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Abstract 32 

Understanding the genetic architecture of gene expression and splicing in human brain 33 

is critical to unlocking the mechanisms of complex neuropsychiatric disorders like 34 

schizophrenia (SCZ). Large-scale brain transcriptomic studies are based primarily on 35 

populations of European (EUR) ancestry. The uniformity of mono-racial resources may 36 

limit important insights into the disease etiology. Here, we characterized brain 37 

transcriptional regulatory architecture of East Asians (EAS; n=151), identifying 3,278 38 

expression quantitative trait loci (eQTL) and 4,726 spliceQTL (sQTL). Comparing these 39 

to PsychENCODE/BrainGVEX confirmed our hypothesis that the transcriptional 40 

regulatory architecture in EAS and EUR brains align. Furthermore, distinctive allelic 41 

frequency and linkage disequilibrium impede QTL translation and gene-expression 42 

prediction accuracy. Integration of eQTL/sQTL with genome-wide association studies 43 

reveals common and novel SCZ risk genes. Pathway-based analyses showing shared 44 

SCZ biology point to synaptic and GTPase dysfunction as a prospective pathogenesis. 45 

This study elucidates the transcriptional landscape of the EAS brain and emphasizes 46 

an essential convergence between EAS and EUR populations.  47 
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Main 48 

Population genetics examines differences within and between populations and how 49 

such genetic differences contribute to health and disease. A global understanding of 50 

the influence of genetic variance on complex diseases would advance insight into the 51 

biological mechanisms of disease risk1. During the past decade, genome-wide 52 

association studies (GWAS) have identified thousands of risk variants for psychiatric 53 

disorders across diverse populations2,3. Nonetheless, most of samples in psychiatric 54 

disorders GWAS originate from those of European (EUR) descent4. Due to ancestral 55 

differences evident in allele frequencies (AF), linkage disequilibrium (LD) patterns, and 56 

other factors, GWAS findings often fail to translate to other populations5,6. For example, 57 

Martin et al. examined that genetic risk prediction accuracy will decrease within 58 

heterogeneous populations which the original GWAS sample and target of prediction 59 

are divergent5. 60 

Interpreting GWAS “hits” with expression quantitative trait loci (eQTL) and splicing 61 

quantitative trait loci (sQTL), significantly enriched for trait-associated SNPs offers a 62 

feasible alternative for advancing our understanding of the molecular mechanisms 63 

underlying complex traits7,8. In the past decade, eQTL and sQTL have become familiar 64 

and effective tools enabling GWAS to explain single nucleotide polymorphism (SNP) 65 

heritability and spotlighting potential disease risk genes9-14. Various methods have 66 

been proposed to interpret GWAS using eQTL/sQTL signals to establish gene-67 

expression prediction models. Examples such as PrediXcan15 and TWAS16 correlate 68 

imputed gene expression to a phenotype under investigation. However with 69 

eQTL/sQTL, the problem of population disparity becomes even more extreme, as most 70 

resources focus largely on the EUR ancestry alone17-20. The capacity of existing 71 

prediction models to isolate causal genes common across populations appears to be 72 

constrained by the Eurocentricity of the models themselves. In this way, the limited 73 

availability of non-EUR GWAS impedes our ability to fully understand the genetic basis 74 
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of diseases and to translate basic research into clinical medicine.  75 

Recent studies have discovered significant inefficiency in predictive performance 76 

between heterogenous populations14,21-23. One plausible explanation for this is the 77 

differences in LD patterns and AF distribution. These disparities also hinder the ability 78 

of QTL to replicate in diverse populations. For example, comparing the regulatory 79 

architecture of gene expression in lymphoblastoid cell lines, Stranger et al. found that 80 

QTL differentiation among populations was likely due to AF differences reducing the 81 

statistical power of association testing24. Additionally, Lauren et al. showed that the AF 82 

differences between populations led to the accurate prediction of some genes and poor 83 

prediction in others22. Therefore, developing new transcriptome regulatory profiles and 84 

prediction models specific to ancestral populations is critical for accurately predicting 85 

gene expression and identifying disease risk genes. 86 

It should be noted that transcriptomic studies conducted for other tissues (e.g., blood), 87 

cannot adequately represent the transcriptome of neuropsychiatric disorders that are 88 

most closely associated with the brain25. Gene expression is tissue-specific. Moreover, 89 

many studies have discovered that QTLs within specific pathogenic tissues are 90 

significantly enriched for relevant trait associations26-30. For example, in the frontal 91 

cortex, a region widely accepted as critical for schizophrenia (SCZ), QTLs detected 92 

are significantly enriched with greater SCZ GWAS signals than QTLs detected from 93 

other tissues26-28. Such findings signal the need to develop regulatory profiling of the 94 

human brain to uncover the biological mechanisms of SCZ. Several studies have 95 

generated large-scale postmortem brain data31-33. For instance, Wang et al. developed 96 

a comprehensive resource for functional genomics of 1,866 adult brains using 97 

PsychENCODE data that highlights key genes and pathways associated with SCZ, 98 

including immunological, synaptic, and metabolic pathways33. To our knowledge, no 99 

systematic investigation into whether the genetic control of gene expression and 100 

splicing in brain is similar or varies between populations exists. Furthermore, 101 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 5, 2021. ; https://doi.org/10.1101/2021.02.04.922880doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.922880


 5 

determining whether differences represent etiologic heterogeneity in SCZ across 102 

populations also begs investigation. 103 

Here, we developed a novel brain transcriptome dataset comprised of 151 EAS 104 

individuals. We hypothesize that the brain’s regulatory architecture of gene expression 105 

and the etiology of SCZ converge between EAS and EUR populations. We also posit 106 

that AF and LD patterns distinct to ancestral populations are at least in part responsible 107 

for QTL heterogeneity across populations. To test these hypotheses, we applied eQTL, 108 

sQTL and co-expression analyses, comparing the results with existing 109 

PsychENCODE/BrainGVEX data (specifically the EUR subpopulation) to evaluate the 110 

similarities and differences in the transcriptional regulatory architecture of the two 111 

populations. By integrating eQTL and sQTL results with SCZ GWAS summary data, 112 

we quantified the enrichment of eQTL/sQTL associated with GWAS signals. Further, 113 

we identified common and novel risk genes as well as disease-related pathways. From 114 

these data we assembled a new genome-wide human brain regulatory map, which 115 

affords considerable insight into the biological progression of SCZ in East Asians.  116 
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Results 117 

To identify EAS-specific regulatory variants shaping brain gene expression and 118 

alternative splicing, we performed high-density genotyping and high-throughput RNA-119 

sequencing in 151 EAS prefrontal cortices (Fig. 1). After quality control and 120 

preprocessing (Methods and Extended Data Fig. 1), we gathered 18,939 brain-121 

expressed genes and 6.4 million autosomal SNPs. PCA (principal component analysis) 122 

of ancestry verified the East Asian ethnicity of all donors (Supplementary Note). eQTL 123 

and sQTL mapping and constructed co-regulatory networks enabled us to examine the 124 

brain expression regulatory architecture of each population individually, with the EUR 125 

population derived from the PsychENCODE/BrainGVEX project. 126 

Identifying and characterizing the function of cis-acting expression QTLs and 127 

splicing QTLs revealed common enrichment patterns between populations 128 

We identified cis-eQTLs using QTLtools34(Fig. 1), adjusting for 20 hidden covariates 129 

identified by the probabilistic estimation of expression residuals (PEER)35 (Methods 130 

and Supplementary Note). These hidden factors were significantly correlated with 131 

technical and biological covariates such as experimental batch, RNA Integrity Number 132 

(RIN), sex, and age of death. We identified 3,278 genes with a cis-eQTL (false 133 

discovery rate (FDR) q-value < 0.05) in EAS populations, 10,043 genes with a cis-134 

eQTL (FDR q-value < 0.05) in EUR populations, which are referred to as eGenes 135 

(Table 1). 136 

By identifying numerous excised intronic clusters using LeafCutter36 (Methods and Fig. 137 

1), we were able to discover sQTLs as well. We identified 4,726 significant sQTLs 138 

(FDR q-value < 0.05) in EAS and 18,927 significant sQTLs (FDR q-value < 0.05) in 139 

EUR populations, which were mapped to 2,054 and 5,641 genes (sGenes) 140 

respectively per population (Table 1). 141 

To better characterize the function of the eQTLs and sQTLs, we evaluated their 142 
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distance distribution and enrichment in numerous functional regions. Our first finding 143 

agreed with previous results conducted in EUR brains33,37,38: 20% of the eQTLs in both 144 

populations were located within 10kb of the transcription start site (TSS) regions (Fig. 145 

2a,b); the most significant (FDRpermutation q-value <0.05) SNP per sQTL (sSNP) showed 146 

clustering around the splice junction. Fifty percent of sQTLs are located within 10 kb 147 

of the splice junction (Fig. 3a,b) in both EAS and EUR populations, demonstrating that 148 

variants proximal to splicing junctions have a large effect. In contrast to eQTL, the 149 

majority of sSNPs (60%) lie within the gene body (Fig. 3c), also consistent with 150 

previous research38. 151 

We then annotated expressed SNPs (eSNPs) and sSNPs with chromatin state 152 

predictions for prefrontal cortical tissue using GREGOR39 (Methods). We found that 153 

eSNPs and sSNPs were significantly enriched in the same TSSs, promoters, and 154 

transcribed regulatory promoters or enhancers (PBonferroni < 0.05, Fig. 2c, Fig. 3d; 155 

Supplementary Table 4). We also annotated eSNPs with transcription factor binding 156 

sites (TFBS) and sSNPs with experimentally determined RNA binding protein (RBP) 157 

binding sites. We observed that 46 and 49 TFBS were significantly enriched with 158 

eQTLs in the EAS and EUR populations separately (PBonferroni < 0.05, Fig. 2d,e and 159 

Supplementary Table 4). All of TFBS that were significantly enriched with eQTLs in 160 

EAS population were also significantly enriched with eQTLs in EUR population. 161 

Furthermore, sQTLs were significantly enriched in binding targets of 7 RBPs in the 162 

EAS population, while binding targets of 71 RBPs were significant in the EUR sQTL 163 

dataset (PBonferroni < 0.05, Fig. 3e,f and Supplementary Table 4). Five of the seven RBPs 164 

that were significantly enriched with sQTLs in the EAS population were also 165 

significantly enriched with sQTLs in EUR populations. 166 

 167 

 168 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 5, 2021. ; https://doi.org/10.1101/2021.02.04.922880doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.922880


 8 

Table 1: Identification of eQTLs and sQTLs 

  #SNPs #Genes #Intron clusters #cis-eQTLs/sQTLs 
#Significant 

eGenes/sGenes 

EAS(n=145) 6,045,349 18,939 146,884 604,485/994,668 3,278/2,054 

EUR(n=397) 8,108,028 16,542 188,310 2,790,193/4,705,755 10,043/5,641 

Across population 4,681,303 16,266 132,619 286,288/442,281 2,650/1,779 

Cis-eQTLs/sQTLs are defined as FDR q-value < 0.05. Significant cis-eQTLs/sQTLs 169 

across populations defined as eQTLs/sQTLs significant in EAS and EUR populations 170 

in the same direction. Significant eGenes are genes regulated by SNPs that passed 171 

multiple testing (FDR q-value < 0.05) based on the permutation-based analysis. 172 

Significant sGenes are genes that intron clusters can map to and passed multiple 173 

testing (FDR q-value < 0.05) based on the permutation-based analysis. 174 
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  175 

Fig. 1 | Study design. We collected genotype and RNA-seq data from East Asian (n 176 

= 151) and European populations (n = 407). After quality control and data 177 

preprocessing, eQTL and sQTL were independently calculated using standard 178 
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methods of covariate correction. QTLs were characterized based on functional 179 

enrichment. Then, we compared the regulatory architecture including eQTL/sQTL and 180 

the gene co-regulatory patterns between EAS and EUR populations. Next, we 181 

calculated FST and LD scores to evaluate the contribution of AF and LD patterns 182 

difference in QTL comparison. Finally, to determine whether schizophrenia biology 183 

between East Asian and European populations is analogous, we integrated QTLs 184 

previous identified with SCZ GWAS to identify disease risk and important biological 185 

processes under genetic control. PSI: percent-spliced-in; FST: Fixation index, 186 

measures the population differentiation due to genetic structure; LD: linkage 187 

disequilibrium; LD score: the sum of the LD r2 between the focal SNP and all the 188 

flanking SNPs within a 1cM window with 1000G data. 189 
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 190 

Fig. 2 | Characterization of eQTLs. a, Distance distribution of eQTLs in the East Asian 191 

(green) and European (red) populations to the TSS as defined in Gencode v19. b, 192 

Percentage of distance distribution of all cis-eQTLs in East Asian (green) and 193 

European (red) populations. c, Enrichment of eSNPs in 15 core models. eSNPs in both 194 
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populations most significantly enriched in the TSSs, promoters, and transcribed 195 

regulatory promoters or enhancers. *P Bonferroni < 0.05. d, Enrichments of eSNPs in 196 

experimentally discovered transcription factor binding sites in the East Asian 197 

population. e, Enrichments of eSNPs in experimentally discovered transcription factor 198 

binding sites in the European population. *P Bonferroni < 0.05. 199 
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 200 

Fig. 3 | Characterization of sQTLs. a, Distance distribution of sQTLs to the splice 201 

junction. sQTLs from the East Asian (green) and European (red) populations. b, 202 

Percentage of distance distribution of all cis-sQTLs in East Asian (green) and 203 

European (red) populations. c, Fraction of sQTLs where the sSNP lies within vs outside 204 
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its sGene. d, Enrichment of sSNPs in 15 core models. *P Bonferroni < 0.05. e, RBP 205 

enrichment among the significant sSNPs in the East Asian population. f, RBP 206 

enrichment among the significant sSNPs in the European population. *P Bonferroni < 0.05. 207 

Brain expression regulatory architectures are broadly preserved across EAS 208 

and EUR populations  209 

An important aim in this study is to investigate to what degree the genetic control of 210 

gene expression and splicing in the brain varies between human ancestral populations. 211 

We first compared eGenes identified in EAS and EUR populations and found that 212 

2,650 eGenes overlapped. Most (80%) eGenes detected in the EAS population were 213 

also significant in the EUR population (Fig. 4a). Additionally, we compared the eGenes 214 

detected in the EAS population to those from GTEx adult cortices40. We found 1,289 215 

overlapping eGenes, accounting for nearly 40% between both datasets (Fig. 4b). We 216 

also compared sGenes across EAS and EUR populations. Results showed 1,779 217 

overlapped sGenes (Fig. 4c), 87% of which were shared significantly across 218 

populations.  219 

We next used Storey’s π1 statistic to assess the extent of eQTL/sQTL sharing across 220 

populations. To assess the true extent of this sharing, we performed down-sampling 221 

analysis with 100 repetitions (Methods). The fraction of eQTLs and sQTLs shared 222 

between the EAS and EUR populations was 74.8% and 78.2%, respectively (Fig. 4d,g). 223 

Moreover, we calculated the Pearson correlation of genetic effect size between shared 224 

QTLs and found that the genetic effect size between EAS and EUR populations was 225 

highly analogous (ReQTL=0.847; RsQTL=0.898; Fig. 4e,h).  226 

We completed a meta-analysis, pooling results from diverse populations, to gain 227 

greater statistical power for QTL detection and to identify shared QTLs across 228 

populations. We calculated a meta p-value using METAL41 for each eQTL/sQTL across 229 

populations; eQTLs or sQTLs at a meta FDR < 0.05 were referred to as ‘meta 230 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 5, 2021. ; https://doi.org/10.1101/2021.02.04.922880doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.922880


 15 

eQTLs/sQTLs’. Greater than 80% of these were significant across populations and 231 

showed concordant regulatory direction across populations (Extended Data Fig. 2 and 232 

Supplementary Table 2). Also, numerous new eQTL/sQTL signals were identified by 233 

meta-analysis. 234 

To comprehensively compare the brain expression regulatory architecture between 235 

EAS and EUR populations, we calculated the Pearson correlation of gene expression 236 

between the two populations using shared genes. We found that gene expression was 237 

highly correlated in the two populations (Fig. 4f; R = 0.92, p-value < 2.2e-16), and a 238 

similar result was observed for alternative splicing ratio (Fig. 4i; R = 0.76, p-value < 239 

2.2e-16). Furthermore, we applied weighted gene co-expression network analysis 240 

(WGCNA)42 and robust WGCNA to create independent gene- and isoform-level 241 

networks. We then used preservation testing to evaluate the consensus of networks 242 

constructed by each population. Preservation Z summary score of each module 243 

was >2 in both the gene expression and isoform levels, showing that co-expression 244 

patterns are broadly preserved between EAS and EUR populations (Fig. 5c,d,e,f and 245 

Supplementary Table 5). 246 
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 247 

Fig. 4 | Comparison of the regulatory pattern. a, Venn Diagram for eGenes 248 

discovered in European (EUR) population vs East Asian (EAS) population. b, Venn 249 

Diagram for eGenes discovered in adult cortical tissue from GTEx vs EAS population. 250 

c, Venn Diagram for sGenes discovered in EUR population vs EAS population. d, 251 

Distribution of eQTL π1 between EAS and down-sampled EUR populations. The mean 252 

π1 value was 0.748. e, Distribution of correlation coefficient between eQTL effect size. 253 

The mean correlation coefficient value was 0.847. f, Pearson’s correlation in expressed 254 

genes between EAS and EUR populations. g, Distribution of sQTL π1 between EAS 255 

and down-sampled EUR populations. The mean π1 value was 0.782. h, Distribution of 256 

correlation coefficient between sQTL effect size. The mean correlation coefficient value 257 

is 0.898. i, Pearson’s correlation in intron clusters between EAS and EUR populations. 258 

AS: alternative splicing. 259 
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 260 

Fig. 5 | Comparison of co-expression pattern. a, Network analysis dendrogram 261 

based on hierarchical clustering of all genes by their topological overlap. Colored bars 262 

below the dendrogram show module membership. b, Network analysis dendrogram 263 
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based on hierarchical clustering of all isoforms by their topological overlap. c, 264 

Preservation Z summary score of each gene co-expression module in the EUR 265 

population. The x-axis is the number of genes in each module and the y-axis is Z 266 

summary score, which measures the preservation between modules. When Z 267 

summary score >=2, it indicates that this module was preserved in another population. 268 

The blue dashed line is the moderately conserved threshold. Each point represents a 269 

module constructed in population, labeled by color. d, Preservation Z summary score 270 

of each gene co-expression module in the EAS population. e, Preservation Z summary 271 

score of each isoform co-expression module in the EUR population. f, Preservation Z 272 

summary score of each isoform co-expression module in the EAS population. 273 

Differences in AF and LD across populations decrease the QTL reproducibility 274 

and the power of gene expression prediction  275 

Although the sharing ratio reached almost 80%, 20% of the QTLs are significant only 276 

in one population. We hypothesized that part of QTL differentiation is due to population 277 

divergence in AF and LD pattern across populations. To address this hypothesis, we 278 

defined EUR robust QTLs as significant QTLs detected at least 50 times in down-279 

sampling analysis, ancestry-specific QTLs as significant in one population, and 280 

ancestry-shared QTLs as significant in both populations. We identified each of these 281 

QTL types by comparing the lists of EAS QTLs and EUR robust QTLs. To investigate 282 

the effect of AF on QTL differentiation, we estimated FST (fixation index) for each eSNP 283 

and sSNP and compared the distribution of FST between ancestry-specific and 284 

ancestry-shared QTLs (Methods). We found that ancestry-specific QTLs were 285 

significantly enriched in population-divergent SNPs (FST  > 0.05; Fisher exact test: P < 286 

2.2e-16) and ancestry-shared QTLs were significantly enriched in population-287 

convergent SNPs (FST < 0.05; Fisher exact test: P < 2.2e-16; Fig. 6a). To further verify 288 

our hypothesis, we separated eSNPs/sSNPs into different minor allele frequency (MAF) 289 

bins, and calculated QTL π1 in each bin. We found that with similar AF, QTL sharing 290 
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ratios were higher than cross SNPs with different AF, suggesting that the SNPs with 291 

less population divergence were more likely to be eQTLs/sQTLs shared by the two 292 

populations (Fig. 6b,c).  293 

We then tested whether ancestry-specific QTL loci have unique LD patterns (Methods). 294 

Results showed LD patterns for ancestry-specific QTLs varied significantly between 295 

EAS and EUR populations (Wilcoxon tests, P < 0.05; Fig. 6d). Further, correlation 296 

coefficients between FST and LD score were less than 0.1 (P < 0.01), suggesting that 297 

the cross-population differences in LD patterns affect QTL differentiation independently 298 

when compared with FST. 299 

Associations between SNPs and genes enable the development of predictive models 300 

that can “impute” gene expression when phenotype-related tissue types are 301 

unavailable. However, population-specific QTL signals may reduce the accuracy of 302 

gene expression prediction across populations. We hypothesize that prediction 303 

performance will be lower when a model trained on one population is used to predict 304 

gene expression in another population. To investigate, we compared gene-expression 305 

predictive performance within and across EAS and EUR populations. We used 306 

matched SNPs and genes in both populations (n=145) to build the models (n = 100) 307 

using PrediXcan15 (Methods). The Pearson correlation between predictive 308 

performance of genes in the EAS and EUR populations was 0.60 (Fig. 6e). We also 309 

found that single-population-trained models had significantly decreased performance 310 

when predicting gene expression in another population (Wilcoxon tests, EAS Model: P 311 

= 4.577 × 10-12; EUR Model: P < 2.2 × 10-16; Fig. 6f; Supplementary Table 3) 312 
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 313 

Fig. 6 | AF and LD differences contribute to QTL differences between populations. 314 

a, Comparison of FST between ancestry-shared and ancestry-specific QTLs. Robust 315 
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QTL: detected as significant QTLs at least 50 times in down-sampling analysis. b, 316 

eQTL π1 in different MAF bins. c, sQTL π1 in different MAF bins. d, Linkage 317 

disequilibrium score distribution comparison for ancestry-specific QTLs between EAS 318 

and EUR populations. e, Comparison of predictive performance for each gene (R2) 319 

between EAS and EUR populations in different prediction models (EAS and EUR 320 

model). The identity line is shown in blue. f, Comparison of predictive performance 321 

between genes in different prediction models. 322 

Synapse- and GTPase-related pathway implicated in SCZ risk across populations 323 

eQTLs and sQTLs detected in the human brain can help to decipher the unlock 324 

biological mechanisms of SCZ. To examine whether QTL results from the phenotype-325 

linked population explains more disease signals and SNP heritability than those from 326 

disparate populations, we first collected SCZ GWAS summary statistics for both 327 

ancestral populations from the Psychiatric Genomics Consortium (PGC)43,44. We then 328 

compared GWAS signal enrichment using partitioned LD-score regression (LDSR)45 329 

(Methods). For the EAS GWAS summary data, eQTLs/sQTLs detected in the EAS 330 

population showed greater significant enrichment in GWAS signals than those from 331 

the EUR population (Welch Modified Two-Sample t-Test P < 0.001) and vice versa 332 

(Welch Modified Two-Sample t-Test P < 0.001; Fig. 7a and Supplementary Table 6). 333 

We corrected for possible sample size variance bias by calculating the enrichment of 334 

robust EUR QTLs, and the results agreed with previous reports (Extended Data Fig. 335 

3a,b). 336 

It was next necessary to evaluate whether observed differences represented true 337 

etiologic heterogeneity of SCZ across populations. To achieve this, we used regulatory 338 

trait concordance (RTC)46 and summary data-based Mendelian randomization (SMR)9 339 

to prioritize SCZ candidate risk genes (Methods). We prioritized 199 SCZ candidate 340 

risk genes, including 173 genes in the EUR population and 32 in the EAS population 341 

(Supplementary Table 7; Supplementary Table 8 and Fig. 7b). Six of the 199 were 342 
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identified in both populations (CNNM2, C12orf65, MPHOSPH9, MARCKSL1P1, 343 

C2orf47, and ABCB9). Other genes were identified within a single population. For 344 

example, C4A was identified as a risk gene in the EUR population (Fig. 7f) by 345 

integrating the eQTL signals, while CYP17A1 was identified as a risk gene in the EAS 346 

population by integrating the eQTL signals (Fig. 7g). Comparing published SCZ risk 347 

genes with the 199 candidate genes we identified, 77 of the EUR candidate genes and 348 

10 of the EAS candidate genes aligned (Methods and Supplementary Table 9).  349 

Along with peripheral genes, these candidate genes form a network that fulfills specific 350 

functional roles. To better characterize the biological function of these candidate genes, 351 

we analyzed the enrichment of candidate genes having previously constructed 352 

networks (Methods). We tested whether modules were significantly enriched in 353 

candidate genes for both EAS and EUR populations, but none were. We also tested 354 

whether any consensus modules (preserved in both populations) were significantly 355 

enriched with candidate genes present in both populations. One consensus module 356 

was significantly enriched in candidate genes from the combined populations (Fig. 7c; 357 

p-value = 0.01). Enrichment analysis showed function related to synapse and GTPase 358 

pathways, including regulation of chemical synaptic transmission, neuron projection 359 

development, synapse structure or activity, small GTPase mediated signal 360 

transduction, and GTPase binding (Extended Fig. 3d and Supplementary Table 10). 361 
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 362 

Fig. 7 | Explanation of SCZ GWAS signals and prioritization of candidate genes. 363 

a, GWAS enrichment results from LDSR. ***: Welch Modified Two-Sample t-Test P < 364 

0.001. b, Venn plot for SCZ risk genes in EUR and EAS populations with combined 365 

RTC and SMR results. c, The sub-network of yellow module. d-e, Examples of shared 366 
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SCZ risk genes. f, Example for EUR-specific risk gene, C4A. g, Example for EAS-367 

specific risk gene, CYP17A1. LDSR: LD score regression. 368 

Discussion 369 

We developed a novel brain transcriptome data set and compiled the first genome-370 

wide brain regulatory map of the prefrontal cortex from a solely EAS population. We 371 

identified 3,278 eQTL and 4,726 sQTL signals that reached a genome-wide level of 372 

significance. Detected eSNPs and sSNPs corresponded to previous reports38,40,47,48 373 

with significant enrichment in active functional regions such as promoters and 374 

enhancers. Comparing the EAS data with the PsychENCODE/BrainGVEX-derived 375 

EUR data, we found most regulatory elements common to both populations. Moreover, 376 

by integrating QTL signals with summary statistics from SCZ GWAS, we observed 377 

synapse- and GTPase-related pathways involved in the development of SCZ in both 378 

populations. 379 

This study demonstrated convergent transcriptional regulatory architectures between 380 

EAS and EUR populations through multiple lines of evidence. Meta-analysis revealed 381 

approximately 80% of QTLs were shared between populations. Moreover, several 382 

relational analyses suggest a high degree of congruence between EAS and EUR 383 

populations, including the π1 statistic (eQTL=0.748; sQTL=0.782), correlations 384 

between populations for genetic effect size (eQTL=0.847; sQTL=0.898) and 385 

correlations for gene expression and co-regulatory networks. Our study of post-386 

mortem brain tissue concurs with studies based on whole blood and liver tissue in 387 

which EAS and EUR cis-eQTL replication rates equaled 60%49 and 40%50 respectively. 388 

Our study parallels previous comparisons of the genetic control of gene 389 

expression24,50,51, methylation52, and chromatin accessibility53 generated from 390 

lymphoblastoid cell lines in diverse populations from worldwide reference panels54-56, 391 

showing that regulatory patterns are shared across populations.  392 
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Our proposal that some QTLs have population-specific effects is not unique 24,53. 393 

Seeking to find the biological mechanisms underlying these divergent effects, we 394 

compared FST and LD score distribution for ancestry-specific QTLs across populations. 395 

Here, we found significant differences. These results indicate that a degree of QTL 396 

differentiation signals divergence in AF and LD. Evidence suggests that such genetic 397 

differentiation in ancestral populations is due primarily to natural selection57,58. Besides, 398 

contemporary populations descend from dramatically smaller migratory populations 399 

(bottleneck effect), hence, population-specific QTLs could arise from bottleneck effect 400 

and environmental factors including climate, diet, and pathogenic microorganisms.  401 

Population-specific QTLs have important implications for predictive modeling. QTL 402 

signals lay the foundation for predictive models and assist in imputing gene expression 403 

when tissues relevant to phenotypes are unavailable. Our gene prediction model that 404 

was trained in one population decreased their prediction performance when predicting 405 

gene expression for other populations at a ratio of 14% to 33% respectively. This 406 

agrees with several recent studies reporting superior accuracy of prediction models in 407 

target populations with ancestry comparable to the discovery population14,21-23. 408 

Therefore, population-specific predictive models are integral for transcriptome 409 

mapping of the human brain. 410 

Population-specific regulatory regions may harbor a portion of the disease risk. This  411 

may limit QTL’s utility in interpreting GWAS signals in disparate populations. We 412 

compared the enrichment of QTL signals in SCZ GWAS across populations and found 413 

more significant enrichment of eQTLs/sQTLs in the discovery population than in the 414 

disparate populations. Similar results have been reported in Type 2 diabetes59. These 415 

findings highlight the importance of using GWAS to interpret QTLs from the target 416 

population in accurately explaining the disease signals within that population. 417 

Since SCZ occurs with similar prevalence and a genetic basis broadly shared across 418 

populations43,60, we would expect distinct groups to share many risk genes. 419 
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Surprisingly, we observed only six of the 199 SCZ risk genes in common between EAS 420 

and EUR populations. Nevertheless, this finding should not be interpreted to mean that 421 

EAS and EUR populations carry entirely different risk genes. For, we found that almost 422 

70% of the SNPs that are linked to regulating population-specific SCZ risk genes vary 423 

in AF and LD patterns across populations. For example, we identified the EUR-specific 424 

risk gene C4A, a target of extensive scrutiny in association with SCZ61-63. C4A localizes 425 

to the MHC class III region on chromosome 6, which is strongly associated with SCZ 426 

and which hosts a EUR-specific LD pattern. The corresponding GWAS signal 427 

rs2894251 was significant within the EUR population (P = 2.144 e-15; MAF = 0.12) but 428 

not so in the EAS population (P = 0.05156; MAF = 0.02). Although the associated 429 

eSNP rs2894254 is extremely uncommon in the EAS population (MAF < 0.001), it has 430 

an MAF of 6% in the EUR population. These results suggest that at least some 431 

differences in EAS and EUR SCZ risk genes are due to low AF and disparate LD 432 

patterns, which may account for the loss of risk genes. Risk genes were more readily 433 

detectable in both populations when they were present in similar or higher AFs with 434 

similar LD patterns. Yet, many SCZ risk genes are evident within low frequencies too, 435 

hindering consistent detection. 436 

It is well known that complex molecular networks and cellular pathways fuel disease 437 

susceptibility and development64,65. Therefore, we exploited pathway enrichment 438 

analyses of identified risk genes and co-regulated genes to explore the mechanisms 439 

behind SCZ. SCZ risk genes were significantly enriched in one consensus module 440 

(module yellow) for both ancestral populations. This module was enriched for an array 441 

of established SCZ modular pathways, including synapse- and GTPase-related 442 

pathways66-70. Pathways related to neuron-to-neuron, postsynaptic density, and 443 

asymmetric synapses are established suspects in genetic risk of SCZ. A meta-analysis 444 

showed a significant decrease in the density of postsynaptic elements in SCZ patients 445 

compared to healthy controls69. GTPase-related pathways, including regulation of 446 
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small GTPase-mediated signal transductions and GTPase binding, have also been 447 

implicated in SCZ. A previous study shows that a missense polymorphism (H204R) of 448 

a Rho GTPase-activating protein is associated with schizophrenia in men70. Our results 449 

support the premise that synapse-related and GTPase-related pathways have an 450 

important role in the etiology of schizophrenia for both EAS and EUR populations. 451 

Our study showed how both eQTLs and sQTLs benefit the study of underlying disease 452 

mechanisms. We discovered how heritability explained by eQTLs and sQTLs is similar 453 

in both EAS and EUR populations. Recent studies have examined the contribution of 454 

regulatory variants to SCZ, educational attainment, and autism spectrum disorder 455 

(ASD), concluding that sQTLs contribute comparably or with even greater magnitude 456 

than eQTLs8,14,38. Additionally, we found that although only 14% of SCZ risk genes 457 

were identified by both eQTL and sQTL signals (Extended Data Fig. 3c,d), 40% of the 458 

SCZ risk genes identified by integrating either eQTLs or sQTLs had also been reported 459 

as SCZ risk genes in previous literature66,71-77. This result indicates that eQTLs and 460 

sQTLs can identify distinct risk genes which facilitate our understanding of disease 461 

mechanisms.  462 

In general, our results show the transcriptional architecture of expression regulation 463 

and the underlying SCZ biology converging between the EAS and EUR populations. 464 

Synaptic- and GTPase- related pathways are likely suspects in the pathogenesis of 465 

SCZ in both populations. Future studies should assemble a range of large samples 466 

from worldwide ancestral populations to establish whether these findings are 467 

applicable globally. If so, mechanistic studies could narrow in on fewer pathways 468 

toward extracting the pathogenesis of SCZ with greater precision. 469 

Methods 470 

EAS sample collection, sequencing and EUR public data collection 471 
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We collected 151 prefrontal cortical samples of Han Chinese descent from the National 472 

Human Brain Bank for Development and Function according to the standardized 473 

operational protocol of China Human Brain Banking Consortium78,79, and under the 474 

approval by the Institutional Review Board of the Institute of Basic Medical Sciences, 475 

Chinese Academy of Medical Sciences, Beijing, China (Approval Number: 009-2014). 476 

We sequenced 151 samples following the BGISEQ-500 protocol outsourced to BGI, 477 

WGS and transcriptome sequencing was performed on BGISEQ-500 platform with an 478 

average depth of 10X (Supplementary Table 1 and Supplementary Note). To assess 479 

differences in ancestry, we also downloaded and processed raw whole genome and 480 

RNA-seq data for 407 European ancestry from PsychENCODE/BrainGVEX (Synapse 481 

number: syn4590909). 482 

EAS data quality control 483 

Raw sequencing reads were filtered to get clean reads by using SOAPnuke (v1.5.6)80, 484 

and used FastQC to evaluate the quality of sequencing data via several measures, 485 

including sequence quality per base, sequence duplication levels, and quality score 486 

distribution for each sample. The average quality score for overall DNA and RNA 487 

sequences show high scores above 30, indicating that a high percentage of the 488 

sequences had high quality (Supplementary Note).  489 

Variant identification  490 

Clean DNA sequencing reads were mapped to the human reference genome hg19 491 

(GRCh37) using BWA-MEM algorithm (BWA v. 0.7.128)81. Ambiguously mapped reads 492 

(MAPQ <10) and duplicated reads were removed using SAMtools v. 1.2982 and 493 

PicardTools v. 1.130 (http://picard.sourceforge.net/) respectively. Genomic variants 494 

were called following the Genome Analysis Toolkit software (GATK v. 3.4–46) best 495 

practices83. The ancestry of each sample was inferred using data from the 1000 496 

Genomes Project, and no sample was excluded. For EAS cohort, genotypes were 497 

imputed into the 1000 Genomes Project phase 3 EAS reference panel by chromosome 498 
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using Michigan Imputation Server84 and subsequently merged. Imputed genotypes 499 

were filtered for R2 < 0.3, Hardy-Weinberg equilibrium p-value < 1 x 10-6 and MAF < 500 

0.05, resulting in ~6.4 million autosomal SNPs. For EUR cohort, genotypes were 501 

imputed into the HRC reference panel, and removed SNPs with R2< 0.3, HWE p-value 502 

< 1 x 10-6 or MAF < 0.01. 503 

Gene-expression quantification and filter 504 

Mapping of RNA-sequencing reads was completed using STAR (2.4.2a)85 and the 505 

quantification of genes and transcripts was with RSEM (1.3.0)86. Raw read counts were 506 

log-transformed by R package VOOM first87, filtering those with log2(CPM)<0 in more 507 

than 75% of the samples. We removed all transcripts derived from mitochondrial DNA 508 

and X and Y chromosomes. Samples with a Z-score (assessing connectivity between 509 

samples) lower than -3 were removed. Quantile normalization was then used to 510 

equalize distributions across samples. 511 

Intron cluster quantifications 512 

We used Leafcutter to quantify clusters of variably spliced introns36. A cluster consists 513 

of overlapping introns that share a splice site. The usage of each intron was first 514 

quantified using previously aligned FASTQ files from STAR. Overlapping introns were 515 

then grouped with the settings of 50 reads per cluster and a maximum intron length of 516 

500kb. 517 

Co-expression network analysis 518 

To place results from individual genes within their systems-level network architecture, 519 

we performed WGCNA42 using human brain RNA-seq data. Individual (covariate-520 

regressed) expression datasets were combined using the 16,266 genes present 521 

across all studies. The resulting normalized mega-analysis expression set was used 522 

for all downstream network analyses. We also using robust WGCNA (rWGCNA) to 523 
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reduce the influence of potential outlier samples on the network architecture. Module 524 

robustness was ensured by randomly resampling (2/3 of the total) from the initial set 525 

of samples 100 times. This was followed by consensus network analysis, a meta-526 

analytic approach to define modules using a consensus quantile threshold of 0.2. The 527 

parameter of rWGCNA was consistent with normal WGCNA (Supplementary Note).  528 

eQTL and sQTL mapping 529 

We used PEER35 to identify hidden confounders and evaluated the correlation between 530 

the known factors (such sex and age) with hidden confounders. We then performed 531 

cis-eQTL and cis-sQTL mapping using QTLtools34, adjusting for PEER factors 532 

(Supplementary Note), with a defined cis window of one megabase up- and 533 

downstream of the gene/intron cluster body. QTLtools was run in nominal pass mode 534 

to detect all available QTLs. QTLtools was also run in the permutation pass mode to 535 

identify the best nominal associated SNP per phenotype and with a beta approximation 536 

to model the permutation outcome. P-values were then multiple testing corrections 537 

using the “q-value” package in R. We define FDR q-value < 0.05 as significant QTL. 538 

Functional enrichment 539 

We performed functional enrichment of both eQTLs and sQTLs using GREGOR39 540 

(Genomic Regulatory Elements and Gwas Overlap algoRithm) to evaluate the 541 

enrichment of variants in genome-wide annotations. GREGOR calculated the 542 

enrichment value based on the observed and expected overlap within each annotation. 543 

We downloaded the 15-state ChromHMM model BED (Browser Extensible Data) files 544 

from the Roadmap Epigenetics Project88. We also downloaded 78 consensus 545 

transcription factor and DNA-protein binding site BED files existing in multiple cells89 546 

and then filtered to 50 binding proteins that showed cortical brain expression in EAS 547 

and EUR populations data. Lastly, we obtained 171 human RBP site BED files from 548 

POSTAR2 database, which was developed as the updated version of CLIPdb and 549 
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POSTAR and provides the largest collection of RBP binding sites and functional 550 

annotations90. 551 

The fraction of shared eQTL/sQTL between EAS and EUR population 552 

Sharing rate was assessed form all significant eQTLs/sQTLs in the discovery dataset 553 

by estimating the proportion of true associations (π1) on the distribution of 554 

corresponding p-values of the overlapping eQTLs /sQTLs in the replication dataset93. 555 

To avoid the influence of sample size in pairwise comparison and get the true 556 

replication rate, we randomly selected a subset of European samples (n=151), 557 

followed the same pipeline to detect QTLs, and calculated the correlation of genetic 558 

effect size of shared eQTL/sQTL between EAS and EUR populations, repeating 100 559 

times. We calculated π1 and used the mean value of π1 to assess reproducibility 560 

between EAS and EUR. 561 

Network preservation analysis 562 

To generate population-specific networks, we compared networks between 563 

constructed EAS and EUR populations by individual. We then used WGCNA-564 

integrated function (modulePreservation) to calculate module preservation statistics 565 

and applied the Z summary score (Z-score) to evaluate whether a module was 566 

conserved or not. 567 

FST analysis 568 

We used the EAS and EUR panels from the 1000 Genomes Project Phase 3 to 569 

investigate the Fixation index (FST). We estimated FST using vcftools91 following the 570 

Weir and Cockerham approach92 for each eSNP and sSNP. 571 

We defined population-divergent SNPs as those with FST >= 0.05 and population-572 

shared SNPs as those with FST < 0.05. To collect the list of ancestry-specific QTLs and 573 
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ancestry-shared QTLs, first, we defined EUR robust QTLs as those that were called 574 

significant at least 50 times in down-sampling analysis, as well as ancestry-specific 575 

QTLs (significant in one population) and ancestry-shared QTLs (significant in these 576 

two populations), by comparing the list of EAS QTLs and EUR robust QTLs. Finally, 577 

we performed Fisher’s exact test between ancestry-specific QTLs and population-578 

divergent SNPs, as well as population-shared SNPs and ancestry-shared QTLs to test 579 

the contribution of AF in QTL comparison. 580 

LD pattern comparison 581 

We calculated the LD score for each SNP as the sum of the LD r2 between the focal 582 

SNP and all flanking SNPs within a 1cM window within the corresponding 1000G EAS 583 

and EUR genotype data. We then mapped ancestry-specific eSNPs and sSNPs into 584 

LD-score files to obtain the LD score for each ancestry-specific eSNPs or sSNPs in 585 

each population. We then performed Wilcox testing to evaluate whether the mean 586 

value of the LD score was significantly varied between populations. 587 

Gene-expression prediction 588 

We used matched SNPs and genes from the EAS and EUR populations using 589 

matching sample sizes (n=145) to build the gene-expression prediction model. We 590 

separated each population into training and validation datasets (100 for training and 591 

45 for validation). Prediction models were built using PrediXcan15 (Elastic Net) for both 592 

populations. Predictive performance (R2) was measured within each population using 593 

nested cross-validation. Wilcoxon tests measured any significant difference in 594 

prediction performance across populations. 595 

Partitioned LDSC 596 

Partitioned LD score regression v1.0.1 was used to measure the enrichment of GWAS 597 

summary statistics in each functional category by accounting for LD45. Brain QTL 598 
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annotations were created by eSNP and sSNP, mapped to the corresponding 1000 599 

Genome reference panel. LD scores were calculated for each SNPs in the QTL 600 

annotation using an LD window of 1cM in 1000 Genomes European Phase 3 and 1000 601 

Genomes Asian Phase 3 separately. Enrichment for each annotation was calculated 602 

by the proportion of heritability explained by each annotation divided by the proportion 603 

of SNPs in the genome falling in that annotation category. We then applied Welch 604 

Modified Two-Sample t-Test on enrichment values generated from QTLs in the two 605 

populations. 606 

Colocalization 607 

We used the conditional association as described in Nica et al.46 to test for evidence of 608 

colocalization. This method compares the p-value of association for the lead SNP of 609 

an eQTL or sQTL before and after conditioning on the GWAS hits. The equation for 610 

the regulatory trait concordance (RTC) Score is as follows: RTC= (NSNPs in an LD 611 

block/RankGWAS_SNP)/ NSNPs in an LD block. The rank denoted the number of SNPs, 612 

which when used to correct the expression data, have a higher impact on the QTL than 613 

the GWAS SNPs (i.e., RankGWAS_SNP = 0 if the GWAS SNP is the same as the eQTL or 614 

sQTL SNP and RankGWAS_SNP = 1 if, of all the SNPs in the interval, the GWAS SNP has 615 

the largest impact on the eQTL or sQTL). RTC values close to 1.0 indicated causal 616 

regulatory effects. A threshold of 0.9 was used to select causal regulatory elements. 617 

Prioritizing genes underlying GWAS hits 618 

We applied an SMR9 method on EAS and EUR SCZ GWAS summary data to prioritize 619 

candidate genes. We used nominally significant QTLs identified in the previous 620 

analysis (FDR < 0.05), containing thousands of unique probes with filtered GWAS 621 

summary data (p < 0.01) to perform the SMR test. In general, we use the default 622 

parameters suggested by the developers of the SMR software. These included the 623 

application of heterogeneity independent instruments (HEIDI) testing, filtering out hits 624 
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that arose from significant linkage with pleiotropically associated variants (LD cutoff of 625 

P = 0.05 in the HEIDI test, as suggested by SMR). Genes with an empirical P passed 626 

Bonferroni correction in the SMR test and a P > 0.05 in the HEIDI test were considered 627 

as risk genes. 628 

Schizophrenia-related signals 629 

The schizophrenia risk gene sets were collected from publications and databases. For 630 

gene analysis, we collected these genes and converted them to Ensembl Gene IDs in 631 

Gencode (hg19) using BioMart. We examined whether the risk genes meet one of 632 

these criteria: (1) affected by copy number variants (CNVs)71; (2) identified by linkage 633 

and association study72-74; (3) had de novo variants from NP de novo database75; (4) 634 

identified by convergent functional genomics (CFG)76; (5) identified by Pascal gene-635 

based test76; or (6) expressed differentially in SCZ66,77. 636 

Module enrichment 637 

Module functional enrichment of Gene Ontology pathways was assessed with GO-638 

Elite v1.2.593 as well as using the clusterprofiler94 R package, using GO and KEGG 639 

databases. For gProfiler, “moderate” hierarchical filtering was used. A custom 640 

background set consisted of 10,387 genes present across all studies and microarray 641 

platforms. The top pathways were those reaching significance with FDR-adjusted P < 642 

0.05. Module eQTL and candidate genes enrichment were assessed with Fisher exact 643 

testing in R.  644 
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 884 

Extended Data Fig.1 | Overview of methods and QC pipeline for EAS samples.  885 
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 886 

Extended Data Fig.2 | QTL comparison. a, Venn plot for eQTLs. b, Veen plot for 887 

sQTLs. 888 
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 889 

Extended Data Fig.3 | Integrating SCZ GWAS signals. a, GWAS signals enrichment 890 

comparison for eQTLs. b, GWAS signals enrichment comparison for sQTLs. c-d, Venn 891 

plot for risk genes identified by eQTLs and sQTLs. e, List of the top ten pathways which 892 

enriched in SCZ risk genes. p.adjust: Bonferroni adjusted p-value. Count: number of 893 

genes located in this pathway. 894 
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