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ABSTRACT 

Central obesity with cardiometabolic syndrome (CMS) is a major global contributor to 

human disease, and effective therapies are needed. Here, we show inhibiting cyclic-GMP 

selective phosphodiesterase-9A (PDE9-I) suppresses established diet-induced obesity and 

CMS in ovariectomized female and male mice. PDE9-I reduces abdominal, hepatic, and 

myocardial fat accumulation, stimulates mitochondrial activity in brown and white fat, 

and improves CMS, without altering activity or food intake. PDE9 localizes to 

mitochondria, and its inhibition stimulates lipolysis and mitochondrial respiration 

coupled to PPARa-dependent gene regulation. PPARa upregulation is required for 

PDE9-I metabolic efficacy and is absent in non-ovariectomized females that also display 

no metabolic benefits from PDE9-I. The latter is compatible with estrogen receptor-a 

altering PPARa chromatin binding identified by ChIPSeq. In humans with heart failure 

and preserved ejection fraction, myocardial expression of PPARA and its regulated genes 

is reduced versus control. These findings support testing PDE9-I to treat obesity/CMS in 

men and postmenopausal women. 
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INTRODUCTION 

Nearly one out of every five humans around the globe is obese(1), and in the 

United States this proportion exceeds 40% (2). The pandemic has already had a major 

impact on global health as obesity increases the risks for diabetes, dyslipidemia, non-

alcoholic fatty liver disease, inflammatory syndromes, heart failure, and hypertension, all 

components of cardiometabolic syndrome (CMS)(1, 3, 4). Human studies have shown 

abdominal (visceral) obesity is most pathogenic(5), whereas metabolically active adipose 

tissue known as brown fat appears to be protective(6). Obesity-related disorders exhibit a 

sexual dimorphism as premenopausal women are relatively protected largely due to 

estrogen(7, 8), yet after menopause when visceral fat increases, so do the risks for 

developing CMS(9, 10). Obesity is now a defining feature of a common syndrome known 

as heart failure with preserved ejection fraction or HFpEF(9, 11), which has high 

morbidity and little effective therapy (10, 12). Shortly after the international spread of a 

novel Sars-COV2 coronavirus (COVID-19) in early 2020, obesity quickly emerged as an 

independent risk factor for worse disease and mortality with many of the mechanisms 

proposed being identical to those highlighted in CMS(13). Despite its broad impact on 

human disease, effective obesity treatments remain limited. While diet and exercise are 

important, their impact is often limited in severely obese individuals given their low basal 

metabolic rates and exertional incapacity. Diabetes therapies such as glucagon-like 
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peptide-1 agonists and sodium-glucose co-transporter-2 antagonists are being tested, but 

methods that stimulate fat catabolism and target visceral fat remain lacking.  

An intrinsic lipolytic pathway is one coupled to cyclic GMP-protein kinase G 

(PKG) signaling stimulated by natriuretic peptides (NP) synthesized by the heart, or by 

nitric oxide. PKG is the primary kinase effector of cGMP and it phosphorylates hormone 

sensitive lipase (HSL) and perilipin, stimulates mitochondrial biogenesis and oxidative 

activity, and improves insulin signaling to suppress diet-induced obesity (14, 15). Cyclic 

GMP also results in increased expression and activity of peroxisome proliferator 

activator-receptor alpha (PPARa)(16), a master controller of mitochondrial fatty acid 

metabolism/oxidation and inducer of thermogenic (browning of) adipose tissue. PKG can 

be exogenously activated either by stimulating cGMP synthesis or suppressing its 

hydrolysis via specific phosphodiesterases (PDEs), and while there is shared downstream 

signaling, there are also many differences due to intra-cellular compartmentation and 

cell/organ specificity(17). Stimulatory approaches include exogenous natural or synthetic 

NPs (18), nitrates/nitrites(19), and direct soluble guanylate cyclase stimulators(20). 

However, each has limitations for chronic obesity therapy as they act rapidly, are short-

lived and can potently lower blood pressure from vasodilation. NPs must also be injected.  

PKG can also be stimulated by blocking cGMP-selective PDEs. The best-known 

example is PDE5 inhibition currently used to treat erectile dysfunction and pulmonary 

hypertension. PDE5-I also ameliorates cardiac pressure-overload(21) and is also reported 
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to stimulate fat metabolism and induce metabolic activation of adipose tissue(22). 

However, studies show this PDE primarily modulates NO-dependent cGMP, and when 

this signaling is diminished as occurs in females lacking estrogen, the impact of PDE5 

inhibition is also very reduced(23). Given most women with obesity-CMS are 

postmenopausal, this poses a major limitation. PDE9 is the other highly cGMP-selective 

PDE, and its inhibitors improve hearts subjected to pathological pressure-overload(24, 

25), hemodynamics and renal function in dilated heart failure(26), and diastolic 

dysfunction(27). While not yet approved in humans, several PDE9 inhibitors are 

currently in clinical trials for neurocognitive disease and heart failure. Unlike PDE5, 

PDE9 regulates NO-independent cGMP(24, 28). PDE9 is expressed in adipose tissue, 

liver, and hearts of mammals including humans (24, 29), though less so in systemic 

arteries, and its inhibition has little effect on blood pressure in animals(24, 27) and 

humans. However, the role of PDE9 in regulating fat metabolism and the potential for 

selective inhibitors to counter obesity and/or CMS are unknown.  

Accordingly, the present study tested the capacity of a highly selective PDE9-I 

(PF-04447943) previously tested in humans with Alzheimer’s Disease(30) to counter 

diet-induced morbid obesity and CMS. We particular studied effects in females lacking 

estrogen and males, as these are the main groups impacted by this syndrome. In both, we 

find PDE9 inhibition reduces obesity and lipid accumulation in multiple tissues, the 

enzyme localizes to mitochondria and its inhibition stimulates mitochondrial respiration 
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and fatty acid oxidation in conjunction with PPARa stimulation. We also find a sexual 

dimorphism, as obese intact females lack PDE9-I associated increases in PPARa-

regulated genes and have no change in obesity-CMS.  

 

 

RESULTS 

Model of Combined Severe Diet-induced Obesity with Cardio-Metabolic Syndrome 

To test the impact of PDE9-I on obesity-CMS, we subjected C56BL6/N mice to 

diet-induced obesity (DIO) for 6 months, with mild mechanical cardiac pressure-stress 

superimposed starting at month 5 and a week later, randomizing them to either PDE9-I or 

placebo (vehicle) treatment (Figure 1a). In OVX females, DIO resulted in substantial 

weight gain (100-200% over baseline) similar to that found in males (Figure S1a), and 

reflecting severe obesity (equivalent to a body mass index (BMI) >35 kg/m2 in humans). 

These mice had marked abdominal fat accumulation (Figure S1b), glucose intolerance 

(Figure S1c), and hepatic steatosis (Figure S1d).  

 PDE9-I lowers obesity and improves CMS in OVX-female and male mice  

Using this obesity-CMS model, we tested the impact of PDE9-I on total body fat 

and lean mass and metabolic dysregulation in OVX females. Mice receiving placebo 
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continued to gain weight (median 22%) during the 8-week trial, whereas PDE9-I treated 

mice exhibited a net -5.6% weight decline (p=2•10-6, Fig 1b). Of the 23 mice treated with 

PDE9-I, 14 (61%) experienced a 2% or greater decline in body weight versus 1/20 (5%) 

in placebo (p<0.0001). MR body composition analysis revealed that PDE9-I treated mice 

had less total fat mass (primarily abdominal) and unaltered lean mass (Figure 1c), and 

less inguinal (subcutaneous) and gonadal (visceral) fat pad mass (Figure 1d). Metabolic 

defects including elevated fasting blood glucose, triglycerides, and cholesterol that were 

present in the placebo group were all reduced with PDE9-I (Figure 1e). Hepatic steatosis 

and liver mass were greater in OVX placebo-treated mice but were at near-normal levels 

with PDE9-I in both OVX (Figure 1f, Figure S2a, S2b) and male (Figure S2c) mice. 

Importantly, PDE9-I did not significantly change food intake or activity level over 

placebo control. However, total body O2 consumption and CO2 production were 

significantly greater in PDE9-I treated mice (Figure 1g) without a change in core 

temperature (Figure S2d).  

 Age-matched males subjected to the same obesity/CMS model and then treatment 

protocol also displayed lower total body weight primarily due to reduced fat mass (Figure 

S3a,S3b) and less dyslipidemia (Figure S3c) when provided PDE9-I. PDE9-I also did not 

significantly alter food intake or activity but increased both body O2 consumption and 

CO2 production in males (Figure S3d) as it did in OVX females. 
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Figure 1. PDE9-inhibition suppresses diet-induced obesity and metabolic defects in 
ovariectomized females with cardiometabolic syndrome.  a) Scheme of the protocol 

used to generate cardiometabolic syndrome: high-fat diet. (HFD), +/- ovariectomy (OVX) 

in females, subsequent mild aortic constriction (mTAC) to increase cardiac load, and 

lastly placebo-controlled p.o. PDE9-I drug trial (PF-04447943). IC – indirect calorimetry, 

MRI – magnetic resonance imaging for body fat-lean tissue, EC – echocardiogram, Veh- 

vehicle.  b) Left Body mass in OVX mice before and after 8-wks of placebo (n=19) or 

PDE9-I (n=23) treatment (2WANOVA, with Sidaks multiple comparison). Right: 

Percent change in body mass between time points.  (Mann Whitney, MW test). c) 
Magnetic resonance imaging-derived total body fat and lean mass for two treatment 

groups in OVX mice. (p-values, MW). d) Inguinal (iWAT) and gonadal (gWAT) white 

adipose tissue weight in OVX females treated with placebo or PDE9-I (n=7-9/group, 

KW, Dunns multiple comparisons test (DMCT); **** p=0.00001 vs normal diet control 

(CON), # p=0.028 vs placebo). e) Serum fasting blood glucose and lipids in OVX mice 

on control versus HFD +/- PDE9-I; (ANOVA, Holm Sidak (HS) comparisons test, *** 

p=0.0004, * p=0.03 vs CON; # p=0.03, †p=0.037, ‡ p=0.047 vs Placebo (PL)). f) Upper: 
Representative liver histology in OVX with standard diet (Chow) or HFD with placebo 

vs PDE9-I. Marked steatosis was seen with placebo treatment that reverted to near 

normal by PDE9-I. (replicated n=5/group).  Lower Examples of whole liver showing a 

marked reduction of liver mass by PDE9-I. Group results in Figure S2a. g) Food intake, 

activity, and whole-body respiration in OVX mice +/- PDE9-I; (MW).  O2 and CO2 

consumption/production rates are normalized to mass kg* = (lean mass + fat mass*0.2) 

as described(31).  
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PDE9-I improves cardiac function, and blunts hypertrophy/fibrosis gene expression 

and augments myocardial PPARa-signaling relative to placebo in obese-CMS mice  

 Prior studies have shown PDE9 counters cardiac hypertrophy and depresses pro-

fibrotic signaling cascades in non-obese males subjected to pressure-load stress, and this 

efficacy is independent of NO-signaling(24). Whereas PDE5A-I does not augment 

myocardial cGMP in OVX females(23, 32), here we show PDE9-I does (Figure S4a), and 

this suggested it might also counter cardiac stress in our model. PDE9-I improved 

ejection fraction over placebo in OVX mice (Figure 2a, p=0.001 for drug/group 

interaction) and attenuated a significant rise in LV mass with placebo (p=0.005 for 

interaction). Similar effects were observed in males (Figure S4b). Diastolic function was 

impaired in the OVX placebo group and this improved to lean control levels with PDE9-I 

(Figure 2b). PDE9-I also lowered pro-hypertrophic and pro-fibrotic related gene 

expression compared with placebo in OVX females and males (Figure 2c, Figure S4c).  

 Increased dietary nitrate is reported to enhance fatty acid (FA) oxidation by 

increasing the expression of PPARa and associated downstream signaling to augment 

mitochondrial respiration and fat metabolism(16). To see if PDE9-I triggers a similar 

cascade, we first performed a targeted PCR-array analysis of heart tissue finding an 

abundance of transcripts for PPARa and many of its target FA-regulating genes 

increased (Figure 2d). Cyclic GMP increased PPARa promotor activity in Hep G2 (liver) 

cells in a dose-dependent manner (Figure 2e). Concordantly, PPARa mRNA increased in 
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Figure 2. PDE9-I improves cardiac function, suppress pathological hypertrophic 

gene expression, and stimulates PPARa signaling in OVX myocardium.   a) Left 

ventricular ejection fraction and left-ventricular (LV) mass in placebo vs PDE9-I treated 

OVX mice, with paired data at onset of end of 8 wk treatment period (n=15,16 for 

placebo; PDE9-I; RMANOVA, p-value lower right for treatment x time interaction, 

above for post-hoc Tukey test within group comparisons).  b) Diastolic function assessed 

by mitral filling ratio (early/atrial; E/A) and isovolumic relaxation time (IVRT) in normal 

diet controls (CON), and obese-CMS OVX mice treated with placebo (PL) or PDE9-I. 

n=5-9/group, Kruskal Wallis, Dunns post-hoc comparison. c) mRNA abundance 

normalized to Gapdh for A-type natriuretic peptide (Nppa), transforming growth factor 

beta (Tgfb), collagen type 1a1 (Col1a1), lysyl oxidase (lox), connective tissue growth 

factor (ctgf) and periostin (postn) in OVX myocardium, (8/group, Mann Whitney t-test). 

d) Volcano plot of differential gene expression in OVX myocardium between placebo 

and PDE9-I treatment, using lipid and carbohydrate metabolism PCR array. Benjamini-

Hochberg adjusted p-value versus log-2 fold change is shown (n=10/group). e) Activation 

of PPARa promoter by cGMP in Hep G2 cells; (n=8/group, ANOVA, Holm Sidak 

comparisons test; *** p=0.007; **** p≤2e-6). f) PPARa/Gapdh gene expression in brown 

adipose tissue (BAT) from obese-CMS OVX and males treated with placebo versus 

PDE9-I. (2-step Benjamini, Krieger, Yekutieli multiple comparisons KW test (2-St-BKY-

MC-KW) test, q-values shown) g) PPARa-regulated fatty-acid metabolism genes 

expressed in myocardium in OVX and male mice with placebo (P; n=9,6) or PDE9-I 

(n=9,8); 2-St-BKY-MC-KW. Q-values: ** p=0.00005; # p=0.008;  + p=0.03; * p=0.02 vs 

placebo). 
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the myocardium of OVX and male mice treated with PDE9-I (Figure 2f). Myocardial 

PPARa activity was assessed by mRNA abundance of regulated genes involved with FA 

metabolism. This increased in both OVX and male mice (Figure 2g). Metabolite profiling 

for myocardial acylcarnitines revealed greater levels primarily of long-chain FA in both 

OVX and male mice receiving placebo as compared to controls. These levels were less in 

both PDE9-I treated groups (Figure S4d). Collectively these results show PDE9-I 

ameliorates cardiac dysfunction and remodeling, reduces pro-fibrotic signaling, and 

enhances FA metabolism in concert with increased PPARa signaling.  

PDE9-I induces adipose tissue browning and enhances fatty acid catabolism  

Activation of FA oxidation by PPARa manifests in brown (BAT) and white 

(WAT) adipose tissue by increased mitochondria biogenesis and fat oxidation. Figure 3a 

shows example histology of BAT from a non-obese control and obese OVX and male 

mice treated with placebo or PDE9-I. BAT from lean mice has a darker color due to 

small lipid droplets and increased mitochondria density (left panel). With obesity-CMS, 

BAT adipocytes in placebo-treated OVX and males were enlarged with more lipid 

storage (pale color). This appearance was much closer to normal with PDE9-I. BAT from 

PDE9-I treated mice also had increased mRNA abundance of multiple genes regulating 

FA metabolism and mitochondrial respiration (Figure 3b) accompanied by a marked 

decline in acylcarnitines to levels found in lean controls (Figure 3c). Genes regulating 

mitochondrial biogenesis increased consistent with fat browning (Figure 3d). PDE9-I 
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Figure 3. PDE9-I reduces multi-organ lipid accumulation by enhancing lipolysis and 

mitochondrial respiration.  a) Representative histology of brown fat in a normal control 

(left), and obese-CMS OVX mice after placebo or PDE9-I treatment (replicated 

n=7/group; scale bar 100 µm).  b) BAT mRNA abundance for fat metabolism and 

mitochondrial respiration genes in OVX mice treated with placebo or PDE9-I. 2-St-BKY-

MC-KW q-values shown. c) Metabolomic analysis of acylcarnitines in BAT from OVX 

obese-CMS mice with placebo (PL) or PDE9-I treatment. N=5 per group, 2-St-BKY-MC 

with Mann Whitney test, all p values <0.008). d) mRNA abundance of mitochondrial 

biogenesis and oxidative activity genes in BAT from OVX with PL or PDE9-I.  

n=9/group, * q<1e-11 between groups, same analysis as for panel b. e) Volcano plot of 

differential gene expression for lipid metabolism PCR array in WAT tissues from OVX 

model treated with PDE9-I versus placebo. Benjamini-Hochberg adjusted p-value versus 

log-2-fold change is shown (n=8/group).   f) mRNA abundance of mitochondrial 

oxidative genes in WAT from OVX treated with placebo or PDE9-I. (n=5-7/group, same 

stats as in S3b).  
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treatment also enhanced expression of FA metabolism regulating genes in WAT 

(Volcano plot, Figure 3e) and in genes controlling mitochondrial respiration and 

uncoupling (Figure 3f). These results show PDE9-I activates adipocyte catabolic and 

thermogenic programs reversing abnormalities due to severe obesity.  

PDE9-I directly stimulates fat lipolysis and increases mitochondrial respiration  

 The decline in adipose tissue and hepatic fat infiltration by PDE9-I suggests it can 

stimulate lipolysis in multiple cell types. In cardiomyocytes pretreated with vehicle or 

PDE9-I and then fed FFA for 48 hours, PDE9-I resulted in reduced intra-cellular lipid 

accumulation (Figure 4a, 4b). Using a glycerol release assay, we found PDE9-I alone 

induces lipolysis in differentiated adipocytes (Figure 4c). Dose-dependent increases in 

glycerol release by PDE9-I were also observed in liver Hep G2 cells and cardiomyocytes, 

but this required ANP co-stimulation. Enhanced lipolysis by PDE9-I was blocked by co-

inhibition of PPARa (Figure 4d). In addition, the PDE9-I effect was negated in cells pre-

incubated with PDE9 siRNA confirming selectivity of the pharmacological inhibitor.   

 Diet induced obesity increases triglyceride storage in multiple tissues causing 

lipotoxicity that can alter mitochondrial architecture and function, inducing swelling with 

reduced cristae density (33, 34). EM revealed such mitochondrial changes as well as 

myocardial lipid accumulation in both OVX and male mice treated with placebo, and 

both features improved with PDE9-I (Figure 4f, Figure S5a, S5b). Together, these data
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 Figure 4. PDE9-I increases lipolysis in fat, liver and myocardium.  a) Phase contrast 

microscopy with Oil Red-O in cardiomyocytes fed a lipid mixture for 48 hrs and co-

treated with vehicle or PDE9-I (replicated 4x), and summary for lipid droplets/myocyte 

on right (n=10/group, MW). b) Same protocol with myocytes loaded with 5 μM BODIPY 

493/503 labeling lipid droplets green and nuclei (DAPI) blue; (x3 replicates). c) 

Induction of lipolysis (glycerol released) in 3T3 L1 derived adipocytes incubated with 

IBMX (broad PDE inhibitor), isoproterenol (ISO), or PDE9-I. (n=10,8,8,12 respectively; 

Welch ANOVA, DMCT). d) Lipolysis with PDE9-I +/- ANP stimulation in HepG2 (left) 

and myocytes (right). PDE9-I (+ 2.5 µM, ++ 5 µM) stimulated lipolysis in the presence 

of ANP, and this was suppressed by concomitant PPARa inhibition. # p=0.0006; * 

p=0.0012, KW unpaired-test with Bonferoni correction for 4 comparisons. e) PDE9-I 

augmentation of ANP stimulated lipolysis is prevented in HepG2 cells expressing 

siRNA-PDE9 vs siRNA-scrambled. (n=6/group; 2WANOVA with Tukey comparisons 

test). f) EM images of LV myocardium from OVX ob/CMS mice treated with placebo or 

PDE9-I. Disruption of normal structure with separation of cristae and reduced density 

(arrow-A) and lipid accumulation (arrow-B) are shown with placebo, but much less 

evident with drug treatment. 
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show PDE9-I stimulates lipolysis particularly with NP background stimulation, reducing 

mitochondrial lipid accumulation and morphological disruption.  

PDE9 localizes to mitochondria and stimulates fat oxidation  

 We previously reported PDE9 co-localizes with the sarcoplasmic reticular (SR) 

ATPase at T-tubules in cardiac myocytes in contrast to PDE5A which localizes to the Z-

disk(24). The proximity of T-tubular membranes and mitochondria in the dyadic cleft 

raises the possibility that PDE9 also localizes with the latter. To test this, PDE9-Flag was 

expressed in cardiomyocytes and cells fractionated into mitochondrial and cytosolic 

components. We used Flag-Ab as native PDE9 antibody detection is poor with existing 

reagents. PDE9-FLAG was enriched in the mitochondrial fraction (Figure 5a) even after 

normalization for total protein. By contrast, Pde5a-Flag was primarily found in the 

cytosol (Figure S6a). Secondly, mitochondria were stained with Mitotraker Red which 

colocalized with a PDE9-Gfp imaged with confocal fluorescence microscopy (Figure 5b). 

Lastly, immuno-gold electron microscopy of cardiomyocytes expressing GPF-PDE9 or 

GFP revealed a diffuse cytosolic distribution for GFP but primarily mitochondrial 

localization for PDE9-GFP (Figure 5c). Together these results show PDE9 can 

specifically localize at mitochondria.  

To test the impact of PDE9 loss-of-function on mitochondrial FA oxidation, 

cardiomyocytes were pre-treated with PDE9-I or vehicle and then incubated with 

palmitate the primary fuel. Basal and maximal oxygen consumption and ATP production 
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Figure 5. PDE9 localizes to mitochondria and its inhibition augments fat oxidation 

a) Cardiac myocytes expressing PDE9-FLAG show higher levels in mitochondrial versus 

cytosolic fraction. Summary results n=4, *-p=0.028 by MW. b) Co-localization of PDE9-

GFP with Mitotracker-Red by confocal fluorescence imaging (repeated x3). c) Example -

gold labeled PDE9-GFP and GFP imaged by EM. Dark black dots identify the proteins. 

GFP is diffusely distributed whereas PDE9-GFP is primarily found in mitochondria. 

(repeated x12/group). Lower magnification images shown in Figure S6b. d) Oxygen 

consumption rate (OCR) in myocytes pretreated with vehicle (Veh, n=8) or PDE9-I (P9i-

1 2.5µM (n=8), 5µM (n=6) x 24 hrs and then fed fatty acids as primary substrate x 24 hrs. 

A:oligomycin; B:FCCP; C:rotenone + antimycin (n=8,6; KW, DMCT p values displayed) 

e) OCR in myocytes pre-infected with AdV expressing PDE9-Gfp, Pde5a-Gfp, or Gfp 

alone for 48 hrs. (n=18,24, 22 respectively; KW, DMCT p-values displayed).  
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were higher in PDE9-I treated cells (Figure 5d). Gain-of-function was assessed by pre-

incubating myocytes with Adenovirus expressing either Gfp-Pde9a or GFP-Pde5a. PDE9 

protein expression lowered basal and maximal respiration and ATP production, whereas 

these were unchanged with PDE5A overexpression (Figure 5e). Together, these data 

show PDE9 localizes to mitochondria, and that its expression inhibits respiration and 

ATP generation whereas its inhibition achieves the opposite.  

PPARa signaling is downregulated in Human HFpEF 

Among the most prominent clinical syndromes combining morbid obesity and 

CMS is HFpEF, which now affects over half of all patients with heart failure(11). Our 

RNAseq analysis of differentially expressed genes in myocardium from human HFpEF 

versus controls found the transcriptome is potently influenced by BMI, and identified 

patient subgroups with distinct signaling pathway and clinical characteristics(35). Using 

this database, we now show mRNA abundance for PPARA, PPARG, and PPARGC1A is 

reduced by ~40% (adjusted q-score, p<1e-6 for each, Figure 6a) in HFpEF versus 

controls. A volcano plot of genes associated with PPAR signaling (based on KEGG) 

shows those coupled to fatty acid uptake (FABP5, FABP4, CD36), degradation (LPL), 

and oxidation (CPT1a, ACOX1/3, ACAA1, ACSL3/4) are significantly reduced in HFpEF 

(Figure 6b). Unsupervised hierarchical cluster analysis using PPARA and PDE9A 

expression only identified two patient groups (Figure 6c), both similarly obese (Table 

S1). PDE9A was similarly and directly correlated with PPARA abundance in each group, 
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but Group 1 had significantly lower PPARA expression for any given PDE9A level 

(P=7e-8  for offset by ANCOVA). Group 1 had fewer patients with diabetes, their left 

ventricles were smaller with less hypertrophy, and plasma natriuretic peptide levels lower 

as compared to Group 2. Interestingly, Group 1 overlaps with a HFpEF subgroup we had 

previously identified using agnostic non-negative matrix factorization and the broad 

transcriptome (35), that contained mostly females with smaller hearts and pro-

inflammatory signaling (Table S1). Group 2 overlaps with a second sub-group whose 

hearts display expression profiles closest to that for HF with low EF (35). These results 

support the relevance of PPARA downregulation in HFpEF and reveal a subgroup that 

may be particularly responsive to enhancement by PDE9-I.  

PPARa activation is required for PDE9-I to reduce obesity and CMS  

 Prior studies have shown activation of PPARa in models of DIO reduces fatty 

liver and can prevent development of obesity(36, 37), while the PPARa KO mouse 

develops obesity gradually over many months(38). To test if PPARa activity is required 

to drive the anti-obesity efficacy from PDE9-I, OVX females with obesity-CMS were 

treated with either PDE9-I alone or combined with a selective PPARa inhibitor 

(GW6471, daily i.p.). We chose this approach versus using a PPARa KO as we could 

generate the identical obesity-CMS condition prior to interfering with PPARa 

stimulation. GW6471 co-treatment reduced mRNA abundance of PPARa regulated 

genes by about 50%, supporting on-target effects (Figure 7a). As before, mice receiving 
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Figure 6.  PPARA and related gene expression is reduced in human HFpEF 

myocardium directly relates to PDE9A expression, and defines subgroups. a) 

Expression of PPARa, PPARg, and PPARGC1A (PGC1a) in HFpEF (n=41) myocardium 

normalized to non-failing controls (n=24). (2S-BKY-MC-MW, q values shown). b)  

Volcano plot of differential mRNA expression for genes in the KEGG-PPAR pathway. 

Benjamini-Hochberg MCT – q-values on y-axis. c) Unsupervised, hierarchical heat map 

cluster analysis using PPARA and PDE9 genes from the human HFpEF RNAseq data 

yielded two HFpEF groups with reciprocal relative expression of the two genes. d) 

Regression PDE9 versus PPARA expression for sub-groups identified by the cluster map. 

Each group has a significant positive dependence with a similar slope but different offset 

(ANCOVA). e) KEGG pathway analysis from differentially expressed genes in the two 

HFpEF subgroups defined by relative PPARA versus PDE9 expression levels.  
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only PDE9-I had less total body and fat mass but no significant change in lean body mass 

and increased VO2 and VCO2 versus placebo, and co-inhibition of PPARa prevented 

these changes (Figure 7b). Total food intake and daily activity did not significantly differ 

between the groups (Figure S7a). Compared with placebo, reduced iWAT and gWAT 

mass (Figure 7c) and improved cardiac fractional shortening (Figure 7d) with PDE9-I 

were largely abrogated by concomitant PPARa blockade.  Thus, the in vivo efficacy of 

PDE9-I on obesity-CMS required PPARa activation. 

PDE9-I is ineffective in non-OVX females with ERa shifting PPARa DNA binding 

away from FAO regulating genes  

 Endogenous estrogen has been found to suppress PPARa-stimulated gene 

expression and corresponding regulation of FA oxidation in tissue and in vivo obesity 

models(39). Consistent with this, the PPARa activator fenofibrate effectively reduced 

DIO in males and OVX females but non-OVX(37). These results combined with the 

current data showing that PPARa inhibition prevents PDE9-I from reducing obesity, led 

us to hypothesize a similar sex dimorphism may apply to effects from PDE9-I. This was 

tested in a cohort of non-OVX female mice subjected to the identical HFD-mTAC 

protocol. As shown in Figure 8, PDE9-I had negligible impact on total body, fat, or lean 

mass (Figure 8a), BAT adipocyte size or browning (Figure 8b), serum lipids (Figure 

S7b), iWAT or gWAT mass (Figure S7c), food intake, activity, and whole-body 

respiration (Figure S7d), or hepatic steatosis (Figure S7e) in non-OVX females. 
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Figure 7. Inhibition of PPARa blocks beneficial effects of PDE9-I in OVX model. a) 

Quantitative PCR of PPARa-associated genes in myocardial tissue from OVX ob/CMS 

mice treated with PDE9-I ± PPARa-inhibition. 2S-BKY-MC-MW, q values * - p≤5e-5; # 

p=0.007. b) Effect of PPARa co-inhibition on PDE9-I induced reduction of total body, 

fat, and lean mass, and increases in VO2 and CO2 in OVX ob/CMS mice. Results for 

placebo treated OVX mice (derived from data in Figure 1) are plot with median (dark 

line) and 75%-25% confidence intervals (shaded). The addition of a PPARa-I 

significantly reversed PDE9-I mediated responses in these parameters, returning their 

values to those with placebo for all by lean mass that rose by 5%.  (n=10/group, p-values 

displayed from KW (includes all 3 groups) and DMCT) c) iWAT and gWAT weight in 

OVX mice PDE9-I ± PPARa-I versus placebo; n=9/group, ANOVA, p-values from 

TMCT). d) Fractional shortening (%FS) from same experiment; (n=7,5, 2WANOVA, p-

value from Sidak’s comparisons test).   

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 2, 2021. ; https://doi.org/10.1101/2021.02.02.429442doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429442


 29 

 Failure of PDE9-I to alter obesity-CMS in non-OVX females was not due to a 

lack of increased Ppara mRNA abundance which rose similarly as in OVX females and 

males (Figure 8c, compare to Figure 2f). However, mRNA levels for genes controlling 

FA metabolism and mitochondrial oxidation/uncoupling downstream of PPARa were 

very little or not significantly changed (Figure 8d). Acyl-carnitine analysis of BAT also 

found no changes despite PDE9-I (Figure 8e). 

 These results indicate that sex hormones in intact females impeded the capacity of 

PDE9-I to increase PPARa-regulated FA catabolism.  Since Ppara expression increased 

yet mRNA abundance for its regulated genes did not, we speculated that coincident 

estrogen receptor (ER) signaling alters PPARa DNA binding to impact the latter’s 

transcriptional function. To test this, ChIP-seq for PPARa binding was performed using 

Hep G2 cells transfected with either PPARa (+PPARa agonist) alone, or in combination 

with either ERa or ERb transfection and respective agonists. We found ~17,500 PPARa 

DNA binding sites when stimulated alone, but this number fell by nearly half and 

engaged mostly different sites if ERa was co-activated (Figure 8f). With ERb co-

activation, ~1/3 of binding sites with PPARa alone were maintained, and 1/3 were 

altered; and there was also an overall reduction. Gene lists based on PPARa chromatin 

binding for the three conditions were subjected to KEGG pathway enrichment analysis, 
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Figure 8.  PDE9-I does not impact body weight, fat, or PPARa downstream 

signaling, associated with estrogen suppression of PPARa DNA binding to fat 

metabolism genes.    a) Total body weight, fat, and lean mass are not significantly 

altered in non-OVX ob/CMS female mice treated with placebo versus PDE9-I. b) BAT 

histology shows enlarged adipocytes and reduced mitochondria density in the placebo 

group, that is not changed with PDE9-I (repeated x3) c) PPARa mRNA expression 

increases in non-OVX at levels similar to those for male and OVX mice. (MW). d) qPCR 

results for fatty acid metabolism and mitochondrial respiration genes in BAT from non-

OVX model. (log-transformed, 2S-BKY-MC-MW, * q=0.03, † q=0.04, all others >0.5). 

e) Metabolomics of acylcarnitines in BAT from normal controls and ob/CMS non-OVX 

with placebo vs PDE9-I.  (n=5/group,  2S-BKY-MC-MW; for placebo vs PDE9-I all q-

values >0.5; for control chow (non-obese) versus placebo, all but one p<0.001; (C22, 

p=0.006).  f) Venn diagram of  ChIP-seq identified PPARa binding sites in HepG2 cells 

with PPARa stimulation alone or combined with ERa or ERb co-stimulation. g) KEGG 

pathway analysis from  ChIP-seq identified genes with PPARa binding shows loss of fat 

metabolism related pathways by co-activation with ERa or ERb.    
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showing ERa co-activation particularly reduces PPARa binding to genes involved with 

FA metabolism (Figure 8g). This is consistent with the mRNA analysis (Figure 8c, d) and 

the lack obesity-CMS effects by PDE9-I in non-OVX mice.  

 

Discussion 

This study supports the utility of a new treatment for severe obesity and 

associated cardiometabolic syndrome based on PDE9 inhibition. We show PDE9 

localizes to mitochondria, that its suppression increases fat-metabolism and lipolysis, and 

reduces fat deposits in the abdomen, liver, and myocardium. Concomitant reduction of 

myocardial lipids particularly long-chain acylcarnitines is important as their 

accumulation is associated with cardiac and lipotoxicity with mitochondrial dysfunction 

(34). The ability of PDE9-I to reduce fat accumulation in the liver and abdomen is also 

significant, as both depots are linked to worse CMS morbidity(40). Cardiac pathobiology 

common with CMS, such as LV hypertrophy and pathological pro-fibrotic signaling were 

also ameliorated by PDE9-I. The link between PDE9-I and Ppara upregulation involves 

promoter activation to increase expression of its many regulated genes controlling fat 

metabolism, mitochondrial respiration and biogenesis. The metabolic effects from PDE9-

I are absent in non-OVX females despite increased PPARa mRNA, as the downstream 

gene activation does not occur. This is compatible with a shift of PPARa chromatin 
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binding away from genes controlling fat-metabolism by the co-activation of ERa. 

Importantly, we also find depressed myocardial PPARA expression and associated 

signaling in obese humans with HFpEF. Given that PDE9 inhibitors appear safe and well 

tolerated in humans based on prior testing for other disorders, the current findings support 

their clinical assessment in men and postmenopausal women with obesity-CMS.  

 Studies first reporting lipolytic and anti-obesity effects from PKG stimulation 

identified several mechanisms, including phosphorylation and activation of hormone 

sensitive lipase, p38-MAP kinase (by unknown intermediate)(41) similar to the pathway 

used by PKA(42) and AMP activated kinase(43). These are felt to converge on 

transcriptional regulators PPAR gamma co-activator 1a (PGC1a) and PPARa(14, 15) to 

control metabolism. PKG-dependent PPARa activation has been previously linked to 

mitochondrial protection against hypoxia-induced cardiac injury(19) and increased FA 

oxidation and catabolism in skeletal muscle(16), though not with countering obesity. To 

our knowledge, none of these kinase or lipase effectors of PKG modulation have been 

shown to confer a sexual dimorphism on metabolic signaling. However, a sexual 

dimorphism has been reported for the impact of PPARa activation, as obese OVX 

females and males show lipolysis and reduced weight, whereas non-OVX do not (37, 44, 

45). A similar disparity in PDE9-I responses coupled to differential downstream PPARa 

signaling supports this factor as central to the metabolic and anti-obesity effects. Estrogen 

itself stimulates fat metabolism and mitochondrial oxidative respiration(8), and its 
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decline after menopause or OVX is associated with abdominal obesity, CMS, and 

reduced PPARa and PGC1a regulated signaling(7). ER and PPARa have similar DNA 

binding motifs and protein partners such as RXR and coactivator PGC1a(45), and prior 

studies have reported ERa protein interaction with PPARa and inhibition of latter’s 

expression and/or function in liver cancer(46) and in apolipoprotein regulation(47). To 

our knowledge, the present analysis is the first to directly test this interaction with 

ChIPSeq. The marked shift in PPARa binding by ERa co-activation was striking. While 

many pathways remained engaged, those involved with fat metabolism declined. This 

suggests that pre-menopause, ER signaling may substitute for PPARa  regulation, 

whereas post-menopause, PPARa becomes prominent so its activation by agonists or 

PDE9-I counters obesity. The mechanisms governing the chromatin interactions between 

PPARa and ERs, and their testing in other cell types, remain to be explored. 

While our results show cGMP-PKG activates PPARa expression and gene 

regulation, other mechanisms may also exist. In this regard, our finding that PDE9 

localizes to mitochondria whereas PDE5 is mostly in the cytosol,and that PDE9 but not 

PDE5 impacts mitochondrial respiration, suggests PDE9 may control this organelle by 

targeted post-translational changes as well. Co-localization of PDE9 to both SR 

membrane(24) and mitochondria puts it in a membrane domain within myocytes, 

consistent with its regulation of NP receptor-coupled cGMP. This differs from cytosolic 

regulation of cGMP by PDE5(48). The PDE9 gene does not contain known 
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mitochondrial targeting sequences and its localization to this organelle may be part of a 

larger yet unknown protein complex. PKG also modifies proteins regulating cell growth, 

metabolism, and fibrosis, and these could potentially also play a role. For example, 

regulator of G-protein signaling 2 and 4(49), transient receptor potential canonical 

channel type 6(50), tuberous sclerosis complex protein 2(51) are all phosphorylated by 

PKG, suppressing Gq-protein coupled, NFAT/calcineurin, and mTORC1 signaling 

respectively. The latter can also shift metabolism to favor FA oxidation. These pleotropic 

effects are attractive for treating a syndrome such as obesity-CMS and HFpEF given that 

renal, pulmonary, vascular, metabolic, and cardiac disease commonly co-exists(11).  

  The metabolic effects of PDE9-I documented here are compatible with its 

modulation of NP-derived cGMP(24, 28) and the demonstrated efficacy of NP to 

stimulate fat catabolism(14, 52-55) by enhancing FA oxidation. From a therapeutic 

perspective, however, PDE9-I offers some advantages over exogenous NP. First it is a 

small molecule as opposed to a peptide. Second, obesity blunts NP signaling in animals 

and humans by increasing expression of the NP-clearance receptor (NPRC, NPR3) in 

adipose tissue (56) while reducing that of primary NP signaling receptors(57). However, 

PDE9 inhibition can still augment cGMP as long as there is some upstream stimulation. 

Consistent with this, prior studies required gene deletion of NPRC to achieve weight 

reduction from exogenous NP(41), but this was not needed for PDE9-I. Lastly, PDE9-I 

augments cGMP only in those cells in which it is expressed, whereas NP and other cGMP 
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stimulation methods activate the pathway broadly. To date, its inhibition has induced 

little to no change in systemic artery pressure in preclinical(25, 26) and clinical trials(30).  

There are other approaches being studied for countering obesity, all already in 

clinical use, mostly for diabetes. PPARa agonists such as fenofibrate and pemafibrate 

reduce body weight and notably triglycerides in DIO in mice(58). Human studies have 

not shown weight loss, and their primary indication remains reducing high triglyceride 

levels. Fibrates activate PPARa protein so their impact depends on differential tissue 

expression. This is normally greatest in the liver, likely underlying their primary impact 

on triglycerides. As we show here, PDE9-I works differently by activating PPARa 

mRNA abundance in multiple tissues. This may explain the marked impact on reducing 

fat depots versus changes reported with PPARa-agonists in similar DIO models(36).  

Several anti-diabetic therapies are currently being tested for weight loss. Glucagon-like 

peptide-1 increases insulin secretion, enhancing glucose uptake and storage as glycogen. 

Its anti-obesity effects are thought to be primarily due to appetite suppression with 

increased satiety(59). Sodium-glucose co-transporter-2 (SGLT2) antagonists treat 

diabetes and also improve morbidity and mortality from heart failure(60). They too are 

being studied for weight loss indications (61), and though the mechanism remains 

uncertain, enhanced glucose/sodium excretion may play a role. Lastly, in late 2020, an 

FDA advisory committee overwhelmingly supported use of the combination of sacubitril 

and valsartan (neprilysin inhibitor and AT-1 receptor blocker) to treat HFpEF. If 
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approved by the FDA, this would become the first approved therapeutic for HFpEF based 

on clinical-trial evidence (62). A major mechanism of its benefit over that of AT-1 

blockade is attributed to suppression of NP proteolysis by neprilysin(63).  Yet studies 

have not reported changes in PPARa signaling nor reduction in body weight(64) or fat 

transcriptomes(65). This could be a matter of dose limitations to avoid blood pressure 

decline, and/or enhancing the signaling in the right tissues – something PDE9-I might 

provide in a synergistic manner.  

Our study has several limitations. We used PDE9 pharmacological inhibition 

rather than gene deletion to test its role, as we wanted to generate substantial obesity and 

CMS before applying the intervention. Results using a global PDE9 KO mouse subjected 

to DIO are being presented in a separate study and also reveal less weight gain and 

metabolic improvement over time(66). While our model of obesity-CMS provides 

insights into HFpEF, it is not a model of HFpEF as the pressure-load was mild and mice 

did not develop heart failure. It is a reasonable model of obesity-CMS, incorporating the 

two-hit approach of DIO plus cardiac pressure-load sufficient to induce pathological 

hypertrophy. Notably, the severity of obesity generated in females and similar weight 

gain in OVX and males is lacking in most prior studies. We did not show direct evidence 

for PDE9-I increased PKG activity as this remains hard to detect despite cGMP increase 

from this regulatory pathway, likely due to a membrane-localized nano-compartment in 

which the signaling transpires that is lost with cell/tissue lysis. Still, the molecular 
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signatures in the myocardium are very consistent with PKG activation. Lastly, the 

ChipSeq analysis is preliminary in that how the two transcriptional regulators interact 

remains unknown, as does whether this occurs similarly in adipocytes and other cells. 

However, we could find no prior similar analysis, and our results do show a striking 

interaction consistent with the sexual dimorphism of Ppara gene regulation we observed.  

When first discovered, PDE9 expression was most readily detected in the brain, 

and based on this, all of the early pharmacological development of selective inhibitors 

was targeted to neurocognitive diseases such as schizophrenia and Alzheimer’s. While 

effective human translation remains elusive for these indications, preclinical data in the 

heart as since spawned clinical trials testing the impact on heart failure. This work 

continues, but the safety and tolerability of multiple PDE9 inhibitors has been confirmed 

and has negligible impact on arterial blood pressure or heart rate. Given this, the present 

results suggest translation to humans with obesity and CMS is feasible, and worth 

pursuing.  
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Materials and Methods  

Detailed material and methods are provided in Supplemental Materials.  All statistical 

tests used for each data set are identified in each figure legend, along with the number of 

biological replicates for each group. Non-parametric models were used if a group within 

the experiment contained 6 or less replicates, or the distribution was not normally 

distributed. P-values for statistical testing are shown in individual panels or legends and 

explained for each. 

 

Supplemental Materials 

Materials and Methods 

Figure S1. Model of severe obesity and cardiac pressure-load (CMS) in female 

C57BL6/N mice.   

Figure S2. Hepatic steatosis in OVX and male mice with ob/CMS model. 

Figure S3. PDE9-I reduces obesity and improves metabolic profile in ob/CMS male 

mice. 

Figure S4. PDE9-I increases myocardial cGMP, and improves male ob/CMS mouse 

cardiac function, pathological hypertrophic/fibrotic molecular signature, and fat 

metabolome. 
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Figure S5.  Impact of PDE9-I on mitochondrial volume density and lipid 

accumulation. 

Figure S6.  PDE5A localizes to cytosol, whereas PDE9 localizes to mitochondria. 

Figure S7.  PDE9-I +/- PPARa-I does not alter food intake or activity.  Non-OVX 

females display no significant changes in serum lipids, iWAT or gWAT weight, food 

intake, activity, or whole-body metabolism, or hepatic lipid accumulation in 

response to PDE9-I.  

Supplemental Data Table.  Clinical Features of two HpPEF groups defined by 

relative ratio of PPARA and PDE9 gene expression.   
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