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ABSTRACT 
Retinal prostheses must be able to activate cells in a selective way in order to restore high-fidelity vision. 
However, inadvertent activation of far-away retinal ganglion cells (RGCs) through electrical stimulation of axon 
bundles can produce irregular and poorly controlled percepts, limiting artificial vision. Therefore, the problem of 
axon bundle activation can be defined as the axonal stimulation of RGCs with unknown soma and receptive 
field locations, typically outside the electrode array. Here, a new algorithm is presented that utilizes electrical 
recordings to determine the stimulation current amplitudes above which bundle activation occurs. The method 
exploits several spatiotemporal characteristics of electrically-evoked spikes to overcome the challenge of 
detecting small axonal spikes in extracellular recordings. The algorithm was validated using large-scale ex vivo 
stimulation and recording experiments in macaque retina, by comparing algorithmically and manually identified 
bundle activation thresholds. The algorithm could be used in a closed-loop manner by a future epiretinal 
prosthesis to reduce poorly controlled visual percepts associated with bundle activation. The method may also 
be applicable to other types of retinal implants and to cortical implants. 
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Introduction 
 

Retinal prostheses are designed to restore partial vision in patients with photoreceptor degenerative diseases 
such as age-related macular degeneration and retinitis pigmentosa. These devices aim to overcome the loss of 
photoreceptors by electrically stimulating the downstream retinal circuitry through current injection via 
multi-electrode arrays (MEAs) [1,2]. In an epiretinal prosthesis, the MEA is placed on the anterior surface of the 
retina in order to precisely stimulate retinal ganglion cells (RGCs), ideally with single-cell resolution, to emulate 
naturally-evoked visual perception [2–7]. However, a major challenge in achieving this goal is inadvertent 
electrical activation of the numerous RGC axons in the nerve fiber layer between the electrodes and RGCs. 
Activation of axons has been shown to produce irregular arc-shaped phosphenes in patients with epiretinal 
implants, distorting their artificial visual perception [8–10]. Hence, avoiding indiscriminate axon bundle 
stimulation [4] could drastically improve artificial vision. 
 

 
Figure 1.  Axon bundle activation. The MEA (gray shaded region) and electrodes (black dots) partially cover the area of 
the retina containing retinal ganglion cells (RGCs) (large colored dots) with axons (curves) that course to the optic nerve. 
To activate a target RGC (green), current is typically passed through an electrode near it (pink dot). But this can lead to 
activating bypassing axons near the stimulating electrode (pink patch). If an axonal spike is evoked in a RGC with its 
soma on the array (orange) then its location and contribution to artificial vision can be determined. But if the soma of the 
activated RGC lies off the array (red) then the cell cannot be located and its contribution to vision is unknown. 
 
A bidirectional retinal prosthesis (i.e. one with both read and write capability) could substantially enhance the 
ability to detect and avoid undesired visual percepts. At present, retinal implants rely on patient feedback to 
determine the visual percepts elicited by electrical stimulation [8,9], but this approach would be prohibitively 
time-consuming for a prosthesis based on large-scale MEAs [9–11]. To determine the artificial visual signal 
produced by electrical stimulation, an ideal epiretinal prosthesis would not only stimulate but also record the 
electrically-evoked and spontaneous spiking activity of each RGC over the MEA, identify its location and cell 
type, and thus estimate its expected contribution to visual perception [5,12–15]. However, if the soma of a cell 
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lies off the array, its location cannot be identified, and thus the spatial contribution to visual perception 
introduced by stimulating the cell is uncertain. Thus, the problem of axon bundle activation is defined as the 
activation of off-array cells, and the axon bundle threshold for each stimulating electrode is defined as the 
lowest current amplitude at which the activity in any off-array cell is observed [4] (Figure 1). Although it is 
possible that unrecorded on-array cells also contribute to unaccounted visual percepts, this work assumes that 
the high-density MEA allows detection and identification of the majority of the on-array cells [13,16–19]. 
 
The current state-of-the-art method for detecting axon bundle activation involves manually analyzing 
post-stimulation MEA recordings (see Section III), which can take days for a single recording with hundreds of 
electrodes. This is not a feasible approach in a prosthetic device that could require frequent recalibration to 
ensure reliable performance. Other methods proposed in the literature to detect axonal activation utilize optical 
recording or examine isolated neurons in vitro [20–28]. However, these methods cannot be used in an in vivo 
implant. One closely related study used heuristics based on hand-crafted features for which computation grows 
superlinearly in the number of recorded electrodes [4]. Moreover, it does not necessarily discriminate on-array 
axonal activation from off-array activation, leading to certain stimulation levels being classified as above axon 
bundle threshold even though the elicited visual percepts can be determined (e.g. Figure 1, stimulation of 
orange but not red RGC). This may indicate fewer allowable stimulation levels without axon bundle activation, 
and thus may limit the utility of the implant. Alternative techniques to avoid axonal activation such as varying 
the pulse duration or frequency have also been proposed [29]. Even so, use of these techniques does not 
eliminate all off-array activation, and an algorithm to detect axon bundle threshold remains important.  
 
Here, a simple and principled algorithm is presented to determine axon bundle thresholds. The algorithm was 
applied to detect bundle activation in ex vivo electrical stimulation and recording data from peripheral macaque 
retina, and the results suggest that the algorithm is accurate and efficient. These thresholds can be used to 
ensure that the retina is never electrically stimulated with currents that lead to off-array activation, a crucial 
step towards future high-resolution epiretinal implants.  
 

Algorithm 
 

The algorithm takes as input the electrical activity recorded on the MEA resulting from repeated trials of 
single-electrode stimulation and determines the lowest stimulus current amplitude at which off-array evoked 
activity is observed. The voltage waveform recorded on a MEA from epiretinal stimulation (y) can be expressed 
as the sum of four components: y = x  + i  + s  + n , where x is the component resulting from neural activity 
caused by electrical stimulation, i is the electrical voltage artifact resulting from injecting current, s is the 
component resulting from spontaneous (non-evoked) activity of RGCs, and n is the noise (such as other 
biological signals or thermal noise in the recording circuitry). Though x is the component that contains 
information relevant for determining bundle threshold, the other components of y complicate the problem: i can 
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overshadow the recorded signal significantly and has properties that are idiosyncratic to the stimulation and 
recording hardware [5,30], s represents spontaneous activity of a RGC that can be confused with activity 
evoked by stimulation, and n can significantly corrupt recorded axonal waveforms. The algorithm overcomes 
these hurdles by first distinguishing the electrodes recording electrically-evoked spikes from those recording 
non-evoked spikes or noise by using several characteristic features of extracellularly recorded spikes, followed 
by identification of bidirectional axonal spike propagation to determine the axon bundle threshold. Three key 
ideas behind the algorithm are summarized below (and see Fig. 2). 
 

 
Figure 2.  Schematic of ideas exploited in the algorithm. A. Illustration of low-variance in electrically evoked spikes 
compared to spontaneous spikes. Different traces in a column correspond to recorded traces on an electrode after 
repeated application of the same electrical stimulus. B. Monotonic increase in response probability as a function of 
increasing current stimulation [6]. C. Bidirectional axonal spike versus unidirectional somatic spike.  

 
Idea 1: Precise spike timing 
Electrodes recording evoked axonal activity can be distinguished from those recording noise and non-evoked 
spontaneous activity by leveraging the low variability in the timing of electrically-evoked spikes across repeated 
trials (Figure 2A). Spike times are estimated by measuring the difference between the time of the stimulation 
and the time of the minimum response recorded on an electrode. RGC spikes evoked by electrical stimulation 
occur at a consistent latency, with ~ 0.1 ms variability between repeats [5–7]. Thus, even if the amplitude of 
evoked axonal spikes is low, the low timing variability can aid in their detection. 
 
Idea 2: Monotonic RGC response with stimulation current 
The procedure described in idea 1 can still lead to mis-identification of some electrodes recording spontaneous 
activity as recording electrically-evoked activity. To filter out these electrodes, a second observation is 
exploited: with increasing stimulus amplitude (in the range 0.1-4.1 μA) , spikes are evoked in RGCs with 
increasing probability and temporal regularity [6]. Thus, if an electrode reliably records an evoked spike at a 
given amplitude, it will most likely also register that spike upon application of higher current amplitudes, and the 
spike time variance will not increase (Figure 2B). This allows for more accurate identification of the subset of 
electrodes recording evoked neuronal activity.  
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Idea 3: Bidirectional axonal spike propagation 
Finally, the algorithm takes advantage of the fact that axon bundles in any given region of the peripheral retina 
run approximately in straight lines to the optic nerve, and that signals evoked in stimulated axon bundles travel 
bidirectionally to opposite edges of the array (Figure 2C). Thus, the axon bundle threshold can be determined 
by identifying the smallest stimulus current amplitude at which the subset of electrodes recording evoked 
neuronal activity contains electrodes from at least two borders of the MEA. 
  
A mathematical formulation of the algorithm is provided below. The recorded data consists of a spatio-temporal 
voltage waveform recorded from the retina using the MEA and is collected after repeated application of 
single-electrode stimulation, for a range of current amplitudes. Let es = stimulating electrode, er = recording 
electrode,  a = stimulating amplitude,  t = time (or sample number) after stimulation, r = repeat number, 

= recorded voltage waveform. The algorithm, which can be applied independently on all(r, e , t)  V (e , a)s
 r   

stimulating electrodes, is described in pseudocode with the steps described more fully below:  
 

 
Algorithm Pseudocode.  The algorithm takes electrical activity recorded on the MEA resulting from repeated trials of 
single-electrode stimulation as input  to determine the lowest stimulus current amplitude at which any(r, e , t)V (e , a)s

 r   

off-array activity is observed .  Statistical threshold based on p-value (thr) is the only hyperparameter in the(e )  b s  
algorithm. 
 
1. Subtract Electrical Artifact. The recorded signal includes an electrical artifact resulting from the charge 
supplied during stimulation. To reduce the effect of this artifact on axon bunde threshold detection, the mean 
recorded data at the lowest stimulation amplitude is subtracted from the recorded data at higher stimulation 
amplitudes (note that scaling the estimated artifact according to stimulation amplitude did not influence the 
results). This is repeated for every pair of stimulating and recording electrodes. The voltage trace after artifact 
removal is referred to as .(r, e , t)v(e , a)s

 r    
 

2. Extract Spike Times. Next, the spike times  are estimated by measuring the difference between(r, e )t(e , a)s
 r  

the time of the stimulation and the time of the minimum response recorded on an electrode (the minimum is 
used because spikes have negative peaks when recorded extracellularly [4,5,31]). Spike times are extracted 
on each recording electrode after stimulation at one electrode, for every current amplitude and trial. Only the 

5 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.03.429317doi: bioRxiv preprint 

https://paperpile.com/c/gH1ofS/Bmf8+iq2I+9Qqs
https://doi.org/10.1101/2021.02.03.429317
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

voltage recorded between  0.3−2 ms after the stimulus is considered for spike time extraction, in order to a) 
avoid large initial recorded artifact and peak variation in artifact across amplitudes recorded at non-stimulated 
electrodes [32], and b) account for evoked spike latencies and axonal spike propagation [4,6].  
 
3. Extract Signal Electrodes. When no electrically-evoked activity is recorded, the neural response is random in 
time with respect to the applied stimulus. Thus, the variance of is modeled as a distribution(r, e ) t(e , a)s

 r  χ2
(n−1)  

under the assumption that is uniformly distributed across all possible time samples. Here,  is the(r, e ) t(e , a)s
 r n  

number of repeats and  in the present data. The recording electrodes carrying electrically-evoked 25n =   
activity are then extracted by a hypothesis test with a p-value of 0.05. This statistical threshold based on 
p-value of the hypothesis testing is the only hyperparameter in the algorithm. 
 
4. Prune Signal Electrodes. Some of the electrodes not recording evoked spikes may also be inadvertently 
included in the above step. Thus, a pruned set of electrodes at each stimulation amplitude a (for each es) is 
calculated by finding the common signal-carrying electrodes between this amplitude and all higher amplitudes, 
to enforce that the electrodes identified as carrying a bundle signal exhibit monotonicity of response with 
current amplitude (Figure 2B). For each stimulating electrode, pruning is an iterative process that starts at the 
highest stimulation amplitude and, after calculating the signal-carrying electrodes, works its way down to lower 
amplitudes.   

 
5. Determine Axon Bundle Threshold. Finally, for each stimulating electrode the current amplitude at which the 
set of pruned electrodes contains electrodes situated at more than one border of the rectangular MEA is 
identified as the axon bundle threshold.  
 

Results 
 

The algorithm was applied to detect bundle activation in ex vivo electrical stimulation and recording data from 
peripheral macaque retina. The results indicate that the algorithm is able to accurately and efficiently detect 
axon bundle activation while being robust to the selection of the sole hyperparameter (statistical threshold).  
 
Experimental Setup 
 
Electrophysiology data were collected from retinas of terminally anesthetized rhesus macaque monkeys (male 
and female, ages 11–20 years), which were euthanized in the course of experiments in other laboratories. 
Segments of peripheral retina were isolated and mounted on an array of extracellular microelectrodes as 
described in previous studies [4–6,32,33]. A custom multi-electrode system was used for stimulation and 
recording spikes in RGCs [5,13,31]. The MEA consisted of 512 electrodes with 60 μm spacing between 
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electrodes, within rows and between rows. For recording, raw voltage signals were amplified, filtered (43-5000 
Hz), multiplexed with custom circuitry, and sampled at 20 kHz per channel. For stimulation, charge-balanced 
triphasic current pulses with 50 μs phase widths and relative phase amplitudes of 2:-3:1, were delivered 
through one electrode at a time [6]. Custom circuitry included in the stimulation and recording system 
minimized electrical artifacts, permitting detection of low-latency (<1 ms) RGC responses [6,31]. All reported 
current amplitudes and polarities refer to the second phase of the pulse, with positive values indicating 
cathodic currents. In single-electrode scans, each electrode was stimulated repeatedly 25 times with this pulse 
at each of 40 current levels, progressively increasing by 10% in amplitude over the range 0.1-4.1 μA.  
 
Figure 3 illustrates the algorithm applied to the recorded retinal data. 
 
Validation against Manual Analysis 

 
To demonstrate the effectiveness of the algorithm, automatically estimated axon bundle thresholds were 
compared to values estimated using manual analysis by experienced researchers observing movie clips of 
evoked electrical activity. A total of ~1,500 stimulating electrodes from four different retinal preparations were 
analyzed. In the movie clips, the electrical artifact was reduced by subtracting the mean activity recorded at the 
lowest stimulation amplitude from the traces recorded with all higher stimulation amplitudes. The result was 
then averaged over multiple trials of stimulation at each amplitude. Recorded voltage amplitudes were 
max-thresholded at 36 μV to help facilitate tracking of low amplitude axonal activity in the midst of 
high-amplitude somatic activity. This max-thresholded spatio-temporal activity,  was(r, e , t),mean vr (e , a)s

 r   

viewed for each stimulation electrode and amplitude. Observers estimated the lowest stimulus amplitude 
required to evoke bidirectional electrical activity propagating all the way to the edges of the MEA. For some of 
the stimulating electrodes on or near the border of the MEA, only a few recording electrodes were able to 
capture evoked activity. This fact, combined with large residual stimulation artifacts in nearby recording 
electrodes, made manual determination of bidirectional activity difficult in these cases. Stimulating electrodes 
in these cases were not assigned a manual bundle threshold and were not used in algorithm validation.  
 
The thresholds identified by the algorithm were similar to those identified by a trained human observer, with a 
correlation coefficient of 0.95 (Figure 4B). For ~88% of the electrodes analyzed, the threshold identified by the 
algorithm was within ±10% of the manually identified threshold (corresponding to ±1 amplitude step in 
the stimulation experiment). For 65% of electrodes, the match was exact (Figure 4A). To compute the 
probability of obtained thresholds as compared to chance, manual thresholds for the electrodes of each  
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Figure 3. Application of the algorithm to MEA recording and stimulation from the retina. Left to Right: Stimulation with 
decreasing current amplitude showing cases for several amplitudes: highest, amplitude eliciting axon bundle activation, 
amplitude eliciting somatic spike, and lowest. Top to Bottom: Example cases observed during execution of the algorithm. 
A. Raw data traces for a particular stimulating and recording electrode. Black trace shows the mean recorded voltage and 
colored traces show recorded voltage for individual repeats. Blue trace shows the estimated artifact. B. Data traces for the 
same stimulating and recording electrode after estimated artifact removal. C. Histogram over all recording electrodes of 
variance over repeats in the time of the spike, for the stimulating electrode chosen above. Dashed vertical line shows the 
variance threshold below which the recording electrode potentially contained electrically-evoked activity. D. Extracted 
signal-carrying electrodes shown as mapped onto the MEA. The stimulated electrode  is shown as a black ring. The right 
two panels show clear spurious signal electrodes - electrodes far from the stimulating electrode are not expected to carry 
electrically-evoked activity. E. Pruned set of signal electrodes and the detection of bundle threshold for the chosen 
stimulating electrode. The right two panels show the removal of distant spurious recording electrodes. 
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Figure 4. Validation against manual analysis. A. Histogram over stimulating electrodes of ratio between algorithm and 
manual axon bundle thresholds. ~88% of the electrodes analyzed exhibited an algorithmic axon bundle threshold within 
±10% of the manually identified threshold, for four different retina preparations (~1500 stimulating electrodes). B. Scatter 
plot of algorithm thresholds and manually analyzed thresholds. Color represents the density of points with a particular set 
of thresholds (note that there are 40 discrete current stimulations in the data). The clustering of the data around the 
diagonal of equality suggests that the algorithm is not biased (correlation coefficient = 0.95). C. Dependence of the 
accuracy of the algorithm (compared to manually identified thresholds) on the number of repeats. Different colors 
correspond to four different retinal preparations. Data were randomly subsampled from the maximum available repeats 
(25), and the shaded region encompasses one standard deviation. The algorithm performance exhibits diminishing 
returns with increasing repeats, with apparently saturated performance at 25 repeats. D. Algorithm performance as a 
function of the statistical threshold (p-value). Performance remains consistent around the chosen p-value of 0.05. 
 
the retina were randomly permuted and then pooled. In these permutations, only 24 ± 1% of the algorithm 
thresholds were within 10% of the manual thresholds, a substantially lower fraction than observed in the data. 
To quantify the reliability of the manually labeled data, the intrinsic variability between two human observers 
who were asked to perform the same task was examined. For stimulating electrodes at which both humans 
assigned a threshold, ~96% of the electrodes had a threshold within ±10% of each other, with a correlation of 
0.98, similar to the values obtained by comparing the manual and algorithm thresholds. 
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Further observations  
 
The algorithm is efficient and performs well with limited electrophysiological data. Because collecting and 
analyzing a large amount of electrical stimulation data is difficult, it is advantageous to limit the number of 
stimulation repeats required for the algorithm to perform well. To determine the data requirements, comparison 
of automatically determined thresholds to manually determined thresholds was performed after running the 
algorithm on a random subset of the original 25 stimulation trials. Manually identified thresholds were obtained 
using all trials. The performance of the algorithm followed a saturating curve with accuracy increasing sharply 
from 1-3 repeats and leveling off with 20-25 repeats for all retinas (Figure 4C). On average, the algorithm 
identified the bundle threshold on ~84% electrodes within ±10% of the manually identified threshold with only 
15 repeats and ~87% with only 20 repeats. However, for some retinas, having access to more stimulation 
repeats was advantageous (Figure 4C, red curve). 
 
The algorithm performance is robust to the sole hyperparameter. To test whether the observed results also 
generalize to new retinas, variation in the performance of the algorithm was studied across different retinal 
preparations and values of the statistical threshold (p-value) used for hypothesis testing. The p-value is the 
only design hyperparameter in the algorithm (used for finding the subset of electrodes recording evoked 
activity; see Algorithm) and could lead to a suboptimal algorithm performance if not chosen appropriately. The 
average performance of the algorithm was within ±0.5% for a range of thresholds corresponding to the p-value 
range of 0.02-0.08 (Figure 4D). This robust behavior is likely due to the strong monotonic response 
requirement immediately after the hypothesis testing step (see Algorithm). Therefore, the threshold 
corresponding to the p-value of 0.05 was used for all retinas in the reported results, irrespective of its optimality 
for individual retinas. 
 

Conclusions 
 

This work presents an automated approach to detect activation of off-array cells via their axons, known as 
axon bundle activation, using stimulation and recording data from a MEA. The algorithm consists of simple 
computational motifs, and could be implemented easily on hardware for continuous monitoring of axon bundle 
thresholds in an in vivo implant. Implementation within power and thermal constraints is an important future 
research topic. The algorithm can be used in a closed-loop fashion by a future epiretinal prostheses to rapidly 
determine the axon bundle thresholds during calibration. Though the focus of this work was on epiretinal 
prosthesis, the need to detect activation of distant cells via their axons will exist in most high-resolution 
prosthetic systems, and the algorithm has the potential to generalize to such systems.  
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