
1 
 

Innovations to expand drone data collection and analysis for rangeland 1 

monitoring 2 

 3 

Jeffrey K. Gillan1†, Guillermo E. Ponce-Campos1, Tyson L. Swetnam2, Alessandra Gorlier1, Philip Heilman3, 4 

and Mitchel P. McClaran1 5 
 6 
1University of Arizona  7 

School of Natural Resources & Environment 8 

1064 East Lowell Street 9 

Tucson, AZ 85721 10 

 11 
2University of Arizona 12 

BIO5 Institute  13 

1657 East Helen Street 14 

Tucson, AZ 85721 15 

 16 
3USDA Agricultural Research Service  17 

Southwest Watershed Research Center 18 

2000 East Allen Road 19 

Tucson, AZ 85719 20 

 21 
†Corresponding Author 22 

Jeffrey K. Gillan 23 

Email: jgillan@email.arizona.edu 24 

 25 

 26 

Data, including raw imagery, point clouds (.laz & Entwine Point Tiles), digital surface models, digital 27 

terrain models, vegetation height models, and orthomosaics, and software code will be made available 28 

in Cyverse Data Commons through a stable DOI. This link is currently where the data resides and will get 29 

a permanent stable address once published.  30 

https://datacommons.cyverse.org/browse/iplant/home/shared/aes/srer/suas/2019/ecostate_mapping 31 

 32 

Python, R, HTML, and Google Earth Engine code used in this project can also be found at: 33 

https://github.com/jeffgillan/Drone-Imagery-Analysis 34 

 35 
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Abstract 41 

In adaptive management of rangelands, monitoring is the vital link that connects management actions 42 

with on-the-ground changes. Traditional field monitoring methods can provide detailed information for 43 

assessing the health of rangelands, but cost often limits monitoring locations to a few key areas or 44 

random plots. Remotely sensed imagery, and drone-based imagery in particular, can observe larger 45 

areas than field methods while retaining high enough spatial resolution to estimate many rangeland 46 

indicators of interest. However, the geographic extent of drone imagery products is often limited to a 47 

few hectares (for resolution ≤ 1 cm) due to image collection and processing constraints. Overcoming 48 

these limitations would allow for more extensive observations and more frequent monitoring. We 49 

developed a workflow to increase the extent and speed of acquiring, processing, and analyzing drone 50 

imagery for repeated monitoring of two common indicators of interest to rangeland managers: 51 

vegetation cover and vegetation heights. By incorporating a suite of existing technologies in drones 52 

(real-time kinematic GPS), data processing (automation with Python scripts, high performance 53 

computing), and cloud-based analysis (Google Earth Engine), we greatly increased the efficiency of 54 

collecting, analyzing, and interpreting high volumes of drone imagery for rangeland monitoring. End-to-55 

end, our workflow took 30 days, while a workflow without these innovations was estimated to require 56 

141 days to complete. The technology around drones and image analysis is rapidly advancing which is 57 

making high volume workflows easier to implement. Larger quantities of monitoring data will 58 

significantly improve our understanding of the impact management actions have on land processes and 59 

ecosystem traits.  60 

 61 
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Introduction 65 

The rangeland manager’s challenge is the extensive management across a heterogeneous landscape 66 

under an uncertain climate. With so much uncertainty, rangeland managers typically opt for an adaptive 67 

management approach, particularly in the public domain rangelands that dominate the western US. 68 

Adaptive management is not simply trial and error, but according to the Department of Interior 69 

(Williams et al., 2009): An adaptive approach involves exploring alternative ways to meet management 70 

objectives, predicting the outcomes of alternatives based on the current state of knowledge, 71 

implementing one or more of these alternatives, monitoring to learn about the impacts of management 72 

actions, and then using the results to update knowledge and adjust management actions. Unfortunately, 73 

budgetary and institutional constraints have long limited public land monitoring, as noted by Fernandez-74 

Gimenez et al. (2005). Sayre et al. (2013) state that monitoring is a critical component of adaptive 75 

management but often weak or missing in practice. The premise of this paper is that expanded 76 

monitoring is a prerequisite for improved rangeland management. 77 

 78 

Traditional field monitoring methods (e.g., transects or quadrats) can provide detailed information for 79 

assessing the health of rangelands. Cost, however, often limits monitoring locations to a few key areas 80 

or random plots that observe a small fraction of the land they are intended to represent (Booth and Cox, 81 

2011; Toevs et al., 2011; West, 2003). Remotely sensed imagery enables a broader view of the land and 82 

potentially a more representative sample. Drone-based imagery, in particular, can observe larger areas 83 

than field methods while retaining high enough spatial resolution to estimate many rangeland indicators 84 

of interest. These indicators include vegetation cover (Baena et al., 2017; Breckenridge et al., 2011; 85 

Hardin et al., 2007; Laliberte and Rango, 2011), vegetation heights (Cunliffe et al., 2016; Gillan et al., 86 

2020; Jensen and Mathews, 2016; Olsoy et al., 2018), biomass (Cunliffe et al., 2016; Michez et al., 2019), 87 
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forage utilization (Gillan et al., 2019), and soil erosion (D’Oleire-Oltmanns et al., 2012; Gillan et al., 88 

2017).  89 

 90 

At present, leveraging small drones, off-the-shelf sensors, and structure-from-motion photogrammetry 91 

(SfM-MVS) is a low-cost workflow capable of meeting several rangeland monitoring needs. However, 92 

challenges remain to deploy this technology at larger operational scales. The geographic extent of drone 93 

imagery products is often limited to a few hectares (for spatial resolution ≤ 1 cm) due to image 94 

collection and processing constraints. Additionally, sharing data and reporting out monitoring results to 95 

collaborators and stakeholders can be limited by large file sizes and the complexity of web development.  96 

Overcoming these limitations would move us closer to realizing the potential value of drone-based 97 

monitoring, which is: 1. broader extent observations; 2. better measurement of some indicators; and 3. 98 

permanent visual records. Scaling the production and interpretation of drone imagery will be essential 99 

to support adaptive management on individual allotments as well as to integrate with national-scale 100 

monitoring programs such as the Bureau of Land Management’s Assessment, Inventory, and Monitoring 101 

(AIM) strategy and the Natural Resource Conservation Service’s National Resource Inventory (NRI).     102 

 103 

Our objective was to develop a workflow to increase the extent and speed of acquiring, processing, and 104 

analyzing drone imagery for repeated monitoring of two common rangeland indicators: vegetation 105 

cover and vegetation heights. We compared the total number of workdays to execute our innovative 106 

workflow with the time required to complete a more conventional workflow. We then demonstrate 107 

sharing and visualization of the imagery products and results using free or open-source web tools. We 108 

focused on the workflow and did not directly assess the accuracy of indicator values compared with field 109 

methods. The workflow described here is an initial phase of a larger research project investigating the 110 

use of drone imagery for mapping ecological states (Steele et al., 2012).  111 
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 112 

Methods 113 

Study Area 114 

We conducted this research at Santa Rita Experimental Range (SRER) in southern Arizona (31°48’36”N, 115 

110°50’51”W; Fig. 1). The range, established in 1902, is a 21,000 ha Sonoran Desert grassland that has 116 

been significantly invaded by velvet mesquite (Prosopis velutina). SRER is a living laboratory for studying 117 

dryland ecology and sustainable livestock production. The range has over 200 permanent long-term 118 

transects intended to capture vegetation dynamics across multi-decadal time spans (McClaran et al., 119 

2002; cals.arizona.edu/srer). In the upper elevations of the range (1050-1300 m MSL; Major Land 120 

Resource Area 41-3), we selected a subset of 100 transects for this study. The long-term transect 121 

locations are not randomized and thus do not represent an unbiased sample of the study area. It was 122 

not our intent to extrapolate results to monitor all of SRER. Instead, the legacy transect locations 123 

provided a large sample size from which to demonstrate our workflow.  124 

 125 

Image Acquisition 126 

We collected drone imagery covering the 100 transects in May 2019 (dry season) and repeated the 127 

acquisition in September 2019 (monsoon season). We used a DJI Phantom 4 RTK quadcopter specifically 128 

because it possessed a real-time kinematic global navigation satellite system (RTK GNSS). RTK GNSS on 129 

drones is not a new technology, but it is now more accessible due to its integration in off-the-shelf 130 

aircraft at reduced cost. The Phantom 4 RTK in 2019 cost ~$8,000 and came paired with a portable GNSS 131 

base station and tripod (D-RTK 2). 132 

 133 

RTK is a technology that pinpoints the 3D coordinates of the camera for each image taken from the 134 

moving drone. It can be accurate within a few centimeters, which is more precise than a typical global 135 
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positioning system (GPS) receiver is. RTK GNSS is a differential correction system where the aircraft is in 136 

constant communication with a nearby portable base station with known coordinates (i.e., placed over a 137 

surveyed benchmark). When an image is taken, the location of the drone (and more specifically the 138 

camera), as estimated from the onboard GPS, is compared with and corrected by a signal from the base 139 

station. The improved location coordinates (i.e., latitude, longitude, elevation) are then recorded as 140 

metadata on the exchangeable image format (EXIF) header of each image. 141 

 142 

Highly accurate camera locations can replace the use of ground control points (GCPs) to scale and 143 

georeference imagery products such as point clouds and orthomosaics (Forlani et al., 2018; Hugenholtz 144 

et al., 2016; Rehak et al., 2013). RTK allowed us to streamline two aspects of the workflow. First, it 145 

eliminated the need to place and survey GCPs with either a total station or ground-based differential 146 

GPS. It can be quite cumbersome to survey GCPs, especially for large flight areas that may require a 147 

dozen or more. Second, labor was eliminated in the photogrammetry processing step of identifying each 148 

GCP in every image. Algorithms in commercial software aimed at automatically identifying GCPs are not 149 

always successful, especially for oblique angle views. With RTK drones, we can collect and create high-150 

quality image products over large extents, while a GCP workflow practically limits us to plot scales. 151 

 152 

Prior to this study, SRER had only one known surveyed benchmark. We established and surveyed more 153 

benchmarks using a Trimble R10 RTK GNSS (base station and rover). We set the Trimble base station 154 

over the original benchmark and roved across the range setting up new benchmark points near all of the 155 

flight transects. Because of some transect clustering, we needed just 39 benchmarks to cover the 100 156 

transects (Fig. 1). The benchmark points were existing rebar posts that marked the ends of long-term 157 

transects. Absolute accuracy of the surveyed benchmarks was < 1 cm horizontal and 1-1.5 cm vertical. 158 
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We used the drone portable base station (D-RTK 2) placed over the benchmarks to facilitate RTK 159 

location correction while the drone flew and collected images.  160 

 161 

Through our own independent assessment, we found the RTK drone imagery products (flown at 38 m 162 

above ground level) to have horizontal location accuracy of 2.2 cm and vertical accuracy of 3.4 cm. This 163 

was within ~1 cm, both horizontally and vertically, of an assessment conducted by DroneDeploy 164 

(Mulakala, 2019). Our reproducibility assessment yielded a horizontal precision of 3 cm and vertical 165 

precision of < 1 cm for digital surface models. 166 

 167 

For each of the two campaigns (dry and wet seasons), we collected 53 flight plots to cover the 100 168 

transects, a total of 193.1 ha (Fig. 1). Transects that were very near each other (< 300 m) were often 169 

captured in a single image product. Flight plots ranged in size from 1.6 to 7.1 ha to meet the objectives 170 

of the ecological state mapping project. We collected a high density of nadir and oblique images (~200 171 

ha-1) in order to create very detailed and accurate point cloud models and downstream products such as 172 

vegetation height models (VHMs). See Table 1 for full sensor and acquisition specifications and Fig. 2 for 173 

a chart of the entire workflow. 174 

 175 

Image Product Creation  176 

Eliminating ground control points through the use of RTK enabled us to fully automate imagery product 177 

creation with Python scripts. What would take an analyst a few hours to complete interactively (in 178 

addition to the dense point cloud reconstruction time), was scripted in Agisoft Metashape 1.5.2 179 

(www.agisoft.ru). The general SfM-MVS workflow is well documented so it will be abbreviated here (see 180 

Eltner et al., 2015; Smith et al., 2015; Snavely et al., 2008; Westoby et al., 2012). Python scripts, running 181 

from command line, added imagery to the project, created the sparse point cloud, filtered poor quality 182 
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points, optimized the sparse model, then generated dense point clouds, digital surface models, digital 183 

terrain models, and orthomosaics (see Table 2 for processing parameters). When the plot completed, it 184 

seamlessly started the next plot. Image processing reports were later spot checked for quality 185 

assurance.   186 

 187 

In addition to scripting, we used high performance computing (HPC) to quicken image product creation 188 

for the twenty largest flight plots (801-1600 images each). We used the University of Arizona HPC 189 

system called Ocelote. Each CPU node was an Intel Haswell V3 28 core processor with 192 GB RAM. 190 

They also had Graphical Processing Units (GPU) nodes with one Nvidia P100 GPU, 28 cores, and 256 GB 191 

RAM. The type and number of nodes used depended on the availability of HPC resources. We typically 192 

used between 10-15 nodes working in parallel, each running an instance of Metashape, which was 193 

designed with network processing in mind. Each Metashape instance and license operated through 194 

container software Singularity (singularity.lbl.gov). Containers enabled us to package our computing 195 

environment, including software installs and licenses, for easy deployment on the remote HPC nodes. 196 

We had to purchase educational Metashape licenses for each processing node (~$500 each). Our 197 

Metashape instance ‘master’ was located on a Linux server while the worker nodes were provided by 198 

the HPC (also Linux). For the 33 smaller plot areas (278-800 images), we used a Windows desktop 199 

machine (hereafter as the PC) with two Intel Xeon CPUs (2.4 GHz; 16 logical processors each), two Nvidia 200 

GeForce GTX 1080 video cards (GPUs), and 256 GB RAM.  201 

 202 

Using both the HPC and the PC simultaneously, it took approximately two weeks to produce the entire 203 

suite of imagery products (point clouds .las, digital terrain models .tif, digital surface models .tif, 204 

orthomosaics .tif) for one collection campaign, a total of 561 GB (Fig. 3). We then generated vegetation 205 

height models (VHMs) for each plot area by subtracting the digital terrain model from the digital surface 206 
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model on a cell-by-cell basis using the Raster package in Rstudio. This was executed on the PC and took 207 

approximately 4 hours to complete. With a simple shell command (see 208 

https://entwine.io/quickstart.html), we converted all of the .las point clouds to entwine point tile (EPT), 209 

a format that facilitates browser-based viewing of large point clouds. We uploaded all image products 210 

and raw imagery to Cyverse Data Commons (cyverse.org/data-commons/….pending DOI) for public 211 

access and long-term storage.  212 

 213 

Image Product Analysis 214 

As large drone imagery datasets outpace desktop computing power, new tools are needed for rapid 215 

analysis, visualization, and sharing. We used the cloud-based analysis platform Google Earth Engine 216 

(GEE; earthengine.google.com) to derive additional value-added indicators from the imagery products. 217 

GEE is a cloud-based geospatial analytics platform with access to large computational resources and two 218 

application programming interfaces (API), JavaScript and Python. These APIs provide a suite of raster 219 

analysis functions including several classification algorithms (Gorelick et al., 2017). Though it was built 220 

primarily for broad scale satellite imagery, it is free and can also handle very large drone datasets.  A 221 

powerful feature of GEE is the ability to easily share JavaScript code and imagery assets between users, 222 

which can make imagery analysis collaborative.  223 

 224 

We uploaded all orthomosaics from the May acquisition (n=53) into GEE and then mosaicked them 225 

together to form a single large super-mosaic (19.3 billion pixels). We repeated these steps for the May 226 

VHMs, September orthomosaics, and September VHMs. We used red, green, and blue bands, vegetation 227 

heights, and a calculated green leaf algorithm (
𝐺∗2−𝑅−𝐵

𝐺∗2+𝑅+𝐵
; Louhaichi et al. 2001) as input features to 228 

thematically classify the imagery with a machine learning classification tree algorithm (Breiman et al., 229 

1984). We identified four cover classes as a simple demonstration of the tool and workflow: herbaceous 230 
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vegetation, woody vegetation (including cactus), bare-ground, and shadow. We used the polygon 231 

digitizing tool within GEE to select training data for each class. We generated seven training polygons for 232 

each class, with each training polygon containing hundreds of training pixels. For classification 233 

validation, we randomly selected 50 pixels for each class across the super-mosaic. These pixels were 234 

visually interpreted and compared with their assigned class.   235 

 236 

For comparison with a conventional workflow, we classified the drone imagery using ArcGIS Pro 2.5 237 

(esri.com) installed on the PC. We used the same input features and basic training procedures as our 238 

GEE workflow. Instead of merging all the orthomosaics into a super-mosaic (as we did in GEE), we used 239 

Model Builder to automate the sequentially classification of each orthomosaic using the Random Trees 240 

algorithm. We enabled parallel processing to use all available CPUs for faster classification.  241 

 242 

Visualization and Sharing 243 

For sharing monitoring results and image product visualization on the web, we chose two platforms. We 244 

developed a public facing web-app directly in GEE that enables users to view the orthomosaics, VHMs, 245 

classified maps, and see summaries of the vegetation cover and vegetation heights. The website was 246 

developed with JavaScript and is served through Google Cloud. Additionally, we developed a mapping 247 

application using Leaflet, an open-source JavaScript library (https://de.cyverse.org/....pending DOI). 248 

Users are able to explore a map of all the flight plots at SRER. Clicking on individual plots invites users to 249 

view high-resolution versions of the orthomosaics and 3D point clouds directly in their web browser. The 250 

orthomosaics are displayed in Eox Cog Explorer (https://geotiffjs.github.io). The point clouds are 251 

viewable using Potree (entwine.potree.io), a free open-source web graphics library that renders point 252 

clouds directly in your web browser using the EPT format.  253 

 254 
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 255 

Results and Discussion 256 

By incorporating a suite of existing technologies in drones (RTK GNSS), data processing (automation with 257 

Python scripts, high performance computing), and cloud-based analysis (Google Earth Engine), we 258 

increased the efficiency of collecting, analyzing, and interpreting high volumes of drone imagery for 259 

rangeland monitoring. End-to-end, our workflow took 30 days, while a workflow without these 260 

innovations was estimated to require 141 days to complete (Table 3).   261 

 262 

RTK saved us considerable time in the image collection step (Table 3). With a GCP workflow, small plots 263 

would require 5 to 8 GCPs, and larger plots could require 10 to 20 GCPs to achieve accuracies 264 

comparable to the RTK results (James et al., 2017; Sanz-Ablanedo et al., 2018). A conservative estimate 265 

would be 300 GCPs for all of the flight plots, which could take upwards of 30 workdays to install and 266 

survey. Our RTK workflow, for comparison, required just 3 days to survey 39 benchmarks at existing 267 

stakes. Placing and collecting GCP targets before and after the flights would add an additional ~30 268 

minutes to each plot. This could push the total number of flying days from 12 (with RTK) to 16. Our RTK 269 

workflow eliminated the manual labor of identifying GCPs during the image processing step, which could 270 

take hours per plot. We estimated a savings of 20 workdays by eliminating manual GCP identification.  271 

 272 

Other potentially more efficient options for image product referencing exist. For example, cellular tower 273 

virtual reference systems can send correction signals to flying drones using tablets or smartphone 274 

devices as an intermediary. These correction networks could eliminate our need to use portable base 275 

stations and surveyed benchmarks. In Southern Arizona, a private company provides the correction 276 

signal as a service, but we decided against this option because strong cellular reception was not reliable 277 

everywhere in the study area. As cellular coverage expands, even across rural rangelands, virtual 278 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.430004doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.430004
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

reference systems will become increasingly viable for drone image product referencing. Alternatively, 279 

the drone and portable base station workflow used in this project could be executed without surveying 280 

benchmarks. In remote areas where high-precision surveying is not practical or the equipment is not 281 

available, drone image products can be corrected to have high relative accuracy. In this case, the image 282 

products are correctly scaled but may be shifted horizontally or vertically from a true absolute position 283 

(see Gillan et al., 2020).  284 

 285 

The HPC was 14 to 24x faster than the PC at dense point cloud reconstruction, depending on the 286 

number of HPC nodes and the total number of images in the Metashape project. Plots with larger 287 

numbers of images required much greater (non-linear increases) processing time and showed the most 288 

speed gains through the HPC. For example, a plot with 900 images that took 24 hours to process on the 289 

PC, was completed in 1.6 hours on the HPC. A 1500 image plot that took 120 hours to process on the PC, 290 

was completed in 5 hours on the HPC. By using the HPC on the twenty largest plots, we saved ~45 days 291 

of image processing. Additionally, scripting increased the speed of processing the plots on the PC by 292 

processing 24 hours per day including starting jobs in the middle of the night. This probably saved ~15 293 

days.  294 

 295 

In the near future, computational power will not be a hindrance to high volume drone data. For 296 

example, recent software updates to Agisoft Metashape (v. 1.6.2) have significantly increased the speed 297 

of image processing on PC and HPCs. We can now expect the processing time to be 3-8x faster than 298 

described in this paper. HPC is becoming increasingly available through many universities with easier to 299 

use interfaces (Settlage et al., 2019). Alternatively, image processing can be outsourced (via the web) to 300 

commercial entities including DroneDeploy (dronedeploy.com), Pix4D (pix4d.com), and Delair 301 

(delair.aero).  302 
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 303 

Classifying all drone orthomosaics in GEE was essentially instant. Near instant feedback allowed us to 304 

quickly assess classification results and adjust training data for higher accuracy (see Appendix Tables S1 305 

& S2 for confusion matrices). In comparison, it took ~3 hours to classify 53 orthomosaics using ArcGIS 306 

Pro on the PC.  307 

 308 

GEE worked well for classifying the imagery and is currently the most mature tool for quickly analyzing 309 

large quantities of drone imagery. However, limitations of the platform include data storage limits and 310 

upload/download speeds to and from GEE. Additionally, it has limited functionality to conduct every 311 

analysis we might want for rangeland monitoring (e.g., 3D point cloud analysis; landscape metrics). A 312 

greater variety of analysis options exist in ArcGIS Pro, but they may be less accessible to users due to 313 

cost. Fortunately, there is an enormous and growing variety of image analysis tools available across 314 

open platforms such as R, Python, and QGIS. Many have the capability to maximize local computing 315 

resources and distribute processing tasks to HPC clusters (see parallel processing options for R and 316 

Python). The availability of high throughput analysis tools will soon not be a constraint. Instead, the 317 

challenge will be to identify workflow ‘best practices’ for estimating a suite of rangeland indicators and 318 

selecting the best mix of tools that are cost-effective and repeatable (Gillan et al., 2020). 319 

 320 

Leaflet paired with Eox COG Explorer and Potree provided an easy-to-build web map for visualizing the 321 

point cloud and orthomosaic products (Fig. 4; https://de.cyverse.org/....pending DOI). The Potree viewer 322 

has basic analysis tools (distance, volume, profile). The GEE app enabled us to share the classified maps, 323 

VHMs, and graphed summaries of vegetation cover and heights (Fig. 5; https://bit.ly/srer-drone-2019). 324 

Both of these sharing options eliminated the need for collaborators to download large files or install 3rd 325 

party software on their local machines.  326 
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 327 

Implications 328 

High volume drone imagery will enable us to move beyond ‘proofs of concept’ and other small-scale 329 

research demonstrations to data quantities that significantly improve our understanding of land 330 

processes. In an adaptive management framework, this means expanding monitoring beyond the 331 

confines of plots and transects to provide a more representative sample of vegetation characteristics 332 

across rangelands. A more representative sample could increase the statistical power to detect indicator 333 

change by either increasing the sample size (i.e., collecting imagery at more locations than transects), or 334 

by expanding the observational area of each transect to reduce variance between samples (Sundt, 335 

2002). Our drone imagery covered 193 ha during the dry and wet seasons each representing 1.3% of 336 

MLRA 41-3 at SRER. For comparison, the 100 permanent field transects (with length of 30.48 m and 337 

width of 0.3 m) observes a total of 0.09 ha which is only 0.00006% of MLRA 41-3 at SRER.  338 

 339 

The economies of scale provided by high volume drone imagery could be an appealing dataset to 340 

supplement field data collected for national-scale monitoring programs such as BLM AIM and NRI (Gillan 341 

2020). Though it has limited ability to distinguish grass and forb species, drone imagery can expand 342 

generalized estimates of vegetation cover, provide a more robust measure of vegetation heights, and 343 

enable the development of landscape metrics not measurable from the ground. Additionally, drone 344 

imagery estimates of vegetation cover can be ‘upscaled’ to satellite imagery to cover vast landscapes 345 

(Elkind et al., 2019; Holifield-Collins et al., 2020).  346 

 347 

All of the technologies described in this paper are available to most range practitioners in the US. 348 

Though there are some current barriers related to cost (drone equipment and software licenses), cyber 349 

infrastructure, and technical expertise, these barriers are dissolving. Drone technology and image 350 
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processing software are advancing and becoming cheaper. HPC, though still housed primarily at 351 

universities and government agencies, is becoming more common and available to outside users (via 352 

web portals). Remote sensing specialists or data scientists should carry out our innovative workflow but 353 

the results and imagery products can easily by shared with less technical collaborators and stakeholders.  354 

 355 

Conclusion 356 

We demonstrated a workflow to increase the efficiency of collecting, processing, and analyzing large 357 

volumes of drone imagery for rangeland monitoring applications. Our innovative workflow saved an 358 

estimated 111 workdays compared with a conventional approach. These cost savings make more 359 

practical a rich stream of monitoring data from which to link ecosystem traits with management actions. 360 

The technological barriers surrounding the use of drone imagery are quickly dissolving which will foster 361 

wider adoption by those who study and manage public rangelands.  362 
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Table 1. Hardware and image acquisition specifications for the data collection campaigns that occurred in May 494 
2019 and repeated in September 2019  495 
 496 

Aircraft DJI Phantom 4 RTK 

Sensor 20 mpx; RGB;  
Global Shutter 

Aperture & Shutter Automatic 
Image format Jpeg; ~8 mb; 8 bit 

Autopilot DJI GS RTK 

Acquisition Pattern Single Grid at Nadir; 
Double Grid at 30° Oblique 

Image forward & side overlap 80% 
Flying Height 38 m above ground 
Flying Speed 3 m/s 

Flying time ha-1 ~10 min. 

Ground Sampling 1 cm 
No. of Flight Plots 53 

Plot Sizes 1.6 – 7.1 ha 
Images Plot-1 278 – 1563 

Images ha-1 ~200 

Total Raw Imagery Size 341 GB 
Total Image Product Size 561 GB 

Total Area Imaged 193.1 ha 

No. of Flying Days 12 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 
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Table 2. Structure-from-motion photogrammetry processing parameter settings using Agisoft Metashape 1.5.2.  507 
 508 

Parameter Setting 

Photo Alignment 

Quality: Medium 
Geometric Self-calibration: Yes 
Generic Pre-selection: Yes 
Reference Pre-selection: Yes 
Adaptive Camera Model Fitting: Yes 
Key point limit: 50,000 
Tie point limit: 0 

Camera Accuracy (m): Long: 0.010; Lat:0.009; Alt: 0.021 
Tie Point Accuracy (pix) 0.3 

Poor Quality Point Removal 
(using gradual selection) 

Reconstruction Uncertainty: >13 
Projection Accuracy: >10 
Reprojection Error: >0.25 

Camera Optimization Adaptive Fitting: Yes 

Dense Point Cloud 
Quality: High 
Filtering: Mild 

Point Filtering for DTM 

Select Ground Points by Color: r255, g220, b178 
Classify Ground Points: 

Max angle: 3.0° 
Max distance: 0.09 cm 
Cell size: 4 m 

DSM and DTM generation 
Point Cloud: Dense Cloud 
Interpolation: Enabled 

Orthomosaic generation 

Blending Mode: Mosaic 
Fill Holes: Yes 
Surface: Sparse point cloud DEM 
Images used: Nadir only 
Spatial Resolution: 1 cm 

 509 

 510 

Table 3. Number of workdays to collect, process, and analyze drone imagery collected in May 2019  511 
   Task    

 Survey GCPs or 
Benchmarks 

Collect 
Imagery 

Identify 
GCPs 

Image 
Processing 

Orthomosaic 
Classification 

Total 

Conventional 
Workflow 
(estimate) 

30 16 20 75 0.35 141.35 

Innovative 
Workflow 

3 12 0 15 0 30 

 512 

 513 

 514 

 515 

 516 
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 518 

Fig. 1. A) This project occurred at Santa Rita Experimental Range (SRER) in southern Arizona. B) We collected aerial 519 

imagery using a DJI Phantom 4 RTK with portable base station. C) We collected imagery at 53 flight plots covering a 520 

total of 193 ha in May 2019 and repeated in September 2019. The drone was launched near surveyed benchmarks 521 

(shown as red points). 522 

 523 

 524 
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 525 

Fig. 2. Workflow for data collection, processing, and sharing. DSMs = digital surface models; DTMs = digital terrain 526 

models; VHMs = vegetation height models; EPT = entwine point tile. Items with * have available code. 527 

 528 

 529 
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 533 

Fig. 3. Imagery products created from drone imagery, including A) Dense point cloud; B) True-color Orthomosaic; C) 534 

Digital surface model; D) Digital terrain model; and E) Vegetation height model. 535 
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 543 

Fig. 4. A) We created an open-source Leaflet map to enable collaborators to view imagery products through a web-544 

browser (https://de.cyverse.org/....pending DOI). B) High-resolution orthomosiacs can be viewed with Eox COG 545 

Explorer. C) Point clouds can be viewed with a Potree viewer.  546 

 547 

 548 

 549 

Fig. 5. We developed Google Earth Engine web-app showing classified maps, vegetation height models, and 550 

indicator summaries for vegetation cover and heights. https://bit.ly/srer-drone-2019 551 

 552 
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