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23 Abstract

24 Automatic analysis of larval zebrafish electrocardiographs (ECG) is essential for high-throughput 

25 measurements in environmental toxicity assays, cardiotoxicity measurements and drug screening. We have 

26 developed a MATLAB based software is built on methods that have previously been used to analyze 

27 human ECG, such as the Pan-Tompkins algorithm and Wavelet. For the first time these sophisticated tools 

28 have been applied to larval zebrafish ECG to automatically characterize the heart-beat waveforms. The 

29 ability of the automated algorithm to detect the QT interval for both normal and pharmacologically altered 

30 larval ECG is found and compared to previously used software that is built into LabChart® (AD 

31 Instruments). Using wavelet transforms it is shown that the typical larval ECG features are within the 

32 frequency range of 1 to 31 Hz. It is also shown that the automated software is capable of detecting QTc 

33 (heartrate corrected heartbeat interval) changes within pharmacologically altered zebrafish larval ECG. The 

34 automated process is a significant improvement on the approaches that were previously applied to the 

35 zebrafish ECG. The automated process described here that is based on established techniques of analyzing 

36 ECG can sensitively measure pharmacologically induced changes in the ECG. The novel, automated 

37 software is faster, more sensitive at detecting ECG changes and less dependent on user involvement, thus 

38 minimizing user error and human bias. The automated process can also be applied to human ECG.

39

40

41 Introduction

42 Using zebrafish larvae for chemical compound screening is becoming increasingly important for 

43 cardiac drug development. It has been previously shown that the zebrafish electrocardiogram (ECG) is 

44 similar to mammals. Another advantage of the zebrafish model is that a minimal amount of chemicals are 

45 necessary for drug testing and embryo production is fast and inexpensive [1]. Furthermore, using mammals 

46 for preliminary screening is expensive, slow and requires enormous numbers of animals. Video-recording 
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47 of zebrafish embryos’ heart activity is currently used for drug screening, but unlike ECG recording it lacks 

48 the temporal and dynamic resolution necessary for cardiac cycle component analysis [2-4].  To aid 

49 development of high-throughput, high fidelity methods to simultaneously and automatically record ECGs 

50 from larval zebrafish, analysis tools that automatically characterize larval ECG signals under control 

51 conditions and after drug treatment are desirable. 

52 Presented herein is the first successful attempt to develop analysis tools based on algorithms and 

53 methods that have previously been used to characterize human ECG, including the Pan-Tompkins 

54 algorithm and wavelet transform analysis implemented in MATLAB. These tools are compared to 

55 techniques that have previously been used to analyze zebrafish larval ECG based on the software packages 

56 offered by AD Instruments (LabChart®).

57

58 Methods

59 Data acquisition

60 The data used to investigate the analysis tools is larval zebrafish ECG that was taken from 3 days post 

61 fertilization larvae using the methods outlined in [5]. The baseline ECG was recorded for approximately 2 

62 minutes before verapamil was added and the ECG was recorded for a further 25 minutes. This data 

63 represents the typical ECG of a zebrafish larvae recorded in our lab and a typical drug response as 

64 previously demonstrated in our previous paper [5].

65 Data Extraction

66 After the recording, the data was split into 8, 1-minute sections, labelled chronologically as A, B, C, D, E, 

67 F, G, H and exported from LabChart® as a MATLAB compatible data format. Section A was taken from 

68 ECG recorded before the drug was introduced to the solution whereas sections B-H were recorded 

69 afterwards. Each section was analyzed separately using the different tools outlined above to determine 

70 parameters such as the heart rate and the QTc. 
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71 Down-sampling the Data for MATLAB Programs

72 All of the programs written for MATLAB use some initial down-sampling to speed up the processing of the 

73 algorithms. Assuming that all the relevant information in the zebrafish ECG occurs well below 100 Hz the 

74 program down samples to a sampling rate of fs=200 Hz. In the MATLAB code this appears as:

75

76 %MATLAB ALGORITHM TO DOWNSAMPLE ECG

77 %% Down-sample to 200 Hz sampling rate

78 out =~rem(FS,200)*FS/200 ;

79

80

81 Determining the frequency of the components of the zebrafish ECG

82 To investigate which filtering bandwidth would best capture the ECG features whilst removing any low-

83 frequency drift and high-frequency interference, the sections were first analyzed using a wavelet transform 

84 in MATLAB. To perform the transform, 20 seconds of raw ECG data was taken from section A and 

85 transformed using a Gaussian wavelet combined with an in built MATLAB function, as described in above.

86 The result of the wavelet transform was outputted as a contour map and an approximate of the 

87 characteristic frequencies of the ECG features were measured visually. Due to space-time localization it is 

88 not possible to state categorically that the characteristic frequency of each feature was perfectly aligned to 

89 the correct time signature, however the graphical output could be used as a guide of the approximate 

90 frequency of each feature. This frequency of each R wave and T wave within the section was recorded and 

91 tabulated. Graphical outputs of the ECG wavelet transform. From the tabulated data the mean and standard 

92 deviation of the characteristic frequency of the R and T waves were determined. These values were used to 

93 tailor the upper frequency cut-off to remove higher frequency noise without attenuating the ECG signal. 

94 The upper frequency limit was set to the mean R-wave characteristic frequency plus two standard 
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95 deviations. Assuming that the R-wave frequency is normally distributed about the mean, this would suggest 

96 that approximately 95% of the R-waves would be captured without attenuation. The lower frequency cut-

97 off was set to 1 Hz for reasons that are outlined above.

98

99 LabChart® Analysis of Sections

100 To analyze the data through the inbuilt ECG analysis in LabChart®, each section was first band-pass 

101 filtered using the upper and lower cut-offs. The filtered ECG was then analyzed using the protocol outlined 

102 and Fig 1. 

103

104 Fig 1.  Zebrafish larval heartbeats and strategies of the analytical methods. A) Two consecutive larval 

105 heart beats that have been annotated to show the position of the Q, R, S and T-waves. B) The two strategies 

106 employed to analyse the ECG of Larvae. Left: The standard analysis protocol that is part of the inbuilt 

107 LabChart® analysis software. Right: The automated analysis protocol that has been implemented in 

108 MATAB

109

110 The LabChart® software automatically locates the position of each R-wave based on user inputs such as, 

111 typical QRS-width, typical RR-interval and QT-interval. Thus the analysis requires some user involvement 

112 from the start. After the location has of each heartbeat has been found it is then decided by the user which 

113 heartbeats should be deemed ‘acceptable’. This is included in the software so that anomalous or corrupted 

114 recording can be omitted from the overall average. In the larval ECG that was studied there were no 

115 anomalous beats and so each beat was accepted. This information is then used by the software to produce 

116 and average waveform that is produced by finding the mean voltage of the heartbeat at each time point, 

117 relative the position of the R-wave.
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118 From this average view, the user defines the position of the Q-start point, Q-end point, T-peak and T-end. 

119 From this input the software automatically calculates the QTc (based on the Bazett formula) and other 

120 heartbeat characteristic. This information was exported as a table into Microsoft Excel for further analysis. 

121 Performing the analysis on a section of data takes at least 5 minutes. 

122 This process was performed on each section of larval ECG to determine the heartbeat characteristics before 

123 and after the introduction of the pharmacological agent. 

124

125 Applying the Automated process

126 The automated process was applied to each data section and the outputted QTc was then exported to Excel. 

127 The program measured the QTc for each 40 consecutive heartbeats and the output was tabulated as shown 

128 in Table I. 

129

A B C D E F G H
QTc 1st 40 
beats (s)

0.533 0.525 0.537 0.531 0.544 0.568 0.576 0.563

QTc 2nd 40 
beats (s)

0.548 0.523 0.530 0.528 0.522 0.575 0.586 0.564

QTc 3rd 40 
beats (s)

0.540 0.522 NA NA NA NA NA NA

Average 
QTc (s)

0.540 0.523 0.533 0.529 0.548 0.572 0.581 0.564

Standard 
deviation 
(s)

0.006 0.001 0.003 0.002 0.004 0.004 0.005 0.001

# detected 
beats

127 125 120 117 104 92 88 86

RR interval 
(s)

0.472 0.480 0.500 0.513 0.577 0.652 0.682 0.698

QTc 
change (%)

0.0 -3.1 -1.2 -2.0 1.5 5.9 7.6 4.4

130

131 Table 1 The outputted data from automated process that has been collated

132
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133 The program also generated a plot of the average waveform found for each set of 40 beats, and searched for 

134 Q-start, Q-end, T-peak and T-end. These intervals were fed into the Bazett formula to calculate the QTc for 

135 each set of beats. An overall QTc for each section of data was found by taking the mean of the measured 

136 QTc for each set of beats. The time taken to analyze each section was approximately 10 seconds.

137

138 Results

139 Larval ECG

140 We have previously reported larval ECG capture for characterization of arrhythmia induced by 

141 pharmacological agents in zebrafish [5]. By acquiring ECG from these model organisms we are able to 

142 evaluate the cardiac effects of drug exposure, temperature changes, anesthetic exposure and staging. A 

143 typical larval ECG signal is shown in Fig 1A, above. Furthermore, the ECG offers a high fidelity output of 

144 the atrial-ventricular rhythmicity that is responsible for many arrhythmias in humans [6]. We have 

145 previously shown that this relationship can be altered in the zebrafish to mimic QTc prolongation in 

146 humans by adding cardio-active drugs such as verapamil [5]. However, to analyze the zebrafish ECG we 

147 have previously relied on software within the LabChart® suite of programs for collecting 

148 electrophysiological data. Although the program is powerful, data analysis is a slow process and requires 

149 significant user involvement that potential introduces human error. 

150

151 LabChart® Analysis Software.  LabChart® is a software package offered by AD Instruments to store and 

152 analyze electrophysiological measurements that are recorded using PowerLab hardware. The program has a 

153 number of inbuilt packages for analyzing ECG data and has previously been used to record and analyze 

154 larval zebrafish ECG. LabChart® is used in this work to compare the analysis outputs versus the alternative 

155 tools under investigation.  The LabChart® ECG analysis package is heavily user-dependent as shown in 

156 Fig. 1B. The user must first select a period of ECG that they wish to analyze, specify the RR interval of the 
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157 data and other characteristics. With this information the software is then able to determine the position of 

158 every R-wave within the ECG and attribute a fiducial mark to this time point. The user is then able to select 

159 or deselect detected “heart beats” based on their “Isoelectric Noise”, “Form Factor” or “RR-interval”, by 

160 setting an acceptable range and domain. Based on the user selections the software then averages all of the 

161 accepted heartbeats to produce an average waveform that represents the overall ECG activity for the 

162 selected time-period. From this averaged waveform the user determines the position of the P, Q and T 

163 features and the software is then able automatically calculate QTc (heartbeat interval corrected for 

164 heartrate) and other parameters of the ECG. By performing this process for larval zebrafish ECG before 

165 and after drug treatments, it is possible to evaluate any pharmacologically induced alterations in the heart 

166 beat cycle. However, this process is time consuming (approximately 3 minutes for 1 data section) and is 

167 heavily dependent on the users’ interpretation of the ECG signal.

168

169 The Automated Analysis Software

170

171 Pan-Tompkins Algorithm for QRS Detection

172 To build automated signal processing software it is necessary to detect the QRS events of the larval ECG 

173 first. Most automated ECG programs attempt to detect the QRS first as it is a dominant feature that is the 

174 most robust to change in the cardiac cycle [7]. For this process a program has been developed based on the 

175 QRS detection algorithms established by Pan and Tompkins in the 1980’s which have been shown to be 

176 robust for many different types of ECG signals [8].

177 The original architecture of the Pan-Tompkins algorithm is divided into three processes which can be 

178 thought of as the Initial Learning Phase (ILP), Secondary Learning Phase (SLP), and Detection Phase (DP). 

179 The ILP initializes detection thresholds based upon the size of the “signal” and “noise” peaks detected. The 

180 SLP uses two full heart cycles to determine the average RR interval and then set the limit of the possible 
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181 RR-interval for the rest of the ECG trace. To allow for any adaptation of the recorded ECG signal, for 

182 example due to pharmacologically induced change in heart rate, these thresholds are adjusted periodically. 

183 The DP processes the ECG and generates a pulse for each QRS. It then uses thresholds based on both the 

184 filtered ECG and the processed signal to detect the QRS waves. Their detection thresholds were set to just 

185 above the “noise” that is sensed by the algorithm. This approach reduced the number of false positives 

186 caused by noise that mimics the QRS characteristics, which is always a problem in human ECG due to 

187 electromyography artefacts. In zebrafish these artefacts could also be a problem due to sporadic motion 

188 artefacts caused by twitching or other motion. The automated process conserves and builds on this 

189 architecture.

190 Pan-Tompkins (P-T) used four simple algorithms to process the ECG data and one further algorithm to 

191 detect the QRS features from the processed data. These stages can be outlined as:

192 1) Filter the signal to remove artefacts, such as electrical noise at 50 Hz or baseline wander (< 1 

193 Hz), and allow the signal to be processed efficiently. In their original work P-T used a transfer function to 

194 implement an Infinite Impulse Response Filter (IIR Filter) to remove the artefacts. Unfortunately, these 

195 types of filters introduce a phase lag that is proportional to the frequency of the input, and so is undesirable 

196 for this work. Instead, for our software inbuilt MATLAB functions are used to filter the signal without a 

197 phase lag. The MATLAB code used to implement the filter is shown below. As seen in the code, a filtfilt 

198 function is employed that applies a 3rd order Butterworth filter to the raw data to band-pass the signal 

199 between the upper and lower frequency cut offs that are user defined. The filtered data is then normalized.

200

201 %MATLAB ALGORITHM TO FILTER RAW ECG

202 %Filt_low is user defined cut off to remove low frequency artefacts 

203 %Filt_high is user defined cut off to remove high frequency artefacts

204 %ecg_raw is a vector that contains the sampled raw ECG recording
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205 %FS is the sampling frequency

206 % ecg_filt is the filtered ECG signal

207

Cut_Win=[Filt_low 

Filt_high]*2/FS;   

% cut off window 

based on sampling 

frequency

N = 3;                                                    % Order of 

Butterworth Filter

[a,b] = 

butter(N,Cut_Win);                 

% setup of 

Butterworth filter

ecg_filt = 

filtfilt(a,b,ecg_raw);

% applying the 

filter

ecg_filt = ecg_h/ max( 

abs(ecg_h));

% normalisation of 

the signal

208

209 2) The second stage of the algorithm is to differentiate the signal to accentuate the turning points. If 

210 all artefacts have been removed then the turning points can only be associated with biological events, which 

211 for a normal ECG signal occur at the P-wave, R-wave and T-wave. By differentiating, these features 

212 become amplified. The amount that they are amplified is proportional to their frequency as higher 

213 frequency activity is changing at a faster rate.
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214

215 As R-waves have the highest frequency of the ECG features it is accentuated the most in the differentiated 

216 output (Fig 2A).

217

218 The differentiation is applied via the following iteration,

219 𝜑𝐷[𝑇] = 𝜑𝐹[𝑇 + 1] ― 𝜑𝐹[𝑇]

220 Where 𝜑𝐷 is the differentiated output and 𝜑𝐹 is the filtered ECG signal. In MATLAB this can again be 

221 applied using an inbuilt function for which the code is given below,

222

223 %MATLAB ALGORITHM TO DIFFERENTIATE FILTERED ECG

224 %ecg_filt is the filtered data from the previous step

225 %ecg_diff is the differentiated output

226 ecg_diff=diff(ecg_filt);

227

228 3) In the thirds stage of the algorithm the differentiated output is squared by applying the iteration,

229 𝜑𝑆[𝑇] = 𝜑𝐷[𝑇] ∗ 𝜑𝐷[𝑇]

230 Where 𝜑𝑆 is the squared ECG output. This step further accentuates the turning points in the ECG and 

231 makes the signal positive everywhere, as can be seen in Fig. 2A. 

232

233 Fig 2.  Graphical representations of the Pan-Tompkins algorithm applied the Larval ECG. A) The 

234 graphical outputs at each stage of the Pan-Tompkins algorithm, annotation are provided to show the 

235 position of the R-wave within the signal. B) The result of the Pan-Tompkins algorithm for a 1 minute 

236 section of data. Shown on the trace are the adaptive signal threshold and noise level utilized by the 
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237 program to determine the position of each R-wave. C) A 5 second segment of ECG taken from the longer 

238 section to highlight the position of the fiducial points on each heartbeat. D) Example of the average 

239 waveform produced and the search zones that are used to find the position of the desired ECG 

240 characteristics

241

242 As the P-T algorithm is specifically a QRS detection algorithm, the P and T-waves are usually relatively 

243 flat after this processing stage. The stage is performed using the following MATLAB code,

244

245 %MATLAB ALGORITHM TO SQUARE DIFFERENTIATED ECG

246 %ecg_diff is the differentiated data from the previous step

247 %ecg_sq is the squared output

248 ecg_sq = ecg_diff.^2;

249

250 4) A moving window integral is then applied to the data that sums all the data points in a window of 

251 a defined width, Z. This is performed by applying the iteration;

252 𝜑𝑀𝑊𝐼[𝑇] =
∑𝑍

𝑖=1 𝜑𝑆[𝑇 ― 𝑍
2 ]

𝑍

253 Where 𝜑𝑀𝑊𝐼 is the integrated ECG output. If Z is roughly equal to the width of the QRS peak then it has 

254 the effect of creating large peaks in the region of the QRS, whilst ensuring that everything else is roughly 

255 zero. The output of this algorithm is shown in Fig. 2A.

256

257 %MATLAB ALGORITHM TO MOVING WINDOW AVERAGE SQUARED ECG

258 %ecg_sq is the squared signal from the previous step

259 %ecg_mwi is the moving window integral output
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260

261 ecg_mwi = conv(ecg_sq ,ones(1 ,round(0.150*FS))/round(0.150*FS));

262

263 5) After the ECG has been processed in this way it is possible to detect the position of the QRS features via 

264 a peak-hunting algorithm. Pan-Tompkins developed a dual-threshold technique that adapts to the 

265 characteristics of the signal periodically to evaluate the ‘signal’ and ‘noise’ levels in the signal.

266

267 Pan-Tompkins Adaptive Thresholds

268 The algorithm first searches through the integrated waveform and an R wave is ‘detected’ every time a 

269 peak is found above the established threshold level. If the detected peak is below threshold, it is treated as a 

270 noise peak. If an R wave is not detected within 166% of the previously measured RR interval the program 

271 performs a search back using the second, lower threshold. Every time a peak is detected the algorithm 

272 determines if it is an R-wave using the previously established thresholds and updates the thresholds by the 

273 following algorithm:

274 If the peak that has been found is an R-wave then the new running estimate of the R peak height (RPK) is 

275 updated as,

276 RPK = 0.125*PEAK + 0.875*RPK

277 Where PEAK is the height of the detected peak.

278 If the peak that has been found is  below threshold and therefore a noise peak, then the new running 

279 estimate of the noise peak heights  (NPK) is updated as,

280 NPK = 0.125*PEAK + 0.875*NPK

281 This enables the new thresholds are updated using;

282 THRESHOLDI = NPK + 0.25*│SPK – NPK│

283 THRESHOLDII = 0.5*THRESHOLDI
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284 If a search back is used to find the peak then the new running estimate of the R-peak height is instead 

285 updated as,

286 RPK = 0.25*PEAK + 0.75*RPK

287 A sequence of values of RPK and NPK obtained for sections of data of different lengths are shown in Figs. 

288 2B and 2C.

289 The program then searches through the filtered ECG signal to find QRS complexes using a similar 

290 approach. The program applies thresholds to the filtered ECG in the following way; if the detected peak 

291 (FPEAK) is an R-wave then the running estimate of the signal (FRPK) is updated as

292 FRPK = 0.125*FPEAK + 0.875*FRPK

293 If the peak that has been found is a noise peak, then the new noise peak height (FNPK) is updated as,

294 FNPK = 0.125*FPEAK + 0.875*FNPK

295 And again the new thresholds are updated as;

296 FTHRESHOLDI = FNPK + 0.25*│FSPK – FNPK│

297 FTHRESHOLDII = 0.5*FTHRESHOLDI

298 If a search back is used to find the peak then the new running estimate R-peak height is instead updated as,

299 FRPK = 0.25*FPEAK + 0.75*FRPK

300 An identified QRS peak is only declared as an R-wave to be carried forward into the further analysis if it is 

301 detected in both passes. Every time a QRS peak is detected there is a 200 ms refractory period in which no 

302 other R-wave can be found.

303

304 Producing an Average Waveform from the Fiducial Points

305 Once the Pan-Tompkins algorithm has located the position of each R-wave in a section of ECG they can be 

306 used as fiducial points to produce an average waveform, 𝜑. This is found by summing the voltage recorded 

307 at equivalent time points, T within each heartbeat, i and then dividing by the number of beats in the 
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308 average. This enables the mean voltage at every position in the heart beat, relative to the R wave to be 

309 determined using the formula below,

310 𝜑[𝑇] =
∑

𝑇
∑𝑁

𝑖=0 𝜑𝑖[𝑇]
𝑁

311 For the automated process the average waveform is calculated for a period that is equal to the measured RR 

312 interval that runs from 0.15 s before the R peak. This is shown in Fig. 2D.

313

314 Detecting ECG features from the Average Waveform

315 To detect the features from the average waveform the program looks for peaks and troughs in appropriate 

316 windows within the heartbeat. The windows are shown in Fig. 2D and correspond to:

317 To find Q the software searches for the local minima in the region that is 0.15 s before the R peak. This 

318 window is guaranteed to contain a Q-wave if the R-wave frequency is greater than 6 Hz.

319 To find the T Peak the software searches for the local maxima that has the largest amplitude after the R 

320 peak. Once the T-peak has been found the program searches for the next point at which the ECG changes 

321 sign and designates this as the T end point. This is in accordance with other well established interpretations 

322 of the ECG signal [9]. 

323

324 Calculating QTc from the Analyzed Waveform

325 The QT length is dependent on the heart rate of the fish and so it is necessary to calculate the corrected QTc 

326 by feeding in the measured QT and RR interval into the Bazett formula [10], where;

327 𝑄𝑇𝑐 =
𝑄𝑇
𝑅𝑅

328 Wavelet Transform Analysis

329 Wavelet transforms allow frequency analysis of a time-dependent signal, which allows the fundamental 

330 range of frequencies in the signal to be determined in order to optimize filter selection.   The characteristics 
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331 frequencies of the larval zebrafish ECG have never previously been shown and so it is desirable to evaluate 

332 them further. Applying Wavelet Transforms will thus aid the implementation of the Pan-Tomkins 

333 algorithm and aid future software designs.

334 A wavelet transform decomposes a signal into its fundamental parts that have a well-defined time 

335 and frequency localization. Through a convolution, the continuous wavelet transform (CWT) finds the 

336 inner product between the inputted signal and the analyzing wavelet that has a well-defined time-duration 

337 and frequency band. In a CWT the signal is compared to the analyzing wavelet that is time-shifted and 

338 scaled to yield coefficients that correspond to a measurement of the ECG constituents within the section 

339 and frequency band. In essence, the wavelet transform provides information about the ECG frequency at 

340 specific time-points within the heartbeat [11].

341 A CWT of a signal, 𝜑(𝑡) using a wavelet 𝜇(𝑡) is defined as,

342 𝐶𝑊𝑇(𝑆, 𝜏,𝜑(𝑡),𝜇(𝑡)) =
1
𝑆

∞

―∞
𝜑(𝑡) 𝜇(𝑡 ― 𝜏

𝑆 )𝑑𝑡

343 Where S is a scaling factor and τ is the position variable. The wavelet used to characterize the frequency of 

344 the ECG in this study is the ‘Mexican Hat’ wavelet [12].

345 To perform the CWT in MATLAB it is possible to utilize the inbuilt functions shown in the following 

346 code. The algorithm both performs the wavelet transform and plots the output together with original input 

347 signal.

348 %MATLAB ALGORITH TO PERFORM WAVELET TRANSFORM ON ECG

349

t=1:length(ecg(200:4200));               %initialise time scale 

of wavelet transform
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freq = scal2frq(1:1028,'mexh',1/fs);        %initialise frequency 

parameters for 

Wavelet Transform 

plot

y=cwt(ecg(200:4200),[1:1028],wlet); %performs wavelet 

transform

350 figure;

351 subplot(3,1,1);plot(t/fs,ecg(200:4200)),axis tight, title('Signal'); ylabel('Voltage'); 

352 subplot(3,1,2:3);contour(t/fs,freq,abs(y)); axis tight, ylim([Filt_low,Filt_high]), xlabel('Time, s'), 

353 ylabel('Frequency, Hz'),title('{\bf Wavelet Spectogram}'); colormap('default');

354

355 The frequency characteristics of the ECG

356 Contour plots of the Wavelet transform of the 20 second section of ECG and a shorter 1s section are shown 

357 in Fig. 3, together with the ECG trace on which the transform was performed. As can be seen in Fig. 3A, 42 

358 heart beats were recorded in the section and from these beats the R-wave and T-wave frequency could be 

359 determined.

360

361 Fig. 3  Contour plots to show the wavelet transforms of the ECG together with the Raw ECG trace. A) 20 

362 seconds of normal zebrafish ECG, and its corresponding wavelet transform. B) 5 seconds of zebrafish 

363 ECG, and its corresponding wavelet transform. Annotations show the position of the R and T-waves and 

364 their corresponding frequencies

365
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366  From the 42 beats the mean characteristic R-wave frequency was found to be, 𝑅𝑓 = 24.1  Hz, with a 

367 standard deviation of, σ = 3.4 Hz. The mean characteristic T-wave frequency was found to be, 𝑇𝑓 = 6.6  Hz

368 , with a standard deviation of 1.3 Hz. 

369 Assuming that most of the R-waves are adequately captured when the low pass filter is set to 2 standard 

370 deviations above mean frequency, a low pass cut-off of 31Hz was selected for the analysis. It can also be 

371 seen that a high pass filter of 1 Hz would not attenuate the signal. As a result of these observations it was 

372 decided that the data should be band pass filtered between 1 and 31 Hz to aid further analysis. 

373

374 LabChart® Analysis

375 Fig. 4 shows a typical outcome of the LabChart® analysis on a section of data. Immediately after the drug 

376 is added to the medium the measured QTc decreases which is followed by a steady increase in QTc until 

377 around 15 minutes after the drug has been administered. The maximum QTc change measured over this 

378 time is just under 5%.  There is a steady increase in the RR interval from moment that the drug is 

379 administered from a minimum of 0.46 s to a maximum of around 0.7 s.

380

381 Fig. 4  The LabChart® analysis process of normal and pharmacologically altered larval ECG.  The 

382 process consists of A) defining the position of each R-wave in the filtered ECG, B) Selecting which beats 

383 are to be ‘accepted’ to create C) the average ECG waveform. The average waveform generated for normal 

384 (before drug) and pharmacologically altered (25 minutes after drug delivery) ECG to highlight the change 

385 in the QT interval.

386

387 The Automated Software Analysis

388 Our software was able to automatically detect the ECG peaks accurately, and drug effect on Q-T interval 

389 was determined (Fig. 5).
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390

391 Fig 5.  A comparison of the average ECG before and after 1mM of Verapamil had been added to the 

392 recording media. The top waveform produced from ECG 1 minute before the drug had been introduced, 

393 the bottom figure was taken from data 20 minutes after the drug had been introduced.

394

395 The measured QTc and RR interval from the automated analysis have been plotted in Fig. 6. 

396

397 Fig 6.  Scatter Graph to show the measured QTc and RR interval for the larvae from the MATLAB 

398 Software.

399

400 In the same way that was demonstrated by the LabChart® analysis software, immediately after the drug is 

401 added to the medium the measured QTc decreases which is followed by an increase in QTc until around 15 

402 minutes after the drug has been administered. However, for this analysis software the maximum QTc 

403 change measured over this time is just under 8%.  It can also be seen that again there is a steady increase in 

404 the RR interval from moment that the drug is administered that is almost identical to the LabChart® 

405 analysis software (Fig. 7).

406

407 Fig 7.  Scatter Graph to show the measured QTc and RR interval for the larvae from the LabChart® 

408 Software.

409

410 Comparison of the LabChart® and MATLAB analysis software

411 To aid comparison between the two analysis techniques the LabChart® and automated data are plotted 

412 together in Fig. 8. As can be seen in Fig. 8A, the measured QTc initially start off very similar until around 7 

413 minutes after the drug has been added, after which the automated MATLAB software consistently records a 
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414 higher QTc than the LabChart® program. This phenomena occurs despite the programs measuring a very 

415 similar RR interval and detected number of beats for each section. The difference between the two analysis 

416 techniques is further illustrated in Fig. 8D, which shows the measured QTc change for both. Although the 

417 patterns are broadly similar, the automated process consistently records larger QTc change than the 

418 LabChart® program.

419

420 Fig 8.   Plots to compare the measured ECG characteristics from LabChart® and MATLAB software. A) 

421 Comparison of measure QTc B) Comparison of Measured RR interval C) Comparison of number of 

422 detected beats, D) comparison of measured QTc change for both programs.

423

424

425 Discussion

426 The automated process is a significant improvement on the approaches that were previously applied to the 

427 zebrafish ECG. This article shows that the automated process that is based on established techniques of 

428 analyzing ECG can sensitively measure pharmacologically induced changes in the ECG.

429 However, it has also been shown that there are differences between the results obtained through the 

430 analysis with the LabChart® software and the automated process. The main difference is that the automated 

431 process consistently measures a larger QTc change that the previously used approach. This can be 

432 explained by the fact the LabChart® program analyses the whole section in one go, compared to the 

433 automated the process that outputs the QTc value for each 40 beats. Assuming that the QTc is not constant 

434 within each section of the ECG recording, the LabChart® software will be less sensitive to subtle variations 

435 in the ECG as it instead finds a global average across the whole section. Even if QTc at the start and the 

436 end of the section are systematically different, the overall result will be somewhere in the middle. Instead, 
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437 by focusing on smaller numbers of beats within the section the automated process provides a truer 

438 reflection of the actual QTc change within the recording and is more able to pick up these smaller changes.

439 The automated process is faster is able to detect the heart beats robustly and has less human 

440 involvement than the LabChart® software, so it represents a significant improvement in the analysis 

441 available when analysis zebrafish larval ECG. Furthermore, there is no reason why this software cannot be 

442 applied to human ECG in the same way.

443
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