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Abstract:  

To identify and prioritize candidate disease genes of the central nervous system (CNS) we 

created the Neurogenetic Systematic Correlation of Omics-Related Evidence (NeuroSCORE). 

We used five genome-wide metrics highly associated with neurological phenotypes to score 

19,598 protein-coding genes. Genes scored one point per metric, resulting in a range of scores 

from 0-5. Approximately 13,000 genes were then paired with phenotype data from the Online 

Mendelian Inheritance in Man (OMIM) database. We used logistic regression to determine the 

odds ratio of each metric and compared genes scoring 1+ to cause a known CNS-related 

phenotype compared to genes that scored zero. We tested NeuroSCORE using microarray copy 

number variants (CNVs) in case-control cohorts, mouse model phenotype data, and gene 

ontology (GO) and pathway analyses. NeuroSCORE identified 8,296 genes scored ≥1, of which 

1,580 are “high scoring” genes (scores ≥3). High scoring genes are significantly associated with 

CNS phenotypes (OR=5.5, p<2x10-16), enriched in case CNVs, and enriched in mouse ortholog 

genes associated with behavioral and nervous system abnormalities. GO and pathway analyses 

showed high scoring genes were enriched in chromatin remodeling, mRNA splicing, dendrite 

development, and neuron projection. OMIM has no phenotype for 1,062 high scoring genes 

(67%). Top scoring genes include ANKRD17, CCAR1, CLASP1, DOCK9, EIF4G2, G3BP2, 

GRIA1, MAP4K4, MARK2, PCBP2, RNF145, SF1, SYNCRIP, TNPO2, and ZSWIM8. 

NeuroSCORE identifies and prioritizes CNS-disease candidate genes, many not yet associated 

with any phenotype in OMIM. These findings can help direct future research and improve 

molecular diagnostics for individuals with neurological conditions.  
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INTRODUCTION 

A cholera epidemic swept across the globe in 1819 from India through the Middle East, 

Europe, and to America. London- and American-based physicians John Snow and Amariah 

Brigham both studied cholera and produced maps of the deaths in New York and London —

Brigham’s in 1831 and Snow’s in 18551,2. Both maps used different overlapping evidence, such 

as trade routes and drinking water systems, to illustrate a confluence of variables leading to new 

insights about cholera and, ultimately, public health remedies. Today, geneticists can take a 

similar approach, with different types of maps, to identify the genetic mechanism of diseases. 

With genome-wide, multi-omic analyses we can now overlay these datasets on the human 

genome and correlate these with phenotypes of the central nervous system (CNS) to identify 

candidate disease genes thereby improving diagnostics and, eventually, therapies. 

Identifying disease or risk genes for conditions of the CNS has been a slow process, with 

current diagnostic rates for children with a broad range of neurological or developmental 

conditions ranging from 31% - 53%3,4 (undergoing multiple clinical tests) and approximately 

32% in adults5. Diagnostic rates using exome and microarray vary within particular phenotypes, 

ranging from approximately 16% in autism spectrum disorder (ASD)6, 23% in corpus callosum 

anomalies7, and 42% in early-onset epileptic encephalopathies8. These conditions all likely have 

substantial unrecognized genetic contribution and a recent study of developmental disorders 

found that more than 1,000 additional genes are expected to contribute, either alone or in 

combination, to neurodevelopmental disorders9.  

Identifying CNS-disease genes is complicated, as genetic CNS diseases are caused by 

multiple pathogenic mechanisms4, display multiple forms of inheritance, are characterized by 

allelic heterogeneity, reduced penetrance, pre/perinatal lethality, and variable expressivity, are 

difficult to study in vivo, have phenotypes that exist on a spectrum (e.g. ASD), have variable age 
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of onset, have broad descriptions (e.g. “developmental delay”), and many genes characterized in 

the 1980s - 1990s have received disproportionate study leading to many unstudied genes, 

colloquially called the “ignorome”10.  

Previous attempts to identify candidate disease genes have used multiple approaches, 

including statistical modeling for probability of causing a haploinsufficiency-related condition 

(pLI score11) or identifying genes with regional coding constraint12. Other systems rely on a 

particular type of variant observed in a control population (gnomAD’s observed/expected 

metrics13). Lastly, systems have been devised to search for disease-specific genes, such 

ForecASD14 and candidate ASD genes, or used specific data such as gene expression patterns in 

brain-coX15. These systems, while useful, are limited and no multi-omic system has yet been 

devised for CNS phenotypes.  

As a diagnostic laboratory focused on neurological and developmental phenotypes, we 

sought to create a model that identified and prioritized candidate disease genes. We began with 

two foundational concepts, the first being “developmental brain dysfunction”, where the same 

condition can lead to a spectrum of central nervous system phenotypes (cognitive, motor, 

neurobehavioral, or neuroanatomical)16,17. Secondly, we used a multi-omics approach that 

accounts for different potential disease mechanisms and characteristics of genes that underlie 

known neurological conditions. Merging large scale omics databases supporting these two 

foundational concepts with a clinical database (i.e., the Online Mendelian Inheritance in Man 

(OMIM)), we created NeuroSCORE: the Neurogenic Systematic Correlation of Omics-Related 

evidence. We believe NeuroSCORE is the first multi-omic model to assess nearly all protein-

coding genes and focused broadly on CNS phenotypes. 
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METHODS 

Building NeuroSCORE Model 

To build a comprehensive and clinically useful model, we chose publicly available, 

genome-wide databases with gene-specific data and combined them (Figure 1). As this analysis 

focused on protein-coding genes, we excluded non-coding genes, RNA genes, genes in 

mitochondrial DNA, and pseudogenes. We sought lines of evidence previously associated with 

neurodevelopmental or neurological phenotypes including loss of function constraint11,13, 

constrained coding regions12, de novo variation18–25, brain expression levels26,27, copy number 

variation22,28, and genes with exons that are both highly expressed in brain tissues and under 

purifying selection29. If a gene was identified by one of the following metrics, it received a score 

of one point (a categorical variable, yes vs. no). We began with seven preliminary gene metrics 

(possible independent variables) from which to build our model. Of note, two of these metrics 

have two levels, yielding nine total possible variables: 

1) The gene’s upper bound score of the gnomAD observed/expected (o/e) loss-of-function 

metric was ≤0.34 (the preferred cutoff stated on the gnomAD site)13. Using gnomAD 

v2.1 (accessed May 2019), there were 2,832 genes identified by the gnomAD LOF gene 

metric. 

2) The gene’s upper bound score of the gnomAD o/e missense variant metric was ≤0.34 (the 

preferred cutoff stated on the gnomAD site)13. The gnomAD MIS gene metric identified 

119 genes. 

3) The gene contained at least one area of regional constraint (critically constrained regions; 

CCRs) at or above the 95th or 99th percentile as described by Havrilla et al. (2019)12. The 

CCR 95 and CCR 99 gene metrics identified 7,049 and 1,444 genes, respectively. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.04.429640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.429640
http://creativecommons.org/licenses/by-nc/4.0/


4) The gene was enriched in the Coe, et al. (2014) case-control study of individuals with 

childhood developmental conditions and copy number variants (CNVs)28. We created 

two cutoff points for the Coe gene metrics based on two significance values: p≤0.01 (Coe 

1=3,116 genes) or p≤0.02 (Coe 2=3,732 genes). 

5) The median brain expression across the 13 brain tissues assessed by the Gene-Tissue 

Expression database v8 was ≥10 transcripts per million (“GTEx genes”)30. This cutoff 

was chosen based on the recommendion by the European Bioinformatics Institute 

(https://www.ebi.ac.uk/gxa/FAQ.html). The GTEx gene metric identified 6,069 genes. 

6) The gene was enriched for de novo variants as reported in the de novo Database using the 

non-Simon Simplex Cohort data (assessed January 17th, 2020)31. Variants within protein-

coding genes or the 3’ or 5’ untranslated regions from 13,166 trio or quartet 

exome/genome probands were collated from 31 unique studies for the following 

phenotypes: epilepsy, ASD, developmental delays, cerebral palsy, bipolar disorders 1 and 

2, schizophrenia, early-onset Alzheimer and Parkinson disease, intellectual disability, 

neural tube defects, sporadic infantile spasm syndrome, and Tourette syndrome. We 

adopted a conservative approach to define a gene enriched with de novo variants if the 

genes contained ≥10 reported de novo variants. The de novo gene metric identified 487 

genes.  

7) The gene was identified by a previous exon indexing tool (“Index genes”) with exons 

expressed at or above the 90th percentile in 388 post-mortem brain samples and below the 

10th percentile in mutational burden for rare (<5%) missense or loss-of-function variants 

in the 1,000 genomes database29,32. Although specific exons within a gene are identified 

with this tool, we scored the entire gene if ≥1 exon in the gene was identified. (Note: The 
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cutoffs differ from those originally reported in the Uddin et al. (2016) paper as they are 

more stringent and are used by Lineagen, Inc. in interpretation of clinical testing.) The 

Index gene metric identified 4,646 genes.  

 

Our outcome (independent) variable was defined as whether or not a gene was associated 

with a phenotype containing one or more CNS-related clinical features in OMIM and was also 

categorical (1 vs. 0, yes vs. no). We used a previous definition of the CNS as including only the 

brain and spinal cord33. We excluded phenotypes affecting the eye, retina, cochlea, and 

peripheral nervous system, or conditions that caused CNS involvement due to an external event 

(e.g., thromboembolism). Metabolic conditions and mitochondrial conditions caused by nuclear 

genes were included as having CNS phenotypes as the cellular dysfunction leading to symptoms 

originates within the cells of the CNS. Although the retina is derived from the CNS, phenotypes 

involving only the retina were excluded as these conditions are treated clinically as 

ophthalmological conditions. Two authors (KD and MR) reviewed the top 13,021 genes in 

OMIM (ranked by median brain expression) which included 1,822 genes with a phenotype 

including CNS-related clinical features and 1,513 genes without a CNS-related clinical features.  

 

Merging Databases and Data Fidelity 

Due to genes having multiple historic names, we matched data between databases by both 

gene name and Ensemble ID. One author (KD) visually inspected all genes identified by the 

primary data sources and cross-referenced discrepant or missing data with external databases 

(e.g., HUGO) to ensure data was present. If a gene name was discrepant, the name was updated 
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to the current HGNC-approved name. In total, our model assesses 19,162 genes, while data for 

421 genes was not available from at least one gene metric.  

 

Statistical Analyses of the NeuroSCORE Model 

We first assessed each of the seven gene metrics and their association with genes 

currently known to cause or contribute to CNS-related neurological phenotypes. We initially 

performed Pearson’s chi squared on each gene metric then included the variables significant at 

p<0.05 in a multiple logistic regression model. Nine total variables were assessed (seven metrics 

with the Coe and CCR gene metrics having two levels). Using SAS v9.4, we constructed a 

multiple logistic regression model with backward elimination to remove variables with high 

multicollinearity or those that were not associated with CNS-related clinical features at p<0.05. 

Wald testing was used to determine if each of the variables in the final model were significantly 

different from zero.  

Using multiple logistic regression, we examined main effects and determined the odds 

ratios (ORs) for these metrics to be associated with genes known to cause CNS-related clinical 

features. We measured ORs for each variable in the final NeuroSCORE model as well as genes 

identified by multiple metrics (NeuroSCOREs 2-5). Both analyses used a comparison group of 

4,723 genes that were not identified by any metric (NeuroSCORE of 0). This yielded 1,133 

genes with a score of 0 that were linked to any known phenotype in OMIM (through June 2020). 

We performed a power analysis for these genes with a NeuroSCORE of 1 to determine the 

minimal detectable OR given our sample size. Setting β=0.95 and α=0.05 for this group of genes, 

the minimum OR we could detect was 1.4. All odds ratios were calculated using R using 

v.1.2.1335; power analyses were performed in R with the EpiR package v2.0.17.  
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Evaluation of NeuroSCORE Model in Real-World Case and Control Cohorts 

We used two published cohorts to evaluate NeuroSCORE. As exome analyses are often 

performed with priority to genes already known to be involved in genetic conditions, we used 

copy number variant (CNVs) from microarray data from individuals affected with neurological 

conditions and population control cohorts. This is because CNVs often contain multiple genes of 

known and unknown function and significance. We matched all genes in all included CNVs to 

their corresponding NeuroSCORE by gene name and visually inspected and corrected all 

discrepancies. CNVs with only non-scored genes (e.g., pseudogenes) were omitted from 

analysis.  

The population control cohort was drawn from the Ontario Population Genomics 

Platform reporting on CNVs from 1,000 adults, providing 6,965 total CNVs34. After removing 

CNVs that did not affect at least one exon of one gene, the control cohort contained 1,862 gain 

CNVs and 2,547 loss CNVs. For the case comparison group, we began with a previously 

published cohort of 2,691 individuals with neurodevelopmental conditions including ASD, 

schizophrenia, attention deficit hyperactivity disorder (ADHD), and obsessive-compulsive 

disorder35. Almost half of this total cohort (46%, 1,230 / 2,691) was assessed for intellectual 

disability (ID), of which 14.9% (183/1,230) received the diagnosis and thus had ID combined 

with ASD, schizophrenia, or ADHD. We used CNVs consistently identified by multiple CNV 

calling algorithms (“stringent” CNVs) and were identified either as “rare” (<0.1% in a control 

population) or being deemed of possible clinical relevance (see Table 2 in Zarrei, et al. 2019). 

After removing CNVs from 17 individuals with aneuploidies, the final case data contained 1,357 
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gain CNVs and 835 loss CNVs. We included inheritance and clinical classification data when 

available. 

For each CNV, we paired every gene with its respective NeuroSCORE, then generated a 

median and average NeuroSCORE for the CNV. To simplify these analyses, we converted 

NeuroSCOREs to percentages of the total possible points (1=20%, 2=40%, 3=60%, 4=80%, 

5=100%). We used two-sided t-tests to compare differences in CNVs between cases and controls 

for CNV size, total gene content, and the average and median NeuroSCORE. We then used 

Pearson’s chi squared or Fisher’s exact test (if N≤5) to compare the distributions of the 

maximum scored gene within case and control CNVs. We performed sub-analyses using t-tests 

to explore differences in NeuroSCORE and scored genes by inheritance (inherited vs. de novo), 

gender (male vs. female proband), and clinical significance (common population variants, likely 

benign variants, variant of uncertain significance (VUS), and likely clinically 

significant/clinically significant). Finally, we performed linear regression analysis on 

classification and gene content by assigning increasing values to increasing pathogenicity and 

using the total count of genes in the CNV. Zarrei, et al. (2019) classified CNV pathogenicity, 

though we added a classification for common, “population variants” (CNVs observed at >1% in 

the cohorts). Classification was coded as 1=population variant, 2=likely benign, 3=VUS, 

4=pathogenic/likely pathogenic. 

 

GO & Pathway Analyses 

Gene ontology (GO) enrichment analysis was performed for the set of high scoring genes 

(identified by 3+ gene metrics in our final model; N=1,580)36–38. We performed analyses for 

biological processes, molecular function, and cellular component using Bonferroni correction for 
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multiple testing. We chose this correction as it is the most conservative correction. If multiple 

related terms were within the top enriched GO terms, we included the more specific term and 

omitted the broader term. This analysis used databased from the Gene Ontology Consortium 

(http://geneontology.org/) using the March 23rd, 2020 release. 

To map the relevant pathways in which the high scoring genes were primarily involved, 

gene enrichment analysis was performed using the gene overlap package of R, followed by 

Cytoscape analysis to trace the pathways involved and their connectivity. The false decision rate 

and p-value cut off was 0.01 and 0.001, respectively. Kyoto Encyclopedia of Genes and 

Genomes (KEGG) and Gene Ontology (GO) database were used for both gene enrichment and 

Cytoscape analysis. Then, the network was built using the enrichment map and the auto annotate 

Cytoscape application. The node color represents the p-value (the darker the shade, the lower the 

p-value) and size of the node represents increasing odds ratio. 

 

Evaluation of NeuroSCORE Model in Mouse Model Data 

We used the high-level phenotypic data provided by the Jackson Laboratory’s Mouse 

Genome Informatics database to further assess our model (accessed July 6th, 2020; 

http://www.informatics.jax.org)39. We downloaded all annotated genes and matched the mouse 

and human gene using the unique MGI number via HGNC database. We excluded genes where 

the human homolog of the mouse gene included two or more unique human genes (e.g., the 

mouse gene Rln1 is a homolog of both human RLN1 and RLN2). We also removed multiple 

mouse genes that matched the same human ortholog (e.g., mouse genes SCD1, SCD2, SCD3, and 

SCD4 are homologues of human SCD). Lastly, we removed genes where no mouse phenotype 

information was available, as a lack of high-level phenotype information does not mean variants 
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of a gene cannot cause a phenotype. In total, we removed: 70 genes with multiple mouse 

homologues matching to a single human gene, 45 human genes that did not have a mouse 

ortholog, and 4,139 genes without phenotype data. The total number of genes included for 

analysis with phenotype data was 8,149. Of note, this data was not used to develop or refine the 

NeuroSCORE model. 

 

Data Availability 

The data that support the findings of this study are available from Bionano Genomics, Inc., but 

restrictions apply to the availability of these data, which were used under license for the current 

study, and so are not publicly available. Data, however, may be available from the authors upon 

reasonable request and with permission of Bionano Genomics, Inc. 

 

RESULTS 

Constructing and Assessing the NeuroSCORE Model 

Using Pearson’s chi squared, we determined if any of the nine gene metrics (dependent 

variables) was correlated with our outcome measure of genes currently associated with a CNS-

related condition. Eight of the nine variables were significantly associated with currently known 

CNS-related disease genes including: GTEx genes, de novo genes, critically constrained genes at 

both the 99th and 95th percentiles, gnomAD LOF and MIS genes, Index genes, and Coe 1 genes 

(all p<.05). The Coe 2 genes were not correlated (p=.10). Using these eight metrics, we then 

constructed a multiple logistic regression model. Main effects of logistic regression results 

indicated that five of the eight variables were significantly and positively associated with odds 

ratios (ORs) above 1.0 for the outcome measure of CNS-related disease genes (Table 1). This 
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model with five variables—de novo genes, Index genes, critically constrained genes at the 99th 

percentile, GTEx genes, gnomAD LOF genes—became our final NeuroSCORE model. 

NeuroSCORE creates different scoring levels for genes from 1-5 points. We then used 

logistic regression to investigate the relative enrichment of currently known CNS-related disease 

genes within each scoring level compared to genes that scored zero and calculated the OR for 

genes identified at each scoring level (Table 2 and Figure 2). Odds ratios increased with each 

increase in NeuroSCORE, ranging from 2.0 – 32.2 (all p<5E
-8). Next, we calculated the OR for 

genes that had a majority of the NeuroSCORE points (≥3), which we considered to be “high 

scoring” genes (Table 2). As this set of high scoring genes is significantly associated with CNS-

related disease genes, we focused the remaining analyses on the high scoring genes (N=1,580). 

 

Case-Control Analyses in a Neurodevelopmentally Affected Cohort 

We applied NeuroSCORE to copy number variant (CNV) data derived from microarray 

testing in both a population control34 and a neurodevelopmentally affected cohort.35 We 

compared average CNV size, total genes involved, total number of genes identified by 

NeuroSCORE, and median and average NueroSCORE of the CNV (p-values used Bonferroni 

correction of p<.005 corresponding to five statistical tests for two classes of CNVs). For easier 

interpretation of the following analyses, NeuroSCOREs were converted from total points to a 

percentage of total points (0=0%, 1=20%, 2=40%, 3=60%, 4=80%, and 5=100%). 

Using t-tests, we found the average size of both loss and gain CNVs was significantly 

larger in cases than controls (losses: 344 kilobases (kb) vs. 104 kb, p=3E
-8; gains: 419 kb vs. 244 

kb, p=5E
-8). Within gain CNVs, the average number of genes was similar between cases and 

controls (4.1 v. 3.6, p=.1), while there were more genes on average within loss CNVs for cases 
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versus controls (3.2 vs. 2.4, p=.001). The similar total number of genes within case and control 

CNVs suggests that specific genes within case CNVs, rather than total genes, are more likely to 

contribute the clinical neurodevelopmental phenotype.  

To assess potential differences in gene content, we next analyzed median and average 

CNV NeuroSCORE and the distribution of scored genes between case and control CNVs. Using 

t-tests, we found that case CNVs had higher median and average NeuroSCORE (median: losses: 

13.4% vs. 6.7%, p=2E
-16; gains: 14.9% vs. 8.5%, p=2E

-16; average: losses: 14.2% vs 7.6%, p=2E
-

16; gains: 16.4% vs. 10.5%, p=2E
-16). To assess the distribution of scored genes within CNVs, we 

used chi squared analyses using the highest scoring gene in a CNV at each different scoring 

levels (100%, 80%, 60%, 40%, 20%, 0%, and no score/NA). Using a Bonferroni corrected p-

value for 14 tests of p<.004 (7 scoring levels, two classes of CNVs), we found that case CNVs 

were significantly enriched for the high scoring genes in both loss and gain CNVs while controls 

were enriched for genes that achieved no score (0%) or were not scored/NA (Table 3 and Figure 

3A and B). In case CNVs, 16.2% of losses and 21.9% of gains contained at least one high 

scoring gene compared to 0.7% and 5.3% of controls, respectively. Logistic regression showed a 

significantly increased OR for case CNVs containing one or more high scoring genes compared 

to controls (OR = 9.3, 95% CI: 7.4 – 11.8, p=2e-16). 

We next performed sub-analyses of case-control CNV by gender (NMALES=1,724, 

NFEMALES=468), inheritance (NPATERNAL=35, NMATERNAL=43, Nde novo=33), and clinical 

classification (NPOPULATION=2,195, NLIKELY BENIGN=39, NVOUS=148, NCLIN. SIG=96; Figure 3C). 

Previous work has shown that the gender bias in neurodevelopmental conditions is partly due to 

the burden of CNVs or sequence variants40. Given this, we questioned if affected females had 

CNVs with higher NeuroSCOREs than affected males. Analyzing case CNVs by gender showed 
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no differences for average NeuroSCORE (15.1% vs. 15.7%), median NeuroSCORE (13.7% vs. 

14.6%), or rates of high scoring genes (0.4 vs. 0.3). Similarly, we did not find differences in 

CNVs by inheritance (inherited vs. de novo) for average NeuroSCORE (20.6% vs. 26.1%), 

median NeuroSCORE (17.3% vs. 25.2%), or rates of high scoring genes (1.8 vs. 0.7). However, 

using linear regression and controlling for CNV size we found that CNVs with increasing 

pathogenicity showed an increase in the total number of high scoring genes (β=0.5; p=2E
-16) and 

lower scoring genes (β=0.02; p=.02), while non-scored genes decreased slightly (β= -0.05; 

p=2.5E
-8, Figure 3C). As expected, linear regression also showed median CNV NeuroSCORE 

increased with increasing classification as well (β=6.7%; p<2 E
-16). These data show high scoring 

genes appear to be an important component in CNVs identified in this clinically affected cohort. 

 

High Scoring Genes and Mouse Model Organism Data 

We next applied NeuroSCORE to the 27 high-level phenotypes of mouse model data 

curated by Jackson Labs Mouse Genome Informatics database39. Among genes with high-level 

experimental phenotype data (N=8,149), total phenotypes per gene ranged from 1-26 with an 

average of 5.99 phenotypes (st. dev. = 4.55). Using chi squared analysis between high scoring 

gene orthologs and the presence of any of the 27 phenotypes (Bonferroni corrected for 27 tests, 

p<0.002), we found high scoring gene orthologs were significantly enriched in seven phenotypes 

including: mortality and aging, embryonic abnormalities, central and peripheral nervous system 

abnormalities, growth and congenital anomalies, abnormalities of learning and behavior, 

abnormalities of cellular proliferation, differentiation, and apoptosis, and abnormal muscle 

development (all p≤2.9E
-5). Using logistic regression, we found high scoring genes were 

significantly more likely to be associated with mouse ortholog genes that cause the behavioral 
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phenotypes (OR=1.5, 95% CI:1.3 – 1.7 , p=5.9E
-10) and central/peripheral nervous system 

phenotypes (OR=1.7, 95% CI: 1.5 – 1.9, p=4.7E
-16), while they were significantly depleted in 

non-neurological phenotypes (OR=.64, 95% CI: .57 - .73, p=3.8E
-12; see Figure 3D).  

 

GO Enrichment and Pathway Analyses 

We performed GO Analyses on the set of 1,580 high scoring genes to determine if 

enrichment of key biological processes, cellular components, and molecular functions occurred 

within this set. Enriched terms in biological processes include positive regulation of protein 

localization to Cajal body (GO:1904871), axo-dendritic protein transport (GO:0099640), and 

alternative mRNA splicing, via spliceosome (GO:0000380). Within cellular components, key 

terms include the nBAF complex (GO:0071565) and the NuRD complex (GO:0016581), which 

are involved in chromatin remodeling. For the molecular functioning area, terms include binding 

activity such as protein kinase A catalytic subunit binding (GO:0034236), microtubule plus-end 

binding (GO:0051010), and pre-mRNA binding (GO:0036002). See Supplemental Table 1 for a 

list of all of the top five enriched, unique GO annotation terms and high scoring genes for each 

of the three areas. 

From our pathway analyses, we analyzed approximately 500 GO terms with the lowest 

false discovery rate values (all q-values ≤1.3E
-22) by inspecting the relationships using the 

AmiGO visualization tool (accessed December 10th, 2020). Within the developmental pathways, 

the following were enriched: regulation of dendrite development (GO:0050773), regulation of 

morphogenesis involved in differentiation (GO:0010769), positive regulation of neurogenesis 

(GO:0050769), and positive regulation of neuron projection development (GO:0010976). Within 

the metabolic and enzymatic pathways, the following were enriched: regulation of mRNA 
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stability (GO:0043488), regulation of mRNA splicing via the spliceosome (GO:0048024), and 

catalytic step two of the spliceosome (GO:0071013). Top selected terms and associated genes are 

presented in Supplemental Table 2 and the corresponding figure. The GO and pathway analyses 

further support that NeuroSCORE identifies genes in important neurological and developmental 

processes.  

 

Landscape of High Scoring Genes in Pathogenic CNVs 

Given pathogenic CNVs underlie a significant proportion of many neurological disorders, 

we applied NeuroSCORE to a set of common pathogenic CNVs as described in >10,000 

individuals with neurological or neurodevelopmental phenotypes41. All CNVs had at least one 

scored gene and all but the 1q21.1 distal deletion CNV had at least one high scoring gene (Figure 

4). We next applied NeuroSCORE to the 72 CNV regions with a completed haploinsufficiency 

and triplosensitivity review in ClinGen (accessed January 20, 2021, Supplemental Table 3). 

There are currently 38 regions that have sufficient evidence for haploinsufficiency and 21 

regions with sufficient evidence for triplosensitivity. The majority of these regions contain at 

least one gene with a high NeuroSCORE (30/38 and 14/21, respectively). Next, we explored the 

NeuroSCORE profile of several recurrent CNV regions to help identify genes that may 

contribute to CNS-related phenotypic features. 

The 7q11.23 recurrent region is approximately 1.5 megabases with deletions associated 

with Williams-Beuren syndrome (WBS) and gains associated with 7q11.23 duplication 

syndrome. The typical WBS deletion/duplication region contains 25 total genes, of which 15 are 

scored and six are high scoring genes. The GTF2I and GTF2IRD1 genes have been implicated as 

key genes driving the neurobehavioral phenotype59,60, though GTF2I and GTF2IRD1 knockout 
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mice suggests that neither gene fully recapitulates the neurobehavioral aspects of WBS59. Aside 

from GTF2I, NeuroSCORE identified five high scoring genes (Figure 4), all with evidence for 

CNS involvement: STX1A has been associated with ASD61 and syndromic ID62 in humans, 

LIMK1 sequence variants are associated with ASD18 and visuospatial impairment63, while 

LIMK1 deficient mice have fewer cortical pyramidal neurons64, impaired long-term memory65 

and spatial learning66; BAZ1B knockout mice show aberrant neurogenesis67 while clinical studies 

show variants associated with ASD18, Klippel-Feil syndrome68, and congenital heart defects18; 

EIF4H deficient mice have a smaller body size, behavioral impairments, and reduced brain 

volume69; finally, a single CLIP2 variant has been associated with ASD70. 

 The 22q11.2 region is also associated with recurrent deletion and duplication syndromes. 

Within the typical 22q11.2 region there are 64 genes, of which 38 are scored and eight are high 

scoring genes. However, the 22q11.2 deletion/duplication syndrome region presents a challenge 

when interpreting CNVs that are smaller than the common breakpoint in the A-F deletion 

(breakpoints refer to areas of repetitive DNA that cause recurrent CNVs and often are given 

letter designations). Our analysis found the 22q11.2 A-B, B-D, and D-F breakpoint CNVs each 

harbor multiple scored genes and at least one high scoring gene (Figure 4), suggesting that CNVs 

of any of these smaller regions of 22q11.2 may be pathogenic for CNS-related clinical features. 

Two previous studies in cohorts of individuals with 22q11.2 deletion syndrome are also 

consistent with this finding. The first study analyzed neuroimaging data and transcriptomics and 

identified the MAPK1 gene (a high scoring gene in the D-F region) as a potential driver gene of 

brain morphology changes71. The second study analyzed 22q11.2 deletion size and IQ score, 

finding that IQ score was partially explained by deletion size (A-B vs. B-D)72. Taken together, 

NeuroSCORE identified several candidate genes in the 7q11.23 and 22q11.2 regions, some of 
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which are supported by other studies as well as additional genes that may provide new insight 

into the role of these regions in neurological phenotypes.  

Emerging CNV syndromes also pose challenges for clinical interpretation. Applying 

NeuroSCORE to rare CNVs can help determine if they score in the same range as known 

pathogenic CNVs while also identifying candidate genes. We queried the ClinGen Dosage 

Sensitivity Map and identified the 2p16.1-p15 CNV as one with limited data on whether it 

caused a duplication syndrome. To date, seven individuals have been reported with a duplication 

and neurological clinical features73–75. Experimental studies in zebrafish of the previous 

candidate genes have implicated the BCL11A, USP34, REL, and XPO1 genes76. Using 

NeuroSCORE, we first find this CNV has a median score of 30%, well above the average 

median score in our affected case gain CNVs of 16%. Furthermore, within this region are four 

high scoring (BCL11A, USP34, XPO1, and CCT4), of which the CCT4 gene was not previously 

identified. Experimental work in Drosophila shows CCT4 knockdown results in severely 

reduced dendritic growth78, as well as abnormalities of the eye and other organs77; furthermore, 

two de novo, missense variants have been reported in two individuals with ASD18. These data 

support a role for 2p15p16.1 gains in CNS phenotypes and indicate the CCT4 gene as a new 

candidate gene. 

  

DISCUSSION 

We hypothesized that CNS-related disease genes are likely to be identified by multiple 

metrics that assess different genic properties. After combining multiple genome-wide databases 

that assess different properties, we found that five properties were independently and positively 

associated with genes already known to cause CNS-related conditions as identified in the OMIM 
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database. A total of 8,296 genes were identified by at least one of five gene metrics and 1,580 

genes were identified by three or more. These high scoring genes are enriched in neurological 

processes in humans, developmental and neurological pathways, affected by CNVs more often in 

a neurodevelopmentally-affected cohort, and show neurologically related phenotypes in murine 

experiments (Table 3 and Figure 3). Of these 1,580 high scoring genes, 1,062 (67%) do not yet 

have any phenotype association in OMIM as of December 31, 2020 and 252 genes (15.9%) have 

no associated variants in the Human Genome Mutation Database (HGMD; accessed December 

31, 2020). These 1,580 high scoring genes likely represent a significant proportion of the 

approximately 1,000 undiscovered neurodevelopmental disease genes proposed by a recent 

analysis9.  

The findings from our pathway and GO analyses found significant enrichment in multiple 

neurological processes, many with known disease or phenotype associations (Supplemental 

Tables 1 and 2): the BAF (or SWI/SNF) complex42, the NuRD complex43, neuronal organization 

with microtubule tracking44, tau protein activity45, histone binding processes46, the Cajal body47–

49, proteasome activity50, mRNA processing via both the spliceosome components51,52 and 

mRNA trafficking and binding53,54. Of these processes, splicing may be one of the most 

important. Tissue-specific splicing in the brain has shown high rates of alternative transcript 

splicing, suggesting that splicing proteins and proper splicing are imperative to neuronal 

development, structure, and function and appear to be evolutionarily conserved55,56. The Cajal 

body presents an interesting confluence of multiple previously discussed CNS-disease related 

processes as these nuclear bodies appear in fetal and neural cells to help mediate splicing, create 

parts of the spliceosome and ribonuclear proteins, activate transcription, and aid in chromatin 

and genome organization47. Considering that ASD and other neurodevelopmental disorders 
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appear to begin in the fetal period57,58, the enrichment of Cajal body-associated genes raises an 

interesting target for additional study of genes related to possible “Cajalopathies”. 

As of December 31st, 2020, our model identified 124 high scoring genes that are 

associated with conditions in OMIM that have no known CNS-related clinical features. While 

some of these genes will not be found to cause CNS-related features and are likely false 

positives, some have emerging evidence for causing CNS-related phenotypes. One example is 

MORC2, currently associated with only a form of Charcot-Marie-Tooth disease (OMIM 

#616661) but recently reported to cause a neurodevelopmental disorder79. Another example is 

ANK2 (OMIM #106410), currently associated with only long QT syndrome type 4 and ankyrin-

B-related cardiac arrhythmia (OMIM # 600919) though has variants associated with ASD80, 

ID81, and schizophrenia82. Using NeuroSCORE could help identify CNS disease genes that have 

been overlooked due to prior disease associations (see Supplementary Table 4 for a list of genes). 

Finally, our model may be helpful to identify genes that influence or increase the risk for 

spectrum conditions, such as ASD. Multiple damaging variants in multiple scored genes could 

explain the risk or presence of a condition like ASD in individuals without a known variant in 

high-risk genes or common pathogenic CNVs. Damaging variants in scored genes may also help 

explain variable expressivity and reduced penetrance observed in many CNS-related genetic 

conditions (e.g., “two-hit” models).  

Like Amirah Brigham’s and John Snow’s use of mapping in the 19th century cholera 

epidemic, we have correlated existing data and created a new map to aid in discovery of 

conditions that broadly effect humanity. Our NeuroSCORE map of the human genome identifies 

and prioritizes potential disease genes of the CNS, which we validated using case-control and 

mouse model organism data. NeuroSCORE can be used for: bioinformatic analysis pipelines, 
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identification of candidate disease genes in individuals with neurological phenotypes, guidance 

of basic and clinical research, the development of genetic tests, and furthering research on 

treatments for these conditions as current or future medications may target specific proteins or 

pathways. Future directions of model development can include identifying interaction terms to 

improve model precision as well as adding new metrics such as transcriptome profiles from brain 

expressed genes. While there are genes that cause CNS-related conditions not identified by 

NeuroSCORE (e.g., GABRG2), our model represents a potentially significant step forward in 

research to improve ultimately diagnostics for individuals with genetic causes of neurological 

conditions. 

 

Limitations 

 One limitation to this study and model is that it analyzes only protein-coding genes and 

excludes disease mechanisms such as mitochondrial, epigenetic, and disruption of enhancer and 

untranslated regions. Recent work in a small ASD cohort indicates that ASD risk may be 

influenced by variants in non-coding regions83. Similarly, genes causing autosomal recessive 

conditions are not well represented due to the use of gnomAD’s loss-of-function data. However, 

a recent analysis in the Deciphering Developmental Disorders cohort found approximately 3.6% 

of individuals from non-consanguineous families had a condition consistent with a recessive 

inheritance pattern84. Another limitation is that our outcome variable (CNS clinical features) is 

drawn from OMIM, which is an imperfect database of genotype-phenotype information with 

possibly inaccurate or outdated information and ascertainment bias. Finally, many conditions are 

not yet fully phenotyped, with rare phenotypes or age-related phenotypes not well represented.  
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Table 1: Gene Metric Association of Genes with CNS-Related Clinical Features 

 Pearson’s ꭓ2 Logistic Regression Wald Test 

Gene Metric ꭓ2 p OR 95% CI p F p 

De novo 67.0 <1E
-4 2.2 1.7 – 3.0 <1E

-4 27.5 <1E
-4 

Index 171.1 <1E
-4 1.9 1.5 – 2.3 <1E

-4 39.4 <1E
-4 

CCR 99 82.9 <1E
-4 1.8 1.4 – 2.3 <1E

-4 24.3 <1E
-4 

GTEx 154.0 <1E
-4 1.7 1.4 – 2.0 <1E

-4 30.7 <1E
-4 

gnomAD LOF 55.5 <1E
-4 1.4 1.1 – 1.6 5E

-4 12.1 5E
-4 

CCR 95 19.8 <1E
-4 0.9 0.8 – 1.1 0.4 NA NA 

gnomAD MIS 20.2 <1E
-4 1.8 0.8 – 4.5 0.2 NA NA 

Coe 1 4.2 .04 1.2 0.9 – 1.4 .10 NA NA 

Coe 2 2.7 .10 NA NA NA NA NA 

OR: odds ratio; 95% CI: 95% confidence interval; CCR 95 or 99: genes with ≥1 critically 

constrained coding region at the 95th or 99th percentiles; GTEx: gene-tissue expression database; 

gnomAD LOF and MIS: gnomAD genes with upper bound of loss-of-function or missense 

observed/expected metric <0.34; NA: not applicable.  
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Table 2: NeuroSCORE Model Shows Increasing Odds Ratios with Increasing Point Totals 

Point  

Total 
OR 95% CI p 

Total Genes 

(Genes without OMIM Phenotype) 

5 of 5 32.2 11.8 – 132.7 5.7E
-9 74 (15) 

4 of 5 6.6 4.4 – 10.3 2.0E
-16 444 (302) 

3 of 5 4.3 3.3 – 5.6 2.0E
-16 1,062 (745) 

2 of 5 3.6 3.0 – 4.4 2.0E
-16 3,423 (2,560) 

1 of 5 2.0 1.7 – 2.4 1.1E
-14 3,293 (2,431) 

≥3 of 5 5.5 4.4 – 7.0 2.0E
-16 1,580 (1,062) 

OR: odds ratio; 95% CI: 95% confidence interval; high scoring genes are genes identified by ≥3 

gene sets; OMIM data current as of December 31st, 2020 
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Table 3: Distribution of the Highest Scored Gene Within Case & Control CNVs 

 Genes in Loss CNVs Genes in Gain CNVs 

Point  

Total 

Cases  

N (%) 

Controls  

N (%) 
p 

Cases  

N (%) 

Controls  

N (%) 
p 

5 5 (0.6) 0 (0) 1.6E
-3 17 (1.3) 1 (0.1) 2E

-5 

4 53 (6.5) 9 (0.4) 2E
-16 81 (6.1) 25 (1.7) 8E

-10 

3 60 (7.4) 7 (0.3) 2E
-16 165 (12.5) 52 (3.5) 2E

-16 

2 115 (14.1) 365 (16.7) .09 285 (21.6) 354 (24.0) .13 

1 114 (17.7) 307 (14.0) .01 260 (19.7) 300 (20.3) .68 

0 436 (53.6) 1501 (68.6) 3E
-14 514 (38.9) 746 (50.5) 7E

-10 

NA 1 (0.1) 358 (14.1) 2E
-16 3 (0.2) 384 (20.6) 2E

-16 

NA are genes that could not be scored (e.g., pseudogenes); total case CNVs NLOSSES=813, 

NGAINS=1,322, total control CNVs NLOSSES=2,547, NGAINS=1,862; Fisher’s Exact test used for 

analyses when N≤5; Chi squared tests used for analyses when N>5; significance set at p≤4E
-3 

after Bonferroni correction for 14 tests 
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A B

C D

A: The relative proportion of genes at each NeuroSCORE level in loss CNVs, *p≤.002; B: relative proportion of genes at each NeuroSCORE level in gain CNVs; C: Box plots of high scoring genes in CNVs by clinical 

significance; D: High scoring genes are enriched in in behavioral (OR=1.5, 95% CI: 1.3-1.7, *p<.001) and central and peripheral nervous systems (OR=1.7, 95% CI: 1.5-1.9, *p<.001) mouse phenotypes and depleted 

in non-neurological phenotypes (OR=.65, 95% CI: .57-.73, p<.001).
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Figure 3: Common Neurodevelomental Microdeletion/Duplication Syndromes with Gene Level NeuroSCORE

Chromosome 1 Chromosome 7

Tables describes known pathogenic CNVs with protein-

coding genes and the corresponding NeuroSCORE. 

Colors correspond to score: dark blue = 5, light blue = 4, 

brown = 3, black = 1-2, un-bold text = 0. See 

Supplemental Table 3 for an assessment of 72 ClinGen 

regions assessed for haploinsufficiency or triplosensitivity.
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