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A key concept in reinforcement learning (RL) is that of a state space. A state space is an abstract 
representation of the world using which statistical relations in the world can be described. The simplest 
form of RL, model free RL, is widely applied to explain animal behavior in numerous neuroscientific 
studies. More complex RL versions assume that animals build and store an explicit model of the world 
in memory. To apply these approaches to explain animal behavior, typical neuroscientific RL models 
make assumptions about the underlying state space formed by animals, especially regarding the 
representation of time. Here, we explicitly list these assumptions and show that they have several 
problematic implications. We propose a solution for these problems by using a continuous time Markov 
renewal process model of the state space. We hope that our explicit treatment results in a serious 
consideration of these issues when applying RL models to real animals. 

Predicting rewards is essential for the sustained fitness of animals. Since animals (including humans) experience 
events in their life along the continuously flowing dimension of time, predicting rewards fundamentally requires 
a consideration of this timeline (Fig 1). Several models have been proposed for how animals learn to predict 
rewards based on their experience (Balsam et al., 2010; Brandon et al., 2003; Dayan, 1993; Gallistel and Gibbon, 
2000; Gallistel et al., 2019; Pearce and Hall, 1980; Rescorla and Wagner, 1972; Schultz, 2016; Sutton and Barto, 
1998; Wagner, 1981). Among these, the most widely used class of models in neuroscience is reinforcement 
learning (RL). The core concept of RL models is that animals make an initial prediction about upcoming reward, 
calculate a prediction error — the difference between the experienced reward and the predicted reward, and 
then update their prediction based on this prediction error. While RL models were inspired by psychological 
models such as the Rescorla-Wagner (Rescorla and Wagner, 1972) or the Pearce-Hall (Pearce and Hall, 1980) 
models, mathematically rigorous versions of it have borrowed extensively from concepts in computer science. 

Briefly, RL contends that the learning agent (e.g. 
real animals) represents the structure of their 
world in a “state space” that abides by simplified 
principles such as Markov chains (Niv, 2009; 
Sutton and Barto, 1998). A state is any abstract 
representation of observable or unobservable 
events in their world, and Markov chains are a 
special kind of state space in which transitions 
between states do not depend on the history of 
previously experienced states. Commonly used 
Markov chain models discretize the flow of time 
(Niv, 2009; Schultz et al., 1997) or assume 
temporal basis functions during intervals 
between events (Gershman et al., 2014; Ludvig 
et al., 2008, 2012; Petter et al., 2018). These 
formulations have an intrinsic mathematical 
simplicity to them, which makes rigorous 
mathematical calculations possible (e.g. the 
Bellman equation for value update). Here, we 

show that these simplifying assumptions have problematic implications when applied to learning in real animals, 
as they often do not naturally account for the timeline of experience of real animals. Our hope is that the explicit 
treatment considered here stimulates serious considerations of these issues. As a possible solution to these 
issues, we present an alternate formulation of the state space for animals that provides a rich representation of 
their world, while naturally accounting for the continuous passage of time.  

Fig 1 Animals experience events in their life in a timeline 
along the continuously flowing dimension of time. Thus, 
prediction of rewards requires a consideration of the flow of 
time. Here, external cues, internally generated actions and 
rewards are shown by separate colors. Distinct types of 
events within these groups are shown by individual boxes 
along the y-axis. 
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Example illustrative task 

Perhaps the simplest RL task for animals is cue-reward learning. Most commonly, this is studied in Pavlovian 
conditioning experiments in which an environmental cue is predictive of an upcoming reward (Pavlov, 1927). 
Often, there is a delay between when the cue turns off and the subsequent reward delivery (e.g. Bangasser et 
al., 2006; Beylin et al., 2001; Coddington and Dudman, 2018; Kobayashi and Schultz, 2008; Schultz et al., 1997). 
This variant of the task is known as trace conditioning. We will use this simple illustrative example throughout 
this paper. The main reason for doing so is to show that even the simplest tasks require problematic assumptions. 
Indeed, the problems laid out here become more severe for tasks requiring reward predictions based on actions. 
Another reason is that this type of learning, i.e. cue followed by delay followed by reward, is highly ethologically 
relevant. For instance, for wild foragers, environmental landmarks can often act as “cues” predictive of a reward 
after some distance (or delay) (Chittka et al., 1995; Wystrach et al., 2019a, 2019b). Similarly, for many animals, 
cues reflecting the end of winter are predictive of an increased availability of food reward. It is then perhaps not 
surprising that even insects show evidence of such learning (Chittka et al., 1995; Dylla et al., 2013; Menzel, 
2012; Toure et al., 2020; Wystrach et al., 2019a). We will first discuss the common mathematical formulation for 
representing state space in this task, before discussing implicit assumptions and their problematic implications. 

Markov Chains 

The mathematical concept of Markov chains is the building block for state space representations in RL. Briefly, 
a Markov chain is formed by a set of states, S = {1, 2, …, n}. An implicit assumption is that all the relevant states 
in the world have been specified in S.  The process is assumed to start from one state and successively moves 
to another state (possibly itself) with a probability pij (where i and j are indices for the starting and ending states 
and can be equal). Each move is called a step. Each step results in a transition, which could be a self-transition 
to the same state. Crucially, the “transition probabilities” from a given state do not depend on the history of states. 
If we index the step number (a measure of time) by a subscript t, this means that p(st|st-1, st-2, …, s1)=p(st|st-1). 
This absence of history dependence is known as the Markov property, and allows some convenient mathematical 
representations.  

The state space in RL is typically such a Markov chain. In more realistic RL formulations, the animal can also 
take a set of actions A={a1, …,am} that transitions the agent from one state to another with a conditional probability 
of p(sj | si, ak). These transition probabilities can collectively be represented by a transition matrix P. The state 
space for an RL agent is fully described by S, A and P. This more general state space that includes an ability of 
agents to interact with its states using actions is the Markov Decision Process used in RL. 

For simplicity, we will only consider the example illustrative task discussed above, in which a reward follows a 
cue after a delay. Hence, we will omit considerations of actions and the dependence of P on actions. In this task, 
the states can be minimally specified as the cue state and the reward state. Representing these stimuli as states 
allow an animal to store the sensory properties of these states in memory. For instance, the animal could learn 
that an auditory cue has a specific set of sensory attributes such as frequency profile, loudness, duration etc. 
Similarly, the sensory properties of a type of reward can be represented as a reward state. These various 
attributes can be stored as part of the memory of that state. Additionally, it is assumed that animals learn a 
representation of a scalar value for reward. In RL, the reward values are typically denoted by R(s, a), a scalar 
value associated with each state-action pair. For our purpose, we will denote the reward function by R(s). For 
the cue and reward state formalism that we adopt, R(cue)=0 and R(reward)=reward value. Thus, S, P, and R 
completely describe the cue-reward task of interest. 

Dealing with time in Markov chains 

The biggest problem with the above state space model is that there is no representation of time. The task of 
interest contains a delay between the cue and reward, and a delay from the reward to the next presentation of 
the cue (typically called the intertrial interval or ITI). However, there is no representation of these delays in the 
above Markov chain.  

Neuroscience-related RL models solve this problem using the idea of “microstates” (Fig 2). The simplest such 
model assumes that the delay from cue to reward is represented by a series of states of equal duration (example 
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1 in Fig 2). This is known as the complete serial compound model of the state space (Moore et al., 1998; Schultz 
et al., 1997; Sutton and Barto, 1990). Here, the set of states is S={cue, delay1, delay2, … ,delayn, reward}. This 
representation (with scalar reward values associated with each state) was used in early work to model temporal 
difference learning in tasks such as the example considered here (Schultz et al., 1997). An immediate problem 
with this model is that it does not represent the ITI, an interval that has been shown repeatedly to affect 
conditioning (Gibbon and Balsam, 1981; Holland, 2000; Kalmbach et al., 2019; Lattal, 1999). The ITI is almost 
always a random variable with a specified probability distribution. Since Markov chains assume that all the states 
must be specified, there is no obvious way to break up the ITI into a fixed set of equal duration states obeying 
the Markov property. This problem is usually avoided by only modeling the “trial period”, i.e. the delay between 

cue and reward. However, this is evidently an 
incomplete representation of the task, the stated goal 
of a state space. Nevertheless, this model has proven 
to be quite successful at explaining numerous aspects 
of conditioning and thus, has been referred to as a 
“useful fiction” (Ludvig et al., 2012; Sutton and Barto, 
1998). 

An extension of this model is to treat the states in the 
delay not as fixed duration states, but as a set of basis 
functions (also known as microstates or microstimuli) 
(Ludvig et al., 2008, 2012) (example 2 in Fig 2). A 
convenient idea is that the delay after a cue is spanned 
by a consecutive set of Gaussian states (Ludvig et al., 
2008, 2012). In this view, each subsequent state has 
progressively smaller amplitude and larger width (to 
approximate scalar timing). This model of state space 
has benefits over the complete serial compound, as it 
allows efficient generalization and flexibility due to the 
non-zero value of many microstates at any given 

moment (Gershman et al., 2014; Ludvig et al., 2008, 2012; Petter et al., 2018). There is also some evidence for 
microstate-like activity patterns in brain regions such as the striatum (Mello et al., 2015), hippocampus 
(MacDonald et al., 2011; Pastalkova et al., 2008; Salz et al., 2016), and the prefrontal cortex (Tiganj et al., 2017). 
Remarkably, these neural representations can flexibly scale when the delays are altered (MacDonald et al., 
2011; Mello et al., 2015). Thus, this microstate model is more consistent with neural data and is functionally 
advantageous over the complete serial compound. There are many variants of this general idea of a series of 
microstates (i.e. sequential set of delay states) following a cue (Brandon et al., 2003; Desmond and Moore, 1988; 
Grossberg and Schmajuk, 1989; Machado, 1997; Mondragón et al., 2014; Vogel et al., 2003; Wagner, 1981). 
We will not review these in detail here.  

Implicit assumptions 

The fundamental premise of the above models is that the delay between different environmental stimuli is a 
sequence of states in an animal’s state space. By breaking the flow of time into such sequences of states, these 
models make some implicit assumptions. These are often not immediately obvious. We will list some here. 

1. Every cue has its own associated set of microstates: the idea of microstates works only if separate cues 
have separate sets of microstates. Thus, if the animal is learning that cue1 predicts reward1 after delay1 
and cue2 predicts reward2 after delay2, the set of microstates during delay1 must be different from the 
set of microstates during delay2. If not, value learning will be mixed up between the two cues and cannot 
appropriately assign credit. 

2. The microstates are specified before value learning: this is may be the most important assumption. The 
entire idea of RL (with value updates to satisfy the Bellman equation) works only if the state space is 
specified. Thus, before value learning can occur, the set of sequential microstates following a cue must 
already exist. We will discuss the problems with this assumption in more detail in the next section. 

Fig 2. Common models for dealing with delays 
between cue and reward assume that such delays 
are spanned by multiple microstates. Two examples 
are shown here (see text). As can be seen, these 
formulations assume that the delay periods 
themselves are represented by many states to which 
an RL algorithm can attach value. 
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3. Number and form of microstates are free parameters: another major assumption is that the number and 
form (e.g. are the basis functions Gaussian?) of microstates are treatable as free parameters for model-
fitting. While the lack of principles for the formation of microstates is an obvious problem, this assumption 
is especially problematic as conditioning in the laboratory can occur over delays of milliseconds or even 
twenty four hours (Etscorn and Stephens, 1973; Hinderliter et al., 2012; Kehoe and Macrae, 2002). It is 
unclear what, if any, principles govern the formation of microstates in the brains of real animals over 
spans of five orders of magnitude. 

4. The microstates during the cue to reward delay are fundamentally different from the microstates during 
the ITI: In the microstate framework, different delay periods that contain no external stimuli must be 
treated differently. Thus, the set of microstates during the cue to reward delay must be different from the 
set of microstates from the reward to cue delay. An explicit treatment of this formulation is found in the 
SOP model (Wagner, 1981). 

5. Learning occurs in trials: another implicit assumption is that value learning occurs progressively by 
accumulation across trials. It is this trial duration that is assumed to be split into microstates. However, 
experiments such as the truly random control (Rescorla, 1967, 1968) throw the validity of this assumption 
into question. In this experiment, cues and rewards are both delivered by independent Poisson processes 
and hence, have no statistical relation to each other. Worse, because the events are Poisson processes, 
they are equally likely to occur at any moment in time. In this case, it is unclear what, if anything, can be 
treated as a “trial” in the animal’s brain.  

6. Microstates of a cue must be reproducible across repeated presentations: for learning to occur, if cue1 
evokes a set of microstates on one presentation, the same set of microstates must be evoked on the 
next presentation, to ascribe value to the “correct” microstate. 

In the next section, we take a deeper dive into these assumptions and show that the apparent simplicity of the 
microstate model belies a gargantuan complexity of representation imputed in animal brains. We are by no 
means the first to discuss some of the problematic implications of these assumptions (Gallistel et al., 2014, 2019; 
Hallam et al., 1992; Hammond and Paynter Jr, 1983; Luzardo et al., 2017). Nevertheless, the following section 
focuses on a particularly problematic aspect of these assumptions that has not received as much discussion in 
the literature. 

How bad is the problem really? 

The problem is brought into sharp relief when considering initial learning. Remember that the whole point of the 
formulation of a state space is to explain reward prediction learning. Thus, we will now critically examine the 
implications of these assumptions for initial learning. 

Imagine an animal that is first experiencing a cue that will be followed later by a reward. On this first experience, 
the animal knows nothing of the significance of this cue (other than its general “salience” or intensity). Indeed, 
cues are galore in the environments of animals. Nearly every sensory feature of the world could in principle be 
a cue predictive of a future reward. For instance, may be a sound is predictive of a future reward. If an animal 
indeed learns to predict this reward, the above RL algorithms would require the assumption that the sound 
evokes microstates until the reward before first learning the relationship of the sound to reward. This is the whole 
point of RL: it is a model of learning after all.  

What does this imply? This implies that any cue that could in principle be predictive of reward must evoke 
microstates during every presentation. Every sensory stimulus could in principle be such a cue. Hence, for the 
microstate model to work, animal brains must produce microstates for every sensory stimulus in the experience 
of the animal. Worse, if cue1 was experienced on two separate days, the set of microstates that were evoked by 
cue1 should be the same. Thus, the brain must store in memory all the microstates for the nearly infinite number 
of sensory stimuli and they must all be discriminable and reliably reproducible on repeated presentations of the 
stimuli.  

The problem is actually much worse. This is because the animal does not know at what delay a reward will follow 
a cue on the first experience of the cue. Indeed, these delays can span five orders of magnitude (Etscorn and 
Stephens, 1973; Hinderliter et al., 2012; Kehoe and Macrae, 2002). As mentioned above, the data that are often 
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taken as evidence of the existence of neural microstates show that these time representations remap when the 
delay changes (MacDonald et al., 2011; Mello et al., 2015). How then does the brain know what exact microstates 
to trigger on the first presentation of the cue, much before the delay to reward is known or learned? Worse still, 
the brain also must trigger microstates during the delay from the reward to the next cue, for every reward and 
cue, to learn the distribution of intertrial intervals. How does the brain produce distinct microstates during the ITI 
and delay to reward on the first presentation of the cue and reward? How does the brain know that two delay 
periods during which no external sensory stimuli exist are fundamentally different before learning that there is a 
relationship between cue and reward? How also does the brain know that delays between different cue-reward-
cue pairs are different? It is hopefully clear from this examination that the assumption of microstates, while 
seemingly simple, introduces an untenable solution for an animal brain. Solving these issues is crucial as these 
issues riddle application of RL to animal learning in even one of the simplest use cases considered here.  

One approach that has proven quite successful at explaining numerous timing phenomena related to 
conditioning is the combination of a Rescorla-Wagner rule applied to a drift diffusion model of timing (Luzardo et 
al., 2017). In this model, cues are postulated to initiate an accumulating timer with a fixed threshold and an 
adaptable slope. A learning rule adapts the slope based on the knowledge of when the reward happens, thereby 
adapting the slope of the accumulator to eventually time the cue-reward delay appropriately. This model explains 
an impressive array of phenomena. It also has a major advantage over the microstate models as it does not 
postulate an arbitrary number of microstates that span time delays. Nevertheless, it too suffers from similar 
issues as above when applied to initial learning. For it to work for initial learning, there must be a timer for every 
cue that could in principle be predictive of reward. As we laid out above, there are almost an infinite number of 
such cues. Further, when a timer is initiated at cue onset on the first time that the cue was experienced, how 
does the timer know that it is timing a specific upcoming reward? What if this cue was only predictive of another 
cue and not a reward? How does the timer get feedback about exactly which interval it is supposed to time? 
These issues are solvable if the animal knows that it is timing the interval between a specific cue state and a 
reward state, or in other words, after learning that a specific cue and a specific reward may be related.  

Proposed solution: continuous time Markov renewal process state space 

One possible solution to the problem is to move completely away from RL and propose that other quantities 
control learning in tasks such as the one considered here. A set of models that propose that animals learn 
contingency (defined as normalized gain in available information) between the timing of reward predictors and 
rewards belongs to this class (Balsam et al., 2010; Gallistel et al., 2014, 2019; Ward et al., 2012). These models 
are successful at explaining numerous aspects of the learning of conditioned responses in relation to the various 
time intervals. Further, they can work for initial learning in a timescale invariant fashion. Here, we propose an 
alternate model for the state space representation in the tradition of RL. To this end, we use a state space based 
on a Markov renewal process. While this proposed model needs to be empirically tested, we show that it at least 
does not contain the same problems as contemporary microstate models, can naturally incorporate the 
continuous passage of time, and be applicable to initial learning. Our formalism is an extension of previous semi-
Markov RL models (Bradtke and Duff, 1994; Daw et al., 2006). 

In our model, the set of states in the cue-reward task are treated as S = {cue, reward}. No delay periods are 
treated as their own states. For simplicity, we will assume that these states can be described by the events 
denoting their onsets. This is not a requirement of the formalism and we do so purely for simplification of this 
treatment. Given this assumption, we can represent the experience of an animal using a timeline (Fig 3A). Here, 
the delays between state onsets (i.e. events) can take any value and has a specified distribution. For instance, 
if the reward follows the cue at a fixed delay, the interevent distribution is a Dirac delta function at this delay. In 
general, the transition properties of such a sequence of states is fully described by the probability “kernel” shown 
in Fig 3. A dynamic estimate of value for continuous time can be obtained for such a representation, based on 
the intuition that animals maximize quantities such as reward rate (Blanchard et al., 2013; Gallistel and Gibbon, 
2000; Hamid et al., 2015; Namboodiri et al., 2014a; Stephens and Krebs, 1986). We mathematically derive this 
estimate in Appendix 1 based on the transition kernels shown in Fig 3. We further describe approximations to 
estimate reward rate that are consistent with several well-established observations in animal behavior (see 
Implications below). 
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In this continuous time model, only observed events (i.e. cue and reward) are treated as their own states on the 
first exposure of these stimuli. Thus, there is no requirement of arbitrary microstates to be present during delay 
periods prior to initial learning. Any organism that stores its experience in a timeline (e.g. Fig 3) can perform the 
computations necessary to estimate the continuous time rate contingency and value described here (see 
Appendix 1 for details). Recent evidence suggests that such timelines exist in animals (Bright et al., 2020; Panoz-
Brown et al., 2018; Tiganj et al., 2018; Tsao et al., 2018; Zhou and Crystal, 2009). Thus, we believe that this 
algorithm defines a state space that is suitable for real animals and is a natural extension of reinforcement 
learning to continuous time.  

Implications 

The fundamental premise of our model is that animals do not discretize or break up the flow of time. Our proposal 
is one possible solution that can handle the continuous passage of time in learning the state space and 
contingency. There may well be others and our hope here is to move the field forward by explicitly listing out the 
problematic implications of well-known neuroscience-related RL models in relation to their handling of time 
delays. Indeed, our model is philosophically a hybrid between the semi-Markov formulation of state space 
(Bradtke and Duff, 1994; Daw et al., 2006), and the contingency of timing model based on information theory 
(Balsam and Gallistel, 2009; Balsam et al., 2010; Gallistel et al., 2014). The latter model proposes that animals 
compute the information gained from a cue on the timing of upcoming rewards. This model has not as yet been 
extended to sequences of states or stimuli that predict reward, and does not provide a clear explanation for the 
error prediction signals observed in midbrain dopamine neurons (Cohen et al., 2012; Kim et al., 2020; Mohebi et 
al., 2019; Schultz, 2016; Schultz et al., 1997). On the other hand, as our model is built on learning state 
transitions, it retains the natural scalability of RL formulations to extended sequences of states predictive of 
reward. It also retains the possibility of error prediction learning on these states. These extensions are beyond 
the scope of this paper. Our model can also in principle be extended to continuous state spaces using previous 
approaches (Doya, 2000).  

Our proposed solution is consistent with a few well-established facts in animal behavior that violate predictions 
of commonly used RL algorithms in neuroscience. First, an approximate solution to the Markov renewal process 
rate estimation (exact equation in A1.7) results in hyperbolic discounting (as shown in A1.23). This contrasts with 
the exponential discounting commonly assumed in reinforcement learning algorithms (Sutton and Barto, 1998). 
Observations from real animals (including humans) convincingly demonstrate hyperbolic discounting, as have 
been reviewed previously (Frederick et al., 2002; George Ainslie, 2001; Namboodiri et al., 2014a). The 

Fig 3. A. A natural means to represent the timeline of experience of animals is by using a Markov renewal 
process. Here, observable events (and not delays between them) are the states. In the timeline, there is a 
sequence of states (denoted by s0,…,s10,…) and transition times between them (t0,…,t9,…). The state at each 
transition can be one among the set of states denoted by {1,…,n}. Given this, the evolution of the states can 
be defined by a transition kernel Uij, which measures the joint probability of state identity and cumulative 
transition time for the next transition. B. The above formalism naturally accounts for the cue-reward delay (in 
Ucr) and the intertrial interval (in Urc) (Appendix 1). 
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approximation in A1.23 is also consistent with numerous related aspects of temporal decision-making 
(Namboodiri et al., 2014a). Second, our framework predicts that animals calculate the mean transition time from 
the current state to all possible future states (equation (A1.21)). Consistent with this, prior research has observed 
“temporal averaging” of the expected delay to reward from multiple cues (De Corte and Matell, 2016; Matell and 
Henning, 2013; Matell and Kurti, 2014). Third, our framework implies that initial learning does not proceed by the 
gradual accumulation of reward prediction or weights (e.g. Rescorla-Wagner or temporal difference learning). 
Instead, we propose that learning proceeds by the computation of a reward rate contingency (Appendix 1). Such 
a computation implies a delay until the contingency is deemed to cross a statistical threshold. Thus, our model 
implies a sigmoidal learning curve instead of an exponential learning curve, an implication well-supported by 
data from individual subjects (Gallistel et al., 2004; Morris and Bouton, 2006; Pamir et al., 2011, 2014; 
Papachristos and Gallistel, 2006; Takemoto et al., 2015; Ward et al., 2012). Lastly, as expected from equation 
(A1.24), the number of reinforcements to such acquisition depends positively on the intertrial interval and 
negatively on the cue-reward delay (Gibbon and Balsam, 1981; Holland, 2000; Kalmbach et al., 2019; Lattal, 
1999). This prediction is qualitatively similar to that made by the contingency of timing models, and can also be 
accounted for by other continuous time models (Luzardo et al., 2017; Shankar and Howard, 2012).  

In light of some qualitative similarities between our model and the contingency of timing model, we will now 
consider some of their differences. One distinction relates to distractor states. Our model is predicated on the 
learning of transitions between adjacent states (Equation (A1.1)). If during learning a cue-reward association, 
animals also experience salient distractor cues in the delay periods that get treated as states, we predict that the 
learning will at least be temporarily disrupted. This is because the next state from the cue state will often be the 
distractor state. To learn the relationship between cue and reward, the animals will need to learn to omit the 
distractor state from the state space of the task. In contrast to this prediction, the contingency of timing model 
predicts that distractor states will have no effect. This is because it postulates that animals estimate the delay 
from every cue state to the next reward state regardless of any intervening states. Existing evidence supports 
the prediction that distractor states impede trace conditioning (Carter et al., 2003; Clark et al., 2002; Han et al., 
2003; Manns et al., 2000).  

These data raise the question of what events get treated as states during a task. While saliency is likely to play 
a major role (e.g. barely audible noise is less likely to be treated as a state than a loud noise), it may well be that 
animals experience subjective states during delays (i.e. sates that were not part of the experimental design). 
The likelihood that such subjective distractors affect conditioning will increase with increasing delay periods. This 
is because the longer the delays, the higher the chance that animals experience an internal subjective state 
independent of the task design. Hence, another qualitative difference between our model and the contingency 
of time model is that with increasing delays, the scalar relationship seen in Equation (A1.24) may no longer hold 
due to the presence of subjective distractor states that impede contingency learning. This may explain why in 
some appetitive conditioning protocols, no learning is seen for minute long trace intervals, even when intertrial 
intervals are very long (Thrailkill et al., 2020). An alternative possibility is that in these cases, the look-ahead 
time T is not significantly longer than the cue-reward delay, thereby reducing reward rate contingency or value 
(Equation (A1.24)). 

Another implication of our model is that the brain must be capable of storing recent memory in a timeline of 
events, based on which the calculation of contingency described above may be performed. This implication is 
shared by the contingency of timing models. Behavioral evidence suggests that animals are capable of storing 
past experiences in a timeline (Panoz-Brown et al., 2016, 2018; Zhou and Crystal, 2009). A Laplace-transform 
based computational model provides one potential neural network solution for storing recent history in a timeline 
(Shankar and Howard, 2012). Recent evidence shows that the entorhinal cortex or prefrontal cortex can store 
temporal information in learned memories (Bright et al., 2020; Tiganj et al., 2018; Tsao et al., 2018), although 
the extent to which these systems act as an accurate organizer of timestamps of recent memories (similar to Fig 
3) remains to be tested. Considering the memory requirements of storing such timelines, another intriguing 
possibility is that the brain has an explicit memory medium inside neurons (Akhlaghpour, 2020; Langille and 
Gallistel, 2020). Lastly, another common assumption of our model and the contingency of time model is that a 
contingency calculation can be learned in principle for all cues predictive of reward. Considering the 
computational requirement of such updating, it is unknown how the brain might solve this problem. An intriguing 
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solution for this problem was discussed recently using a representation of retrospective transition probabilities 
p(sm=cue|sm+1=reward) (Namboodiri et al., 2019). The corresponding prospective probabilities may be learned 
by Bayes’ inversion of these retrospective probabilities. Considering the ethological sparsity of rewards, the 
updates of the retrospective probability, triggered only on reward receipt, are much sparser. Experimental data 
show that some neuronal subpopulations in the orbitofrontal cortex show activity patterns consistent with such 
retrospective representations and affect behavioral learning and memory (Namboodiri et al., 2019).  

Finally, for simplicity, we have illustrated our main point using the simplest form of RL—one in which the selection 
of actions to maximize future rewards is not considered. The consideration of time delays becomes even more 
important for action selection. For instance, it is common in RL to describe reward prediction by either a dual 
conditional probability p(reward|state,action) or a dual conditional reward function R(state, action). Real animals 
often perform reward-related actions after a delay from the corresponding reward-related cues. Indeed, rewards 
are often predicted by (cue, action) pairs only when there is a specific temporal relation between these events 
(e.g. Miyazaki et al., 2020; Namboodiri et al., 2015; Narayanan and Laubach, 2009). Defining microstates to 
span these delays worsens the combinatorial explosion of the state space, as these microstates need to then 
depend on both external cues and internal actions. Thus, the issues discussed here become even more vexing 
in this setting.  

Conclusions 

Here, we explicitly list the assumptions made by the well-known RL models that account for the passage of time. 
We show that the apparent superficial simplicity of these models belies the extraordinary complexity required to 
execute them. These problems are often not recognized, as researchers define a convenient state space for 
each experiment using free parameters. These assumptions are especially problematic when applied to initial 
learning, a stated goal of reinforcement learning. Our hope is that the field of neuroscience-related RL explicitly 
contends with the issues we have raised and moves our knowledge forward by defining the state space of real 
animals. 
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APPENDIX 

Appendix 1: Mathematical treatment of rate estimation in a Markov renewal process  
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The transition probability kernel for a Markov renewal process is expressed as  

(A1.1) 

Where sm is the mth state in a sequence and tm is the transition time for the mth transition. Thus, this kernel is the 
joint probability of transitioning from state i to j within a delay of t. In general, the delay distribution can be arbitrary. 

Given this formalism, the key step now is to postulate the goal of learning. In standard reinforcement learning, 
the goal is taken to be to estimate the value function (Sutton and Barto, 1998). The value function could in 
principle be defined as the sum of all rewards obtainable in the future, given the current state. However, since 
this sum does not converge, it is common to assume an exponential discounting of future rewards based on the 
number of timesteps to those rewards (Schultz et al., 1997; Sutton and Barto, 1998). This assumption is primarily 
made for mathematical simplicity, as it allows for a recursive definition of value between successive timesteps. 
Despite this simplicity, behavioral evidence from animals convincingly demonstrate that this assumption is false 
(Frederick et al., 2002; George Ainslie, 2001; Namboodiri et al., 2014a).  

Instead of arbitrarily assuming exponential discounting, we define the general goal of learning for animals as the 
estimation of the rate at which a state j will be visited in the future (say within a look-ahead time of T’) if the 
current state is i. The use of event rate is similar to many prior proposals (Gallistel and Gibbon, 2000; Namboodiri 
et al., 2014a; Stephens and Krebs, 1986). For reward prediction, state j can be thought of as the reward state 
and state i as a reward predictor state (e.g. cue state). We will denote this expected rate by λij(T’). In general, if 
this rate is different from the rate of visits to state j from a random moment in time (denoted by λ-j(T’), where the 
- in the subscript denotes a random moment in time), then state i is predictive of state j in the future. This is 
because λij(T’) > λ-j(T’) implies that starting in state i will result in more future visits of state j than starting at a 
random moment in time. Hence, the fundamental premise here is that animals learn both λij(T’) and λ-j(T’), and 
that their difference measures the “rate contingency” of state j on state i. Another intuitive way to think of these 
rates is as the conditional rate of visiting state j conditioned on starting in state i minus the marginal rate of visiting 
state j. When the conditional equals the marginal, state i does not predict the future occurrence of state j beyond 
chance. 

λij(T’) can be calculated by first calculating the expected number of times state j will be visited within a future 
look-ahead time of T’ by starting in state i. We will denote this number by Mij(T’). This estimated number is the 
continuous time equivalent of the undiscounted successor representation in discrete-time Markov chains 
(Gershman, 2018; Momennejad et al., 2017; Russek et al., 2017), as explained below.  

In discrete time, the expected number of times that a Markov chain will visit state j in the future within t time steps 
is 

(A1.2) 

 

Where δij is the Kronecker-delta function which is one when its arguments are equal, and zero otherwise. Thus, 
the δ in the sum is 1 when a future state equals j and 0 otherwise. 

Since this sum does not converge as t becomes very large, it is customary to assume a discounting for future 
visits that are further ahead in time. If an exponential discounting is assumed at a rate of γ for every time step, 
then a modified version of the above sum for the discounted occupancy of state j in the future starting from state 
i in the present is  

(A1.3) 

 

This is the definition of the successor representation for a discrete time Markov chain (i.e. without actions) 
(Gershman, 2018; Momennejad et al., 2017; Russek et al., 2017). 
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The continuous time equivalent of the undiscounted sum (similar to (A1.2)) in a Markov renewal process is the 
expected number of times state j will be visited in within a future look-ahead time of T’ by starting in state i. Thus, 
the rate of occurrence of state j is  

(A1.4) 

 

Once learned, the above estimate of λij(T’) can be used to calculate the expected reward rate by starting in state 
i in the look-ahead T’ by the following calculation  

(A1.5) 

 

Where R(j) is the reward associated with state j. 

The difference between the above estimate of reward rate and the average reward rate of starting at a random 
moment in time (denoted by ρ-) provides an estimate of the value of starting in state i.  

(A1.6) 

Given these relationships, the animal needs to learn Mij(T’) to calculate the value of being in state i. As mentioned 
above, Mij(T’) is the expected number of times that state j will be visited within a look-ahead time of T’ by starting 
in state i. This can be calculated by first counting whether state i (the starting state) is itself state j (in which case 
the count should increase by 1), and then by estimating the expected total number of times state j will be visited 
from any state k to which state i transitions, in the remaining time after the transition from i to k. Mathematically, 
this is written by the following integral equation. 

(A1.7) 

 

Where 𝑈𝑈𝑖𝑖𝑖𝑖
•

 is the time derivative of the transition probability kernel (representing the instantaneous probability 
density of transition between t’ and t’+dt’). 

This integral equation provides the exact solution for Mij(T’), which can be substituted in equation (A1.4) above 
to calculate the value of λij(T’). We can extend equation (A1.7) to obtain a dynamic estimate for Mij(T’) after a 
time t has elapsed without a transition following entry into state i. If we represent this by Mij(T’, t), we can calculate 
its value by 

  

(A1.8) 

 

Here, δ(t=0) is the Dirac delta function, which is 1 when t=0 and zero otherwise (i.e. increase expected count of 
j by 1 at onset of state i if state i is the same as state j.  

The ratio  represents the instantaneous probability of the transition to state k from i between t’ and  

 

t’+dt’, given that no transition occurred between t’=0 and t’=t following entry into state i. This conditional 
probability is the ratio of the joint probability divided by the probability of the conditioned event. The joint 
probability is the same as the instantaneous probability of transitioning from state i to state k between t’ and 
t’+dt’, as t’>t. The probability of the conditioned event is the probability that no transition occurred between t’=0 
and t’=t following entry into state i, and this is the denominator in the ratio. 
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Based on these equations, learning the estimated rate λij(T’) or λij(T’, t) can be achieved through several potential 
means. We do not discuss this here since our primary objective is to convey that there is a natural means to 
define a value function for continuous time, based on a reward rate contingency.  

Solving equations (A1.7) or (A1.8) is challenging. An exact method could be based on explicit counting on a 
timeline such as that shown in Fig 3. Here, we will propose three approximate methods to solve equation (A1.7) 
to derive interpretable predictions. 

Approximation 1 

Before learning Uik, one approximation is to simply assume that the second term above is the average rate of 
occurrence of state j from a random moment in time. In this case, 

and  

(A1.9) 

 

Therefore, the rate contingency is simply    . 

 Approximation 2 

Once Uik(t) has been learned, Mkj(T’-t’) can be expressed as 

(A1.10) 

 

The second term on the right-hand side (RHS) of this equation can be approximated by the expected value of 
M-j(T’-t’). Essentially, in this approximation, we assume that after the first transition from i occurs to k, the 
remainder of the transitions to j can be approximated by counting whether k is j and then estimating the baseline 
expected number of transitions to j in the time period T’-t’. Thus, equation (A1.10) can be approximated to 

 

Further, assuming T’>>t’, the baseline rate λ-j(T’-t’) can be assumed to be independent of the look-ahead 
period and rewritten as λ-j. 

Therefore, we get the following approximation. 

(A1.11) 

Substituting (A1.11) in (A1.7), we get 

(A1.12) 

 

The second term of the RHS of this equation can be split into two terms. We will now derive the simplified values 
of these terms. 

(A1.13) 

 

Here, we assumed that T’ is large enough that the integral can be approximated by its value integrated to the 
upper limit of ∞. pij is the probability of transition from state i through state j over an infinite time, i.e. the transition 
probability of the underlying Markov chain. 

The next term in the RHS of equation (A1.12) is 
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(A1.14) 

Again, if T’ is large enough, the first term in the curly parenthesis in the RHS of (A1.14) can be approximated as 

(A1.15) 

 

The second term in the RHS of (A1.14) can similarly be approximated as 

(A1.16) 

 

Where tik is the mean transition time between state i and state k. 

Substituting (A1.15) and (A1.16) in (A1.14), we get 

(A1.17) 

 

Where ti is the mean transition time from state i. 

Substituting (A1.17) and (A1.13) in (A1.12), we get 

(A1.18) 

 

Therefore, the rate λij(T’) is 

(A1.19) 

 

If we now assume that the look-ahead T’=T+ti, where T is the amount of look-ahead beyond the average 
transition time from the current state i, then (A1.19) can be rewritten as 

 

(A1.20) 

 

This is the approximate value for λij(T’)= λij(T+ti). Essentially, we assume that the look-ahead time period is added 
onto the expected transition time from the current state i. 

Therefore, the rate contingency is 

(A1.21) 

 

The appearance of the average transition time from the current state (ti) in the above equation suggests that 
animals may estimate this interval. Consistent with this, prior research has observed “temporal averaging” of the 
expected delay to reward from multiple cues (De Corte and Matell, 2016; Matell and Henning, 2013; Matell and 
Kurti, 2014). 

For a task in which a cue (state i) is followed by a reward (state j)  at a fixed delay tr with a probability pr and the 
intertrial interval denoted by tITI, pij=p and ti=ptr+(1-p)(tr+tITI). Substituting these, we get 
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(A1.22) 

 

For a reward r available with 100% probability, the subjective value—defined as the reward delivered with zero 
delay that is treated subjectively equivalent to the delayed reward—is therefore 

(A1.23) 

 

 

This relationship shows that delayed rewards are hyperbolically discounted, with the rate of discounting 
determined by the opportunity cost of losing rewards during the wait to reward (in the numerator), and by the 
look-ahead time period T (in the denominator). This is a special case that has been described in detail previously 
and fits numerous experimental observations related to delay discounting (Namboodiri et al., 2014b, 2014c, 
2014a, 2016a, 2016b). In keeping with this prior set of publications, we will refer to this approximation of the 
Markov renewal process as the TIMERR approximation. 

If the marginal reward rate ρ- has been appropriately learned in a stationary environment, its value should be the 
reward obtained after the cue divided by the total trial duration (sum of delay from cue to reward, and the intertrial 
interval). In this stationary case, the subjective value of a cue paired with delayed reward is 

 

(A1.24) 

 

When T>>tr, i.e. the look-ahead time is much greater than the cue-reward delay (the basis for the above 
approximations), the above relationship is scalar with respect to the intertrial interval and the cue-reward delay. 
In other words, scaling up both these intervals by the same amount will have no effect on the value of the cue. 

Overall, the above results show that a continuous time model of learning and decision-making with a dynamic 
estimate of value can be naturally defined using a Markov renewal process (equations A1.1, A1.4-1.8). 
Simplifying approximations to obtain interpretable results show both hyperbolic discounting (equation (A1.23)) 
and a scalar relationship of the intertrial interval and cue-reward delay (equation (A1.24)), as have been 
experimentally observed (Blanchard et al., 2013; George Ainslie, 2001; Gibbon and Balsam, 1981; Holland, 
2000; Kalmbach et al., 2019; Lattal, 1999). 

Approximation 3 

Another possibility is to potentially approximate Mkj(T’-t’) as  

(A1.25) 

 

This approximation essentially assumes that λkj is independent of the remaining look-ahead time period. In other 
words, this approximation is the same as assuming a constant rate of events. 

Substituting (A1.25) in (A1.7), we get 

(A1.26) 
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If T’ is large enough, similar to the approximations used in (A1.15) and (A1.16), the term in the parenthesis can 
be approximated as 

(A1.27) 

 

Substituting (A1.27) in (A1.26), we get 

(A1.28) 

 

Thus, λij(T’) is 

 

(A1.29) 

 

If the matrices representing λij, pij and tij are λ, P and t respectively, the above equation can be written as 

(A1.30) 

 

Where    represents the Hadamard or Schur or element-wise product. Solving the above matrix equation for 
λ, we get 

 

(A1.31) 

 

For the simple cue-reward task, we can write  

Setting pcr=pr, tcr=tr, prc=1, trc=tITI, pcc=1-pr, tcc=tr+tITI and prr=0, we get 

 

 

(A1.32) 

 

 

 

Here too, for the large value of T’ assumed, we obtain the estimated rate of rewards following cue of pr/(tr + tITI). 
Thus, for an environment that is assumed to be completely stable in the future, starting in the cue state is the 
same as starting at any random moment in time, as the expected rate of rewards over an infinite time horizon is 
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the same. Since animals are unlikely to assume such stationarity, approximation 2, i.e. the assumption that the 
rate of rewards beyond the next transition is equal to the base rate, is more appropriate. This model is also more 
consistent with animal behavior, since it is consistent with the hyperbolic discounting and opportunity costs 
observed in animal behavior (Namboodiri et al., 2014b, 2014c, 2014a, 2016a, 2016b, 2019). 

Overall, these approximations provide potential means to calculate rate of rewards using a continuous time 
formalism. How animals learn these quantities is beyond the scope of this paper. Nevertheless, we will mention 
two possible alternatives. A model-free learning rule for estimating value may be defined based on equation 
(A1.6) by directly estimating rates of rewards in a look-ahead period from cue onsets. In a model-based 
conception, the transition kernel Uij shown in equation (A1.1) needs to be learned. Considering the computational 
cost of the model-based method, it may be possible that initial learning is model-free, and when the value of a 
cue is deemed high, the brain calculates an explicit model-based value. Another possibility is that initial learning 
is driven not by estimates of prospective transition probabilities, but by estimating retrospective transition 
probabilities—a considerably sparser learning rule (Namboodiri et al., 2019). 
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