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The heart evolved hundreds of millions of years ago. During mammalian evolution, the  
cardiovascular system developed with complete separation between pulmonary and 
systemic circulations incorporated into a single pump with chambers dedicated to each 
circulation. A lower pressure right heart chamber supplies deoxygenated blood to the 
lungs, while a high pressure left heart chamber supplies oxygenated blood to the rest of 
the body. Due to the complexity of morphogenic cardiac looping and septation required 
to form these two chambers, congenital heart diseases often involve maldevelopment of 
the evolutionarily recent right heart chamber. Additionally, some diseases predominantly 
affect structures of the right heart, including arrhythmogenic right ventricular 
cardiomyopathy (ARVC) and pulmonary hypertension. To gain insight into right heart 
structure and function, we fine-tuned deep learning models to recognize the right atrium, 
the right ventricle, and the pulmonary artery, and then used those models to measure 
right heart structures in over 40,000 individuals from the UK Biobank with magnetic 
resonance imaging. We found associations between these measurements and clinical 
disease including pulmonary hypertension and dilated cardiomyopathy. We then 
conducted genome-wide association studies, identifying 104 distinct loci associated with 
at least one right heart measurement. Several of these loci were found near genes 
previously linked with congenital heart disease, such as NKX2-5, TBX3, WNT9B, and 
GATA4. We also observed interesting commonalities and differences in association 
patterns at genetic loci linked with both right and left ventricular measurements. Finally, 
we found that a polygenic predictor of right ventricular end systolic volume was 
associated with incident dilated cardiomyopathy (HR 1.28 per standard deviation; P = 
2.4E-10), and remained a significant predictor of disease even after accounting for a left 
ventricular polygenic score. Harnessing deep learning to perform large-scale cardiac 
phenotyping, our results yield insights into the genetic and clinical determinants of right 
heart structure and function.  
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The heart evolved hundreds of millions of years ago as a tubular organ1. Septation of the main 
pumping chamber of the heart into distinct left and right ventricles evolved later in birds, 
mammals, and some reptiles, and is under the control of conserved transcription factors such as 
TBX52. Substantially greater delivery of oxygen to the systemic circulation—and to the heart 
itself—is the putative advantage of this separation of the circulatory system into a left heart-
driven systemic circuit and a right heart-driven pulmonary circuit3. 
 
The structures of the left and right heart are derived from different progenitor cell populations 
and operate under different pressure regimes: the left heart operates against high pressure, 
while the right heart generally faces little afterload. During embryogenesis, the left ventricle 
forms from the first heart field, while the right ventricle, the outflow tract, and portions of the atria 
form from the second heart field4–7. Septation of the outflow tract also requires neuroectodermal 
neural crest cells8–10. 
 
The distinct embryological origins of the right and left ventricles likely explain, in part, the 
existence of right heart-predominant pathologies. These include arrhythmogenic right ventricular 
cardiomyopathy (ARVC)11–14, Brugada syndrome, and pulmonary hypertension. In addition, right 
ventricular dysfunction can play a role in other heart failure syndromes. The function of the right 
heart is an important determinant of outcomes in people who have heart failure with either 
reduced (HFrEF) or preserved left ventricular ejection fraction (HFpEF)15–17. HFpEF represents 
a heterogeneous set of diseases for which very few disease-modifying therapies exist. 
Consequently, there is substantial interest in identifying new therapies for conditions such as 
right ventricular dysfunction18–21. 
 
The distinct pathologies, embryology, and physiology of the right heart motivated our efforts to 
quantify right heart structure and function, and to probe the common genetic basis for human 
variation in these measurements. 
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Results 
In this work, we developed deep learning models to determine the dimensions and function of 
the right atrium (RA), the right ventricle (RV), and the pulmonary artery (PA) in up to 45,000 UK 
Biobank participants. We then evaluated the epidemiologic associations, pathologic outcomes, 
and the common genetic basis of variation in these right heart structures. 

Reconstruction of right heart structures from cardiovascular magnetic 
resonance images 
We first derived right heart measurements in the UK Biobank imaging substudy of over 45,000 
people22–24 using deep learning models. To do so, a cardiologist created training data for deep 
learning models by manually tracing the right atrium and right ventricle in the four-chamber long 
axis view, and the right ventricle and pulmonary artery in the short axis view (Figure 1). This 
process, called semantic segmentation, yielded anatomical labels identifying the pixels 
belonging to cardiac structures in 714 short axis images and 445 four-chamber long axis 
images. Two U-Net derived deep learning models, containing long-range skip connections that 
allow for pixel-accurate segmentation, were then trained from these data: one for the four-
chamber long axis view and another for the short axis views25,26. The deep learning models 
were then used to produce pixel labels for the remainder of the images. Quality assessment is 
detailed in the Online Methods and Supplementary Note. 
 
The deep learning model output was then post-processed to extract measurements of the right 
atrium, the right ventricle, and the pulmonary artery. The right atrium was only consistently 
visible in one view (the four-chamber long axis view), and therefore a 2-dimensional area was 
computed by summing the pixels and multiplying by their width and height. We computed the 
maximum and minimum area during the cardiac cycle, as well as the fractional area change (RA 
FAC), which is the ratio of the change in area between the maximum and minimum area divided 
by the maximum area.  
 
The right ventricle has a complex 3-dimensional geometry; to estimate right ventricular 
structure, we integrated data from the short axis views and the four-chamber long axis view with 
a Poisson surface reconstruction approach, detailed in the Online Methods. We measured the 
maximum volume (right ventricular end diastolic volume; RVEDV), the minimum volume (right 
ventricular end systolic volume; RVESV), the difference between those two volumes (stroke 
volume), and the ejection fraction (RVEF). 
 
The pulmonary trunk’s elliptical minor axis (diameter) was computed from short axis images at 
end-systole. For participants whose pulmonary trunk was visible in multiple short-axis slices, we 
refer to the component closest to the right ventricle as the pulmonary root, and the distal-most 
component as the proximal pulmonary artery.  
 
In total, we were able to measure at least one right heart structure in 45,456 individuals, of 
whom 41,101 contributed to at least one genome-wide association study after genotyping 
quality control and exclusion for prevalent disease (Table 1 and Supplementary Figure 1). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.05.429046doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429046


Right heart structures are correlated with their left-heart counterparts 
The mean and standard deviation of the right atrial area measurements, right ventricular 
volumes, and pulmonary artery diameters are described in Table 1 and visualized in 
Supplementary Figure 2. Standard values aggregated by age bands and sex for each of the 
phenotypes are reported in Supplementary Table 1. The estimates of right atrial area from the 
four-chamber view are similar to those previously reported27, as are the proximal pulmonary 
artery diameters28. The estimates of right ventricular stroke volume are comparable to prior 
reports, but both end diastolic and end systolic volumes are approximately 10mL greater than 
those previously reported for steady-state free precession magnetic resonance imaging29. 
Consequently, the right ventricular ejection fraction estimates are proportionally lower than 
those of Foppa, et al.  
 
We incorporated previously reported left ventricular traits and aortic traits30,31 in order to analyze 
cross-correlation between phenotypes of the right and left heart structures(Supplementary 
Figure 3). The volumetric measurements of the right and left ventricles were well correlated with 
one another (correlation between ventricular volumes was 0.84 at end-diastole and 0.71 at end-
systole). In contrast, there was poorer correlation between right and left ventricular ejection 
fraction (correlation 0.48). This is consistent with drivers of contractility being only partially 
shared between the two ventricles, as well as multiplicative error due to the calculation of 
ejection fraction from two separately measured volumes. The ventricles nevertheless had well 
correlated stroke volumes (correlation 0.80), which is expected because stroke volume at 
steady-state is expected to be equal for both ventricles in the absence of valvular regurgitation 
or shunt.  
 
The proximal pulmonary artery diameter was modestly correlated with right ventricular end 
systolic volume (correlation 0.49), suggesting shared right-heart related influences on the 
pulmonary artery diameter and right ventricular volumes. In addition, the pulmonary artery 
diameter and that of the ascending aorta—which share an embryological origin—were modestly 
correlated (correlation 0.45). 

Right heart measurements are associated with cardiovascular diseases 
We tested PheCode-based disease definitions, which are derived from hospital diagnosis 
codes, for association with right heart phenotypes32. The right heart phenotypes were strongly 
correlated with atrial arrhythmias. The right atrial phenotypes were also associated with valvular 
diseases; the right ventricular phenotypes with obesity and heart failure; and the pulmonary 
artery phenotypes with obesity, blood pressure, and sleep disorders (Figure 2, Supplementary 
Table 2). 
 
We also focused on three diseases with putative chamber-specific links to the right heart. We 
identified 1,033 individuals with a diagnosis of atrial fibrillation or flutter prior to undergoing MRI; 
282 with congestive heart failure; and 21 with pulmonary hypertension (Supplementary Table 
3). In a linear model, the right atrial FAC was 1.1 standard deviations (SD) lower among those 
with a history of atrial fibrillation or flutter than those without (P=2.6E-287). The RVEF was 0.51 
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SD lower among those with heart failure (P=6.6E-19). The proximal pulmonary artery diameter 
was 0.84 SD larger among those with pulmonary hypertension (P=5.9E-05). These findings 
confirmed expected structural correlations with prevalent cardiovascular diseases. 
 
For two cardiovascular diseases—pulmonary hypertension and congestive heart failure—we 
modeled right ventricular volumes over the course of the cardiac cycle for individuals with and 
without disease (Figure 3). In these models, pulmonary hypertension (present in 21 
participants) was associated with elevated volumes throughout the entire cardiac cycle, yielding 
a reduced RVEF. The excess volume that was attributable to disease accounted for as much as 
34% of the total right ventricular volume (P = 1.8E-08) at end-systole and 15% (P = 1.4E-04) at 
end-diastole. Congestive heart failure (present in 282 participants) was also associated with 
elevated end-systolic volumes (14% elevation; P = 6.0E-17), but not with end-diastolic volumes 
(1% elevation; P = 0.44). As a negative control, 3,949 participants with cataract—a disease of 
the lens of the eye that is not expected to be linked to right ventricular size—was associated 
with no significant difference in right ventricular volumes compared to cataract-free individuals. 
These results demonstrate that different cardiovascular diseases can yield distinct perturbations 
of right ventricular volumes, and highlight the significant impact of pulmonary hypertension on 
right ventricular structure throughout the cardiac cycle in this population. 

Right heart traits are heritable and genetically correlated with left heart 
traits 
We then conducted genetic analyses of the right heart phenotypes. The size-related phenotypes 
showed significant heritability using BOLT-REML (as high as 0.37 for the maximum right atrial 
volume, 0.4 for right ventricular end-diastolic volume, and 0.42 for the pulmonary artery root 
diameter)33,34. Heritabilities were lower for measurements of right heart function, such as RVEF 
which had a heritability of 0.23.  
 
We assessed genetic correlation between the right heart structures and previously reported left 
heart structures that include the left ventricle and the ascending aorta. Using individual-level 
data with BOLT-REML34, we found strong genetic correlation between the right and left 
ventricles (rg = 0.86 between RVEDV and LVEDV; rg = 0.75 between RVESV and LVESV; and 
rg = 0.61 between RVEF and LVEF). The proximal pulmonary artery diameter was most 
strongly correlated with the ascending aortic diameter (rg = 0.60). The genetic correlation matrix 
across all of the derived cardiovascular traits is available in Supplementary Table 4 and 
Supplementary Figure 4, with trait heritabilities along the diagonal. 

Common genetic basis for the dimensions and function of the right heart 
After establishing the heritability of the right heart traits, we conducted genome-wide association 
studies (GWAS) of each trait. We excluded participants with diagnoses of heart failure, atrial 
fibrillation, or myocardial infarction prior to their magnetic resonance imaging study 
(Supplementary Figure 1). We conducted nine primary GWAS: maximum and minimum right 
atrial area; RA FAC; RVESV, RVEDV, RVSV, and RVEF; pulmonary artery root diameter; and 
proximal pulmonary artery diameter. Up to 40,466 participants were included in these analyses, 
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and we tested 11.6 million imputed SNPs with minor allele frequency (MAF) > 0.005 (Table 2, 
Figure 4). In addition, we evaluated the body surface area (BSA)-indexed versions of all traits 
except for RA FAC and RVEF (which are dimensionless), leading to a total of 16 GWAS 
(Supplementary Table 5, Supplementary Figure 5). Allowing loci to be counted once per trait, 
we identified 243 trait-locus pairs at a commonly used significance threshold of 5E-08. 
Accounting for multiple traits sharing loci, we identified 104 independent loci. Of these 104 loci, 
66 were associated with at least two traits, and one locus (near WNT9B/GOSR2/MYL4) was 
associated with 12 right heart phenotypes. The greatest lambda GC was 1.20 from the BSA-
indexed pulmonary artery root GWAS; ldsc revealed an intercept of 1.04, consistent with 
polygenicity rather than inflation (Supplementary Table 6)35. Six lead SNPs had Hardy-
Weinberg equilibrium (HWE) P < 1E-06; re-analysis of those SNPs in a strictly European subset 
of samples resolved the HWE violations and yielded similar effect estimates (Supplementary 
Table 7). 
 
To place the right heart results into context with prior work, we compared right heart loci with 
those previously associated with left ventricular and aortic dimensions (Supplementary Figure 
6)30,31. Among the right ventricular phenotypes, the RVESV was linked with the greatest number 
of loci (20). Of these, seven loci had previously been associated with the RVESV’s left-heart 
counterpart (left ventricular end systolic volume; LVESV) at genome-wide significance. The 
BAG3 locus is the most strongly associated with both RVESV and LVESV. Both traits shared 
the same lead SNP: rs72840788, which has a near perfect correlation with a SNP, rs2234962, 
that leads to the missense change p.Cys151Arg in the BAG3 protein (Supplementary Figure 
7)36.  
 
In contrast, at the TTN locus, the RVESV lead SNP (rs955738, GWAS P = 4.3E-11) was in 
linkage equilibrium (r2 = 0.001) with the LVESV lead SNP (rs2562845, GWAS P = 1.3E-23). 
However, both SNPs were among the secondary signals for these traits: for LVESV, rs955738 
was associated with P = 1.9E-11; for RVESV, rs2562845 was associated with P = 4.2E-08 
(Supplementary Figure 8). It is possible that this distinction between primary association 
signals in the two ventricles is associated with differences in the regulation of TTN between the 
first (LV) and second (RV) heart fields, but establishing this will require additional investigation. 
 
Among loci that were significant only for RVESV and not for LVESV, some, like the 
GATA4/CTSB locus, had a cluster of sub-threshold SNPs for LVESV. At this locus, the 
strongest LVESV-associated SNP (rs7012446, P = 1.5E-06) was weakly correlated (r2 = 0.16) 
with the RVESV lead SNP (rs34015932, P = 4.1E-08), also suggesting allelic heterogeneity 
(Supplementary Figure 9). Other loci, such as that of OBSCN (encoding obscurin, a giant 
sarcomeric protein in the same family as titin), appeared to be right-ventricle specific, showing 
very little evidence of association with the left ventricle (Supplementary Figure 10). 

TWAS highlights role of WNT signaling in pulmonary root diameter 
Across all phenotypes, the strongest GWAS association was between the pulmonary root 
diameter and rs17608766 (P = 1.9E-51), near GOSR2. In a transcriptome-wide association 
study (TWAS) based on gene expression data from the aorta from GTEx v737, at the GOSR2 
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locus we observed an association between pulmonary root diameter and WNT9B (full results in 
Supplementary Table 8). Interestingly, WNT9B is expressed in the endocardium overlying the 
heart valves during development, and loss of WNT9B leads to defective valve formation38. This 
locus was also recently shown to be linked with the mitral valve annular diameter39. 
 
The strongest TWAS association for the proximal pulmonary artery diameter was with PDGFD, 
which is also the nearest gene to the lead SNP rs2128739. PDGFD loss-of-function variants 
were recently implicated in pulmonary hypertension in a sequencing-based case-control study40. 

Chamber-specific cell type enrichment 
To identify relevant cell types most relevant for the right atrial and right ventricular phenotypes, 
we performed stratified linkage disequilibrium (LD) score regression analysis that integrated 
single nucleus RNA-sequencing data from Tucker et al41. The strongest enrichment was seen 
between RVEF and right ventricular cardiomyocytes, while the strongest enrichment for the right 
atrial phenotypes was for vascular smooth muscle cell-like nuclei (Supplementary Figure 11). 

Rare variant association test 
Up to 13,523 individuals with imaging data had exome sequencing performed in the first batch 
of 50,000 exomes in the UK Biobank. After accounting for multiple testing, loss of function 
variants in one gene (AAGAB) had significant association with the proximal pulmonary artery 
diameter (diameter larger by 0.42cm on average among the 14 individuals with AAGAB loss-of-
function variants; P = 1.2E-06; Supplementary Figure 12). The AAGAB protein is involved in 
clathrin-mediated endocytosis42, and haploinsufficiency of AAGAB has previously been reported 
to be associated with punctate palmoplantar keratoderma43,44. These prior reports are 
noteworthy in this context because of the association between palmoplantar keratoderma and 
ARVC45,46. Nevertheless, we did not identify an association between AAGAB variants and RVEF 
(P=0.06) or RVESV (P=0.28). Additionally, common variants at the AAGAB locus demonstrated 
no significant association with pulmonary artery diameter or right ventricular size and function in 
the GWAS. Future studies in additional populations will be required to assess the significance of 
the observed association between AAGAB and right heart phenotypes. 

GWAS loci enriched in uncommon and difficult to phenotype cardiac 
diseases 
To investigate the association between loci identified in this study and diseases that are not well 
represented (such as congenital heart diseases) or difficult to identify due to lack of specific 
diagnostic codes in the electronic health record (such as arrhythmogenic right ventricular 
cardiomyopathy), we performed proximity-based testing to assess enrichment of gene sets near 
the GWAS loci. We identified disease-related gene sets using the Open Targets platform (gene 
lists in Supplementary Table 9)47 and asked whether more of those genes than expected by 
chance were found within 500kb of the GWAS lead SNPs. Note that because the number of 
permutations generated by SNPSnap in the following tests was 10,000, the strongest possible 
association P value was 1.0E-0448. 
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The right atrial loci were in proximity to six Open Targets atrial septal defect-related genes 
(ACE, DMPK, MIR208A, NKX2-5, PLN, TBX5) with one-tailed permutation P = 1.0E-04. The 
right ventricular GWAS loci were in proximity to six ARVC-related genes (DSP, JUP, 
PPP1R13L, RBM20, TMEM43, TTN) with P = 1.1E-03. And the pulmonary artery loci were in 
proximity to 15 conotruncal abnormality-linked genes (BAZ1B, CEP152, DYNC2H1, ELN, 
EPHB4, FBN1, GATA4, KCNJ8, MECOM, NKX2-5, PDE3A, PDE5A, PLCE1, RYR1, 
SMARCA4) with P = 3.0E-04 (Supplementary Figure 13). 
 
We also analyzed a previously described panel of 129 cardiomyopathy-linked genes to contrast 
RVESV loci with LVESV loci30. Five of these genes were within a 500kb radius of the RVESV 
loci; of these, three (BAG3, TMEM43, and TTN) had previously been found near genome-wide 
significant LVESV loci, while two (GATA4 and JUP) were not (Supplementary Figures 9 and 
14). The RVESV and LVESV associations at the GATA4 locus have been described above. 
JUP, the gene that encodes plakoglobin, is a desmosomal protein that has also been 
associated with arrhythmogenic right ventricular cardiomyopathy and palmoplantar 
keratoderma, a syndrome known as Naxos disease11,13,49.  

Right heart polygenic scores are linked with cardiomyopathy and atrial 
fibrillation 
Finally, we assessed the association between polygenic scores derived from the right heart 
GWAS and incident cardiovascular diseases in UK Biobank participants unrelated to the 
individuals who underwent MRI. 
 
A polygenic score for RVESV was associated with dilated cardiomyopathy (680 events and 
409,944 non-events; HR 1.28 per SD; P = 2.4E-10; Figure 5). Notably, even after adjustment 
for the previously reported left ventricular end systolic volume BSA-indexed polygenic score30, 
the RVESV polygenic score remained associated with DCM (HR 1.17 per SD, P = 6.9E-05). 
Because of imprecision in clinical phenotyping from electronic health records (EHR), future work 
will be required to understand whether the RVESV polygenic score identifies additional cases of 
DCM that are driven by right ventricular dysfunction, or whether the score is identifying shared 
drivers of right- and left-ventricular dysfunction that were not ascertained in the left ventricular 
GWAS. 
 
A polygenic score for the fractional area change of the right atrium in the four-chamber view was 
weakly inversely associated with the risk of atrial fibrillation or flutter (for 15,122 events and 
402,951 non-events; HR 0.98 per SD; P = 1.9E-03). Results were similar when considering only 
atrial flutter as the outcome of interest (927 atrial flutter events and 423,824 non-events; HR 
0.90 per SD; P = 1.2E-03). We did not find a link between the risk of pulmonary hypertension 
(1,582 incident events and 423,136 non-events) and genetic predictions of proximal pulmonary 
artery diameter or pulmonary root diameter (P=0.59 and 0.93, respectively).  
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Limitations 
This study is subject to several limitations. All data were derived from deep learning models of 
short axis or four-chamber long axis views from cardiovascular magnetic resonance imaging. 
These models have imprecision that would be reduced with further training data. Like any deep 
learning model, these models can fail and produce non physiologic measurements when 
presented with images that contain features not seen in the training data. An advantage of the 
semantic segmentation approach in this work is that outliers can be visually inspected and the 
model re-trained as needed. The right atrial measurements are two-dimensional estimates of a 
three-dimensional structure and therefore cannot capture complete information about atrial 
volume. The short axis images have a coarse 10mm slice thickness which leads to partial 
volume imaging, which can be particularly difficult to visualize at the apex of the right ventricle, 
leading to under- or over-estimation by the deep learning model. Although we have attempted to 
correct for this by incorporating the higher resolution four-chamber long axis data during the 
surface reconstruction process, the correction itself can introduce additional artifacts: the image 
acquisitions for the short axis measurements are not simultaneous with one another or with the 
four-chamber long axis measurements, which can create misalignment (e.g., due to differences 
in breath holding) that introduces error when reconstructing the right ventricle. The deep 
learning models have not been tested outside of the specific devices and imaging protocols 
used by the UK Biobank and may not generalize to other data sets without additional fine-
tuning. Participants’ cardiac rhythm at the time of MRI (particularly normal sinus rhythm versus 
atrial fibrillation) was not adjudicated. The study population is largely of European ancestry, 
similar to the remainder of UK Biobank, limiting generalizability of the findings to other 
populations. The individuals who underwent MRI in the UK Biobank tend to be healthier than the 
remainder of the UK Biobank population, which itself is healthier than a general population. 
Finally, because we have used hospital-based ICD codes and procedural codes to identify 
individuals with disease, our study lacks an ARVC-specific analysis, and our disease definitions 
are susceptible to misclassification. 

Discussion 
We produced measurements of the right heart, including the right atrium, right ventricle, and 
pulmonary artery; analyzed their relationships with one another and with cardiovascular 
diseases; and identified 104 distinct genetic loci that are associated with these right-heart 
measurements. We drew several conclusions from these findings. 
 
First, right heart phenotypes, including structural and functional measurements of the right 
atrium, right ventricle, and pulmonary artery, are heritable. While they share strong 
epidemiological and genetic correlation with the corresponding left heart structures, our findings 
of partial genetic correlation and distinct genome-wide significant loci also imply distinct drivers 
of variation between right and left heart structures. Developing a better understanding of these 
distinct drivers may ultimately permit more targeted therapies for right ventricle-predominant 
heart failure syndromes and primary cardiomyopathies such as ARVC. 
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Second, we found that the GWAS loci were enriched for genes associated with developmental 
diseases such as atrial septal defect and conotruncal defects. In addition to the GWAS loci 
addressed above, several others were notable for connections to cardiovascular development. 
Right heart structures were associated with SNPs near NKX2-5, which plays a key role in 
maintaining the progenitor pool of cells of the secondary heart field5; TBX3, which controls the 
formation of the sinus node and loss of which leads to outflow tract malformations and septal 
defects50,51; and MYL4, which encodes atrial light chain 1, missense variants in which have 
been linked to familial atrial fibrillation52.  
 
Third, we observed links between right ventricular measurements—and polygenic predictions of 
these measurements—and disease. Individuals with pre-existing diagnoses of heart failure had 
reduced RVESV at the time for MRI, and those with pulmonary hypertension had markedly 
enlarged right ventricular volumes throughout the cardiac cycle (Figure 3). In the remainder of 
the population that was unrelated to those who underwent MRI, a polygenic predictor of RVESV 
was a strong predictor of a diagnosis of dilated cardiomyopathy (Figure 5). Notably, the RVESV 
polygenic score remained a significant predictor of dilated cardiomyopathy even after 
accounting for a previously reported genetic prediction of the left ventricle—implying a genetic 
basis for the role of right ventricular dysfunction in the pathogenesis of dilated cardiomyopathy. 
Consistent with emerging clinical evidence, this suggests that right ventricular structure and 
function are not merely of anthropomorphic interest, but actually represent endophenotypes for 
cardiomyopathy. 
 
Fourth, despite our observation of strong epidemiological association between pulmonary 
hypertension and the proximal pulmonary diameter, we did not find an association between the 
polygenic predictor of proximal pulmonary diameter and the incidence of pulmonary 
hypertension. This lack of association may be because pulmonary hypertension in the UK 
Biobank is largely environmentally driven; may indicate that the genetic contributions to 
pulmonary artery diameter in disease-free individuals are not significantly associated with 
pulmonary artery pressure; or may be due to weak instrument bias. 
 
Finally, machine learning enables the derivation of complex traits in a manner that is scalable. 
This permits biobank-scale investigation of previously understudied human phenotypes, such as 
measurements of the right atrium, right ventricle, and pulmonary artery; and promises to 
accelerate our understanding of cardiovascular disease. 

Online Methods 

Study design 
Except where otherwise stated, all analyses were conducted in the UK Biobank, which is a 
richly phenotyped, prospective, population-based cohort that recruited 500,000 individuals aged 
40-69 in the UK via mailer from 2006-201024. We analyzed 487,283 participants with genetic 
data who had not withdrawn consent as of February 2020. Access was provided under 
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application #7089 and approved by the Partners HealthCare institutional review board (protocol 
2019P003144).  
 
Here we provide an overview of the methods used in this manuscript that are explained in more 
detail below. We manually annotated pixels from magnetic resonance images from the UK 
Biobank: the pulmonary artery and the left and right ventricles were annotated in the short axis 
view, and the right atrium and right ventricle were annotated in the four-chamber long axis view. 
We then trained two deep learning models (one for each of the views) with our manual 
annotations, and applied this model to the remaining images in the UK Biobank. For the right 
ventricle, we integrated the data from the four chamber view and the short axis view to generate 
a surface mesh and derived the ventricular volumes from this mesh. We analyzed the 
relationships between each of these derived quantitative measurements of the right heart. We 
also analyzed their relationships with diseases and other phenotypes in the UK Biobank. Then, 
we excluded people with known disease and conducted genome-wide association studies of the 
right heart phenotypes. We performed transcriptome-wide association studies (TWAS) that 
incorporated publicly available gene expression data with our GWAS results to prioritize genes 
at most genomic loci. We analyzed the GWAS results in light of the four-chamber single nucleus 
sequencing data that is publicly available. We also performed a rare-variant association test in 
up to 13,523 UK Biobank participants with both imaging and exome sequencing data. Polygenic 
scores produced from SNPs associated with right heart phenotypes in the UK Biobank GWAS 
were used to predict incident atrial fibrillation or flutter, dilated cardiomyopathy, and pulmonary 
hypertension in the UK Biobank participants whose data did not contribute to the GWAS. 
 
Statistical analyses were conducted with R version 3.6 (R Foundation for Statistical Computing, 
Vienna, Austria).  

Cardiovascular magnetic resonance imaging protocols 
At the time of this study, the UK Biobank had released images in over 45,000 participants of an 
imaging substudy that is ongoing22,23. Cardiovascular magnetic resonance imaging was 
performed with 1.5 Tesla scanners (Syngo MR D13 with MAGNETOM Aera scanners; Siemens 
Healthcare, Erlangen, Germany), and electrocardiographic gating for synchronization23. Several 
cardiac views were obtained. For this study, two views (the long axis four-chamber view and the 
short axis view) were used. In both of these views, balanced steady-state free precession cines, 
consisting of a series of 50 images throughout the cardiac cycle for each view, were acquired 
for each participant23. For the four-chamber images, only one imaging plane was available for 
each participant, with an imaging plane thickness of 6mm and an average pixel width and height 
of 1.83mm. For the short axis view, several imaging planes were acquired. Starting at the base 
of the heart, 8mm-thick imaging planes were acquired with approximately 2mm gaps between 
each plane, forming a stack perpendicular to the longitudinal axis of the left ventricle to capture 
the ventricular volume. For the short axis images, the average pixel width and height was 
1.86mm. 
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Semantic segmentation and deep learning model training 
Semantic segmentation is the process of assigning labels to pixels of an image. Here, we 
labeled pixels within specific anatomical structures (the right atrial blood pool, the right 
ventricular blood pool, and the pulmonary artery blood pool), using a process similar to that 
described in our prior work evaluating the thoracic aorta31. Segmentation of cardiovascular 
structures was manually annotated in four-chamber and short axis images from the UK Biobank 
by a cardiologist (JP). To produce the model used in this manuscript, 714 short axis images 
were chosen, manually segmented, and used to train a deep learning model with PyTorch and 
fastai v1.0.6125,53. The same was done separately with 445 four-chamber images. For both 
views, the models were based on a U-Net-derived architecture constructed with a ResNet34 
encoder that was pre-trained on ImageNet26,54–56. The Adam optimizer was used57. The models 
were trained with a cyclic learning rate training policy58. 80% of the samples were used to train 
the model, and 20% were used for validation. Held-out test sets that were not used for training 
or validation were used to assess the final quality of both models.  
 
Two separate models were trained: one for the short axis images, and one for the four-chamber 
long axis images. The hyperparameters used in their training are described below. For both 
models, random perturbations of the input images (“augmentations”) were applied, including 
affine rotation, zooming, and modification of the brightness and contrast. 
 
For the short axis images, all images were resized initially to 104x104 pixels during the first half 
of training, and then to 224x224 pixels during the second half of training. The model was trained 
with a mini-batch size of 16 (with small images) or 8 (with large images). Maximum weight 
decay was 1E-03. The maximum learning rate was 1E-03, chosen based on the learning rate 
finder25,59. Because the right ventricle and pulmonary artery blood pools occupied very little of 
the overall short axis image area, a focal loss function was used (with alpha 0.7 and gamma 
0.7), which can improve performance in the case of imbalanced labels60. When training with 
small images, 60% of iterations were permitted to have an increasing learning rate during each 
epoch, and training was performed over 30 epochs while keeping the weights for all but the final 
layer frozen. Then, all layers were unfrozen, the learning rate was decreased to 1E-07, and the 
model was trained for an additional 10 epochs. When training with large images, 30% of 
iterations were permitted to have an increasing learning rate, and training was done for 30 
epochs while keeping all but the final layer frozen. Finally, all layers were unfrozen, the learning 
rate was decreased to 1E-07, and the model was trained for an additional 10 epochs. 
 
For the four-chamber long axis images, all images were resized initially to 76x104 pixels during 
the first half of training, and then to 150x208 pixels during the second half of training. The model 
was trained with a mini-batch size of 4 (with small images) or 2 (with large images). Maximum 
weight decay was 1E-02. Cross entropy loss was used61. 30% of iterations were permitted to 
have an increasing learning rate during each epoch. When training with small images, the 
maximum learning rate was initially 1E-03, and training was performed over 50 epochs while 
keeping all weights frozen except for the final layer. Then, all layers were unfrozen, the learning 
rate was decreased to 3E-05, and the model was trained for an additional 15 epochs. When 
training with large images, the maximum learning rate was set to 3E-04, and the model was 
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trained for 50 epochs while keeping all but the final layer frozen. Finally, all layers were 
unfrozen, the learning rate was decreased to 1E-07, and the model was retrained for an 
additional 15 epochs. 
 
The final short axis and four-chamber long axis models were then applied, respectively, to all 
available short axis images and four-chamber long axis images available in the UK Biobank as 
of November 2020. 

Deep learning model output quality control 
Accuracy of the two deep learning models was assessed with additional manually annotated 
images that were not used for model training or validation, with each annotation category (such 
as pulmonary artery blood pool) evaluated based on the Sørensen-Dice coefficient62,63, which 
scales from 0 (no agreement between manual and automated annotations) to 1 (perfect 
agreement). Images with no pixels assigned to a feature by either the truth labels or the deep 
learning model output were assigned to have a Dice coefficient of 1. 

Right atrial measurements from the four-chamber long axis view 
Three long-axis views were obtained in the UK Biobank (two-chamber, three-chamber, and four-
chamber). Of these, only the four-chamber view reliably captures the right atrium. We therefore 
treated the right atrium as a planar surface, counting the pixels that were labeled by the four 
chamber semantic segmentation model as right atrium, and multiplying that number by the 
height and width of each pixel to obtain a right atrial area (with units of cm2). For each individual, 
we obtained the maximum atrial area, the minimum atrial area, and the fractional area change 
(maximum area minus minimum area, divided by maximum area). 

Pulmonary artery measurements from the short axis view 
For most individuals in the UK Biobank, the pulmonary artery can be readily visualized in the 
basal-most short axis imaging planes. When the pulmonary artery was visible in multiple 
imaging planes, we measured the artery in both the basal-most and the apical-most plane that 
still captured a pulmonary artery cross-section. To facilitate reproducibility, we only evaluated 
images from the frame representing ventricular end-systole. We refer to the basal-most 
segment of pulmonary artery as the “proximal pulmonary artery” and the apical-most segment 
that sits just basal to the right ventricular outflow tract as the “pulmonary root.” 
 
The proximal pulmonary artery and pulmonary root were treated as ellipses. We computed 
major and minor axes using classical image moment algorithms31,64. For both the proximal 
pulmonary artery and the pulmonary root, the length of the minor elliptical axis (i.e., the 
diameter) was computed. We excluded any measurements where the artery was divided into 
more than one connected component65. For the proximal pulmonary artery, we permitted 

elliptical eccentricity values of up to 0.86 (where eccentricity is !1 − !!

"!
, with a being the elliptical 

major axis and b being the elliptical minor axis). We permitted a liberal eccentricity cutoff 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.05.429046doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429046


because a common cause of high eccentricity in the proximal pulmonary artery images was out-
of-plane curvature of the proximal pulmonary artery, which erroneously elongates the major 
elliptical axis but does not significantly affect the minor elliptical axis (which we are using as the 
diameter). For the pulmonary artery root, we required an eccentricity below 0.77. We used a 
more stringent cutoff at the root because a common cause of high eccentricity in these images 
was partial imaging of the right ventricle, which can erroneously foreshorten the minor elliptical 
axis. In addition, we excluded images where the cross-sectional area of the pulmonary artery 
was less than 2 cm2. 

Right ventricular annotation and surface reconstruction integrating long- 
and short-axis data 
The right ventricle was visible in multiple views, permitting a reconstruction of its volume through 
the incorporation of data from multiple images. Stacked together, images from the short axis 
view provided a complete 3-dimensional representation of the right ventricle; however, this stack 
had a coarse 10mm resolution along the length of the right ventricle from base to apex. In 
contrast, the four-chamber long axis view had approximately 2mm resolution along the same 
axis. To take advantage of the strengths of both sources of data, we reconstructed the surface 
of the right ventricle using a Poisson surface reconstruction technique described in detail below. 
This enabled the computation of right ventricular end diastolic volume, end systolic volume, 
stroke volume, and ejection fraction.  
 
To produce consistent estimates of the RV volumes throughout the cardiac cycle, we integrated 
information from the long- and short-axis segmentations by reconstructing 3-dimensional 
surfaces enclosing the RV cavity. We first used image metadata from the standard Image 
Position (Patient) [0020,0032] and Image Orientation (Patient) [0020,0037] DICOM tags to co-
rotate the 4-chamber and short-axis slices into the same reference system. Then, we 
implemented a custom reconstruction routine based on the Poisson algorithm to generate 
surfaces that fitted through the boundaries of the RV segmentations66. As the Poisson algorithm 
requires local curvature as an input, we specified for the surface normal directions to lie onto the 
plane of the MRI slices and to be locally oriented towards either the pericardium (at the free 
wall) or the left ventricle (at the interventricular septum). The reconstructed RVs were then post-
processed to correct for eventual artifacts in the basal short-axis slices, where the segmentation 
model may occasionally mistake the right atrium for part of the RV. Leveraging the fine 
resolution of the long-axis CMR in the apex-to-base direction, we discarded the portions of the 
reconstructed RVs that overextended above the plane separating the long-axis segmentations 
of the right atrium and of the RV (i.e., approximately co-aligned with the tricuspid valve plane). 
Finally, the RV volumes were estimated from the reconstructed surfaces using a discrete 
version of the divergence theorem, as implemented in the open-source VTK library (Kitware 
Inc.). 

Phenotypic characterization of right heart structure and function 
Using R version 3.6, we evaluated the mean and standard deviation of the right heart 
measurements, described them in age- and sex-stratified tables, and created sex-stratified 
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kernel density plots with ggplot267. We computed the Pearson correlation between all right heart 
phenotypes and available left heart phenotypes that were previously described30,31. 
 
We tested for association between the right heart phenotypes and PheCode-based disease 
labels derived from ICD-10 codes and OPCS-4 codes that were present prior to each 
participant’s magnetic resonance imaging date32. Association between each disease code and 
the right heart phenotypes was performed with linear models accounting for the MRI serial 
number, sex, the first five principal components of ancestry, age at enrollment, the cubic natural 
spline of age at the time of MRI, and the genotyping array. Splines were not placed on age at 
enrollment because of its collinearity with age at the time of MRI. 
 
We used three custom disease definitions to focus on chamber-specific disease relationships 
(atrial fibrillation with RA FAC; heart failure with RVESV; and pulmonary hypertension with the 
proximal pulmonary artery diameter; defined in Supplementary Table 3). Association between 
each disease (as a binary independent variable) and the right heart phenotypes (as the 
dependent variable) was performed using a linear model that also accounted for the MRI serial 
number, sex, the first five principal components of ancestry, age at enrollment, the cubic natural 
spline of age at the time of MRI, and the genotyping array. As above, splines were not placed 
on age at enrollment because of its collinearity with age at the time of MRI. 
 
We also modeled the association between three diseases (pulmonary hypertension, heart 
failure, and cataract) and right ventricular volume throughout the cardiac cycle. The magnetic 
resonance images were acquired as a series of 50 images throughout a cardiac cycle, and so 
our Poisson surface reconstruction yielded right ventricular volume for each of these timepoints 
(one-fiftieth of a cardiac cycle). At each of these timepoints, we used a linear model to test the 
association between the right ventricular volume (independent variable) and the presence or 
absence of each of the three diseases, as well as covariates that included the heart rate at the 
time of MRI, weight, height, age at enrollment, the cubic natural spline of age at the time of MRI, 
sex, genotyping array, and the first five principal components of ancestry. In the results, we 
report the P value for the linear model regression coefficient for the disease. To model the 
estimated volume for individuals with or without disease, we compute the output of the linear 
model for a 55-year-old woman who enrolled 5 years previously in the UK Biobank, 162 
centimeters tall and weighing 75.6 kilograms. We then toggle the presence or absence of 
disease in the model to obtain volumes with or without disease, fixing other covariates. 

Genotyping, imputation, and genetic quality control 
UK Biobank samples were genotyped on either the UK BiLEVE or UK Biobank Axiom arrays 
and imputed into the Haplotype Reference Consortium panel and the UK10K+1000 Genomes 
panel68. Variant positions were keyed to the GRCh37 human genome reference. Genotyped 
variants with genotyping call rate < 0.95 and imputed variants with INFO score < 0.3 or minor 
allele frequency <= 0.005 in the analyzed samples were excluded. After variant-level quality 
control, 11,631,796 imputed variants remained for analysis.  
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Participants without imputed genetic data, or with a genotyping call rate < 0.98, mismatch 
between self-reported sex and sex chromosome count, sex chromosome aneuploidy, excessive 
third-degree relatives, or outliers for heterozygosity were excluded from genetic analysis68. 
Participants were also excluded from genetic analysis if they had a history of pulmonary 
hypertension, atrial fibrillation, heart failure, or coronary artery disease documented by ICD code 
or procedural code from the inpatient setting prior to the time they underwent cardiovascular 
magnetic resonance imaging at a UK Biobank assessment center. Our definitions of these 
diseases in the UK Biobank are provided in Supplementary Table 3. 

Heritability and genome-wide association analyses 
We analyzed nine primary right heart phenotypes. For the right atrium, we assessed maximum 
area, minimum area, and fractional area change. For the right ventricle, we assessed end 
diastolic volume, end systolic volume, stroke volume, and ejection fraction. For the pulmonary 
system, we assessed the diameter of the pulmonary root and the proximal pulmonary artery. In 
addition, we analyzed body surface area-indexed values for all areas and volumes (i.e., 
excluding RA FAC and RVEF which are dimensionless). In total, we conducted 16 genome-wide 
association studies with these traits. 
 
BOLT-REML v2.3.4 was used to assess the SNP-heritability of the phenotypes, as well as their 
genetic correlation with one another using the directly genotyped variants in the UK Biobank33. 
 
Before conducting genome-wide association studies, a rank-based inverse normal 
transformation was applied to the quantitative right heart traits69. All traits were adjusted for age 
at enrollment, age and age2 at the time of MRI, the first 10 principal components of ancestry, 
sex, the genotyping array, and the MRI scanner’s unique identifier.  
 
Genome-wide association studies for each phenotype were conducted using BOLT-LMM 
version 2.3.4 to account for cryptic population structure and sample relatedness33,34. We used 
the full autosomal panel of 714,558 directly genotyped SNPs that passed quality control to 
construct the genetic relationship matrix (GRM), with covariate adjustment as noted above. 
Associations on the X chromosome were also analyzed, using all autosomal SNPs and X 
chromosomal SNPs to construct the GRM (N=732,193 SNPs), with the same covariate 
adjustments and significance threshold as in the autosomal analysis. In this analysis mode, 
BOLT treats individuals with one X chromosome as having an allelic dosage of 0/2 and those 
with two X chromosomes as having an allelic dosage of 0/1/2. Variants with association P < 
5·10-8, a commonly used threshold, were considered to be genome-wide significant. In addition, 
we used a secondary threshold of P < 3.1·10-9 (5·10-8 divided by 16 phenotypes) to identify 
associations that were study-wide significant. 
 
We identified lead SNPs for each trait. Linkage disequilibrium (LD) clumping was performed with 
PLINK-1.970 using the same participants used for the GWAS, rather than a generic reference 
panel. We outlined a 5-megabase window (--clump-kb 5000) and used a stringent LD threshold 
(--r2 0.001) in order to account for long LD blocks such as those near the Williams-Beuren locus 
on chromosome 7 and the Noonan syndrome locus on chromosome 1271–73. With the 
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independently significant clumped SNPs, distinct genomic loci were then defined by starting with 
the SNP with the strongest P value, excluding other SNPs within 500kb, and iterating until no 
SNPs remained. Independently significant SNPs that defined each genomic locus are termed 
the lead SNPs.  
 
Lead SNPs were tested for deviation from Hardy-Weinberg equilibrium (HWE) at a threshold of 
P < 1E-0670. To assess whether the HWE violations affected the association signals, SNPs with 
HWE P < 1E-06 were re-analyzed with R’s glm after excluding samples that were not within the 
UK Biobank’s centrally-adjudicated “white British” subset, using the same covariates as the 
BOLT-LMM model. 
 
Linkage disequilibrium (LD) score regression analysis was performed using ldsc version 1.0.035. 
With ldsc, the genomic control factor (lambda GC) was partitioned into components reflecting 
polygenicity and inflation, using the software’s defaults. 

Transcriptome-wide association study 
For each phenotype, we performed a TWAS to identify correlated genes based on imputed cis-
regulated gene expression74–76. We used FUSION with eQTL data from GTEx v7. Precomputed 
transcript expression reference weights for the aorta (used for the pulmonary artery traits), left 
ventricle (used for the right ventricular traits), and right atrial appendage (used for the right atrial 
traits) were obtained from the FUSION authors’ website 
(http://gusevlab.org/projects/fusion/)37,75. FUSION was then run with its default settings. 

Stratified LD Score Regression 
To identify putative cell types most relevant for each GWAS trait, we performed stratified linkage 
disequilibrium (LD) score regression analysis using single nucleus RNA-sequencing data from 
Tucker et al35,41,77. Cell type specific markers within the RA and RV were calculated separately 
for the 9 main cell types using a limma-voom differential expression model on aggregated 
counts per individual78. Only individuals with greater than 25 nuclei of a given cell type were 
considered. Genes were sorted by t statistic per cell type and the top 90% of genes were used 
to generate LD Score Regression annotations77. SNPs within 100 KB of any gene from a 
specific cell type were annotated for the respective cell type using 1000 Genomes European 
individuals79. We then performed stratified LD score regression with these annotations in 
combination with the baseline model described in Finucane, et al, 2015, only including high 
quality HapMap3 SNPs80. We used the RA cell type specific annotations and RV cell type 
specific annotations for the RA and RV specific GWAS traits, respectively. 

Exome sequencing 
We conducted an exome sequencing analysis in the first 50,000 exomes released by the UK 
Biobank. Exome sequencing was performed by Regeneron and reprocessed centrally by the UK 
Biobank following the Functional Equivalent pipeline81. Exomes were captured with the IDT 
xGen Exome Research Panel v1.0, and sequencing was performed with 75-base paired-end 
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reads on the Illumina NovaSeq 6000 platform using S2 flowcells. Alignment to GRCh38 was 
performed centrally with BWA-mem82. Variant calling was performed centrally with GATK 3.083. 
Variants were hard-filtered if the inbreeding coefficient was < -0.03, or if none of the following 
were true: read depth was greater than or equal to 10; genotype quality was greater than or 
equal to 20; or allele balance was greater than or equal to 0.2. Variants were annotated with the 
Ensembl Variant Effect Predictor version 95 using the --pick-allele flag84. LOFTEE 1.0 was used 
to identify high-confidence loss of function variants: stop-gain, splice-site disrupting, and 
frameshift variants85. In total, 49,997 exomes were available, of which a subset overlapped with 
the participants who had undergone magnetic resonance imaging: 12,420 with right atrial 
measurements, 12,699 with right ventricular measurements, and 13,523 pulmonary artery 
measurements. 

Rare variant association test 
We conducted a collapsing burden test to assess the impact of loss-of-function variants in up to 
13,523 participants who had undergone exome sequencing data and magnetic resonance 
imaging. Variants with MAF >= 0.001 were excluded. We excluded genes with fewer than 10 
loss-of-function variants passing the above criteria. The models testing for association between 
loss-of-function in each gene and the right heart traits were adjusted for weight (kg), height 
(cm), body mass index (kg/m2), the MRI serial number, age at enrollment, the cubic natural 
spline of age at the time of MRI, sex, the genotyping array, and the first five principal 
components of ancestry. As above, splines were not placed on age at enrollment because of its 
collinearity with age at the time of MRI. 

Open Targets gene set enrichment at GWAS loci 
Using the Open Targets platform, we created gene sets corresponding to ARVC, atrial 
fibrillation, atrial septal defect, and transposition of the great arteries (TGA) or conotruncal 
anomaly by fetching all genes with an overall association score of 0.05 or greater 
(Supplementary Table 9)47. Using SNPsnap, we generated 10,000 sets of SNPs that matched 
the lead SNPs based on parameters including minor allele frequency, SNPs in linkage 
disequilibrium, distance from the nearest gene, and gene density. We counted the number of 
OpenTargets genes within 500kb of the lead SNPs from our study. We then repeated the same 
procedure for each of the 10,000 synthetic SNPsnap lead SNP lists, to set a neutral expectation 
for the number of overlapping genes based on chance. This allowed us to compute one-tailed 
permutation P values for each group of disease genes (with the most extreme possible P value 
based on 10,000 randomly chosen sets of SNPs being 1·10-4). 

Polygenic risk analysis 
We computed a polygenic score based on 21 clumped, genome-wide significant SNPs (of which 
20 were lead SNPs) from the RVESV GWAS. We applied this score to the entire UK Biobank 
population, after excluding any participant who had undergone imaging or who was related 
within 3 degrees to individuals with imaging. We analyzed the relationship between this 
polygenic prediction of the RVESV and dilated cardiomyopathy using a Cox proportional 
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hazards model as implemented by the R survival package86. We excluded individuals with 
disease that was diagnosed prior to enrollment in the UK Biobank. We counted survival as the 
number of years between enrollment and disease diagnosis (for those with disease) and those 
being censored due to death, loss to follow-up, or end of follow-up time. We adjusted for 
covariates including sex, the cubic basis spline of age at enrollment, the interaction between the 
cubic basis spline of age at enrollment and sex, the genotyping array, the first five principal 
components of ancestry, and the cubic basis splines of height (cm), weight (kg), BMI (kg/m2), 
diastolic blood pressure, systolic blood pressure.  
 
The same procedure was performed to produce a 5-SNP polygenic score for the RA fractional 
area change (all of which were lead SNPs) that was tested for association with atrial fibrillation 
and flutter. And the procedure was repeated to produce a 42-SNP polygenic score for the 
pulmonary artery diameter (of which 38 were lead SNPs) that was tested for association with 
pulmonary hypertension. The SNP weights are available in Supplementary Table 10. 
 
To assess the impact of the RVESV PRS even after accounting for the previously reported 
LVESVi PRS, we also added the LVESVi PRS as a covariate to the RVESV-dilated 
cardiomyopathy Cox model. 

Data availability 
UK Biobank data are made available to researchers from research institutions with genuine 
research inquiries, following IRB and UK Biobank approval. GWAS summary statistics will be 
available upon publication at the Broad Institute Cardiovascular Disease Knowledge Portal ( 
http://www.broadcvdi.org ). All other data are contained within the article and its supplementary 
information, or are available upon reasonable request to the corresponding author. 

Code availability 
The code used to perform Poisson surface reconstruction from segmentation output is located 
at https://github.com/broadinstitute/ml4h and is available under an open-source BSD license. 
The code used to perform permutation testing to assess enrichment of disease-related genes 
near GWAS loci is located at https://github.com/carbocation/genomisc and is available under an 
open-source BSD license. 
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Tables 

Table 1: Participant characteristics 
 Women Men 

Participants 21,932 19,169 
Age at time of MRI 64 (8) 65 (8) 

BMI (kg/m^2) 26 (5) 27 (4) 
Height (cm) 163 (6) 176 (7) 
Weight (kg) 69 (13) 83 (13) 

Systolic Blood Pressure (mmHg) 136 (19) 142 (17) 
Diastolic Blood Pressure (mmHg) 77 (10) 81 (10) 

Drinking Status   

Current 20122 (92 %) 18001 (94 %) 
Never 900 (4 %) 439 (2 %) 

Prefer not to answer 7 (0 %) 12 (0 %) 
Previous 746 (3 %) 603 (3 %) 

Standard drinks/week 4.7 (5.3) 5.6 (6.8) 

Smoking status   

Current 605 (3 %) 796 (4 %) 
Never 14334 (65 %) 11289 (59 %) 

Prefer not to answer 85 (0 %) 49 (0 %) 
Previous 6751 (31 %) 6921 (36 %) 

Smoking quantity (pack years) 17 (14) 21 (17) 
Right atrium maximum area (cm^2) 22 (4) 26 (5) 
Right atrium minimum area (cm^2) 13 (3) 16 (4) 

Right atrium fractional area change (%) 42 (6) 40 (6) 
Right ventricular end diastolic volume (mL) 112 (21) 155 (30) 
Right ventricular end systolic volume (mL) 44 (11) 66 (17) 

Right ventricular stroke volume (mL) 68 (14) 89 (19) 
Right ventricular ejection fraction (%) 61 (6) 57 (6) 

Proximal pulmonary artery diameter (cm) 2.5 (0.3) 2.7 (0.4) 
Pulmonary artery root diameter (cm) 2.5 (0.3) 2.9 (0.3) 

RA maximum area, BSA indexed (cm^2 / m^2) 13 (2) 13 (2) 
RA minimum area, BSA indexed (cm^2 / m^2) 7.3 (1.6) 7.9 (1.8) 

RV end diastolic volume, BSA indexed (mL / m^2) 64 (10) 77 (14) 
RV end systolic volume, BSA indexed (mL / m^2) 25 (6) 33 (8) 

RV stroke volume, BSA indexed (mL / m^2) 39 (7) 44 (9) 
Proximal PA diameter, BSA indexed (cm / m^2) 1.4 (0.2) 1.3 (0.2) 
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PA root diameter, BSA indexed (cm / m^2) 1.4 (0.2) 1.4 (0.2) 
Left ventricular end diastolic volume (mL) 123 (20) 153 (28) 
Left ventricular end systolic volume (mL) 41 (11) 58 (16) 

Left ventricular stroke volume (mL) 81 (12) 95 (16) 
Left ventricular ejection fraction (%) 67 (5) 63 (6) 

Table 1 displays characteristics of the 41,101 participants whose data contributed to at least 
one right heart phenotype GWAS. For quantitative phenotypes, values shown represent mean 
(SD). For count data, values shown represent count (%). 

Table 2: Lead SNPs 
Trait CHR BP SNP Effect 

Allele 
Other 
Allele EAF BETA SE P Value Nearest 

Gene 
RA Max 2 179362667 rs376136055 GT G 0.92 0.074 0.012 6.50E-10 PLEKHA3 
RA Max 5 172664163 rs6882776 G A 0.71 -0.041 0.007 4.60E-09 NKX2-5 
RA Max 6 22613847 rs7757005 G A 0.64 -0.046 0.007 2.00E-11 HDGFL1 
RA Max 12 4384844 rs76895963 T G 0.98 -0.167 0.025 3.40E-11 CCND2 
RA Max 12 66376091 rs7306710 T C 0.48 0.042 0.006 3.50E-11 HMGA2 

RA Max 12 115162091  
GTGTGCC
CC G 0.62 0.039 0.007 7.60E-09 TBX3 

RA Max 17 45280802 rs117154502 T G 0.94 -0.089 0.013 2.60E-11 MYL4 
RA Max 17 61772449  GA G 0.64 -0.041 0.007 3.20E-09 MAP3K3 
RA Max 19 46312077 rs12460541 G A 0.65 -0.045 0.007 9.60E-12 RSPH6A 
RA Min 2 179649461 rs59532220 G A 0.92 0.095 0.012 4.10E-15 TTN 
RA Min 3 156827227 rs11928162 C T 0.53 -0.037 0.007 1.30E-08 CCNL1 
RA Min 5 138870187 rs28883370 C A 0.89 -0.061 0.010 3.10E-09 TMEM173 
RA Min 5 172662024 rs2277923 T C 0.70 -0.053 0.007 1.00E-13 NKX2-5 
RA Min 6 22613847 rs7757005 G A 0.64 -0.045 0.007 8.10E-11 HDGFL1 
RA Min 6 32454278 rs75219938 C T 0.59 0.046 0.007 4.70E-11 HLA-DRB5 
RA Min 6 118654308 rs12212795 G C 0.95 0.082 0.014 6.90E-09 SLC35F1 
RA Min 8 32413240 rs112852637 T C 0.53 -0.038 0.007 7.80E-09 NRG1 
RA Min 12 66376091 rs7306710 T C 0.48 0.036 0.007 1.70E-08 HMGA2 

RA Min 12 115162091  
GTGTGCC
CC G 0.62 0.043 0.007 4.80E-10 TBX3 

RA Min 17 45280802 rs117154502 T G 0.94 -0.091 0.014 2.40E-11 MYL4 
RA Min 19 46311420 rs56309034 C T 0.65 -0.058 0.007 1.80E-17 RSPH6A 
RA FAC 2 179649461 rs59532220 G A 0.92 -0.079 0.013 3.30E-09 TTN 
RA FAC 5 172644017 rs12652726 C T 0.86 0.066 0.011 2.00E-10 NKX2-5 
RA FAC 8 11783118 rs12216858 C T 0.59 0.042 0.007 1.20E-08 DEFB136 
RA FAC 14 23866713 rs412768 A G 0.69 0.056 0.008 7.90E-13 MYH6 
RA FAC 19 46311420 rs56309034 C T 0.65 0.046 0.008 1.10E-09 RSPH6A 
RVEDV 2 179753245 rs7573293 C T 0.28 -0.035 0.006 2.70E-09 CCDC141 
RVEDV 3 14260417 rs11721007 G A 0.66 0.033 0.006 1.10E-08 LSM3 
RVEDV 3 99779984 rs57848867 A T 0.53 -0.034 0.005 9.00E-11 FILIP1L 
RVEDV 6 7691688 rs9392916 T A 0.55 -0.029 0.005 4.50E-08 BMP6 
RVEDV 6 31306915 rs28753003 C T 0.56 0.036 0.006 1.60E-10 HLA-B 
RVEDV 6 34205465 rs202228093 G GGAGCCC 0.11 0.050 0.009 9.90E-09 HMGA1 
RVEDV 6 126851160 rs1490384 C T 0.50 -0.032 0.005 3.70E-10 CENPW 
RVEDV 6 130349119 rs6569648 C T 0.24 0.034 0.006 4.20E-08 L3MBTL3 
RVEDV 12 4384844 rs76895963 T G 0.98 -0.123 0.021 6.10E-09 CCND2 
RVEDV 12 66327632 rs10878349 A G 0.49 0.037 0.005 9.00E-13 HMGA2 
RVEDV 12 111884608 rs3184504 T C 0.47 -0.045 0.005 4.50E-18 SH2B3 
RVEDV 13 50764607 rs71190365 C CTT 0.66 -0.036 0.006 5.20E-10 DLEU1 
RVEDV 17 45128762 rs1056064 T C 0.83 -0.047 0.007 2.40E-11 GOSR2 
RVEDV 19 41910617 rs4802117 G A 0.40 0.031 0.005 4.20E-09 BCKDHA 
RVEDV 20 32987687 rs62212171 T C 0.86 0.050 0.008 9.80E-11 ITCH 
RVESV 1 228556788 rs3738685 C T 0.63 -0.031 0.006 2.00E-08 OBSCN 
RVESV 2 26922062 rs1314982 G A 0.26 0.039 0.006 2.60E-10 KCNK3 
RVESV 2 179775152 rs955738 T C 0.52 -0.034 0.005 4.30E-11 CCDC141 
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RVESV 3 14260417 rs11721007 G A 0.66 0.050 0.006 2.40E-18 LSM3 
RVESV 3 99779984 rs57848867 A T 0.53 -0.032 0.005 7.50E-09 FILIP1L 
RVESV 3 134444297 rs77709005 C T 0.85 0.043 0.008 1.60E-08 EPHB1 
RVESV 3 158232862 rs56279242 C T 0.56 -0.041 0.005 7.30E-14 RSRC1 
RVESV 5 35191701 rs67209755 T C 0.81 0.038 0.007 3.90E-08 PRLR 
RVESV 6 126710804 rs77560239 C CTGTG 0.56 -0.040 0.006 1.60E-13 CENPW 
RVESV 8 11682267 rs34015932 C T 0.79 0.037 0.007 4.10E-08 FDFT1 
RVESV 8 145018354 rs11786896 C T 0.95 0.071 0.013 1.50E-08 PLEC 
RVESV 10 121415685 rs72840788 G A 0.78 0.060 0.007 1.10E-19 BAG3 
RVESV 12 66327632 rs10878349 A G 0.49 0.035 0.005 1.30E-10 HMGA2 
RVESV 12 111884608 rs3184504 T C 0.47 -0.046 0.005 1.80E-17 SH2B3 
RVESV 13 50764607 rs71190365 C CTT 0.66 -0.034 0.006 1.30E-08 DLEU1 
RVESV 17 40023617 rs781797066 T TA 0.83 -0.041 0.007 4.00E-08 ACLY 
RVESV 17 45013271 rs17608766 T C 0.86 -0.045 0.008 2.50E-09 GOSR2 
RVESV 19 41946095 rs2231935 C G 0.66 -0.032 0.006 4.30E-08 ATP5SL 
RVESV 19 46230786 rs4803850 C T 0.84 -0.043 0.007 1.00E-08 FBXO46 
RVESV 20 33576989 rs1885120 C G 0.10 -0.050 0.009 4.20E-08 MYH7B 
RV Stroke Volume 6 7708631 rs9392918 T C 0.52 -0.038 0.006 2.40E-10 BMP6 
RV Stroke Volume 6 31228357 rs6939900 C T 0.64 0.038 0.006 2.60E-09 HLA-C 
RV Stroke Volume 12 66327632 rs10878349 A G 0.49 0.032 0.006 4.30E-08 HMGA2 
RV Stroke Volume 12 112059557 rs11065979 C T 0.57 0.036 0.006 2.00E-09 BRAP 
RV Stroke Volume 20 34025756 rs143384 A G 0.59 -0.038 0.006 2.80E-10 GDF5 
RVEF 1 16337509 rs1763607 G A 0.41 0.042 0.007 7.30E-10 C1orf64 
RVEF 2 179558366 rs2042995 T C 0.77 -0.047 0.008 9.30E-09 TTN 
RVEF 3 14296182 rs113308768 T TTG 0.66 -0.054 0.007 8.40E-14 LSM3 
RVEF 3 158286103 rs7613814 C T 0.49 0.049 0.007 3.10E-13 MLF1 
RVEF 6 32609698 rs9272739 T C 0.79 -0.052 0.009 3.90E-08 HLA-DQA1 
RVEF 8 11361261 rs13275864 C G 0.48 0.049 0.007 2.40E-13 BLK 
RVEF 8 125861374 rs7461129 C T 0.69 -0.045 0.007 1.30E-09 MTSS1 
RVEF 8 145018354 rs11786896 C T 0.95 -0.094 0.016 3.90E-09 PLEC 
RVEF 10 121429633 rs2234962 T C 0.78 -0.076 0.008 8.00E-20 BAG3 
RVEF 13 114075109 rs76382172 G C 0.96 -0.101 0.019 3.10E-08 ADPRHL1 
RVEF 14 81171138 rs34540535 T C 0.96 0.098 0.017 2.50E-08 CEP128 
RVEF 18 34219777  G GTT 0.75 -0.045 0.008 1.20E-08 FHOD3 
Proximal PA 1 59880537 rs12063806 A G 0.70 -0.053 0.007 9.60E-13 FGGY 
Proximal PA 3 41918834 rs71075490 G GT 0.16 0.050 0.009 3.80E-08 ULK4 
Proximal PA 3 128202943 rs55914222 G C 0.97 0.115 0.020 2.90E-08 GATA2 
Proximal PA 3 150110726 rs13073230 A T 0.97 0.111 0.020 3.50E-08 TSC22D2 
Proximal PA 3 169146497 rs2014590 C T 0.51 0.046 0.007 9.60E-12 MECOM 
Proximal PA 4 166456085 rs6828706 C T 0.70 -0.038 0.007 2.60E-08 CPE 
Proximal PA 5 95579013  AT A 0.62 0.040 0.007 2.00E-09 PCSK1 
Proximal PA 5 108090134 rs112668446 G A 0.92 -0.077 0.013 2.30E-10 FER 
Proximal PA 5 122476934 rs335159 C A 0.20 0.052 0.008 1.30E-10 PRDM6 
Proximal PA 5 158261163 rs17715065 C T 0.50 0.042 0.007 3.00E-10 EBF1 
Proximal PA 5 172670611 rs35564079 C CT 0.71 -0.051 0.007 1.30E-11 NKX2-5 
Proximal PA 6 36646788 rs3176320 A G 0.67 -0.058 0.007 5.60E-16 CDKN1A 
Proximal PA 6 143608968 rs6907215 C T 0.39 -0.046 0.007 1.70E-11 AIG1 
Proximal PA 7 35273116 rs4723399 G C 0.61 0.056 0.007 6.40E-16 TBX20 
Proximal PA 7 35904160  GA G 0.98 -0.122 0.022 3.80E-08 SEPT7 
Proximal PA 7 73428222 rs6974735 A G 0.55 -0.040 0.007 2.10E-09 ELN 
Proximal PA 8 38774696 rs112621658 C A 0.84 0.054 0.009 6.30E-09 PLEKHA2 
Proximal PA 8 141057641 rs4440615 G A 0.37 -0.046 0.007 1.70E-11 TRAPPC9 
Proximal PA 10 79178044 rs28735 G C 0.45 0.043 0.007 2.50E-10 KCNMA1 
Proximal PA 10 96015793 rs3891783 C G 0.56 -0.052 0.007 1.10E-14 PLCE1 
Proximal PA 11 17498057 rs77889556 G A 0.83 -0.070 0.009 2.30E-14 ABCC8 
Proximal PA 11 47370041 rs3729989 T C 0.87 -0.061 0.010 1.70E-10 MYBPC3 
Proximal PA 11 70040712  GTGGA G 0.52 -0.047 0.007 7.10E-12 ANO1 
Proximal PA 11 103673277 rs2128739 A C 0.28 0.057 0.007 2.20E-14 PDGFD 
Proximal PA 12 50938005 rs573989455 C CA 0.61 0.040 0.007 4.20E-08 DIP2B 
Proximal PA 12 66394664 rs4026608 C T 0.39 -0.052 0.007 1.20E-14 HMGA2 
Proximal PA 12 71114400 rs7304603 T C 0.47 -0.036 0.007 4.20E-08 PTPRR 
Proximal PA 12 94200555 rs35715048 G A 0.66 0.048 0.007 3.70E-12 CRADD 
Proximal PA 13 50760138 rs113539437 G C 0.53 -0.049 0.007 3.90E-13 DLEU1 
Proximal PA 15 48914926 rs1036477 A G 0.89 -0.063 0.011 2.80E-08 FBN1 
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Proximal PA 15 57217438 rs11465192 G GC 0.48 0.034 0.007 1.10E-08 TCF12 
Proximal PA 15 63895818 rs4438258 T C 0.88 0.056 0.010 3.80E-08 FBXL22 
Proximal PA 16 70096679 rs62052481 C A 0.94 0.080 0.014 1.80E-08 PDPR 
Proximal PA 17 2097483 rs1532292 T G 0.62 -0.054 0.007 2.80E-15 SMG6 
Proximal PA 17 45138033 rs145153053 A G 0.83 -0.059 0.009 1.90E-11 GOSR2 
Proximal PA 19 11275411 rs199839456 C T 0.69 -0.045 0.007 1.00E-09 KANK2 
Proximal PA 19 30313576 rs3218069 C T 0.60 -0.044 0.007 1.40E-10 CCNE1 
Proximal PA 19 39150235 rs10415219 A G 0.52 -0.051 0.007 5.10E-14 ACTN4 
PA Root 1 59887078 rs66478136 T A 0.70 -0.037 0.007 1.40E-08 FGGY 
PA Root 1 100033312  TA T 0.49 -0.042 0.006 7.90E-12 PALMD 
PA Root 1 149927034 rs12048493 A C 0.61 0.037 0.006 2.30E-09 OTUD7B 
PA Root 3 99860401 rs7629487 G A 0.59 0.041 0.006 2.20E-12 CMSS1 
PA Root 4 115414433  ATAT A 0.62 -0.039 0.006 2.30E-10 UGT8 
PA Root 4 120900282 rs13134800 T C 0.30 -0.047 0.007 7.30E-13 MAD2L1 
PA Root 4 156391307 rs17033041 A G 0.80 0.044 0.008 9.20E-09 MAP9 
PA Root 5 108090134 rs112668446 G A 0.92 -0.082 0.011 2.50E-11 FER 
PA Root 5 122818269  CT C 0.65 0.037 0.006 6.70E-09 CSNK1G3 
PA Root 5 172670611 rs35564079 C CT 0.71 -0.047 0.007 9.50E-12 NKX2-5 
PA Root 6 34144189 rs56005336 C G 0.96 -0.096 0.015 8.20E-11 GRM4 
PA Root 6 143591821 rs6941056 C G 0.56 -0.043 0.006 1.00E-12 AIG1 
PA Root 8 11671041 rs1736058 G A 0.82 0.045 0.008 7.30E-09 FDFT1 
PA Root 8 109060667 rs2514841 C T 0.53 0.033 0.006 3.50E-08 RSPO2 
PA Root 10 30163133 rs777393148 TC T 0.31 0.037 0.007 3.20E-08 SVIL 
PA Root 10 96038686 rs11187838 G A 0.56 -0.041 0.006 6.70E-12 PLCE1 
PA Root 11 47380593 rs3740689 G A 0.42 0.041 0.006 8.20E-12 SPI1 
PA Root 11 69825414 rs72931748 A G 0.91 -0.056 0.011 4.70E-08 ANO1 
PA Root 12 12883632  AG A 0.75 0.044 0.008 1.60E-08 APOLD1 
PA Root 12 20230639 rs10770612 A G 0.80 -0.051 0.008 2.00E-11 PDE3A 
PA Root 12 22005003 rs2307024 T G 0.59 0.039 0.006 1.30E-10 ABCC9 
PA Root 12 66394664 rs4026608 C T 0.39 -0.048 0.006 3.70E-15 HMGA2 
PA Root 12 94130967 rs10859568 T A 0.55 0.051 0.006 6.00E-17 CRADD 
PA Root 13 50769041 rs796731684 TA T 0.54 -0.065 0.006 1.40E-26 DLEU1 
PA Root 15 48914926 rs1036477 A G 0.89 -0.060 0.010 1.80E-09 FBN1 
PA Root 16 75331064 rs11647088 C G 0.39 0.035 0.006 1.40E-08 CFDP1 
PA Root 16 88535620 rs36049560 A G 0.67 0.038 0.007 2.30E-09 ZFPM1 
PA Root 17 45013271 rs17608766 T C 0.86 -0.128 0.009 1.90E-51 GOSR2 
PA Root 17 67957712 rs180068 G C 0.74 0.047 0.007 1.70E-11 KCNJ16 
PA Root 19 39153044 rs16972767 G A 0.52 -0.039 0.006 2.50E-10 ACTN4 
PA Root 20 49192312 rs75146649 A G 0.91 -0.069 0.011 4.70E-12 PTPN1 
Lead SNPs from the right heart phenotypes. CHR: chromosome. BP: GRCh37 position. EAF: 
effect allele frequency. BETA: effect size. SE: standard error of effect size. Lead SNPs of the 
BSA-indexed phenotypes are listed in Supplementary Table 2. 
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Figures 

Figure 1

 
Panel A: Graphical depictions of the right heart structures in diastole and systole. RA = right 
atrium. PA = pulmonary artery. RV = right ventricle. In ventricular diastole, the tricuspid valve 
opens, allowing blood to flow from the right atrium into the right ventricle. The pulmonic valve is 
closed. In ventricular diastole, the right ventricle squeezes, closing the tricuspid valve and 
ejecting blood across the pulmonic valve into the pulmonary artery. During this time, the right 
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atrium fills. The images in Panel A are derived from Servier Medical Art (licensed under creative 
commons by attribution). Panel B: Right heart structures and deep learning model output. PA = 
pulmonary artery. SAX = short axis view. 4ch = four-chamber long axis view. DL = deep 
learning. The pulmonary artery segmentation is colored in orange; the right ventricle is colored 
in blue; and the right atrium is colored in pink. The raw images on the leftmost panes are fed 
into the trained deep learning model, producing output that is colorized and laid on top of the 
raw images in the middle panes. This process is repeated for all participants and the output 
structures are measured, leading to population distributions of measurements as shown in the 
right panes. Panel C: Integration of SAX and 4ch data to reconstruct the right ventricle. The 
different images are aligned based on metadata provided from the MRI. A surface 
reconstruction technique is then applied (see Methods for details). Finally, reconstructed 
portions of the right ventricle that bulge into the right atrium are removed. 
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Figure 2: Right heart structures are associated with PheCode-based 
disease definitions 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.05.429046doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429046


PheCode-based disease labels (X-axis) are plotted against a transformation of their association 
P value (Y-axis) with three right heart phenotypes: minimum right atrial area, right ventricular 
end systolic volume, and proximal pulmonary artery diameter. The modeled effect is a 
perturbation of the right heart trait among those with PheCode-based diseases identified prior to 
the time of magnetic resonance imaging, adjusting for anthropometric covariates and genetic 
principal components. The direction of the arrow indicates whether the presence of the disease 
is associated with an increase (upward arrow) or a decrease (downward arrow) of the right heart 
phenotype. 

Figure 3: Perturbations to right ventricular volumes from prevalent diseases 

 
Top: Disease diagnoses that occur prior to the date of MRI are linked with distinct changes in 
the volume of the right ventricle throughout the cardiac cycle. The x-axis represents fractions of 
a cardiac cycle (divided evenly into 50 components, starting at end-diastole). The y-axis 
represents volume in mL. Values are generated with a linear model for each time point; the gray 
line represents the population without disease, while the orange line represents the population 
with disease. In the UK Biobank, those with pulmonary hypertension have elevated RV volumes 
throughout the cardiac cycle, while those with heart failure predominantly have elevated end-
systolic volumes. Cataract is used as a control to demonstrate little association between a non-
cardiovascular disease and the volume of the right ventricle. Bottom: At each time, the right 
ventricular volume of individuals with disease is subtracted from the volume without disease and 
divided by the volume without disease. This represents the percentage above or below the 
disease-free right ventricular volume for those with disease. 
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Figure 4: Manhattan plots 
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Manhattan plots show the chromosomal position (X-axis) and the strength of association (-
log10 of the P value, Y-axis) for all non-BSA-indexed phenotypes. Loci that contain SNPs with 
P < 5E-08 are colored red and labeled with the name of the nearest gene. 

Figure 5: Cumulative incidence of dilated cardiomyopathy stratified by 
genetic prediction of RVESV 

 
Individuals unrelated within 3 degrees of the participants who underwent MRI in the top 10% for 
the RVESV PRS (red) and bottom 90% (gray). X-axis: years since enrollment in the UK 
Biobank. Y-axis: cumulative incidence of dilated cardiomyopathy. Those in the top 10% of 
genetically predicted RVESV had an increased risk of DCM (Cox HR 1.53, P = 8E-05) 
compared with those in the bottom 90% in up to 12 years of follow-up time after UK Biobank 
enrollment. 
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