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Abstract  

Brain age is an influential index for quantifying brain health, assumed partially to reflect the rate of 

brain aging. We explicitly tested this assumption in two large datasets and found no association 

between cross-sectional brain age and steeper brain decline. Rather, brain age in adulthood was 

associated with early-life influences indexed by birth weight and polygenic scores. The results call for 

nuanced interpretations of cross-sectional indices of the aging brain. 
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Introduction 

 

The concept of brain age is increasingly used to capture inter-individual differences in the integrity of 

the aging brain1. The biological age of the brain is estimated typically by applying machine learning to 

magnetic resonance imaging (MRI) data to predict chronological age. The difference between brain 

age and chronological age (brain age delta) reflects the deviation from the expected norm and is often 

used to index brain health. Brain age delta has been related to brain, mental, and cognitive health and 

proved valuable in predicting outcomes such as mortality1–3. To different degrees, it is assumed that 

brain age delta reflects past and ongoing neurobiological aging processes1,3–6. Hence, it is common to 

interpret positive brain age deltas as reflecting accelerated aging1,4,6. 

 

The assumption that brain age delta reflects an ongoing process of neurobiological aging implies that 

there should be a relationship between cross-sectional and longitudinal estimates of brain age. 

Alternatively, deviation from the expected brain age could show lifelong stability and capture early 

genetic and environmental influences3,7,8. These perspectives offer fundamentally divergent 

interpretations of results showing higher brain age (delta) in groups experiencing specific life events, 

brain disorders, and other medical problems. Here we tested whether brain age is related to 

accelerated brain aging, early-life factors, or a combination of both (Fig. 1a). If brain age reflects 

accelerated brain aging, cross-sectional brain age delta - indexed by the centercept - should be 

positively associated with yearly increases of brain age delta over time (brain age deltalong). If the 

early-life account plays a substantial role, one should observe a relationship between brain age and 

early factors - indexed here as birth weight and polygenic scores for brain age (PGS-BA) given evidence 

of lifelong effects of genetic risk on age-related phenotypes9,10 (Fig. 1b).  
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Results  

 

Chronological age (Fig. 1c) was predicted based on multimodal regional and global features from 

structural T1-weighted (T1w) MRI, including cortical thickness, area, volume, and gray-white matter 

contrast, as well as volume and intensity of subcortical structures (|N| = 365). See list in 

Supplementary Table 1, 2, and Fig. 1d for pairwise correlations with age. The model was trained on 

38682 participants with a single MRI from the UK Biobank11 dataset using gradient boosting as 

implemented in XGBoost (https://xgboost.readthedocs.io) and optimized using 10-fold cross-

validation and a randomized hyper-parameters search. The trained model (Fig. 1e) was then used to 

predict brain age for an independent test dataset of 1372 participants with 2 MRIs each (age range = 

47.2 - 80.6 years, mean [SD] follow-up = 2.3 [0.1] years). The predictions revealed a high correlation 

between chronological and brain age (r = 0.82) with mean absolute error (MAE) = 3.31 years and root 

mean squared error (RMSE) = 4.14 years (Fig. 1f), comparable to other brain age models using UK 

Biobank MRI data12. Brain age delta was calculated as the difference between brain and chronological 

age. We used generalized additive models (GAM) to correct for the brain-age bias, i.e., the 

underestimation of brain age in older individuals and vice versa6. Brain age delta at baseline and 

follow-up were strongly correlated (r = 0.81). To corroborate generalizability, we replicated our results 

using a different machine learning algorithm – a LASSO-based approach12 - and an independent 

longitudinal sample from the Lifebrain consortium13 with up to 11.2 years of follow-up (3292 unique 

participants, age range = 18.0 - 94.4 years). See Supplementary Fig. 1 and Supplementary Table 3 for 

additional information. All the code used to generate the results will be available at 

https://github.com/LCBC-UiO/VidalPineiro_BrainAge. 
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Fig. 1. Theoretical expectations and study characteristics. a) Three hypothetical trajectories leading to higher brain age 

delta. Higher brain age delta can be explained by a steeper rate of neurobiological aging (green), distinct events that led to 

the accumulation of brain damage in the past (yellow), or early-life genetic and developmental factors (purple). The black 
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arrow represents normative values of brain age through the lifespan. b) Brain aging (green) vs. early-life (blue-purple) 

accounts of brain age in older age. For the brain aging notion, cross-sectional brain age (points) relates to the slope of brain 

age as assessed by two or more observations across time (continuous line), reflecting ongoing differences in the rate of aging 

(dashed line, green scale). For the early-life notion, cross-sectional brain age (points), relates to early environmental, genetic, 

and/or developmental differences such as birth weight (blue-purple scale). c) Relative age distribution for the UK Biobank 

test and training datasets. d) Age variance explained (r2) for each MRI feature in the training dataset. Features are grouped 

by modality and ordered by the variance explained. e) Brain age model as estimated on the training (n = 38682), and f) test 

datasets (participants = 1372; two observations each). In e) and f), lines represent the identity (grey), the linear (green), and 

the GAM (orange) fits of brain age by chronological age. Confidence intervals represent standard errors (SE). In d) gwc = 

gray-white matter contrast, (c) = cortical, and (s) = subcortical.  

 

First, we tested whether cross-sectional brain age delta predicted brain age deltalong using linear 

models controlling for age, sex, site, and estimated intracranial volume (eICV). We selected the 

centercept (mean), instead of baseline brain age delta, to avoid statistical dependency between 

indices. We found a weak significant negative relation between cross-sectional and brain age deltalong 

in the UK Biobank (β = -0.016 [± 0.008] year/delta, t (p) = -2.0 (.04), r2 = .002, Fig. 2a). Cross-sectional 

and brain age deltalong were unrelated using a LASSO regression approach (β = -0.003 [± 0.006] 

year/delta, t (p) = -0.5 (.65), r2 = .0001, Fig. 2b), and in the Lifebrain replication sample (β = -0.007 [± 

0.01] year/delta, t (p) = -0.6 (.53), r2 = .0001, Fig. 2c). Post-hoc equivalence tests showed that positive 

relationships larger than β = 0.01 year/delta would be rejected in all three analyses thus confirming a 

lack of a meaningful relationship between cross-sectional and longitudinal brain age (Methods and 

Supplementary Fig. 2). Lifebrain results remained unaffected after restricting the analysis to 

participants with long follow-up intervals (>4 years). See Methods and Supplementary Fig. 3 for 

details.  
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Fig. 2. Relationship between cross-sectional and longitudinal brain age delta. a) Main analysis using the UK Biobank dataset 

and boosting gradient (n = 1372). b) Replication analyses using a different training algorithm (LASSO; n = 1372) and c) an 

independent dataset (Lifebrain; n = 1500). XGB = boosting gradient as implemented in XGBoost. Confidence intervals 

represent SE. 

 

Next, we tested if birth weight was associated with brain age delta or change in brain age delta. Linear 

mixed models were used to fit time (from baseline; years), birth weight, and its interaction on brain 

age delta, using age at baseline, sex, site, and eICV as covariates. Birth weight was significantly related 

to brain age delta (β = -0.70 [± .30] year/kg, t (p) = -2.3 (.02), r2 = .009, Fig. 3a) but not to delta change 

(β = 0.02 [± .09] year/kg, t (p) = 0.3 (.79)). Birth weights were limited to normal variations at full-term 

(from 2.5 to 4.5 kg) (n = 770 unique individuals) but see Supplementary Fig. 4 for results with varying 

cut-offs. The results were not affected by excluding individuals born in multiple births (p = .02) and 

were replicated using the LASSO approach (β = -0.79 [± .29] year/kg, t (p) = -2.8 (0.006), r2 = .009, Fig. 

3b).  

 

Finally, we tested whether polygenic scores for brain age delta (PGS-BA) related to brain age delta 

and change in brain age delta (n = 1339). PGS-BA was computed using a mixture-normal model based 

on a genome-wide association study (GWAS) of the brain age delta phenotype in the UK Biobank 

training dataset. To test the association, linear mixed models were used as above with 10 additional 
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covariates accounting for population structure. See Supplementary Fig. 5 for GWAS results. PGS-BA 

was positively associated with brain age delta (β = 0.54 [± 0.09] year/kg, t (p) = 9.4 (< .001), r2 = .02, 

Fig. 3c) and negatively associated with brain age delta change (β = -0.06 [± .03] year/kg, t (p) = -2.4 

(0.02)) in the independent test dataset. Likewise, PGS-BA was associated with brain age delta derived 

from the LASSO algorithm (β = 0.53 [± 0.09] year, t (p) = 10.4 (< 0.001), r2 = .02) but not to brain age 

delta change (β = -0.001 [± .02] year, t (p) = 0.0 (1.0)).  

 

Fig. 3. Relationship between cross-sectional brain age delta and birth weight. a) Main analysis using the UK Biobank dataset 

and boosting gradient (n = 770). b) Replication analyses using a different training algorithm (LASSO) (n = 770). c) Relationship 

between polygenic scores for brain age delta and brain age delta (n = 1339). XGB = boosting gradient as implemented in 

XGBoost. Confidence intervals represent SE. 
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Discussion 

 

Altogether, these findings do not support the claim that cross-sectional brain age is related to ongoing 

brain aging. Rather, brain age seems to reflect early-life influences, and only to a negligible degree 

actual brain change in middle and old adulthood. A lack of relationship between brain age and rate of 

brain aging can potentially be explained by the effect of circumscribed events such as isolated insults 

or detrimental lifestyles that occurred in the past resulting in higher but not accelerating, brain age. 

Yet, variations in brain age can equally reflect developmental and early-life differences and show 

lifelong stability. Brain-age paradigms are generally ill-suited for disentangling between these sources 

of variation but are often interpreted in line with the former. This assumes that variation in brain age 

largely results from the accumulation of damage and insults during the lifespan, with similar starting 

points for everyone. An exception is Elliott and colleagues3, who found that middle-aged individuals 

with higher brain age already exhibited poorer cognitive function and brain health at age three years. 

This fits a robust corpus of literature showing effects of lifelong, stable influences as indexed by 

childhood IQ14, genetics10, and neonatal characteristics8 on brain and cognitive variation in old age.  

 

Strictly speaking, brain age delta is a prediction error from a model that maximizes the prediction of 

age in cross-sectional data. Prediction errors also reflect noise, attenuating any relation between 

cross-sectional and longitudinal brain age. The Lifebrain replication sample with more observations 

and longer follow-up reduces the likelihood of noise as the main factor behind the lack of relationship. 

Furthermore, previous studies have found that changes in brain age are partly heritable15, suggesting 

that it captures biologically relevant signal, although with substantially different origins from cross-

sectional brain age. Without longitudinal imaging, one should thus not interpret brain age as 

accelerated aging. This aligns with theoretical claims and empirical observations that covariance 

structures capturing differences between individuals do not necessarily generalize to covariance 
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structures within individuals16,17. Neither does indirect evidence, via associations with other bodily 

markers of aging or with cognitive decline, yield decisive support for cross-sectional brain age as a 

marker of individual differences in brain aging2,3,18. Relationships between cross-sectional and 

longitudinal brain age may thus be restricted to specific disease groups such as Alzheimer’s disease 

patients18 where interindividual brain variation is dominated by the prevailing loss of brain structural 

integrity. 

 

The results further showed that birth weight, which reflects differences in genetic propensities and to 

a large degree prenatal environment19, explained a modest portion of the variance in brain age. Subtle 

variations in birth weight are associated with brain structure early in life and present throughout the 

lifespan8. This association should be considered as proof-of-concept that the metric of brain age 

reflects the distant past more than presently ongoing events in the morphological structure of the 

brain. This was confirmed by the consistent association between PGS-BA and brain age delta but not 

with brain age delta change. Since PGS-BA was computed based on cross-sectional brain age delta, 

this relationship may not be surprising, but still suggests a different genetic foundation for longitudinal 

brain age. These findings link with evidence that brain development is strongly influenced by genetic 

architecture that, in interaction with environmental factors, lead to substantial, long-lasting effects on 

brain structure. By contrast, aging mechanisms seem to be more related to limitations of maintenance 

and repair functions and have a more stochastic nature20. 

 

As distance from birth increases, chronological age as a marker of individual development is reduced. 

The results call for caution in interpreting brain-derived indices of aging based on cross-sectional MRI 

data and underscores the need to rely on longitudinal data whenever the goal is to understand the 

trajectories of brain and cognition in aging.  
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Methods 

 

Participants and Samples 

The main sample was drawn from the UK Biobank neuroimaging branch 

(https://www.ukbiobank.ac.uk/)11. 38682 individuals had MRI available at a single time point and were 

used as the training dataset. 1372 individuals had longitudinal data and were used as the test dataset. 

The present analyses were conducted under data application number 32048. The Lifebrain dataset13 

included datasets from 5 different major European Lifespan cohorts: the Center for Lifespan Changes 

in Brain and Cognition cohort (LCBC, Oslo)8, the Cambridge Center for Aging and Neuroscience study 

(Cam-CAN)21,22, the Berlin Study of Aging-II (Base-II)23, the University of Barcelona cohort (UB)24,25, and 

the BETULA project (Umeå)26. Furthermore, we included data from the Australian Imaging Biomarkers 

and Lifestyle flagship study of ageing (AIBL)27. In addition to cohort-specific inclusion and exclusion 

criteria, individuals aged < 18 years, or with evidence of mild cognitive impairment, or Alzheimer’s 

Disease were excluded from the analyses. 1792 individuals with only one available scan were used for 

the Lifebrain training dataset. 1500 individuals with available follow-up of > 0.4 years were included 

in the test dataset. Individuals had between 2 and 8 available scans each. Sample demographics for 

the UK Biobank and the Lifebrain samples are provided in Supplementary Table 3. See also Fig. 1c and 

Supplementary Fig. 1 for a visual representation of the age distribution in the UK Biobank and the 

Lifebrain datasets. UK Biobank (North West Multi-Center Research Ethics Commitee [MREC]; see also 

https://www.ukbiobank.ac.uk/the-ethics-and-governance-council) and the different cohorts of the 

Lifebrain replication dataset (Supplementary Table 4) have ethical approval from the respective 

regional ethics committees . All participants provided informed consent. 

 

MRI acquisition and preprocessing 

See https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf for details on the UK Biobank 

T1-weighted (T1w) MRI acquisition. UK Biobank and Lifebrain MRI data were acquired with 3 and 10 
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different scanners, respectively. T1w MRI acquisition parameters for both the Lifebrain and the UK 

Biobank are summarized in Supplementary Table 5.  

 

We used summary regional and global metrics derived from T1w data. For UK Biobank we used the 

imaging-derived phenotypes developed centrally by UK Biobank researchers11 and distributed via the 

data showcase (http://biobank.ctsu.ox.ac.uk/crystal/index.cgi). See preprocessing details in 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf. This procedure yielded 365 

structural MRI features, partitioned in 68 features of cortical thickness, area, and gray-white matter 

contrast, 66 features of cortical volume, 41 features of subcortical intensity, and 54 features of 

subcortical volume. See the list of features in Supplementary Table 1 and 2. Lifebrain data were 

processed on the Colossus processing cluster, University of Oslo. Similar to the UK Biobank pipeline, 

we used the fully automated longitudinal FreeSurfer v.6.0. pipeline28 for cortical reconstruction and 

subcortical segmentation of the structural T1w data (http://surfer.nmr.mgh.harvard.edu/fswiki)29–31 

and used similar atlases for structural segmentation and feature extraction.  

 

Birth weight 

We used birth weight (Kg) from the UK Biobank (field #20022). Participants were asked to enter their 

birth weight at the initial assessment visit, the first repeat assessment visit, or the first imaging visit. 

In the case of multiple birth weight instances, we used the latest available input. n = 894 participants 

from the test dataset had available data on birth weight. The main analysis was constrained to normal 

variations in birth weight between 2.5 and 4.5 Kg (n = 770)32 due to lower reliability of extreme scores 

and to tentatively remove participants with severe medical complications associated with 

prematurity.  
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Genetic preprocessing 

Detailed information on genotyping, imputation, and quality control was published by Bycroft and 

colleagues33. For genetic analyses, we only included participants with both genotypes and MRI scans. 

Following the recommendations from the UK Biobank website, we excluded individuals with failed 

genotyping, that had abnormal heterozygosity status, or that withdrew their consents. We also 

removed participants that were genetically related – up to the third degree – to at least another 

participant as estimated by the kinship coefficients as implemented in PLINK34. For the genome-wide 

association study (GWAS) we used 38163 individuals from the training dataset. Polygenic risk scores 

were computed to the test dataset consisting of 1339 individuals with longitudinal MRI. 

 

GWAS 

We performed GWAS analysis on the training dataset and the brain age delta-corrected phenotype 

(based on a generalized additive model [GAM]) fit. To control for possible effects in the structure of 

the population, we computed the top 10 principal components (PCs) using the PLINK command –pca 

on a decorrelated set of autosome single nucleotide polymorphisms (SNPs). The set of SNPs 

(n=101797) were generated by using the PLINK command, --maf 0.05, --hwe 1e-6, --indep-pairwise 100 

50 0.1. The –glm function was used to perform GWAS including age, sex, and the top 10 PCs as 

covariates. See Manhattan and quantile-quantile (QQ) plots in Supplementary Fig. 5. Note that results 

show a similar profile as in Jonsson and colleagues35. 

 

Polygenic scores (PGS)  

The GWAS results for the training dataset were used to compute PGS (PGS-BA) in the independent 

test dataset (n = 1339 participants). We used the recently developed method PRS-CS36 to estimate the 

posterior effect sizes of SNPs that were shown to have high quality in the HapMap data37. Rather than 

estimating the polygenicity of brain age delta from our data, we assumed a highly polygenic 
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architecture for brain age delta by setting the parameter --phi=0.0138. The remaining parameters of 

PRS-CR were set to the default values. PGS was based on 654725 SNPs and was computed on the 

independent test data using the --score function from PLINK. We also computed the population 

structures PCs’ in the test dataset using the same procedure as in the training dataset. 

 

Statistical analyses 

The code used in this manuscript is available at https://github.com/LCBC-UiO/VidalPineiro_BrainAge. 

All statistical analyses were run with R version 3.6.3 https://www.r-project.org/. We used the UK 

Biobank as the main sample and the Lifebrain cohort for independent replication. The main 

description refers to the UK Biobank pipeline, though Lifebrain replication followed identical steps 

unless otherwise stated. For replication across machine learning pipelines, we used a LASSO regression 

approach for age prediction, adapted from https://james-cole.github.io/UKBiobank-Brain-Age/. See 

more details in Cole, 202012. The correlation between LASSO-based and Gradient Boosting-based brain 

age deltas was .80. 

 

Brain age prediction 

We used machine learning to estimate each individuals’ brain age based on a set of regional and global 

features extracted from T1w sequences. We estimated brain age using gradient tree boosting 

(https://xgboost.readthedocs.io). We used participants with only one MRI scan for the training dataset 

(n = 36682) and participants with longitudinal data as test dataset (n = 1372). All variables were scaled 

prior to any analyses using the training dataset metrics as reference.  

 

The model was optimized in the training set using a 10-fold cross-validation randomized hyper-

parameters search (50 iterations). The hyper-parameters explored were number of estimators [100, 

600, 50], learning rate (0.01, 0.05, 0.1, 0.15, 0.2), maximum depth [2, 8, 1], gamma regularisation 
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parameter [0.5, 1.5, 0.5], and min child weight [1, 4, 1]. The remaining parameters were left to default. 

The optimal parameters were: number of estimators = 500, learning rate = 0.1, maximum depth = 5, 

gamma = 1, and min child weight = 4 predicting r2 = 0.68 variance in chronological age with mean 

absolute error (MAE) = 3.41 and root mean squared error (RMSE) = 4.29. See visual representation in 

Fig. 1f. 

 

Next, we recomputed the machine learning model using the entire training dataset and the optimal 

hyper-parameters and used it to predict brain age for the test dataset. The predictions revealed a high 

correlation between chronological and brain-predicted age (r = 0.82) with MAE = 3.31 years and RMSE 

= 4.14 years (Fig. 1e). These metrics are similar or better than other brain age models using UK Biobank 

MRI data12,39, and than the cross-validation diagnostics. Brain age delta was estimated as the 

difference between brain age and chronological age. We used GAM to correct for the brain-age bias 

estimation where brain age is underestimated in older ages6; r = -0.54 for the test dataset. Note that 

we used GAM fittings as estimated in the training dataset so delta values in the test dataset are not 

centered to 0. The correlation between brain age delta corrected based on the training vs. the test fit 

was r > 0.99. Also, GAM-based bias correction led to similar brain age delta estimations to linear and 

quadratic-based corrections (r > 0.99). 

 

Higher level-analysis 

Relationship between cross-sectional and longitudinal brain age. For each participant, we computed 

the mean brain age delta across the two MRI time points and the yearly rate of change (brain age 

deltalong). We selected mean, instead of baseline brain age delta, to avoid statistical dependency 

between both indices40,41. Brain age deltalong was fitted by mean brain age delta using a linear 
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regression model, which accounted for age, sex, site, and estimated intracranial volume (eICV). We 

used mean eICV across both time points.  

 

Relationship between brain age PGS and cross-sectional and longitudinal brain age. This association 

was tested using linear mixed models with time from baseline (years), PGS-BA, and its interaction on 

brain age delta. Age at baseline, sex, site, eICV, and the 10 first principal components for population 

structure were used as covariates. The principal components of population structure were added to 

minimize false positives associated with any form of relatedness within the sample. Effects of birth 

weight on brain age. Linear mixed models were used to fit time, birth weight, and its interaction on 

brain age delta, using age at baseline, sex, site, and eICV as covariates. We explored the consistency 

of the results by modifying the birth weight limits in a grid-like fashion [0.5, 2.7, 0.025] and [4.2, 6.5, 

0.025] for minimum and maximum birth weight (Supplementary Fig. 4). Self-reported birth weight is 

a reliable estimate of actual birth weight. However, extreme values are either misestimated or reflect 

profound gestational abnormalities42,43. Assumptions were checked for the main statistical tests using 

plot diagnostics. Variance explained for single terms refers to unique variance (UVE), which is defined 

as the difference in explained variance between the full model and the model without the term of 

interest. For linear mixed models, UVE was estimated as implemented in the MuMIn r-package.    

 

Equivalence tests. Post-hoc equivalence tests were carried to test for the absence of a relationship 

between cross-sectional and brain age deltalong
44. Specifically, we used inferiority tests, to test 

whether a null hypothesis of an effect as least as large as Δ (in years/delta) could be rejected. We re-

run the three main models assessing a relationship between cross-sectional and longitudinal brain age 

delta (UK Biobank trained with boosting gradient, UK Biobank trained with LASSO, and Lifebrain 

trained with boosting gradient) varying the right-hand-side test (Δ) [-0.02, 0.05, 0.001] (p < 0.05, one-

tailed) (Supplementary Fig. 2). 
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Lifebrain-specific steps 

Features. The Lifebrain cohort included |N| = 372 features. It included 8 new features compared to 

the UK Biobank dataset, whereas one feature was excluded (new features: left and right temporal 

pole area volume and thickness, cerebral white matter volume, cortex volume; excluded feature: 

ventricle choroid). See age-variance explained in Supplementary Table 1 and 2 as estimated with 

GAMs. Quality control. Prior to any analysis, we tentatively removed observations for which >5% of 

the features fell above or below 5 SD from the sample mean. The application of this arbitrary high 

threshold led to the removal of 10 observations. We considered these MRI data to be extreme outliers 

and likely to be artifactual and/or contaminated by important sources of noise. Also, before brain 

prediction, we tentatively removed variance associated with the different scanners using generalized 

additive mixed models (GAMM) and controlling for age as a smooth factor and a subject-identifier as 

random intercept. This correction was performed due to differences in age distribution by scanner 

and lack of across scanner calibration. Hyperparameter search and model diagnostics. The optimal 

parameters for the Lifebrain replication sample were: number of estimators = 600, learning rate = 

0.05, maximum depth = 4, gamma = 1.5, and min child weight = 1. Using cross-validation, the model 

predicted r2 = 0.92 of the age-variance with MAE = 4.75 and RMSE = 6.31. Brain age was 

underestimated in older age (bias r = -0.33). Model prediction. The age-variance explained by brain 

age was r = 0.90 with MAE = 4.68 and RMSE = 6.06. Brain age was underestimated in older age (bias r 

= -0.25) (Supplementary Fig. 3). Higher level-analysis. For each individual, mean brain age delta was 

considered as the grand-mean brain age delta across the different MRI time points. To compute brain 

age deltalong we set for each participant a linear regression model with observations equal to the 

number of time points that fitted brain age delta by time since the initial visit. Slope indexed change 

in brain age delta/year. The relationship between mean and brain age deltalong was tested using linear 

mixed models controlling for age, sex, and eICV as fixed effects, and using a site identifier as a random 

intercept. Note that eICV was identical across timepoints as a result of being estimated through the 

longitudinal FreeSurfer pipeline. 
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We performed control analyses to account for possible effects of varying follow-up intervals and to 

consider the presence of young adults in the Lifebrain sample. We repeated the analyses including 

follow-up interval as an additional covariate, restricting the analysis to individuals with a follow-up of 

>4 years (n = 424). The relationship between cross-sectional and brain age deltalong was not significant 

in both cases (β = -0.008 [± 0.01] year/delta, t (p) = -0.7 (.45); β = -0.008 [± 0.007] year/delta, t (p) = -

1.1 (.26)). We could not obtain the required information on genetics and birth weight to replicate the 

analyses supporting the early-life account.  
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Data availability 

The raw data were gathered from the UK Biobank, the Lifebrain cohort, and the AIBL. Raw data 

requests are specific to each cohort. UK Biobank and AIBL data are available upon application to UK 

Biobank and at https://aibl.csiro.au upon corresponding approvals. For the Lifebrain cohorts, requests 

for raw MRI data should be submitted to the corresponding principal investigator. See contact details 

in Supplementary Table 5. Note that MRI data availability for some individuals may be restricted as 

participants did not consent to share publicly their data. Different restrictions and sample agreements 

might be required. 
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Code availability 

Statistical analyses in this manuscript will be available at https://github.com/LCBC-

UiO/VidalPineiro_BrainAge. All analyses were performed in R 3.6.3. The scripts were run on the 

Colossus processing cluster, University of Oslo. UK Biobanks’ data acquisition, MRI preprocessing, and 

feature generation pipelines are freely available (https://www.fmrib.ox.ac.uk/ukbiobank). For the 

Lifebrain cohorts, the image acquisition details are summarized in Supplementary Table 4. MRI 

preprocessing and feature generation scripts were performed with the freely available FreeSurfer 

software (https://surfer.nmr.mgh.harvard.edu/). For bash-sourcing scripts, please contact the 

corresponding author.  
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