 7 

B, C Cell death measured by lactase dehydrogenase (LDH) assay (B) and cell viability 8 

measured by 3-(4,5- dimethyl-thiazol-. 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) 9 

assay (C) in T98 cells 42 hrs post-transfection of pure and interrupted SCA8 repeat 10 

tracts; LDH n=8, MTT n=12, * p < 0.05, NT not transfected, EV - empty vector 11 

(pcDNA3.1-6S-3T).  12 

 13 

Figure 3. Arginine-encoding CGG interruptions increase toxicity of ATXN8 14 

polyGln proteins 15 

A Schematic diagram of alternative-codon constructs expressing pure and 16 

interrupted polyGln proteins. 17 

B, C Cell death measured by LDH assay (B) and cell viability measured by MTT assay 18 

(C) in T98 cells 42 hrs posttransfection of alternative-codon polyGln constructs, LDH 19 

n=8, MTT n=6, data are presented as mean ± SEM. NT: non-transfected; EV – empty 20 

vector (pcDNA3.1-6S-3T); * p < 0.05. 21 

D-F Western blot (D) and densitometry quantification (E, F) of polyGln proteins in 22 

HEK293T cells detected by 1C2 antibody from interrupted and pure CAG repeat tracts; 23 
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EV: empty vector (pcDNA3.1-6S-3T), GAPDH as loading control; n=3, ** p<0.01, *** 1 

p<0.001, data presented as mean ± SD. 2 

G Immunofluorescence of polyGln expressed from Alt. polyGln, Alt. Int. polyGln, 3 

Pure 104 and Int.102 constructs in HEK293T cells, scale bar: 20μm; EV- empty vector 4 

(pcDNA3.1-6S-3T). 5 

 6 

Figure 4. CGG interruptions increase RAN polySer and RAN polyAla protein 7 

steady state levels 8 

A-B Protein blotting (A) and densitometry quantification (B) of polySer RAN proteins 9 

in HEK293T cells from interrupted (construct Int.95) and pure (construct Pure 96) CAG 10 

repeat tracts. EV: empty vector (pcDNA3.1-6S-3T), n=3, ** p<0.01, data are presented 11 

as mean ± SEM. 12 

C Immunofluorescence of RAN polySer protein aggregates from CGG interrupted 13 

and pure CAG repeat tracts in HEK293T cells; scale bar: 10μm. 14 

D-E Protein blotting (E) and densitometry quantification (D) of polyAla RAN proteins; 15 

n=3, *** p<0.001, data are presented as mean ± SD. 16 

F qRT-PCR of Pure 96 and Int.95 construct transcript levels; n=3; p=0.9942, data 17 

are presented as mean ± SEM. 18 

 19 

Figure 5. CGG interruptions increase stability of CAG repeat RNA hairpins 20 

A Absorbance of each RNA substrate at 260nm monitored between 25°C and 21 

95°C, recorded at 1°C intervals; n=3 UV melting curves per RNA substrate at a 22 

concentration of 2μM in 1xDPBS without calcium or magnesium. 23 
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B The folding free energy (ΔG) of hairpin structures for pure CAG and CGG 1 

interrupted repeat tracts for different interruption configurations, as predicted by m-fold 2 

(Zuker, 2003). Filled symbols represent sequences used for UV melting analyses. 3 

C The folding free energy (ΔG) of hairpin structures for SCA8 patient repeat 4 

expansions (Figure 1G) and pure repeat tracts of the same length, as predicted by m-5 

fold. Patient alleles are as follows: 48 repeats in length - (CAG)7(CGGCAG)18(CAG)5; 53 6 

repeats in length - (CAG)8(CGGCAG)14(CAG)2CGG(CAG)5CGG(CAG)8; and 52 repeats 7 

in length – (CAG)7(CGGCAG)16(CAG)4CGG(CAG)8. Each symbol represents a single 8 

predicted hairpin structure; multiple hairpin structures, including branched hairpins, are 9 

predicted for SCA8 patient alleles and (CAG)53 (Zuker, 2003). 10 

 11 

12 
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Tables 1 

Table 1. CGG interruptions are associated with increased disease penetrance in 2 

SCA8 3 

 Pure CGG interrupted p-value 

Apparent sporadic patients 31 5 
0.0047 

Families with 2+ affected individuals 5 7 

Affected individuals 41 33 
0.0299 

Asymptomatic individuals  43 15 
 4 

P-value was calculated using Fisher’s exact test to assess the relationship between 5 

disease penetrance and CGG interruptions (n=48 families; n=132 expansion carriers). 6 

An additional n=10 families, representing n=19 expansion carriers, were sequenced and 7 

found to carry different interruptions. 8 

 9 

10 
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Expanded View Figure Legends 1 

 2 

Figure EV1. Repeat length is not a reliable predictor of age of onset or disease 3 

status in SCA8 4 

A No correlation between length of combined repeat expansion and age of onset in 5 

SCA8 patients, n=85, p=0.9847 or in the subset of SCA8 patients with CCG•CGG 6 

interruptions, n=26, p=0.2096. Red squares indicate the average expansion size for 7 

individuals with two expanded alleles, individual allele repeat lengths: 137/177,110/320, 8 

104/130, 96/109. Red triangles indicate the average expansion size for individuals with 9 

two expanded alleles and CCG•CGG interruptions: 84/114, 92/100. Grey triangles 10 

indicate individuals with CCG•CGG interruptions. 11 

B Allele length distribution of affected (n=111) and asymptomatic (n=88) expansion 12 

carriers, presented as minimum to maximum value, p=0.0672. 13 

 14 

Figure EV2. CGG interrupted SCA8 repeat tracts increase cellular toxicity 15 

independent of construct RNA levels 16 

A qRT-PCR of Pure 96 and Int.95 construct transcript levels; n=3; p=0.1308, data 17 

presented as mean ± SEM. 18 

B qRT-PCR of Pure 104 and Int.102 construct transcript levels; n=3; p=0.0172, 19 

data presented as mean ± SEM. 20 

 21 

Figure EV3. Arginine interruptions increase toxicity of polyGln proteins 22 

independent of RNA levels 23 
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A qRT-PCR of Alt. polyGln and Alt. Int. polyGln construct transcript levels, n=3; 1 

p=0.9516, ns: not significant, data are presented as mean ± SEM. 2 

B Western blot of polyGln proteins in HEK293T cells detected by 1C2 antibody 3 

from interrupted and pure CAA repeat tracts; red arrows indicate pure polyGln and 4 

polyGln(Arg) proteins. * The low levels of recombinant protein expressed for toxicity 5 

studies allows for polyGln containing TATA binding protein to be detected by 1C2 6 

antibody giving a background band at ~40 kDa. 7 

 8 

Figure EV4. CGG interruptions increase levels of RAN 9 

polyAla expansion proteins 10 

A, B Western blot (A) and densitometry quantification (B) of polyAla RAN proteins in 11 

HEK293T cells from interrupted (construct Int.102) and pure (construct Pure 104) CAG 12 

repeat tracts; EV: empty vector (pcDNA3.1-6S-3T), GAPDH as loading control; n=3, ** 13 

p<0.01, data presented as mean ± SD. 14 

C Immunofluorescence of RAN polyAla proteins in HEK293T cells; scale bar 10μm. 15 

D qRT-PCR of Pure 104 and Int.102 construct transcripts; n=3; p=0.8955, data 16 

presented as mean ± SEM. 17 

 18 

Figure EV5. CGG interruptions increase stability of CAG repeat RNA hairpins 19 

A Example UV melting absorbance curves (for Figure 5A) for pure and interrupted 20 

RNA oligos measured at 260nm monitored between 25°C and 95°C, recorded at 1°C 21 

intervals. 22 

 23 
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Figure EV6. Predicted RNA structures for pure CAG repeat tracts and CGG 1 

interrupted CAG repeat tracts 2 

A and B Predicted RNA hairpin structures from m-fold (Zuker, 2003) for pure and 3 

CGG interrupted CAG repeat tracts for Figure 5B (A) and Figure 5C (B). (B) Pure 4 

structures are shown in grey. For repeat tracts with multiple predicted hairpin structures, 5 

only the most stable structure is shown. Red lines alongside the structures indicate 6 

positions of CGG interruptions. 7 

 8 

9 
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Expanded View Table 1 

 2 

Table EV1. Repeat length is not a reliable predictor of SCA8 disease status 3 

 Affected 
n=111 

Asymptomatic 
n=88 p-value 

Avg age onset (yrs) 33.7 ± 19.7 -  
Females, n (%) 57 (51.35) 49 (55.68) ns 
Males, n (%) 54 (48.65) 39 (44.32) - 
Combined repeat #    
 Mean 189 ± 219.9 188.5 ± 211.1 - 
 Median 113 98 ns 
 Maximum 1455 1000 - 
 Minimum 54 52 - 
 4 

Characteristics of participants are presented as mean ± SD, number and percentage of 5 

affected or asymptomatic individuals (%). To determine group effect, Fisher’s exact test 6 

was used for categorical variables and Mann-Whitney for non-parametric continuous 7 

variables. Average age of onset (Avg age onset) n=85. ns: not significant.  8 

 9 

 10 

 11 

 12 
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G SCA8 allele configurations in the CAG direction as determined by sequencing. Family or individual and affected
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 (LDH) assay (B) and cell viability measured by
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 transfection of alternative-codon polyGln constructs, LDH n=8, MTT n=6, data are presented as mean ± SEM. NT:
 non-transfected; EV – empty vector (pcDNA3.1-6S-3T); * p < 0.05.
D-F Western blot (D) and densitometry quantification (E, F) of polyGln proteins in HEK293T cells detected by 1C2
 antibody from interrupted and pure CAG repeat tracts; EV: empty vector (pcDNA3.1-6S-3T), GAPDH as loading
 control; n=3, ** p<0.01, *** p<0.001, data presented as mean ± SD.
G Immunofluorescence of polyGln expressed from Alt. polyGln, Alt. Int. polyGln, Pure 104 and Int.102 constructs in
 HEK293T cells, scale bar: 20μm; EV- empty vector (pcDNA3.1-6S-3T). 
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A

D

Figure 4. CGG interruptions increase RAN polySer and
RAN polyAla protein steady state levels
A-B Protein blotting (A) and densitometry quantification
 (B) of polySer RAN proteins in HEK293T cells from
 interrupted (construct Int.95) and pure (construct
 Pure 96) CAG repeat tracts. EV: empty vector
 (pcDNA3.1-6S-3T), n=3, ** p<0.01, data are
 presented as mean ± SEM.
C Immunofluorescence of RAN polySer protein
 aggregates from CGG interrupted and pure CAG
 repeat tracts in HEK293T cells; scale bar: 10μm.
D-E Protein blotting (E) and densitometry quantification
 (D) of polyAla RAN proteins; n=3, *** p<0.001, data
 are presented as mean ± SD.
F qRT-PCR of Pure 96 and Int.95 construct transcript
 levels; n=3; p=0.9942, data are presented as
 mean ± SEM.
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Figure 5. CGG interruptions increase stability of CAG repeat RNA hairpins
A Absorbance of each RNA substrate at 260nm monitored between 25°C and 95°C, recorded at 1°C intervals; n=3
 UV melting curves per RNA substrate at a concentration of 2µM in 1xDPBS without calcium or magnesium.
B The folding free energy (ΔG) of hairpin structures for pure CAG and CGG interrupted repeat tracts for different
 interruption configurations, as predicted by m-fold (Zuker, 2003). Filled symbols represent sequences used for
 UV melting analyses. 
C The folding free energy (ΔG) of hairpin structures for SCA8 patient repeat expansions (Figure 1G) and pure
 repeat tracts of the same length, as predicted by m-fold. Patient alleles are as follows: 48 repeats in length -
 (CAG)7(CGGCAG)18(CAG)5; 53 repeats in length - (CAG)8(CGGCAG)14(CAG)2CGG(CAG)5CGG(CAG)8;
 and 52 repeats in length – (CAG)7(CGGCAG)16(CAG)4CGG(CAG)8. Each symbol represents a single predicted
 hairpin structure; multiple hairpin structures, including branched hairpins, are predicted for SCA8 patient alleles and
 (CAG)53 (Zuker, 2003).
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Figure EV1. Repeat length is not a reliable predictor of age of onset or disease status in SCA8
A No correlation between length of combined repeat expansion and age of onset in SCA8 patients, n=85, p=0.9847 or
 in the subset of SCA8 patients with CCG•CGG interruptions, n=26, p=0.2096. Red squares indicate the average
 expansion size for individuals with two expanded alleles, individual allele repeat lengths: 137/177,110/320, 104/130,
 96/109. Red triangles indicate the average expansion size for individuals with two expanded alleles and CCG•CGG
 interruptions: 84/114, 92/100. Grey triangles indicate individuals with CCG•CGG interruptions. 
B Allele length distribution of affected (n=111) and asymptomatic (n=88) expansion carriers, presented as minimum to
 maximum value, p=0.0672.
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BA Figure EV2. CGG interrupted SCA8 repeat tracts increase
cellular toxicity independent of construct RNA levels
A  qRT-PCR of Pure 96 and Int.95 construct transcript levels;
 n=3; p=0.1308, data presented as mean ± SEM.
B qRT-PCR of Pure 104 and Int.102 construct transcript levels;
 n=3; p=0.0172, data presented as mean ± SEM.
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 data are presented as mean ± SEM.
B Western blot of polyGln proteins in HEK293T cells
 detected by 1C2 antibody from interrupted and pure
 CAA repeat tracts; red arrows indicate pure polyGln and 
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 protein expressed for toxicity studies allows for polyGln
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Figure EV4. CGG interruptions increase levels of RAN
polyAla expansion proteins
A, B Western blot (A) and densitometry quantification (B)
 of polyAla RAN proteins in HEK293T cells from
 interrupted (construct Int.102) and pure (construct
 Pure 104) CAG repeat tracts; EV: empty vector
 (pcDNA3.1-6S-3T), GAPDH as loading control; n=3,
 ** p<0.01, data presented as mean ± SD.
C Immunofluorescence of RAN polyAla proteins in
 HEK293T cels; scale bar 10µm.
D qRT-PCR of Pure 104 and Int.102 construct transcripts;
 n=3; p=0.8955, data presented as mean ± SEM. 
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Figure EV5. CGG interruptions increase stability of CAG repeat RNA hairpins
A Example UV melting absorbance curves (for Figure 5A) for pure and interrupted RNA oligos measured at 260nm
 monitored between 25°C and 95°C, recorded at 1°C intervals.
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Figure EV6. Predicted RNA structures for pure CAG repeat tracts and CGG interrupted CAG repeat tracts
A and B  Predicted RNA hairpin structures from m-fold (Zuker, 2003) for pure and CGG interrupted CAG repeat tracts
for Figure 5B (A) and Figure 5C (B). (B) Pure structures are shown in grey. For repeat tracts with multiple predicted hairpin
structures, only the most stable structure is shown. Red lines alongside the structures indicate positions of CGG interruptions.
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