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Abstract13

A wealth of clustering algorithms are available for Single-cell RNA sequencing (scRNA-14

seq), but it remains challenging to compare and characterize the features across different scales15

of resolution. To resolve this challenge Multi-resolution Reconciled Tree (MRtree), builds a16

hierarchical tree structure based on multi-resolution partitions that is highly flexible and can17

be coupled with most scRNA-seq clustering algorithms. MRtree out-performs bottom-up or18

divisive hierarchical clustering approaches because it inherits the robustness and versatility of19

a flat clustering approach, while maintaining the hierarchical structure of cells. Application to20

fetal brain cells yields insight into subtypes of cells that can be reliably estimated.21
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Background24

Single-cell RNA sequencing (scRNA-seq) is a recently developed technology that is being widely25

deployed to collect unprecedented catalogues detailing the transcriptomes of individual cells. The26

ability to capture the molecular heterogeneity of tissues at high resolution underlies its increasing27

popularity in discovering cellular and molecular underpinnings of complex and rare cell popula-28

tions2, developing a “parts list” for complex tissues13,20, and studying various diseases and cell29

development or lineage. One essential component involves the utility of scRNA-seq data to enable30

the identification of functionally distinct subpopulations that each possess a different pattern of31

gene expression activity. These sub-populations can indicate different cell types with relatively sta-32

ble, static behavior, or cell states in intermediate stages of a transient process. Unbiased discovery33

of cell types from scRNA-seq data can be automated using a wealth of unsupervised clustering34

algorithms, among them the most widely-applied include the Louvain graph-based algorithm incor-35

porated as part of Seurat3,10 pipeline, k-means clustering and its derivatives by consensus clustering36

as performed in SC37 and SIMLR12, and other methods that address issues caused by rare types37

such as RaceID4.38

A major challenge regarding clustering algorithms mentioned above is that they explicitly or39

implicitly require the number of clusters to be supplied as an input parameter. Determining the40

number of cell types in the population presents a significant challenge given the large number of41

distinct cell types, which is further complicated by substantial biological and technical variation.42

There are some computational methods available to guide the choice of K; however, these methods43

are shown to be flawed in one aspect or another. For example, methods developed on the basis44

of statistical testing are shown to be too sensitive to heterogeneity, especially for large samples,45

while other methods tend to favor a fairly coarse resolution, with clearly separated clusters and46

fail to identify closely related and overlapping cell types. Therefore, judgment from the researchers47

is required to choose the desired resolution. A common practice in scRNA-seq data analysis is to48

run a clustering algorithm repeatedly for a range of resolutions, followed by careful inspections of49

individual results by examining the cluster compositions and the expression of published marker50

genes to select the final partition. This supervised process takes significant time and effort and is51
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limited by the current state of the investigator’s/field’s knowledge about cell type and cell state52

diversity. It would be a substantial advantage in terms of efficiency and veracity to be able to reach53

the same level of resolution in an unsupervised manner.54

Hierarchical clustering (HC) is another popular general-purpose clustering method commonly55

used to identify cell-populations18,1,16. HC has the advantage of being able to determine relation-56

ships between clusters of different granularities since the result can be visualized as a dendrogram.57

This dendrogram is then “cut” at different heights to generate different numbers of clusters. This58

hierarchical structure helps identify multiple levels of functional specialization of cells. For instance,59

neurons share specific functional characteristics distinct from those of various glial cell types and60

contain distinct subtypes with more specialized functions, such as excitatory or inhibitory proper-61

ties. Different variants of hierarchical clustering make different assumptions, the most common ones62

used in classical hierarchical agglomerative clustering (HAC) is Ward’s15 and “average” linkage as63

adopted in SC37. An important limitation of HAC is that both time and memory requirements64

scale at least quadratically with the number of data points, which is slower than many flat cluster-65

ing methods like K-means and prohibitively expensive for large data sets. A few scRNA-seq tools66

expand upon the idea of hierarchical clustering, for instance, pcaReduce22 introduces an agglom-67

erative clustering approach by conducting dimension reduction after each merge, starting from an68

initial clustering, and CellBIC6 performs bisecting clustering in a top-down manner leveraging the69

bi-modal gene expression patterns. However, these methods either require a good initial start that70

is implicitly equivalent to the choice of K, or are highly dependent on the assumption of bimodal71

expression pattern at each iteration, which is not appropriate for multi-modal data.72

In this study, we build a tool to bridge the gap between two separate lines of inquiry, flat and73

hierarchical clustering. Empirically, scRNA-seq data analysts observe that the partitions obtained74

from flat clustering at multiple resolutions, when ordered by increasing resolution, produce a lay-75

ered structure with a tree-style backbone17. This produces a useful representation to help visually76

determine the stability of clusters and relations among them. We build on this idea and propose77

a method called Multi-resolution Reconciled Tree (MRtree) that reconstructs the underlying tree78

structure by reconciling partitions obtained at different granularities (Figure 1) to produce a co-79
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herent hierarchy that is as similar as possible to the original flat clustering at different scales. It80

can work with many specially-designed flat clustering algorithms for single-cell data, such as Lou-81

vain clustering from Seurat3, thus inheriting the scalability and good performance in clustering82

the single-cell data; meanwhile, it recovers the intrinsic hierarchy structure determined by the cell83

types and cell states.84

Applications of MRtree on a variety of scRNA-seq data sets, including mouse brain18, human85

pancreas14,8 and human fetal brain9, showed improved performance for clustering of scRNA-seq86

data over initial flat clustering methods. The hierarchical structure discovered by MRtree easily87

outperformed a variety of tree-construction methods. Moreover, the results accurately reflect the88

extent of transcriptional distinctions among cell groups and align well with levels of functional89

specializations among cells. Particularly, when applied to developing human brain cells, the method90

successfully identified major cell types and recovered an underlying hierarchical structure that is91

highly consistent with the results from the original study9. Subsequent analysis on each major92

type via MRtree revealed finer sub-structure defining biologically plausible subtypes, determined93

mainly by maturation states, spatial location, and terminal specification.94

Results95

Methods overview96

MRtree aims to recover a hierarchical tree by denoising and integrating a series of flat clusterings97

into a coherent tree structure. The algorithm starts by applying a suitable flat clustering algorithm98

to obtain partitions for a range of resolution parameters. The multi-scale results can be represented99

using a multi-partite graph, referred to as a cluster tree, where the nodes represent clusters, and100

edges between partitions of adjacent resolutions indicate common cells shared. We propose an101

efficient optimization procedure to reconcile the incoherent cell assignments across resolutions, that102

produces the optimal underlying tree structure following the hierarchy constraints, while adhering103

to the initial flat clustering to the maximum extent. Formally, this is achieved by minimizing104

(among valid hierarchical tree structures), the difference between initial multi-level cluster assign-105
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Figure 1: Overview of MRtree framework. The algorithm starts by performing flat clustering on
scRNA-seq data for a range of resolutions, where the partitions between adjacent resolutions are
matched to form a graph as an entangled cluster tree. Then reconciliation is performed through
optimization with the hierarchical structure enforced by constraints. The obtained final optimal
solution represents the recovered hierarchical cluster tree.

ments and the cluster assignments in the resulting tree structure. By representing the partitions106

as a multi-partite graph, the clustering assignments that violate the hierarchy constraint can be107

identified as merging directed edges and thus penalized in the objective function. The optimization108

procedure proceeds by iteratively and greedily identifying those tree nodes, which, when corrected109

by reassigning the associated conflicting cell lineages, contribute to maximum descent in the de-110

fined objective function. The outcome of the proposed optimization procedure is a reconciled tree,111

named the hierarchical cluster tree, representing the optimal tree-based cluster arrangement across112

scales (Figure 1, Figure S1, Supplemental Information).113

Our method is motivated by consensus clustering (also known as ensemble clustering); how-114

ever, instead of gathering information over repeated runs of algorithms at the same resolution, we115

leverage the cluster structure revealed at multiple scales to build an ensembled hierarchy. The116

common features across resolutions are identified and averaged to reduce noise, while the distinc-117

tions between resolutions are utilized to uncover different scales of geometric structure, which are118

further reconciled to conform to a robust hierarchical tree. We stress that consensus clustering is119

essentially a noise-reduction technique that aims to deliver robust, interpretable results.120

Another key distinguishing feature of our procedure, compared to existing consensus methods,121
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is that we build a cluster hierarchy directly from the flat partitions in an “in place” way. This122

is in comparison to existing methods for which an alternative hierarchical clustering algorithm is123

applied to the co-classification consensus matrix built from an ensemble of partitions. MRtree uses124

an optimization framework to edit the original partitions through a similar voting scheme. At125

the same time, it aims to preserve the original splitting order of the hierarchy determined by the126

clustering algorithm. The proposed method is efficient in terms of memory cost and time complexity127

(Supplemental Information). Moreover, MRtree enables a direct comparison of partitions before128

and after tree reconciliation, to examine the stability of the clustering algorithm at different scales.129

As a benefit, we are able to trim the tree to the maximum depth within the stable range to obtain130

reliable final clusters.131

To summarize, we present a computationally efficient method to generate a hierarchical tree132

from flat clustering results for a range of resolutions, by an iterative greedy optimization scheme.133

It enables us to take advantage of various flat clustering approaches, while improving over these134

flat clustering results by averaging over membership assignments across resolutions. The resulting135

hierarchical structure captures the relations between cell types and at the same time helps circum-136

vent the problems of choosing the optimal resolution parameter. It turns out that the proposed137

method improves the clustering accuracy over the initial partition across scales, and outperforms138

a variety of alternative tree construction methods for recovering the underlying tree structure. To139

facilitate identifying stable tree layers, we propose a stability measure that compares the initial flat140

clustering with the reconciled tree. We also implement tools to sample implicit resolution param-141

eters for Seurat clustering that enable equal coverage of different clustering granularities. Finally,142

our optimization procedure is made efficient for potential use in big data analyses.143

Simulation study144

Simulated data To evaluate how well MRtree is able to recover the cluster hierarchy and improve145

the clustering across resolutions, we harness the tools provided by the SymSim package19 to simulate146

scRNA-seq data given a known tree structure, using the SymSim parameters estimated from a UMI-147

based dataset of 3,005 mouse cortex cells18 (Supplemental Information). Motivated by major cell148
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types identified in brain tissues, we constructed a hypothetical tree (Figure 2A,B) as the ground149

truth representing the hierarchy of the cell types/states.150

Repeated simulations were performed by first generating single-cell data with SymSim from the151

hypothetical tree structure, followed by multi-resolution flat clustering using a variety of clustering152

methods. Then MRtree was applied to form the hierarchical cluster tree that reconciled the multi-153

level clusterings. MRtree can be coupled with most flat clustering methods; hence we evaluated the154

performance using a variety of algorithms, including Seurat3, SC37, SOUP21, and K-means applied155

to a UMAP projection. The clustering results were evaluated and compared with the raw clusters156

obtained from flat clustering in three aspects: the accuracy of clustering regarding label assignments157

at different resolutions, the tree structure estimation accuracy, and the clustering stability.158

We first sought to quantify how well MRtree performs regarding clustering accuracy, measured159

using Adjusted Multiresolution Rand Index (AMRI, Methods) between the obtained labels and160

true labels known from the simulation. An AMRI close to 1 indicates perfect clustering given the161

resolution. MRtree achieved higher accuracy almost uniformly across resolutions and for various162

clustering methods (Figures 2C and S2). It is worth noticing that the reconciliation procedure163

even improved upon SC3 results, which already employed an ensemble-based method for each fixed164

resolution. This demonstrates that applying an ensemble approach across resolutions captures165

additional structural information within the data. In addition, the gain was more pronounced for166

coarse clustering and when there was more room for improvement.167

Next, we evaluated the ability of MRtree to recover the tree structure. For comparison, we168

leveraged the tools that build hierarchical trees in Seurat and SC3. For Seurat, an agglomerative169

hierarchical cluster tree was built starting with the identified Seurat clusters, while for SC3, a full170

HAC was performed from the consensus similarity matrix constructed by aggregating clustering171

results with different dimension reduction schemes. MRtree produced a significantly improved tree172

structure estimation compared to the competing methods, as demonstrated by the reduced error173

of tree reconstruction (Figure 2D, Methods).174

Finally we evaluate the clustering stability before and after tree reconciliation, coupled with175

multiple clustering methods. The stability score is calculated following the subsample procedure176
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described in Methods. For K less than the true number of clusters, the measured stability is177

confounded by the instability induced by the incorrect resolution. Therefore we restrict our com-178

parison to the measured stability at the true resolution. Clustering stability with MRtree is clearly179

improved compared to the initial clustering across all methods (Figure S3), demonstrating the im-180

proved robustness of MRtree, which successfully employs the consensus mechanism to denoise the181

individual clustering with collective information across resolutions.182
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Figure 2: Evaluate the performance of MRtree via simulations and analysis on mouse brain data18.
(A) The hypothetical tree structure of the cell states from which cells are generated. (B) tSNE plot
of the simulated cells in one experiment, colored by the cell types indicated in the leaf of the actual
hierarchical cluster tree. The difficulty of the simulation varies from simple (left, smaller within-
cluster noise) to challenging (right, stronger noise) in panels (C) and (D) for each method. (C)
Comparing the accuracy of MRtree clusters with the clusters from initial flat clustering at multiple
resolutions using Seurat and SC3. The accuracy is measured by the Adjusted Multi-resolution
Rand Index (AMRI). (D) Evaluate tree construction accuracy of MRtree with dendrogram from
hierarchical clustering obtained with Seurat and SC3. (E-H) MRtree applied to scRNA-seq data
from the mouse brain. (E) Initial flat clustering by SOUP on 3,005 cells18 by varying K, the
resolution parameter specifying the number of clusters, colored by the gold standard labels. (F)
The MRtree-constructed tree from initial SOUP clusterings. The pie charts on tree nodes represent
the cell type composition referencing the gold standard. (G, H) Comparing tree construction and
clustering accuracy on mouse brain data using different methods, hierarchical cluster tree generated
by HAC starting with SOUP clusters (G) and starting with individual cells (H).183

scRNA-seq data184

Mouse brain cells We illustrate MRtree using a scRNA-seq data set containing 3,005 cells of185

somatosensory cortex and hippocampal-CA1 region from mice, collected between postnatal 21-31186

days. We call this the mouse brain data18. The authors have assigned the cells to seven major187

types: pyramidal CA1, pyramidal SS, interneurons, astrocytes-ependymal, microglia, endothelial-188

mural, and oligodendrocytes. For comparison, these labels are treated as the gold standard in the189

following analysis.190

We chose SOUP21 for multi-resolution clustering due to its superior performance on these data.191

The hard clustering labels were obtained by varying K, the resolution parameter specifying the192

desired number of clusters, from 2 to 12. With MRtree, we were able to construct a hierarchical193

cluster tree from the flat sequential clusterings. The initial cluster tree is visualized with nodes194

colored by the major type referencing the gold standard, and the recovered tree from MRtree is195

shown on the right, with the proportion of cell types in each node visualized by a pie chart (Figure196

2E,F). The tree successfully split the neurons and glial cells at an early stage, followed by splitting197

pyramidal cells from two regions (CA1,SS) from the interneurons. Finally, cells from the same type198

but distinct brain regions were identified. The tree reconciliation step also improved the clustering199

performance by increasing the accuracy measured by AMRI in multiple layers (Figure S4a).200
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To further compare the performance of MRtree with HAC, we applied HAC using complete link-201

age on the first 20 principal components, starting either form singletons (individual cell) or the 9202

SOUP clusters obtained at the maximum resolution (Figure 2G,H; only the top layers of HAC from203

singleton are shown for comparison purposes). Compared to MRtree, HAC shared a similar overall204

tree structure, but it generated clusters at lower accuracy for each layer. The results support the205

argument that MRtree is able to improve accuracy upon initial clustering by pooling information206

across resolutions. HAC from singletons performed much worse regarding both accuracy and tree207

structure, possibly owing to the sensitivity of HAC to outliers and linkage selection. For complete-208

ness, we also demonstrate the accuracy from two widely applied clustering methods, Seurat and209

SC3, where the HAC results were generated from the built-in functions provided as part of the210

toolkits. In both cases, MRtree outperformed both the initial flat clustering and the HAC (Figure211

S4b,c).212

In addition to improving the clustering accuracy, we were able to infer the resolution that achieved213

the highest stability by inspecting the difference between the initial tree and the reconstructed tree.214

It indicated that both the SOUP and Seurat algorithms should stop splitting at K = 7, which was215

consistent with the gold standard (Figure S6). Stability analysis on SC3 results showed a preferred216

resolution of 6 clusters. Indeed, we observed steep drop in accuracy for any resolution greater217

than 6 (Figure S4c). By comparison, using available K-selection methods supported in multiple218

single-cell analysis pipelines, the optimal number of clusters selected varied widely (Table S1). For219

instance, SC3 supported 22 clusters. In addition, the large gap between MRtree and initial Seurat220

clusterings indicated the inability of Seurat to identify accurate and stable clusters on this dataset.221

This observation was further supported by the lower accuracy (AMRI< 0.6) of the resulting Seurat222

clusters (Figure S4b).223

Human pancreas islet cells To evaluate performance on cell types that are fairly well separated,224

we investigated the hierarchical structure identified by MRtree for cells from human pancreatic225

tissues. We first analyzed single-cell RNA sequencing of 635 cells on islets from Wang et al.14,226

which come from multiple donors, including children, control adults, and individuals with type 1 or227

type2 diabetes (T1D, T2D). Among them, 430 cells were annotated by the authors into seven cell228
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Figure 3: MRtree applied on pancreas islet cells data sets reveals the transcriptional distinctions
and similarities between cell types. (A) MRtree-constructed tree with SC3 clusterings on 635 cells
from Wang et al.14. The tree was trimmed to the layer with eight leaf clusters (K = 8). The
pie charts overlying on tree nodes represent the cell type composition for corresponding clusters.
Colors indicate the cell-type labels by Wang et al., where a fraction of cells (marked in gray) were
considered ambiguous cells by the authors and unlabeled. The leaf labels demonstrate the inferred
cluster identity. (B-D) Jointly constructing the cell type hierarchical tree for pancreas islet cells
integrated from five technologies. (B) UMAP project of 14,892 cells integrated from five technologies
using Seurat MNN integration tools, colored with the cell type labels from respective studies. (C)
MRtree-constructed tree from the integrated data with Seurat initial flat clusterings. Pie charts on
tree nodes show the cell-type composition given the referencing labels from the studies. Leaf labels
indicate the inferred labels of cells in each leaf node. (D) Hierarchical tree constructed by Seurat
agglomerative hierarchical clustering starting from Seurat flat clustering results obtained with the
highest resolution, annotated similarly by cell type compositions.
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types, while 205 cells were considered ambiguous and unlabeled. We applied MRtree to construct229

the hierarchical cluster tree based on SC3 flat clustering with the number of clusters ranging230

from 2 to 15. The tree was then trimmed to eight leaf nodes based on stability analysis (Figure231

3A, Figure S7A). The first split created two large interpretable cell groups: gene ontology (GO)232

shows enrichment of exocrine functions such as terms related to “Putrescine catabolic process”233

(adjusted p-value=2.3E − 02) and “Cobalamin metabolic process” (adjusted p-value=5.48E − 05)234

for the left branch, and enrichment of endocrine functions such as “Insulin secretion” (adjusted235

p-value=3.4E − 5) and “Enteroendocrine cell differentiation” (adjusted p-value=2.1E − 2) for the236

right branch. The exocrine group was further divided into acinar (PRSS1 ) and ductal cells (SPP1 ).237

The right branch further separates a previously undiscovered cluster composed mainly of ambiguous238

cells and a few previously labeled alpha and mesenchyme cells. This cluster expresses marker genes239

with significant GO terms such as “Collagen metabolic process” and “regulation of endothelial cell240

migration”, pointing to endothelial and stellate cells (Table S2) that were not labeled in the original241

analysis. The remaining endocrine cells were further divided into a group containing α cells (GCG)242

and pancreatic polypeptide cells (PPY ), and another group containing β (INS ) and δ cells (RBP4 )243

(Table S3).244

In addition to recapitulating a logical tree for all cell types, the eight clusters improved upon the245

initial SC3 clusters. In particular, seven of the clusters match well with the identified seven major246

cell types from Wang et al., achieving AMRI greater than 0.95 (Figure S7B-D). By contrast, a247

competing tree construction method, CellBIC6, revealed a similar tree structure, but it failed to248

identify the group of δ cells6. Finally, because it is well accepted that β cells are heterogeneous,249

especially in conditions of metabolic stress, such as obesity or type 2 diabetes14, we further applied250

MRtree on the subset of 111 β cells. We obtained five β subclusters that corresponded to key251

biological features, including two clusters composed mainly of cells from T2D individuals, and one252

control group containing 90% cells from children (Figure S7E-G).253

Next, we considered a more challenging data set, again from the human pancreatic islet, produced254

by merging data from five technologies8. In total, 14, 892 cells were annotated and grouped by255

respective studies into 13 major cell-types with cluster sizes varying by magnitude. We first in-256
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tegrated the cells using Seurat MNN integration tools using 2, 000 highly expressed genes (Figure257

3B). Despite the observation that SC3 demonstrates superior performance on the smaller data258

sets, we utilized Seurat graph-based clustering because it demonstrates greater scalability to large-259

scale analysis. Flat clusterings were obtained for 50 different resolution parameters sampled via260

Event-Sampling in the range of [0.001, 2]. The resulting tree identified all 13 major types with high261

accuracy and also uncovered many subtypes organized as subtrees (Figure 3C). Very distinct cell262

types separated early and fall into remote branches, while cell types that share similar functions263

share internal branches and split later in the process. For instance, endothelial, schwann, and264

stellate cells are very different from other endocrine and exocrine cells and thus split out first. Two265

types of endocrine cells, acinar and ductal, fall into a common subtree. Likewise, five types of266

exocrine cells are organized in the same subtree. Finally, subtypes from the same major type are267

organized in the same subtree, with one exception. A small subset of α cells was inappropriately268

placed in the tree. However, evidence suggests these cells represent an anomaly, possibly due to269

batch correction. These α outliers appear in the UMAP projection separated from other α cells270

and near the activated stellate cells.271

For comparison, we produced a hierarchical tree using Seurat agglomerative clustering (Figure 3D).272

Given the well-separated cluster structure of cell types in the projected PCA space, it is not surpris-273

ing that the tree also identifies all the major cell types; however, the hierarchical structure appears274

less reasonable. For instance, the activated and quiescent stellate cells were placed far from each275

other in the tree, and two endocrine types were grouped in different subtrees. In summary, MRtree276

produced a more useful tree than competing methods for both applications, and the interpretable277

subtree structure observed across applications shows promise for further investigation of the cell278

subtypes identified here.279

Human fetal brain cells We applied MRtree to cells from the mid-gestational human cortex,280

which we call the human brain data9. These data were derived from ∼40,000 cells from germinal281

zones (ventricular zone, subventricular zone) and developing cortex (subplate (SP) and cortical282

plate (CP)) separated before single-cell isolation. By performing Seurat clustering3, the authors283

assigned the cells into 16 transcriptionally distinct cell groups (Table S4). For convenience, here284
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we refer to these expert classifications as the Polioudakis labels.285

Our analysis began with the same preprocessing steps as conducted in the study9 using the pipeline286

supported by Seurat V3. The multilevel clustering results are visualized by increasing resolution287

from the top layer (resolution=0.001) to bottom layer (resolution=2), where each layer corresponds288

to one clustering (Figure S8A). Notably there were a considerable number of cells assigned to clus-289

ters inconsistently over changing resolutions, which made it challenging to determine the optimal290

resolution and the final cluster memberships. By applying MRtree, we were able to construct the291

organized hierarchical tree, which was represented by a dendrogram with the cell-type composition292

of clusters referencing Polioudakis labels shown by pie charts on tree nodes (Figure 4A). MRtree293

first separated interneurons and pericytes, endothelial and microglia, followed by splitting excita-294

tory deep layer neurons from radial glia to maturing excitatory neurons, representing the rest of a295

closely connected lineage (upper layer enriched). By further increasing the resolution, the radial glia296

cells and excitatory neurons were isolated, where the intermediate progenitors were more closely297

connected with maturing excitatory neurons. The finer distinctions of excitatory neurons were298

subsequently identified as migrating, maturing, and maturing upper enriched subtypes supported299

by differential gene expression and canonical cell markers (Table S5). The results were consistent300

with the group-wise separability visible through a 2-dimensional tSNE projection (Figure 4B). The301

cluster stability was inspected by comparing the initial Seurat clusters at each resolution with the302

MRtree results (Figure S8B), which suggested that the clusters were stable up to around K = 15.303

We decided to cut the tree at K = 13, which corresponded fairly closely to the 16 major gold304

standard cell types of the midgestational brain by examination of differentially-expressed marker305

genes (Table S5, Figure 4C,D). For comparison, an agglomerative hierarchical tree was generated306

starting from the Seurat clusters obtained at the highest resolution (Figure S8C). These results307

were distance-based and consequently more vulnerable to outliers, which appear to have caused308

several anomalies: subsets of ExM, ExM-U, and ExDp1 were grouped together, and two subsets of309

IP were separated from each other.310
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Endothelial
Excitatory deep layer 
Maturing excitatory neurons 
Maturing excitatory upper layer
Migrating excitatory neurons 
CGE-derived interneurons
MGE-derived interneurons 
Intermediate progenitors
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Figure 4: MRtree applied to scRNA-seq data from human brain cells. (A) MRtree produces
the hierarchical cluster tree from the initial flat clusterings at multiple resolutions obtained from
Seurat V3. The nodes correspond to clusters, with a pie chart displaying the cluster composition
referencing the Polioudakis labels. Tree cut is placed at tree layer corresponding to K = 13 based
on stability analysis, above which the clusters are stable. (B) tSNE plot of all 40,000 human brain
cells colored by which of the 13 major clusters the cells belong to, with cell-type identities names
hovering over clusters in black. (C) The 13 major clusters were obtained by cutting the tree at
the level indicated by the dashed line in (B), indicating the identified major cell types and the
associated stable hierarchical structure. (D) Heatmap of the top 10 significant marker genes (FDR-
adjusted p-value< 0.05) for the identified 13 major clusters ranked by average log fold change,
arranged according to the display of tree leaf nodes.
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Figure 5: MRtree clusters cells into known cell subtypes and states that underlie known cellular
developmental transcriptional trajectories at a higher resolution. (A) Hierarchical cluster tree of
subplate/ deep layer excitatory neurons (ExDp) with a heatmap of gene expression within canonical
gene ontology categories showing a gradually increased enrichment of Synaptogenesis, CREB sig-
naling, synaptic signaling (i.e., Synaptic long term potentiation, Opioid, and Dopamine-DARPP32-
cAMP signaling) across maturation from ExDP 0 to most mature ExDP 3 cluster. (B) Hierarchical
cluster tree of MGE-derived interneuron with a heatmap of gene expression within canonical gene
ontology categories shows a gradually increased enrichment of Synaptogenesis, CREB signaling,
and calcium-mediated signaling across maturation from InMGE 2 to most mature InMGE 4 clus-
ter. (C) tSNE projection of all cells colored by the MRtree identified subtypes from subsequent
analysis of the MRtree major cell types. (D) MRtree clusters are driven by biology and not tech-
nical co-variation in the data: Histogram of the percentage of cells that each brain sample (left),
sequencing run (middle), and cortical region (right) contribute to each cellular cluster identified
by MRtree. (E) Cells projected onto Monocle pseudotime analysis from Polioudakis et al., with
cells colored by MRtree cell-types and names hovering above. (F) Pseudotime projection of each
cluster cell types from MRtree illustrating a continuous developmental trajectory of excitatory
neurons, first: top left; intermediate progenitors IP 1, IP 0, top middle; newly born excitatory neu-
rons ExN 0, ExN 2, ExN 1, and, top right; maturing excitatory neurons ExM 0, ExM 1, ExM 2,
ExM 3, bottom left; followed by maturing upper layer neurons ExM-U 0 through ExM-U 7 and,
bottom left; maturing subplate/ deep layer neurons ExDP 2, ExDP 0, ExDP 1, ExDP 3.311

Identify subtypes Next, we scrutinized the fine-grained structure by re-clustering the 13 major312

cell types obtained from the hierarchical cluster tree of all cells. The cells were pre-processed from313

the raw count data as performed in the first iteration, followed by clustering using the Seurat314

graph-based method. By setting the resolution parameters from 0.05 to 1 and applying MRtree,315

we obtained one hierarchical tree for each major cell type, determined by trimming the full tree316

to the stable top layers (ExDP and InMGE are depicted in Figure 5A,B). This resulted in 21317

transcriptionally distinct cell types from 7 of the identified major types, expanding IP, ExN, ExM,318

ExM-U, ExDp, InCGE, and InMGE (Figure 5C, Table S8). The subtypes’ partitions were first319

evaluated by assessing whether the likely technical and biological co-variation, including brain320

sample, sequencing run, and cortical region, illustrated somewhat even distribution and appropriate321

overlap within each identified cluster. Results show that the clusterings were not driven by these322

technical features and are likely biologically meaningful (Figure 5D, Figure S9).323
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Figure 6: Known and unique biological states identified by MRtree with sub clustering on human
fetal brain data: intermediate progenitors and subplate/ deep excitatory neurons (A) top: tSNE
plot of all cells where intermediate progenitor (IP) cells identified by MRtree are colored by red,
bottom: tSNE projection of MRtree clustering where IP is broken into IP 1, colored in blue and
IP 0, colored by red. (B) Gene expression dot plot showing the normalized mean expression of
marker genes for newly born neurons (i.e. SLA, STMN2, NEUROD6 ), intermediate progenitors
(i.e. EOMES, SOX11, SOX4, PTN ), and radial glia (i.e. SLC1A3, VIM, SOX2, HES1 ) within
IP 1 (left) and IP 0 (right), grouped by increasing (top), decreasing (middle) and neural (bottom)
expressions from IP 1 to IP 0. (C) Significant protein-protein interacting (PPI) networks from
differential genes expressed in IP 1 on the left versus significant PPI network from DGE in IP 0 on
the right. (D) Heatmap of IP 1 and IP 0 gene expression within canonical gene ontology categories.
(E) top: tSNE projection where subplate and deep excitatory neurons (ExDP) cells identified by
MRtree are colored by red; bottom: tSNE projection where ExDP are broken into ExDP 2, colored
in blue and ExDP 0, colored by red, ExDP 1 colored by green, and ExDP 3 colored by purple. (F)
Gene expression dot plot showing the normalized mean expression of marker genes for layer 5 (i.e.
ETV1, RORB, FOXP1, FEZF2 ), Layer 6 (i.e. TBR1, SYT6, FOXP2 ), shared deep markers (i.e.
RORB, TLE4, LMO3, CRYM, THY1 ) and subplate makers (i.e NR4A2, ST18 ) within ExDP 2,
ExDP 0, ExDP 1, and ExDP 3 from left to right. The subtype-specific expressions are marked
by brackets. (G) Significant protein-protein interacting (PPI) networks from differential genes
expressed in ExDP 2 on the top left versus significant PPI network from ExDP 1 top right and
PPI from ExDP 3 bottom center.324

We focus on the results of excitatory neuronal subtypes, given their critical roles in neurological325

disorders. Close examination revealed that MRtree clustered cells into well-known cell types and326

states that underlie known cellular developmental transcriptional trajectories at a higher resolu-327

tion. Projection of each cluster of cell types from MRtree onto Polioudakis Monocle Psuedotime328

illustrated a continuous developmental trajectory of excitatory neurons, starting from intermedi-329

ate progenitors (IP) with IP 1 preceding IP 0. The cells then develop into newly born excitatory330

neurons in the order of ExN 0, ExN 2, ExN 1, which then grow into maturing excitatory neuron331

subtypes following the order of ExM 0, ExM 1, ExM 2, ExM 3. The trajectory finally ends at ma-332

turing upper layer neurons ExM-U 0 through ExM-U 7 and maturing subplate/ deep layer neurons333

ExDP 2, ExDP 0, ExDP 1, ExDP 3, with ExDP 3 considered as the most mature subtype (Figure334

5E,F). The estimated hierarchical tree for subtypes corresponded with gene ontology analysis of335

differential gene expression between branch cell types. For ExDp, the most distinct subtype was336

ExDp 3, which was first differentiated from the other subtypes, followed by the split for ExDp 2,337

and then ExDp 0 and ExDp 1 (Figure 5A). The heatmap of gene expression within canonical gene338

ontology categories showed a gradual increase in enrichment of Synaptogenesis, CREB signaling,339
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synaptic signaling (i.e., Synaptic long-term potentiation, Opioid, and Dopamine-DARPP32-cAMP340

signaling) across maturation from ExDP 0 to the most mature ExDP 3 cluster. We observed simi-341

lar functional specializations of inhibitory neuron subtypes (Figure 5B). The most mature subtype342

InMGE 4 was discriminated from the other MGE interneurons first, followed by splitting the sec-343

ond and third most mature subtypes from less mature cells, and finer distinctions were established344

subsequently in two branches. The heatmap of gene expression within canonical gene ontology345

categories showed a gradual increase in enrichment of Synaptogenesis, CREB signaling, Calcium346

mediated signaling across maturation from InMGE 2 to most mature InMGE 4 cluster.347

MRtree partitioned intermediate progenitor cells into two subtypes (IP 1 and IP 0; Figure 6A)348

similar to cell types revealed in Polioudakis et al., achieved only after multiple rounds of analysis of349

flat clustering results. Marker genes for newly born neurons (i.e. SLA, STMN2, NEUROD6 ) and350

intermediate progenitors (i.e. EOMES, SOX11, SOX4, PTN ) showed increased expression mark-351

ers within IP 0 in contrast to expression of more intermediate progenitors and radial glia genes352

within IP 1 (i.e. SLC1A3, VIM, SOX2, HES1 ) (Figure 6B). Notably, by comparing the significant353

protein-protein interacting (PPI) networks from differential genes (DGE) expressed in IP 1 versus354

significant PPI network from DGE in IP 0, we observed that IP 1 cells PPI contains a highly con-355

nected radial glial genes surrounding VIM including MKi67, SOX2, for example, whereas, IP 0 cells356

contain more neuronal-committed genes involving early step in neuronal differentiation including357

MAPT, GAP43, CALM2, GRIA2, PTPRD (Figure 6C). Gene ontology analysis further uncov-358

ered a switch in the enrichment of EIF2 signaling, growth factors, and cell cycling pathways (i.e.359

Sirtuin signaling pathway and SAPK/JNK signaling) in IP 1 to more specific neuronal categories360

like Synaptogenesis, Ephrin Receptor signaling, Reelin signaling underlying migration and neurite361

pathfinding signaling within IP 0 (Figure 6D).362

For ExDP subtypes, a closer examination of the expression of marker genes for layer 5 (i.e., ETV1,363

RORB, FOXP1, FEZF2 ), Layer 6 (i.e., TBR1, SYT6, FOXP2 ), shared deep markers (i.e., RORB,364

TLE4, LMO3, CRYM, THY1 ) and subplate makers (i.e., NR4A2, ST18 ) showed expression of365

Layer 5 markers within the least mature cells, ExDP 2, and layer 6 markers within ExDP 0, in366

contrast to the more mature expression of layer 6-CTIP2 markers within ExDP 3 and mature367
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expression of markers of subplate and layer 6 within ExDP 1 (Figure 6F). Surprisingly, ExDP 2368

PPI revealed a set of genes and structure similar to an intermediate progenitor with VIM at the369

center of translational control and the expression of neuronally committed genes SOX4, SOX11,370

ID2 similar to IP 1, except that neuronal specificity genes within this cluster were linked directly371

to upper Layer 5 cell fate (i.e., FEZF2, FOXP1, RORB, SYT4 ) instead of a general excitatory372

neuronal lineage seen in IP 1. ExDP 1 subplate cells PPI exhibited a group of connected genes373

related to more mature cellular properties such as synaptic plasticity and Wnt signaling (i.e.,374

GRIN2B, CTNNB1, NR2F1, NRXN1 ) but no energy or translational pathways that were present in375

ExDP 2. ExDP 3 cells showed the most extensive and unique PPI that illustrated more committed376

axonal and synaptic pathways underlying specifically Layer 6 CTIP2+ cells (i.e., CALM2, NRCAM,377

SNCA, GABAergic postsynaptic machinery) (Figure 6G).378

Four other cell types revealed subtypes that were also related to developmental ordering. ExN379

was partitioned into 3 subtypes that indicate a gradually increased expression of markers of upper380

layer excitatory neurons in contrast to no expression of deep layer neuronal programs (Figure381

S10). ExM was partitioned into 4 subtypes, 3 of which illustrate gradually increased expression382

of upper layer markers, in contrast, a fourth that expressed deep layer markers indicating layer383

4/5 excitatory neurons (Figure S11). InMGE was partitioned into 6 progressively more mature384

subtypes (Fig 5B) that demonstrate distinctions in both maturation and terminal specification385

(Fig S12). Finally, the 3 subtypes of InCGE display a general maturation of CGE interneurons386

through a gradual decrease in expression of transcription factors along with a gradual increase in387

expression of axonal-related genes (Figure S13). Meanwhile, although the signal was sparse, the388

PPI network for the allegedly most mature subtype revealed a connection between genes critically389

involved in post-synaptic glutamate signaling and plasticity, further supporting this conjecture.390

Additional characteristics of these subtypes can be found in Supplemental Information.391

Discussion and conclusion392

In this article, we propose MRtree, a computational approach for characterizing multi-resolution393

cell clusters ranging from major cell groupings to fine-level subtypes using a hierarchical tree. The394
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approach is based on deriving a multi-resolution reconciled tree to integrate clusterings obtained for395

a range of different resolutions. The proposed method combines the flat and hierarchical clustering396

results in a novel manner, inheriting the computational efficiency and scalability from the flat397

clustering and the interpretability of a hierarchical structure. In comparison, MRtree outperforms398

bottom-up and top-down hierarchical clustering approaches and provides superior clustering for399

each level of resolution. MRtree also provides tools for sampling implicit resolution parameters for400

Louvain clustering. This enables equal coverage of different clustering scales as input for the tree401

construction process. All clustering methods face the challenge of determining the optimal number402

of clusters supported by the data. While this problem is inherently intractable, MRtree uses a403

stability criterion to determine the maximum resolution level for which stable clustering results404

can be obtained for a given dataset. Because MRtree is agnostic to the clustering approach, it405

can readily utilize input from any flat clustering algorithm. Hence MRtree is extremely flexible,406

immediately incorporating the advantages of available clustering algorithms, while often providing407

improved clustering at every resolution due to the reconciliation procedure.408

To illustrate the performance of our method, we apply MRtree to a variety of scRNA-seq data sets,409

including cells from the mouse brain, human pancreas, and human fetal brain tissues. Coupled410

with suitable initial flat clustering algorithms, MRtree constructs the hierarchical tree that reveals411

different levels of transcriptional distinction between cell types and outperforms popular competi-412

tors, including bottom-up HAC and divisive methods such as CellBIC6. For functionally distinct413

cell types that can be easily identified, the reconciliation process organizes the clusters obtained414

under different scales into a unified hierarchical structure, and suggests a proper tree cut to retain415

the stable partitions. For instance, the constructed tree from integrated pancreatic islet data sets416

successfully identified endocrine and exocrine groups and subsequent cell types within each group.417

The clusters from the tree of mouse cortex data sets accurately recovered the known major cell418

types organized into subtrees of neurons and glial cells. Application of MRtree on human fetal brain419

cells uncovered previously recognized main types organized in a tree structure along the maturation420

trajectories.421

Our method has a greater impact in challenging situations where clusters are similar. Apart from422
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validating the method on the widely-acknowledged main cell types, we uncovered a list of stable423

subtypes from the fetal brain dataset that exhibit distinct states and functionality by examining424

canonical gene ontology categories and significant PPI networks. Specifically, we have shown that425

two subtypes of intermediate progenitors are well-defined by the expression of radial glia markers426

versus newly born neurons markers. The subplate /deep layer excitatory neurons are mainly differ-427

entiated by the layers the cells will populate. While migrating and maturing excitatory subtypes428

show a gradual increase of upper layer excitatory neuron markers, upper and deep layer excitatory429

neuron markers, respectively. Subtypes close in maturation states are reflected in the hierarchical430

tree as they are split later down the tree. InMGE demonstrates the distinction in both matu-431

ration and terminal specification with respect to the engagement of synaptic programs. At the432

same time, InCGE subtypes differentiate mainly by maturation, which fits nicely with the fact that433

CGE interneurons are born after MGE interneurons. While both cell types are born in the ventral434

telencephalon, their terminal specification happens only upon beginning synaptogenesis when they435

begin to express subtype-specific markers. Surprisingly, subtypes of ExDP revealed a set of genes436

and structures similar to an intermediate progenitor that can be further investigated in future work.437

It is worth noting that the quality of MRtree’s construction relies on the performance of the chosen438

flat clusterings. If the flat clusterings method inputs unstable or biased clusters, these errors439

will be largely retained and reflected in the estimated hierarchical cluster tree. Similar to many440

consensus clustering methods, MRtree can be extended to allow input from multiple sources, each441

applying different flat clustering methods; however, the quality of the constructed tree depends on442

the clustering performance of the full spectrum of sources. If the input data provides a disparate443

signal, then the outcome is likely to be unstable.444

Our studies suggest several interesting questions worthy of future investigations. For instance,445

our method is a general framework that allows for any flat-clustering base procedure. In practice,446

how to determine which base procedure suits better for different data sets still remains open. In447

addition, the current framework relies on a rough idea about the range of resolution. Can we448

automatically decide the range of resolution? How can we select this range when the resolution is449

not parameterized by the number of clusters? In particular, our current method adopts a stability450
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measure to decide whether to further branch the hierarchical tree. Can we provide theoretical451

guarantees for the power of this stopping criterion? Furthermore, our work shed light on how452

major cell types evolve to subtypes, and we would like to further verify these biological findings.453

Methods454

We briefly formulate the optimization problem and introduce the algorithm we employed. A more455

detailed description can be found in Supplemental Information. Given the transcriptomes of n cells456

on p genes, denoted as X ∈ Rn×p, suppose clustering is performed using algorithm A at a range457

of m resolutions with parameters {k1, . . . , km}. Here the resolution parameters are loosely defined458

where it corresponds explicitly to the number of clusters for some algorithms, while it implicitly459

determines the number of clusters for other algorithms. To formally state the problem and the460

hierarchical reconciliation algorithm, we first introduce some notation.461

Definition 1 A cluster tree Tc(k1, . . . , km) at resolution levels (k1, . . . , km) is a directed m-partite462

graph with vertex set V (Tc) and edge set E(Tc). Denote the set of all cluster trees as Tc(k1, . . . , km).463

Here the vertex set V (Tc) is the union of m subsets, namely V (Tc) = ∪j=1,...,mVj(Tc), where each464

set Vj(Tc) consists of kj nodes denoted as {vj,1, . . . , vj,kj}. Each nodes represents a cluster in the465

partition of n cells into kj clusters, namely, vj,k represents the k-th cluster at the j resolution level.466

Each direct edge evj,k,vj+1,k′ is defined between adjacent layers pointing from a lower resolution467

cluster vj,k to a higher resolution cluster vj+1,k′ whenever there are overlapping samples between468

these two clusters at different resolutions. Further, Let vin(e) and vout(e) be the in-vertex and469

out-vertex of edge e.470

Definition 2 We call a cluster tree a hierarchical cluster tree, denoted as Th(k1, . . . , km), if it471

satisfies the following constraint:472

Constraint A1: Each node vj+1,k has one and only one in-vertex edge.473

Denote the set of all hierarchical cluster trees at resolution (k1, . . . , km) as Th(k1, . . . , km)474
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Condition A1 ensures that any cluster in a higher resolution belongs to one and only one cluster475

in the adjacent lower resolution, that is, ∀ vj,k, ∃k′ such that vj,k ⊆ vj−1,k′ . It further implies476

that the hierarchical tree can only be a branching tree as the resolution increases (top-down), and477

the clusters in lower levels should be intact in levels above it. Compared to the cluster trees,478

hierarchical cluster trees respect the clustering structure at higher resolutions in the sense that479

they keep samples that are together at higher resolutions in the same cluster for lower resolutions.480

Similarly, those samples that are far away from each other at a lower resolution do not enter the481

same clusters at high resolutions. We illustrate an example of A hierarchical cluster tree and its482

noisy companion in the form of a cluster tree in Figure S1.483

Arrange the the clustering results at each resolution inside a label matrix484

L(Tc) := [L1, . . . , Lm] ∈ Rn×m, (1)

where the j-th column denotes the corresponding labels for each data point at resolution kj .485

Definition 3 For each data point xi, i = 1, . . . , n, define its clustering path p(xi) :=486

(v1,li1 , . . . , vm,lim) where vj,lij is the label for xi at resolution kj. Let P(Tc) := {p(xi) | i = 1, . . . , n}487

be the set of all unique paths.488

Optimization scheme Let Tc(k1, . . . , km;A, X) be the initial cluster tree by applying clustering489

algorithm A on X, and let T ∗h (k1, . . . , km;A, X) be the underlying true hierarchical cluster tree.490

Further denote the two respective n-by-p label matrices as L(Tc;A, X) and L(T ∗h ;A, X). Our goal491

is to recover the unknown hierarchical tree from the observed initial cluster tree from the multi-492

resolution flat clustering. For ease of notation, we drop A, X and replace (k1, . . . , km) with km.493

Assuming that Tc(kj) is an estimator of T ∗h (kj), j = 1, . . . ,m, if Tc(k
m) satisfy constraint A1, it494

naturally yields an estimator of T ∗h (km), though this is rarely the case. Following this idea, we495

construct the estimator by building a hierarchical cluster tree that mostly preserves the cluster496

structures from the observed cluster tree Tc(k
m) constructed from the initial flat clustering results.497

To achieve this, we define a loss function as the distance between the solution tree and initial flat498

clusterings Tc(k
m). We seek to minimize the loss under the constraint that the solution tree satisfies499
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constraint A1. To measure the difference between two trees, which is equivalent to measuring500

mismatch between two sets of partitions, we adopt hamming distance between the respective label501

matrices (defined in Eq. (1)). Hamming distance computes the number of location-mismatches of502

a pair of matrices, commonly used for measuring the distance between two paired partitions.503

The problem formulated above is equivalent to finding the optimum km distinct paths from the set504

of all feasible paths (Def. 3) of a cluster tree, to which all data points are assigned, and the induced505

multi-scale partitions preserve the most flat clustering structures. It is a combinatorial optimization506

problem. The complexity grows exponentially with the depth and number of clusters in each layer507

of the tree, and therefore is computationally intractable. To alleviate the computational burden,508

we introduce an equivalent objective function and propose a greedy algorithm to solve it. Formally,509

define Ṽ (T ) to be the set of “bad” vertices that have more than one in-vertex edge. Then for any510

proposed hierarchical cluster tree, i.e. T ∈ Th, we have |Ṽ (T )| = 0. The hierarchy is therefore511

estimated by solving the optimization problem respective to the newly-formulated constraint,512

T̂h = arg min
T

min
π
DHamm (L(T ), π(L(Tc))) subject to |Ṽ (T )| = 0. (2)

where DHamm(·, ·) represents the hamming distance. The objective is minimized over permutation513

of labels π = πkj , j = 1, . . . ,m within each partition since the error should not be depending on514

how we label the classes.515

We employ a greedy optimization procedure. The formulated problem (2) is first transformed to a516

soft constraint problem that shares the same solutions to allow for constraint violation during the517

optimization procedure. This enables initializing the solution with the observed flat cluster tree518

Tc(km). The objective is then minimized by sequentially “cleaning” one bad vertex in set |Ṽ (T )| at519

a time. “Cleaning” the node refers to eliminate all but one edge that have this node as its in-vertex,520

followed by re-routing data points belonging to the eliminated path to remaining nearest viable521

paths. The increase in the objective as the results of cleaning the node is considered as the cost522

of eliminating the node from Ṽ (T ). In each iteration, the vertex in set Ṽ (T ) is evaluated for its523

elimination cost, where the one with the minimum cost is selected. The tree is then updated with524

the selected node being cleaned and affected data points re-assigned to the nearest remaining paths.525
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The procedure is repeated until |Ṽ (T )| = 0, which generates the desired hierarchical cluster tree.526

The full algorithm is summarized in Algorithm 1. In Supplemental Information we analyze the527

key properties of the algorithm: Theorem 1 provides the convergence properties, while Theorem 2528

describes the memory and time complexity. In addition, we introduce methods for sampling implicit529

resolution parameters with uniform coverage for modularity-based clustering (Seurat clustering),530

including linear sampling, exponential sampling, and most preferably, Event Sampling method. We531

also discuss ways of speeding up the algorithm in case of large sample size or a large number of532

initial flat clusterings through layer-wise reconciliation and performing within-resolution consensus533

clustering as the first step.534

Stability analysis to determine tree cut We consider clustering stability to determine the535

tree cut based on a basic philosophy that clustering should be a structure on the data set that is536

“stable”. That is, if applied to data sets from the same underlying model, a clustering algorithm537

should consistently generate similar results. Higher stability across resolutions is reflected as greater538

consistency of individual initial flat clustering with the resulting clustering in the reconciled tree.539

To measure the stability, we calculate the similarity using ARI between clusterings in corresponding540

layers from the initial cluster tree and the resulted hierarchical cluster tree. This will generate a541

line plot showing the similarity with increasing resolution. The tree cut can then be determined by542

finding the “change point” where the stability is high at the current point and start to decrease by543

further increasing the resolution.544

Clustering accuracy To quantify the clustering performance in each layer of the hierarchical545

tree, we utilize a novel modified version of Adjusted Rand Index (ARI)5, called Modified Multi-546

resolution Rand Index (AMRI, Supplemental Information), as the accuracy metric to compare the547

multi-resolution cluster structures with the true labels. The adjustment allows for comparisons548

across resolutions, accounting for the reduced ability to uncover details in lower resolutions, thus549

avoiding a bias towards fine-grained clustering results.550
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Tree construction accuracy To quantify the performance of hierarchical tree construction,551

given the true tree is known, we reduce the tree to a similarity matrix. Each entry of the matrix552

represents the length of branch two data points share. The longer branch a pair share, the more553

similar they are. In this way, we convert the measurement of the difference between hierarchies554

(dendrograms) to measure the difference between two similarity matrices. The between-similarity555

distance is measure with the L1 norm of the difference, defined by556

D(T1, T2) = ‖A1 −A2‖1 =
∑
i,j

|A1,ij −A2,ij |, (3)

where A1, A2 are the similarity matrices of tree T1, T2 respectively. Given the certain tree structure,557

the induced similarity metrics can be visualized in Figure S14.558

Cluster Stability Apart from examining the performance of MRtree for clustering accuracy, we559

also access the stability of the clusters at multiple resolutions prior to and post to tree reconciliation.560

Clustering stability has been considered as a crucial indicator of goodness of the clusters, given that561

well-performed partitions tend to be consistent across different sampling from the same underlying562

model or of the same data generating process11. In practice, a large variety of methods has been563

devised to compute stability scores. Here we adopt the sub-sampling procedure, where the same564

clustering method is repeatedly performed on the independently sub-sampled data sets and compute565

the average similarity among the repetitions. Formally given a data set of n points Sn, let Ck(Sn)566

be the resulted clustering outcome with k clusters. Let S̃
(b)
n be a sub-sampling of Sn by randomly567

choosing a subset of size τn without replacement. Then the stability score is obtained by averaging568

the partition similarity on the shared data points,569

Stab(k, n) =
1

B

B∑
b=1

ARI(Ck(Sn), Ck(S̃
(b)
n )). (4)

The higher the stability score, the more stable the clustering procedure is regarding the noise in570

the data. We use τ = 0.95 in our experiments.571
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Software MRtree can be constructed using the mrtree R package, which can572

work directly with Seurat and SingleCellExperiment objects, available on Github573

(https://github.com/pengminshi/MRtree).574
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