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ABSTRACT 60 

Using data from the first year of a new, long-term, standardized German Malaise Trap Program 61 

coordinated by the German Long-Term Ecological Research network, we apply an ecological 62 

gradients approach to examine the effects of climate and land cover on flying insect biomass. We 63 

hypothesized that biomass would display a unimodal relationship with temperature, consistent 64 

with thermal performance theory, would decrease with precipitation due to reduced flying 65 

activity, and would decrease in areas with more heavily human-modified land cover. Flying 66 

insect biomass was quantified from malaise traps at 84 locations across Germany throughout the 67 

2019 growing season. We used an AICc approach to parse drivers of temperature, deviation in 68 

2019 temperature from long-term averages, precipitation, land cover, geographic coordinates, 69 

elevation, and sampling period. We further examined how effects of temperature on insect 70 

biomass change across space by testing for interactions between temperature and latitude. Flying 71 

insect biomass increased linearly with monthly temperature across all samples. However, 72 

positive effects of temperature on flying insect biomass declined with latitude, suggesting the 73 

warm 2019 summer temperatures in southern Germany may have exceeded local insect 74 

optimums, and highlighting the spatial variation in climate change-driven impacts on insect 75 

communities. Land cover explained less variation in insect biomass, with the largest effect being 76 

lower biomass in forested sites. Future work from this newly begun German Malaise Trap 77 

Program will add a multi-year dimension to this large-scale, distributed sampling network, with 78 

the aim of disentangling the roles of multiple drivers on flying insect communities. 79 

 80 

Keywords: ecological gradient, climate change, insect monitoring, observational, distributed, 81 

malaise, pollinator, land use, thermal performance, LTER82 
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INTRODUCTION 83 

Amidst growing evidence of widespread insect declines, there has been an increasing call for 84 

high quality, standardized, and large scale insect monitoring to improve estimates of trends, and 85 

identify drivers (Didham et al., 2020; Wagner, 2020). Insects, and flying insects in particular, are 86 

hyper-diverse and provide critical ecological services, including pollination of both wild species 87 

and 75% of crop plants, decomposition, and pest control (Losey & Vaughan, 2006; Klein et al., 88 

2007; Vanbergen & Insect Pollinators Initiative, 2013; Reilly et al., 2020). Additionally, insect 89 

biomass is a key component of energy flows for many food webs (Stepanian et al., 2020). 90 

Biomass is a useful indicator of ecosystem function (Dangles et al., 2011; Barnes et al., 2016), 91 

and is representative of whole insect communities (Shortall et al., 2009; Hallmann et al., 2017). 92 

Climate change and anthropogenically-altered land cover are among the most commonly cited 93 

drivers of insect declines (Habel et al., 2019), but we have yet to understand their full impacts on 94 

insect biomass. 95 

The effects of climate change are geographically pervasive (Wilson & Fox, 2020) and 96 

may explain recent reports of insect decline in natural areas (Janzen & Hallwachs, 2019; Rada et 97 

al., 2019; Baranov et al., 2020; Welti et al., 2020b). Some insect taxa are currently benefiting 98 

from rising temperatures, which can increase local populations (Kaspari et al., 2019; Baker et al., 99 

2021), diversity (Hofmann et al., 2018), and species’ range sizes (Termaat et al., 2019). 100 

However, as temperatures continue to rise and increase more rapidly, temperature is expected to 101 

negatively affect insect productivity (Warren et al., 2018). Thermal performance theory captures 102 

this non-linearity in predicting a unimodal relationship between temperature and insect fitness, as 103 

measured by biomass or other performance indicators (Kingsolver & Huey, 2008; Kühsel & 104 

Blüthgen, 2015; Sinclair et al., 2016; Kaspari et al., 2019). 105 
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Precipitation may directly and indirectly affect flying insect biomass. High precipitation 106 

may directly cause insect mortality, reducing population sizes, but may also decrease the period 107 

of time insects are flying, reducing trap catch while not reflecting true community biomass 108 

(Totland, 1994). Indirect effects of precipitation on flying insects mediated by plants (e.g. 109 

altering plant phenology or plant nutrition) are context-dependent but increasing rainfall in 110 

average to wet climates is often detrimental (Lawson & Rands, 2019). The predicted response of 111 

precipitation regimes to climate change varies with region, with forecasts for Germany 112 

suggesting slight increases in cumulative annual precipitation but shifts in the timing of rainfall 113 

with longer dry periods, especially in summer (Bender et al., 2017). 114 

Changing land cover due to human activities has been described as the largest threat to 115 

insect biodiversity (Wagner, 2020), with wide-ranging impacts from loss of resources and 116 

nesting locations at local scales, to fragmented habitats at larger scales (Newbold et al., 2020). 117 

Heavily human modified landscapes also come with associated pressures, such as eutrophication 118 

and pesticide use with agricultural intensification (Goulson et al., 2018; Carvalheiro et al., 2020), 119 

and light pollution from urban environments (Owens et al., 2020). Urban land cover can result in 120 

declines of both insect diversity (Fenoglio et al., 2020; Piano et al., 2020), and biomass 121 

(Macgregor et al., 2019; Svenningsen et al., 2020). 122 

In early 2019, a collaboration between the German Long-Term Ecological Research 123 

network (LTER-D; e.g. Haase et al., 2016) and the German National Natural Landscapes 124 

(Nationale Naturlandschaften; biosphere reserves and national parks) established the German 125 

Malaise Trap Program, a new long-term, standardized, flying insect monitoring initiative of 126 

malaise traps distributed across Germany (https://www.ufz.de/lter-d/index.php?de=46285). 127 

Following the first year of monitoring (2019), we examine the effects of climate and surrounding 128 
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land cover on flying insect biomass across both the growing season (April-October) and a 129 

regional geographic gradient (ranging over 7° latitude, from the German Alps to the Baltic and 130 

North Sea). A recent study (Hallmann et al., 2017) reported flying insect biomass from 63 131 

locations in Germany over 27 years. However, 58 locations were from central-west Germany and 132 

5 were from central-east Germany; thus the sites do not have representative coverage of 133 

Germany or represent an extensive latitudinal gradient (coverage of 2° latitude). Additionally, 134 

the individual year with the most sampling in Hallmann et al. (2017) comprised 23 locations. 135 

While our sampling does not yet have the multi-year coverage of Hallmann et al. (2017), the 136 

higher number of within year trap locations and broader spatial coverage allows us to examine 137 

drivers of flying insect biomass using a macroecological gradients approach (Pianka, 1966; 138 

Halbritter et al., 2013; Welti & Joern, 2015; Peters et al., 2019). 139 

Here we introduce the German Malaise Trap Program and provide a first examination 140 

from this network of the drivers of variation in flying insect biomass. We hypothesize (1) that the 141 

effect of temperature on insect biomass will become less positive with increasing temperatures, 142 

consistent with thermal performance theory. Spatially, we predict (2) greater increases in flying 143 

insect biomass with increasing temperature in colder sites and weaker to negative effects of 144 

temperature on flying insect biomass at warmer sites. As elevation tends to increase from 145 

northern to southern Germany and may affect temperature, we additionally test for the effects of 146 

elevation on flying insect biomass. We hypothesize (3) that flying insect biomass will decline 147 

with increasing precipitation due to reduced flying activity. Finally, we predict (4) lower insect 148 

biomass in areas surrounded by more heavily human-modified land cover types such as urban 149 

and agricultural areas (Ricketts et al., 2008; Leather, 2018).  150 

 151 
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MATERIALS AND METHODS 152 

The German Malaise Trap Program 153 

The German Malaise Trap Program currently comprises 31 LTER-D and National Natural 154 

Landscape sites (biosphere reserves and national parks) (Fig. 1). The program was established in 155 

early 2019 with the aim of investigating long-term trends in flying insect biomass and species 156 

composition using DNA metabarcoding. In each site, one to six locations were selected and one 157 

malaise trap was installed per location. For this study, we used the 2019 biomass data retrieved 158 

from 25 of the 31 sites; the remaining six sites began sampling in 2020. To fill in spatial gaps, 159 

we added data from another project comprising 8 sites in Bavaria using the same malaise trap 160 

type and measurement methods. Overall, 1039 samples from 84 malaise trap locations and 33 161 

participating sites widely distributed across Germany (Fig. 1) were included in this study. All 162 

traps were identically constructed with an opening area of 1.16 m2 on each of the two trap sides 163 

(Fig. S1). Traps predominantly ran from early April to late October 2019. Traps were usually 164 

emptied every two weeks (14.03 days ± 0.06 SE; range 7 - 29 days). Several samples were lost 165 

due to animal or wind damage. As trap runs varied in length, we use biomass/day as the response 166 

variable for all analyses. By sampling across all times of day for the duration of the growing 167 

season, these data provide representative measures of each location’s flying insect community. 168 

 169 

Lab procedures 170 

Insect biomass was weighed while wet to preserve samples for future identification. Following 171 

the procedure in Hallmann et al. (2017), samples were placed in a stainless steel sieve (0.8 mm 172 

mesh width) to remove excess alcohol. Instead of waiting until filtered alcohol drops 173 
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occurred >10 seconds apart, each sample was filtered for a standard five minutes. Subsequently, 174 

insects were weighted to the nearest 0.01g.  175 

 176 

Climate 177 

Monthly means of maximum and minimum temperatures, and monthly cumulative precipitation 178 

from 2019 were extracted from each sampling location using the Terraclimate dataset 179 

(Abatzoglou et al., 2018). To compare 2019 with long-term climate averages, we extracted 180 

monthly means of maximum and minimum temperature, and monthly cumulative precipitation 181 

from 1960-2018 from each trap location using the CRU-TS 4.03 dataset (Harris et al., 2014) 182 

downscaled with WorldClim 2.1 (Fick & Hijmans, 2017). Two datasets were used because the 183 

data from both time periods (2019 and 1960-2018) were not available from either dataset alone. 184 

Both the Terraclimate and CRU-TS 4.03/ WorldClim 2.1 datasets have spatial resolutions of 2.5 185 

arc minutes (~21 km2) with our 84 trap locations occurring in 72 separate climate grid cells. 186 

Maximum and minimum temperatures in 2019 were generally higher than 1960-2018 187 

averages, especially during the hottest months (Appendix 1: Fig. S2). While one study suggested 188 

that minimum nightly temperatures are warming at a faster rate than maximum temperatures 189 

which may limit the ability of insects to recover from hot daytime periods (Speights et al., 2017), 190 

we found 2019 maximum monthly temperatures across our trap locations were on average 191 

slightly higher than 1960-2018 averages (2.062°C ± 0.047 SE), than were minimum monthly 192 

temperatures (1.938°C ± 0.048 SE). As mean maximum and minimum monthly temperatures 193 

were highly correlated (F(1,512)=4442, R2=0.9, P<0.001), we used only mean maximum 194 

temperatures in our analyses. Cumulative annual precipitation was lower in 2019 (784 mm ± 32 195 
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SE) compared to the long-term 1960-2018 average (842 mm ± 32 SE). There was no consistent 196 

difference between monthly cumulative precipitation in 2019 and the long-term average, but the 197 

mid-summer months tended to be drier in 2019 (Fig. S2). Both 2019 mean monthly maximum 198 

temperatures and precipitation across our trap locations tended to decline with increasing latitude 199 

(Appendix 1: Fig. S3).  200 

 201 

Land cover and elevation 202 

Land-cover categories in a 1-km buffer around each sampling location were extracted using the 203 

CORINE Land cover data from 2018 (European Union, Copernicus Land Monitoring Service, 204 

2018). A buffer of 1 km was selected based on previous studies of insect communities that found 205 

land cover effects declined at larger scales (Seibold et al., 2019). Extracted land cover data was 206 

comprised of 30 CORINE land cover categories, which we pooled into eight categories: urban 207 

(7.5% of surrounding land cover), intensive agriculture (2.3%), non-irrigated agriculture 208 

(15.9%), pasture/orchard (12.7%), forest (44.7%), grassland/shrubland (12.1%), freshwater 209 

(3.9%), and saltwater (0.9%). For data visualization purposes, trap locations were additionally 210 

categorized by the dominant land cover within the 1-km buffer: urban (n=6), non-irrigated 211 

agriculture (16), pasture/orchard (6), forest (44), grassland/shrubland (9), freshwater (2), and 212 

saltwater (1). 213 

Elevation (m above sea level) was extracted using the Digital Terrain Model with 200-m 214 

grid widths (DGM200) from the German Federal Agency for Cartography and Geodesy 215 

(GeoBasis-DE / BKG, 2013). Locations varied from elevations of 0 m on a barrier island in 216 
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northeast Germany, to 1413 m in the German Alps. Elevation across our 84 sampling locations 217 

was negatively correlated with latitude (Appendix 1: Fig. S4). 218 

All GIS data extraction was conducted in QGIS ver. 3.14 (QGIS.org, 2020). 219 

 220 

AICc analysis 221 

To identify drivers of insect biomass, we used an Akaike Information Criterion corrected for 222 

small sample sizes (AICc) modelling framework (Burnham & Anderson, 2003); first building an 223 

a priori full model, and then comparing all possible reduced models using the dredge function in 224 

the R package MuMIn (Bartoń, 2016). Mixed models were fit using the R package lme4 (Bates 225 

et al., 2015). All analyses were conducted in R ver. 4.0.3 (R Core Team, 2020). To reduce 226 

variance inflation due to land cover categories being percentages, we sequentially removed land 227 

cover categories from the model starting with the least common until the variance inflation factor 228 

was <10; this removed the land cover types freshwater, intensive agriculture, and saltwater. 229 

Initial analyses substituting the Land Use Index (LUI; Büttner, 2014) for land cover percent 230 

values resulted in no top models containing LUI; thus we opted to use individual land cover 231 

categories. The 2nd degree polynomial of the sampling period was included in the model to 232 

capture the hump-shaped pattern of flying insect biomass across the growing season. Sampling 233 

period refers to the half-month period most overlapping the days of sampling, and is numerical 234 

(e.g. first half of April = sampling period 1, second half of April = sampling period 2). Monthly 235 

temperature and precipitation predictors corresponded to the month in which the majority of 236 

sampling days occurred. Monthly temperature was included as a 2nd degree polynomial to test 237 

our prediction of a unimodal relationship. One approach to examine our hypothesis that 238 
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temperature effects varied spatially would be to include the interaction between temperature 239 

variables and latitude; however, this interaction caused variance inflation and thus was not 240 

included. Precipitation and elevation were scaled by dividing by 100. We did not include 2019 241 

precipitation minus the long-term average in our model, as we did for temperature, because it 242 

caused inflated variance and 2019 precipitation was not consistently different from the long-term 243 

average (Fig. S2). 244 

The full model contained the response variable of log10(x+1) transformed mg/day 245 

biomass, the fixed predictors of the 2nd degree polynomial of 2019 average monthly maximum 246 

temperature (poly(tmax,2)), the difference between 2019 average monthly maximum 247 

temperature and the long-term average temperature (∆temp), monthly cumulative precipitation 248 

(precip), latitude, longitude, elevation, % cover of the five most dominant land cover categories 249 

within a 1-km radius around the trap location, a 2nd degree polynomial of sampling period to 250 

account for seasonality (poly(period,2)), and a random effect of trap identity (trap) to account for 251 

repeated observations. The form of the mixed model was: 252 

log10(mg/day+1) ~ poly(tmax,2) + ∆temp + precip + latitude + longitude + elevation + %forest 253 

+ %grass/shrubland + %pasture/orchard + %non-irrigated crop + %urban + poly(period,2) + 254 

(1|trap) 255 

 256 

Temperature effects across latitudes 257 

While variance inflation prohibited a temperature by latitude interaction term in the mixed 258 

model, we wished to further examine our hypotheses that the effects of temperature on flying 259 

insect biomass would decrease in the warmer lower latitudes. For this analysis, we reduced the 260 
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dataset to one average biomass value (in mg/day) for each location and month. Calculating 261 

monthly values reduces complexity due to variation in when samples are collected across 262 

locations, and was the first step towards calculating one value of biomass across the growing 263 

season for each sampling location. We estimated the daily biomass collected within each month, 264 

assuming traps caught the same amount of biomass each day within a sample. We pooled 265 

samples within the same month and, for samples spanning more than one month, we allocated 266 

the proportion of biomass from the sample to each month based on the number of sampling days 267 

occurring within the month (e.g. for a trap run with 1 day in month A and 13 days in month B we 268 

assumed 1/14th of the biomass was collected in month A and 13/14ths was in month B). With 269 

these assumptions, the average biomass Bij (mg/day) of location i in month j in location is a 270 

weighted average of the n samples occurring in the month according to the following formula:  271 

Eq. 1 272 

𝐵𝑖,𝑗 =
∑ (𝑏𝑖𝑗𝑘 × 𝐷𝑘,𝑗 ÷ 𝐷𝑘)
𝑛
𝑘=1

∑ 𝐷𝑘,𝑗
𝑛
𝑘=1

 273 

Where bijk = the total biomass (mg) at location i occurring at least partially in month j for a 274 

sample k, n= the total number of samples occurring at least partially in month j for location i, Dk,j 275 

= the number of sampling days occurring in month j for a given sample k, Dk = the total number 276 

of sampling days for a given sample k 277 

To examine how the effect of temperature changed over latitude, we averaged Bi,j across 278 

the seven sampling months (Apr. - Oct.) to calculate one monthly average of mg/day for each 279 

site. We used only the 48 sites which conducted sampling in all seven sampling months. We 280 

calculated average monthly maximum temperature across the same period (Apr. - Oct. 2019), 281 

henceforth “growing season temperature”. Then we examined the linear relationship between 282 
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monthly averages of mg/day and the interaction between growing season temperature and 283 

latitude. We visualized the interaction between temperature and latitude using the R package 284 

“effects” (Fox & Weisberg, 2019). 285 

 286 

Dominant land cover categories 287 

To further visualize and explore changes in flying insect biomass in the dominant land-cover 288 

categories and across the growing season, we plotted flying insect biomass/day over median 289 

sampling day (numerical day of the year halfway between trap start and end day) for locations 290 

corresponding to each dominant land cover. We used Welch’s t-tests, which do not assume equal 291 

variance, to identify significant differences between log10(x +1) transformed Bi,j of sites 292 

dominated by forest, grassland, pasture/orchard, non-irrigated agriculture, and urban landscapes, 293 

and averages of all samples within each month. The locations with surrounding land cover 294 

dominated by saltwater (n=1) and freshwater (n=2) were excluded due to low replication. 295 

 296 

RESULTS 297 

Mean flying insect biomass was 2,329 mg/day ± 79 SE across all sampling periods and trap 298 

locations and varied from 0 to 17,543 mg/day. On average across traps, biomass increased from 299 

734 mg/day ± 98 SE in early April, to a peak of 5,356 mg/day ± 401 SE in late June, declining to 300 

568 mg/day ± 111 SE in late October. Flying insect biomass was strongly predicted by 301 

temperature, latitude, precipitation, percent forest cover, and sampling period (Table 1). AICc 302 

model comparison selected three top models which always included the 2nd degree polynomial of 303 

sampling period, the 2nd degree polynomial of average monthly maximum 2019 temperature, and 304 
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negative effects of ∆ temperature from the long-term average, latitude, monthly precipitation, 305 

and percent forest cover (Appendix 1: Table S1). The second and third top models additionally 306 

included a negative effect of percent urban cover and a positive effect of percent pasture/ orchard 307 

cover (Appendix 1: Table S2). However, these models did not greatly improve R2 or log-308 

likelihood; thus these two land cover types provided only weak additional explanatory power 309 

(Arnold, 2010). Elevation did not appear in any top models (Appendix 1: Table S1). The top 310 

model explained 51% of the variance in flying insect biomass without location information 311 

(marginal R2) and 74% of flying insect biomass was accounted for when including the random 312 

effect of location identity (conditional R2; Appendix 1: Table S1). 313 

 314 

Climate and latitude 315 

Flying insect biomass increased with mean monthly maximum temperature within 2019 316 

sampling (Table 1, Fig. 2A), and declined with increasing latitude (Table 1, Fig. 2B) and 317 

monthly cumulative precipitation (Table 1, Fig. 2C). While 2019 mean monthly maximum 318 

temperature was included in all top models, only the first order polynomial term was significant, 319 

suggesting the effect was linear (Table 1; Appendix 1: Table S2). When included in the same 320 

model as 2019 monthly maximum temperature, the ∆ temperature had a negative effect on flying 321 

insect biomass (Table 1; Fig. 2D). Across the 48 sites in which sampling occurred in all seven 322 

months (Apr. - Oct.), an interaction between growing season temperature and latitude was 323 

predictive of flying insect biomass (Appendix 1: Table S3; F3,44 = 4.3, R2 = 0.23, P = 0.01). The 324 

effect of growing season temperature on flying insect biomass increased from a negative 325 

temperature effect at lower latitudes to a positive effect at higher latitudes (Fig. 3). 326 
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 327 

Land cover 328 

Flying insect biomass declined with increasing percent forest cover and tended to decrease with 329 

percent urban cover and increase with percent pasture/orchard (Appendix 1: Table S2). 330 

Categorizing trap locations by dominant land cover showed grassland/shrubland locations to 331 

generally have the highest biomass in the early-mid growing season (Fig. 4C), and a moderate 332 

increase in biomass in non-irrigated cropland across the growing season (Fig. 4E). However, 333 

neither percent grassland/shrubland nor percent non-irrigated cropland explained variation in 334 

biomass after accounting for seasonality and temperature (Appendix 1: Table S1). Urban-335 

dominated sites tended to have slightly higher catches of biomass within months (Fig. 4F), but 336 

this may be due to the six urban-dominated sites all being located in southern Germany (Fig. 1). 337 

When included in the full model with temperature variables, flying insect biomass was weakly 338 

negatively correlated with percent urban cover (Appendix 1: Table S2A). 339 

 340 

DISCUSSION 341 

In this first outcome of the German Malaise Trap Program, we found flying insects to be 342 

extremely sensitive to temperature, with both a positive effect of monthly temperature and a 343 

negative effect of 2019 temperatures exceeding long-term averages predicting daily sampled 344 

biomass. Across all sampling, flying insect biomass increased linearly with temperature in 345 

contrast to the unimodal relationship predicted by our first hypothesis. However, in support of 346 

our second hypothesis, the relationship between temperature and flying insect biomass shifted 347 

from positive in colder locations in northern Germany to negative in warmer locations in 348 
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southern Germany. Additionally, precipitation had a negative relationship with flying insect 349 

biomass, in support of our third hypothesis. Finally, we did not find strong support for our fourth 350 

hypothesis that more heavily-human impacted land use types would have the lowest biomass 351 

with locations surrounded by pasture/orchard, grassland, and non-irrigated agriculture tending to 352 

have higher insect biomass than those surrounded by forests or urban areas.  353 

 354 

Temperature 355 

Temperature effects on ectothermic insects can manifest directly on individuals’ metabolism, 356 

growth, reproduction, immunity, survival, behavior, and dispersal (Sinclair et al., 2016; Harvey 357 

et al., 2020), and through effects on other trophic levels such as through altering plant biomass, 358 

plant quality, or active time-periods of natural enemies (Laws & Joern, 2013; Kwon et al., 2019; 359 

Thakur, 2020). Our results suggest an overall positive linear effect of temperature on flying 360 

insect biomass across Germany. The lack of a unimodal relationship between temperature and 361 

insect biomass may be a result of the coarse taxonomic (flying insects caught in malaise traps) 362 

and temporal (two week) resolution of our samples in comparison to other studies (e.g. Kühsel & 363 

Blüthgen, 2015). However, we additionally detected a negative effect of the ∆ temperature (2019 364 

temperatures minus the colder long-term average), and the slope of the relationship between 365 

temperature and flying insect biomass declined as temperatures declined at the lower latitudes, 366 

which tended to be the warmest locations in 2019. Hallmann et al. (2017) found a positive effect 367 

of temperature on insect biomass; however, biomass loss over time was greatest in the middle of 368 

the growing season, when temperatures are highest. A decelerating benefit of temperature in 369 

regions with greater increases in temperature is consistent with a study of two surveys of ant 370 

communities across North America that were conducted 20 years apart, which found that sites 371 
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with the largest increases in average temperature had the largest declines in colony density 372 

(Kaspari et al., 2019). We predict future monitoring will detect increasingly negative effects of 373 

temperature due to ongoing climate warming, as temperature begins to exceed species’ optimum 374 

temperature ranges.  375 

 376 

Precipitation 377 

We detected a negative effect of precipitation on flying insect biomass. As our study covered 378 

only one growing season, our result likely reflects direct insect mortality from heavy rain or 379 

reduced flight activity. Insects can detect changes in barometric pressure and will stop flying if 380 

they sense storms approaching (Pellegrino et al., 2013). Future investigations of the German 381 

Malaise Trap Program can examine long-termer effects of changing precipitation regimes on 382 

insect populations which may manifest through indirect paths, including through altering plant 383 

biomass (Prather et al., 2020), plant phenology (Jamieson et al., 2012), nutrient availability in 384 

host plants and nectar (Eisikowitch & Woodell, 1975; Welti et al., 2020b), pollen availability 385 

(Ortega et al., 2007), the efficacy of chemical signals used by insects (Lawson & Rands, 2019), 386 

and the moisture and other properties of soils where many insects overwinter (Yang et al., 2018). 387 

 388 

Land cover 389 

Land cover change and intensification of human land use, resulting in loss and reduced quality of 390 

habitat, is likely a major contributor to insect decline (Potts et al., 2010; Winfree et al., 2011; 391 

Díaz et al., 2019) with ~75% of global land significantly altered by human activities (IPBES, 392 

2019). In contrast to our hypothesis, we detected only weak effects of urban and agricultural land 393 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.429363doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429363
http://creativecommons.org/licenses/by-nc-nd/4.0/


cover on flying insect biomass. This may be due in part to a minority of heavily human-impacted 394 

land cover surrounding our sites, especially with regards to intensive agriculture. While the 395 

percent urban area surrounding the trap location had only a slight negative effect on flying insect 396 

biomass, urban areas may alter insect communities in other ways, such as through species 397 

composition (Theodorou et al., 2020). Higher temperatures in urban areas compared to their rural 398 

surroundings may partly compensate for lower habitat quality and explain the above average 399 

biomass in spring and late summer/autumn in the urban areas investigated in our study. 400 

Even within one land-cover type, large variability exists in habitat quality. This is 401 

particularly true of urban areas and agricultural land, which range from large paved urban areas 402 

and areas with intensive pesticide use to urban gardens and low intensity organic farms which 403 

can provide high quality habitat for insects (Bengtsson et al., 2005; Hausmann et al., 2020). 404 

While moderately impacted by human activity, non-irrigated agricultural areas, pasture land, and 405 

orchards in this study tended to support higher biomass, suggesting these land use types may 406 

provide suitable habitats for Germany’s flying insects. Alternatively, fertilization and the 407 

prevalence of monoculture on conventional farms may increase insect biomass through 408 

alleviating nutrient limitation and providing high concentrations of host plants, while not 409 

benefiting insect biodiversity (Root, 1973; Haddad et al., 2000). 410 

We detected reduced insect biomass in trap locations surrounded predominantly by 411 

forests. Forests may provide fewer floral resources than open fields (Jachuła et al., 2017). 412 

Alternatively, the vegetation structure in forests may limit insect movement through the 413 

landscape, reducing trap catch in comparison to more open systems like grasslands (Cranmer et 414 

al., 2012). However, this result is in contrast to previous work, albeit using different sampling 415 

methods, showing high Lepidoptera biomass coming to light traps in forests compared to other 416 
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land use types in the UK (Macgregor et al., 2019), and higher flying insect biomass with 417 

increasing forest cover in a study using car-mounted nets in Denmark (Svenningsen et al., 2020). 418 

Our malaise-trapping methods are more directed toward Hymenoptera and Diptera, and towards 419 

the lower canopy, potentially contributing to this discrepancy. 420 

 421 

Comparison with Hallmann et al. 2017 422 

Average flying insect biomass captured in Hallmann et al. (2017) varied from 9,192 mg/day in 423 

1989 to 2,531 mg/day in 2016 (mean of within-month sample means for May-Sept; April 424 

excluded as no April 1989 sampling was conducted). In comparison, our traps collected a 425 

monthly average of 2,404 mg/day in May-Sept. However, the malaise traps used in Hallmann et 426 

al. (2017) were ~51% larger (Hallmann et al. [2017] trap opening dimensions per side: 1.79 m2, 427 

traps used in this study: 1.16 m2). If trap opening has an appreciable positive effect on trap catch, 428 

this suggests higher trap catch in this study compared to the last sampling year in Hallmann et al. 429 

(2017). This discrepancy is most likely due to the difference in sampling locations between the 430 

studies, but we cannot rule out an increase in biomass of flying insects in Germany. 431 

 432 

Caveats 433 

Insect biomass is a common currency ecosystem-level measure of insect productivity and is an 434 

index of energy availability for higher trophic levels. Nonetheless, we cannot differentiate 435 

variation in abundance, body size, species diversity, or dominance from biomass data alone. 436 

High temperatures may reduce average insect body size either by causing smaller adult body 437 

sizes within species (Atkinson, 1994; Klockmann et al., 2017; Polidori et al., 2020) or by 438 
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favoring smaller species (Bergmann, 1848; Daufresne et al., 2009; Merckx et al., 2018). While 439 

one long-term study of flying insects in the Netherlands found no evidence of higher rates of 440 

decline in larger species over the past two decades (Hallmann et al., 2020), larger-bodied species 441 

may have become rare earlier in the last century (Seibold et al., 2015). Climate and land-cover 442 

change may otherwise alter insect communities by favoring particular trophic levels (Agosta et 443 

al., 2018; Welti et al., 2020a), invasive species (Ju et al., 2017), or pest species with outbreak 444 

dynamics (Bernal & Medina, 2018). Furthermore, insect responses to climate and land cover 445 

may vary with microhabitat preference (Suggitt et al., 2018). For example, flying insects may be 446 

more affected by rising temperatures than other insects as they cannot buffer high temperatures 447 

by burrowing in soil or plant tissue (Baudier et al., 2015; Wagner, 2020).  448 

 449 

Future directions 450 

With several notable exceptions including mosquito and ground beetle monitoring by the US 451 

National Ecological Observation Network (Thorpe et al., 2016; Blair et al., 2020), and regional-452 

scale monitoring programs of butterflies and macro-moths (e.g. Kühn et al., 2008; Dennis et al., 453 

2019; van Swaay et al., 2019; Wepprich et al., 2019), spatially distributed observational 454 

monitoring efforts of multiple biological taxa have tended to target plants and vertebrates but not 455 

insects (Eggleton, 2020). Limited large-scale, long-term standardized insect monitoring is one 456 

reason for low power in our ability to disentangle different potential drivers of insect decline, and 457 

understand how this varies with region. Empirical studies of insect communities often lack the 458 

spatial coverage needed to be broadly representative or to test for variation due to land cover 459 

types (but see Jeliazkov et al., 2016; Wepprich et al., 2019). Meta-analyses have large spatial 460 

coverage, but can be subject to site and/or publishing bias and must reckon with variation in 461 
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research goals and methodology (Gurevitch & Mengersen, 2010). Thus more distributed, 462 

standardized, and continuous insect monitoring programs are needed to fill gaps in current 463 

knowledge of temporal insect population and community dynamics (Cardoso & Leather, 2019).  464 

The German Malaise Trap Program helps to fill this gap for Germany through both 465 

continued monitoring of flying insect biomass and recently begun DNA metabarcoding. A major 466 

advantage of using LTER and National Natural Landscape sites is that they are well established 467 

and managed by personnel with excellent knowledge of the respective site. As the European 468 

LTER network (eLTER RI; Mirtl et al., 2018) was recently accepted by the EU as part of the 469 

European Research Infrastructure Roadmap (ESFRI), stronger linkages between the more than 470 

400 European LTER sites are currently being established. One major goal is to standardize and 471 

harmonize long-term biodiversity monitoring across Europe (Haase et al., 2018) with malaise 472 

traps currently being considered as a potential European biodiversity standard observation, and 473 

the German Malaise Trap Program providing a blueprint. Future work aims to answer how flying 474 

insects will respond to climate and land cover change over the long-term. Finally, continued 475 

monitoring by the German Malaise Trap Program will advance our understanding of trends on 476 

spatial-temporal scales that are lacking in previous studies on insects (Didham et al., 2020), and 477 

in productivity/biodiversity trends more generally (McGill et al., 2015).  478 

 479 
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Table 821 

Table 1. Top AICc model of predictors of flying insect biomass. Model includes the random 822 

variable of trap location. T-tests use Satterthwaite’s method. Poly(X,1) indicates the first-order 823 

term of the 2nd degree polynomial for variable X, while poly(X,2) indicates the second-order 824 

term of the 2nd degree polynomial. Predictor variables are defined in the Materials and Methods. 825 

Model characteristics include estimate (Est), standard error (SE), degrees of freedom (df), t-826 

value, and p-value (P). 827 

  Est SE df t-value P 

Intercept 7.84 0.95 89.46 8.24 < 0.001 

%forest -0.33 0.10 87.6 -3.31 0.001 

latitude -0.09 0.02 87.51 -4.79 < 0.001 

poly(period,1) -3.30 0.39 981.7 -8.56 < 0.001 

poly(period,2) -4.02 0.81 1011 -4.94 < 0.001 

poly(tmax,1) 8.05 0.97 1017 8.34 < 0.001 

poly(tmax,2) 0.21 0.35 961 0.59 0.55 

precip -0.13 0.04 1006 -2.96 0.003 

∆temp -0.01 0.003 990.5 -3.81 < 0.001 

  828 
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Figures 829 

 830 

Figure 1. Map of sampling locations. Malaise trap locations where samples were collected 831 

beginning in 2019 are depicted as filled circles and color-coded by the dominant land cover in 832 

the surrounding 1 km. Points coded as grey triangles indicate trap locations at which sampling 833 

began in 2020 and are not included in the analyses. Overlapping locations were jittered 834 

longitudinally to improve visualization.   835 
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 836 

Figure 2. Responses of flying insect biomass to the climate variables and latitude. Each point 837 

represents the biomass at each site within each month (Bi,j as calculated by Eq. 1). Across all 838 

months and site combinations, flying insect biomass increased with mean monthly 2019 839 

maximum temperature (A), and decreased with latitude (B) and cumulative monthly 2019 840 

precipitation (C). The response of flying insect biomass to ∆temp shifted from positive when 841 

examined alone to a negative when the effect of 2019 tmax was included in the model. We 842 

therefore used the residuals of the relationship between biomass and 2019 tmax as our response 843 

variable to show the negative relationship between insect biomass and ∆temp evident in the top 844 

AICc model (Table 1) (D).845 
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 846 

Figure 3. The effect of temperature on flying insect biomass across latitude. The effect of 847 

temperature shifted from negative to positive with increasing latitude across the 48 sites with 848 

sampling in all 7 months (Apr.-Oct. 2019). Model coefficients are provided in Table S2.  849 
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 850 

Figure 4. Flying insect biomass over the growing season by dominant land cover. Biomass 851 

(mg/day) over the median sampling day across all 84 trap locations (A), and comparisons 852 

between all locations and locations with surroundings dominated by forests (B), 853 

grassland/shrubland (C), pasture/orchard (D), non-irrigated cropland (E), and urban 854 

environments (F). Point colors in panel A match the dominant land category following colors in 855 

panels B-F. Mean and standard error are provided for biomass within each land cover category 856 

and month. Stars indicate significant differences within each month based on Welch’s t-tests 857 

between biomass from dominant land cover categories and all site averages (* = 0.05 > P > 0.01, 858 

** = 0.01 > P > 0.001, *** = P < 0.001). 859 
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Appendix 1: Climate, latitude, and land cover predict flying insect biomass across a German 

malaise trap network 

 

Contents: 

Table S1-S3 

Fig. S1-S4 
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Table S1. Top AIC models (∆AICc<2) of predictors of flying insect biomass. All models included the random variable of trap 

identity. Int=intercept, poly(X,1) indicates the first-order term of the 2nd degree polynomial for variable X, while poly(X,2) indicates 

the second-order term of the 2nd degree polynomial. Predictor variables are defined in the Methods. Marg R2= marginal R2 or the 

percent variance explained by the fixed effects, Cond R2= conditional R2 or the percent variance explained by the fixed effects plus the 

random effect of trap, df= degrees of freedom, logLik= log likelihood, ∆= ∆AICc, w= model weight. For summary tables of the top 

model, see Table 1. For summary tables of the second and third top models, see Appendix 1: Table S2. 

Int latitude 
poly 

(period,2) 

poly 

(tmax,2) 
∆temp precip %forest %urban 

%pasture/ 

orchard 

Marg 

R2 

Cond 

R2 
df logLik AICc ∆ w 

7.84 -0.088 + + -0.0124 -0.131 -0.328     0.51 0.74 11 -364.35 751 0 0.147 

8.26 -0.095 + + -0.0126 -0.133 -0.402 -0.405  0.52 0.74 12 -363.55 751.4 0.44 0.118 

7.81 -0.089 + + -0.0125 -0.131 -0.292   0.253 0.51 0.74 12 -364.3 752.9 1.94 0.056 
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Table S2. Summary tables of the second (A) and third (B) mixed effects models included in 

top AICc models (Table S1). A summary table of the top model is provided in Table 1. All 

models contain the random variable of trap identity. T-tests use Satterthwaite’s method. See 

Methods and Table 1 caption for variable explanations. Model characteristics include estimate 

(Est), standard error (SE), degrees of freedom (df), t-value, and p-value (P). 

 

  Est SE df t-value P 

A.) Model 2      
Intercept 8.26 0.98 87.66 8.43 < 0.001 

%forest -0.40 0.11 83.87 -3.7 < 0.001 

latitude -0.10 0.02 86.01 -5.07 < 0.001 

poly(period,1) -3.30 0.39 982.1 -8.55 < 0.001 

poly(period,2) -3.99 0.81 1011 -4.91 < 0.001 

poly(tmax,1) 8.10 0.97 1016 8.39 < 0.001 

poly(tmax,2) 0.22 0.35 960.2 0.63 0.53 

precip -0.13 0.04 1006 -2.99 0.003 

∆temp -0.01 0.003 989.9 -3.86 < 0.001 

%urban -0.40 0.26 84.52 -1.59 0.12 

B.) Model 3      
Intercept 7.81 0.95 88.53 8.21 < 0.001 

%forest -0.29 0.10 87.4 -2.80 0.006 

latitude -0.09 0.02 86.39 -4.81 < 0.001 

%pasture/orchard 0.25 0.23 80.44 1.09 0.28 

poly(period,1) -3.32 0.39 979.9 -8.59 < 0.001 

poly(period,2) -3.98 0.81 1009 -4.89 < 0.001 

poly(tmax,1) 8.10 0.97 1015 8.38 < 0.001 

poly(tmax,2) 0.20 0.35 961 0.59 0.56 

precip -0.13 0.04 1006 -2.94 0.003 

∆temp -0.01 0.003 989.5 -3.84 < 0.001 
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Table S3. Model coefficients for the interaction between monthly temperature and latitude 

(Fig. 3). While individual model coefficients were all marginally significant, the full model 

predicted 23% of the variation in average biomass (mg/day) averaged across the seven sampling 

months for the 48 sites with sampling in all months (F3,44 = 4.3, R2 = 0.23, P = 0.01). GST= 

growing season temperature, the average temperature for each site from Apr-Oct 2019. Model 

characteristics include estimate (Est), standard error (SE), degrees of freedom (df), t-value, and 

p-value (P). 

  Est SE t-value P 

Intercept 43.1 21.65 1.99 0.053 

GST -2.1 1.17 -1.8 0.079 

Latitude -0.81 0.42 -1.91 0.063 

GST * Latitude 0.04 0.02 1.86 0.07 
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Figure S1. Examples of traps running in 2019 as part of the German Malaise Trap Program. 

Photos show traps at the LTER site Tereno- Friedeburg (A; photo credit: Mark Frenzel), at the 

Harz National Park (B; photo credit: Andreas Marten), at the Black Forest National Park (C; 

photo credit: Jörn Buse), and at the LTER site Rhine-Main-Observatory (D; photo credit: Peter 

Haase). 
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Figure S2. Comparison of climate at the 84 trap locations between 2019 and long-term average 

(1960-2018) including the average maximum monthly temperatures (tmax) and minimum 

monthly temperatures (tmin) in °C ± standard error (A) and cumulative monthly precipitation in 

mm ± standard error (B). Period of the year in which malaise trap sampling occurred is shaded in 

grey. 
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Figure S3. Changes with latitude across our 84 trap locations in 2019 mean monthly maximum 

temperature (A), the 1960-2018 long-term average monthly maximum temperature (B), the 

change in 2019 mean monthly maximum temperature minus the 1960-2018 long-term average 

(C), and 2019 cumulative monthly precipitation (D). Each point represents one month at one 

location, and only month/location combinations from which flying insect biomass data were 

collected are included. Across all months, 2019 mean monthly maximum temperature showed a 

weak trend to decrease with latitude (A; F1,520 = 3.6, R2 = 0.01, P = 0.06), while the 1960-2018 

long-term average monthly maximum temperature did not vary with latitude (B; F1,520 = 1.6, R2 < 

0.01, P = 0.21). While varying with month, the average ∆ °C of 2019 maximum temperature 

over the long-term average decreased with latitude (C; F1,520 = 6, R2 = 0.01, P = 0.01), as did 

cumulative monthly precipitation (D; F1,520 = 60.6, R2 = 0.1, P < 0.001).  
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Figure S4. Elevation declined with increasing latitude across our 84 trap locations (F1,82 = 74.5, 

R2 = 0.48, P < 0.001). 
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