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SUMMARY  30 

Recent data suggests that colon tumors contain a subpopulation of therapy resistant 31 

quiescent cancer stem cells (qCSCs) that are the source of relapse following treatment. 32 

Here, using colon cancer patient-derived organoids (PDOs) and xenograft (PDX) models, 33 

we identify a rare population of long-term label-retaining (PKH26Positive) qCSCs that can 34 

re-enter the cell cycle to generate new tumors. RNA-sequencing analyses demonstrated 35 

that these cells are enriched for stem cell associated gene sets such as Wnt and 36 

hedgehog signaling, epithelial-to-mesenchymal transition (EMT), embryonic 37 

development, tissue development and p53 pathway but have downregulated expression 38 

of genes associated with cell cycle, transcription, biosynthesis and metabolism. 39 

Furthermore, qCSCs are enriched for p53 interacting negative regulators of cell cycle, 40 

including AKAP12, CD82, CDKN1A, FHL2, GPX3, KIAA0247, LCN2, TFF2, UNC5B and 41 

ZMAT3, that we show are indicators of poor prognosis and may be targeted for qCSC 42 

abolition. Interestingly, CD82, KIAA0247 and UNC5B proteins localize to the cell surface 43 

and may therefore be potential markers for the prospective isolation of qCSCs. These 44 

data support the temporal inhibition of p53 signaling for the elimination of qCSCs and 45 

prevention of relapse in colorectal cancer.  46 
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 47 

INTRODUCTION 48 

Molecular and functional intra-tumoral heterogeneity contribute to differences in treatment 49 

outcomes between colorectal cancer (CRC) patients with similar mutational profiles1. 50 

Studies of functional heterogeneity, as defined by phenotypic differences between cells, 51 

suggest that cancer stem cells (CSCs) are responsible for tumor growth, metastasis and 52 

therapy resistance2–7. CSCs share many of the characteristics of normal tissue stem cells, 53 

including unlimited self-renewal, the ability to generate differentiated daughter cells and 54 

chemoresistance8,9.  55 

 56 

The normal intestine is maintained by highly clonogenic crypt base LGR5Positive stem cells 57 

and also contains a population of rare quiescent (G0 phase) stem cells that act as a 58 

clonogenic reserve capable of re-entering the cell cycle upon perturbation of tissue 59 

homeostasis, e.g. after injury leading to loss of the cycling crypt base stem cells10–15. 60 

Cancer often recapitulates the cellular hierarchy of the tissue in which it arises, and recent 61 

evidence suggests that many tumor types contain rare slow cycling / qCSCs16–27. 62 

Conventional chemotherapies and radiotherapies target proliferating cells and require 63 

active cycling for induction of apoptosis1. In addition, cellular quiescence has been shown 64 

to facilitate immune evasion28. Thus, non-dividing qCSCs may escape conventional 65 

therapeutic strategies and represent the source of disease relapse after treatment2,29–31.  66 

 67 

Cell cycle activation in qCSCs has been proposed as a therapeutic strategy to sensitize 68 

qCSCs to treatment and lead to long-term disease-free survival without relapse29,30. 69 
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However, the molecular profiling of qCSCs for the identification of novel cell cycle 70 

regulators that do not also perturb cellular homeostasis in healthy tissues has been limited 71 

by both the rarity of qCSCs and the small number of suitable experimental assays 72 

available for their detection. PDOs echo the morphological, differentiation, intratumor 73 

mutational and drug sensitivity status of the original tumor32,33 and thus provide an 74 

excellent model for the prospective isolation and profiling of qCSCs. 75 

 76 

Strategies for the identification of quiescent cells employ pulse-chase approaches, 77 

including  label retention (e.g. BrdU, PKH26, CFSE), wherein dividing cells lose the label 78 

and quiescent or slow cycling cells retain the label for an extended period of time, or the 79 

dilution of histone 2B-GFP (H2B-GFP)34. In contrast to the H2B-GFP approach35, which 80 

can identify transient quiescent cells, label retention allows for the identification of cells 81 

that remain quiescent from the early stages of tumorigenesis. This is important since cells 82 

selectively surviving chemotherapy have been shown to be the same cells that are 83 

quiescent/slow cycling in untreated tumors and not cells that became quiescent upon drug 84 

treatment36. Such label-retaining cells (LRCs) have previously been reported in colon 85 

cancer cell lines, xenografts and, more recently, in PDOs6,36–38.  86 

 87 

However, to date, the transcriptomic profiling of qCSCs in CRC patients has been limited 88 

to microarray analyses of transiently slow-cycling H2B-GFPPositive cells from a single CRC 89 

patient by Puig et al. (2018)35 and of PKH26Positive LRCs from two colon cancer patient-90 

derived (via spheroid culture) xenograft models by Francescangeli et al. (2020)36. In 91 

addition, the LRCs reported in the latter study were not functionally tested for proliferative 92 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2021. ; https://doi.org/10.1101/2021.02.02.429354doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429354
http://creativecommons.org/licenses/by-nc-nd/4.0/


Regan et al. 2020                                     Identification and Transcriptome Profiling of qCSCs 

 5 

or self-renewal capacity prior to molecular profiling and instead relied on expression of 93 

CD133 as evidence of a stem cell phenotype. CD133 expression is not restricted to stem 94 

cells of the intestine and is expressed on both CSC and differentiated tumor cells39–42.  95 

 96 

Here, we report the identification and first whole-transcriptome RNA-sequencing analyses 97 

of label-retaining qCSCs in a panel of PDOs encompassing primary colon tumors and 98 

metastases. These cells maintain a large proliferative capacity, persist long term in vivo 99 

and display the molecular hallmarks of quiescent tissue stem cells43, including enrichment 100 

for p53 pathway and developmental gene sets alongside downregulation of cell cycle, 101 

transcription, biosynthesis and metabolism genes. In addition, we show that qCSCs are 102 

enriched for p53 interacting negative regulators of cell cycle that we propose may be 103 

targeted for cell cycle activation and the elimination of qCSCs. These data provide a 104 

valuable resource for the development of novel therapeutic strategies geared toward the 105 

elimination of minimal residual disease and the prevention of relapse. 106 

 107 

RESULTS 108 

 109 

Colon cancer PDOs contain rare label-retaining qCSCs that persist long term in 110 

vivo 111 

To determine whether PDOs contain non-cycling LRCs, we performed an initial 72 h pulse 112 

chase experiment using CM-DiL dye. PDOs were established as previously 113 

described44,45, processed to single cells, uniformly labelled with CM-DiL dye and seeded 114 

in Matrigel culture. CM-DiL is diluted with each cell division, halving its fluorescence 115 
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between each daughter cell until it becomes undetectable. Non-cycling cells can thus be 116 

identified by their label retention. After 72 h the majority of PDO cells had lost the CM-DiL 117 

dye but some PDOs contained non-cycling LRCs (Figure 1A). To determine the frequency 118 

of these non-cycling (G0) cells we performed EdU cell cycle analysis on a panel of colon 119 

cancer PDOs (Table S1). This analysis demonstrated that PDOs contain non-cycling cells 120 

that do not proliferate and remain in G0 within a 72 h period (Figure 1B and C).  121 

 122 

To determine the long-term proliferative capacity of these non-cycling cells, we labelled 123 

cells with the lipophilic fluorescent dye PKH26. Unlike CM-DiL, which is suitable for short 124 

term label retention studies, PKH26 labelling can be used to identify non-cycling cells for 125 

up to six months (in vitro and in vivo)46,47. PDOs were dissociated to single cells, labelled 126 

with PKH26 and replated in Matrigel culture. After 12 days PDOs were re-processed to 127 

single cells and analyzed by fluorescence assisted cell sorting (FACS). These data 128 

demonstrated that PDOs contain rare, non-cycling, long-term LRCs (Figure 2A and B). 129 

Crucially, FACS isolation and replating of PKH26Positive DAPINegative (live) cells from 12 day 130 

cultures demonstrated that they are not label-retaining due to terminal differentiation or 131 

senescence but can re-enter the cell cycle to generate organoids and have a large 132 

proliferative capacity (Figure 2C – F). In addition, non-adherent spheroid formation 133 

assays, the gold standard assay for testing stem cell function in vitro48,49, showed that 134 

PKH26Positive cells are enriched for self-renewing CSCs (Figure 2G).  135 

  136 

In order to test whether these cells also persisted long-term in vivo we generated 137 

xenografts by transplanting PKH26 labelled cells. Long-term tracking of LRCs in 138 
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xenografts requires the slow growth of the tumor. Cells were therefore transplanted at a 139 

low cell number based on knowledge of tumor growth rates from previous limiting dilution 140 

xenotransplantation assays, in which xenografts were generated from 1,000 PDO cells44.  141 

 142 

Unlabeled cells, lacking the burden of carrying a fluorescent dye may be at a competitive 143 

advantage over labelled cells. Therefore, immediately prior to transplantation, PKH26 144 

labelled cells were processed by FACS to exclude unlabelled cells and thus ensure that 145 

only live (DAPINegative) PKH26 labelled cells would give rise to tumors. Significantly, 146 

analysis of xenograft tissue demonstrated the presence of PKH26Positive LRCs for up to 147 

80 days after transplantation (Figure 2H). Previous studies have observed quiescence to 148 

be a transient state35. However, these data demonstrate that quiescence can be stable 149 

and persist long-term from the initial stages of tumor development.  150 

 151 

RNA-sequencing of PKH26Positive cells reveals a molecular signature of qCSCs  152 

To generate a molecular profile of qCSCs we carried out RNA-sequencing analyses of 153 

PKH26Negative (cycling) and PKH26Positive (non-cycling) qCSCs isolated from a panel of six 154 

different PDO models (Table S1) after 12 days in Matrigel culture. These data 155 

demonstrated that PKH26Positive qCSCs are enriched for stem cell associated gene sets, 156 

such as embryonic development, organ development, placenta, nervous system 157 

development, EMT, Wnt and hedgehog signaling (Figure 3A).  158 

 159 

At the same time as showing enrichment for genes associated with growth and 160 

development, PKH26Positive qCSCs have downregulated cell cycle, transcription, protein 161 
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synthesis, metabolism and biosynthesis genes (Figure 3B and C). These data are in 162 

agreement with the transcriptional profiles of slow cycling / qCSCs reported in previous 163 

studies35–37 and demonstrate a common molecular signature of qCSCs.  164 

 165 

The normal intestine also contains quiescent stem cells that can regenerate the damaged 166 

intestine upon loss of crypt base stem cells following injury, although whether cellular 167 

plasticity or distinct cell types are responsible for this remains unclear. Bmi150, Hopx51, 168 

Lrig152 and Tert53 have previously been reported as markers of quiescent “+4” stem cells, 169 

although subsequent studies have shown that actively cycling crypt base stem cells also 170 

express these markers at equivalent levels54. Similarly, we did not detect enhanced 171 

expression of these markers in qCSCs. This is also in agreement with a recent single-cell 172 

RNA-sequencing analyses of the regenerating mouse intestine that identified a damage-173 

induced quiescent cell type termed revival stem cells (revSCs)15. These cells, required 174 

for the regeneration of a functional intestine, are extremely rare during normal 175 

homeostasis and are characterised by enhanced expression of the pro-survival stress 176 

response gene Clu55. Interestingly, we find that many of the genes that make up the 177 

molecular signature of these quiescent revSCs are also enriched in qCSCs and have 178 

been found to regulate therapy resistance in various types of cancer. These common 179 

genes include CLU56, CTSD57,58, CDKN1A59–63, EMP164,65, MUC366, LAMC267, KRT1968, 180 

LGALS369, F3, ITM2B, ITGB470,71, CDH1772,73 and GSN74,75 (Figure 3E – F, Figure S1 181 

and Supplementary Data File 1). Considering that colon cancer is a heterogeneous tumor 182 

that recapitulates the cellular hierarchy of the intestine, these data suggest that the 183 

qCSCs identified here may be the tumor equivalent of revSCs. However, in contrast to 184 
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revSCs and previous studies on qCSCs, our data demonstrate that qCSCs are enriched 185 

for p53 signaling (Figure 3A). 186 

 187 

qCSCs are dependent on p53 signaling 188 

Loss of p53 in hematopoietic (HSCs) and neural stem cells (NSCs) causes these cells to 189 

exit quiescence and enter the cell cycle76–78. Targeting p53 may have the same effect in 190 

qCSCs but is complicated by the role of p53 as a tumor suppressor and guardian of 191 

homeostasis79. However, targeting negative cell cycle regulators downstream of p53 may 192 

provide novel strategies for qCSC elimination without affecting the role of p53 in healthy 193 

cells. Differential gene expression analysis, comparing PKH26Negative and PKH26Positive 194 

cells, identified the negative cell-cycle regulators AKAP1280–83, CD8284, CDKN1A85–88, 195 

FHL289–92, GPX393–95, KIAA024796,97, LCN298–100, TFF2101–105, UNC5B106–108 and 196 

ZMAT3109,110 to be enriched in qCSCs (Figure 3D). Significantly, each of these genes is 197 

a target of p5379,80,82,92,96,109,111–115, and with the exceptions of LCN2 and ZMAT3, 198 

associated with reduced survival in CRC (Figure 4A). Interestingly, CD82, KIAA0247 and 199 

UNC5B proteins localize to the cell surface and may therefore have potential as new 200 

markers for the prospective isolation of qCSCs in CRC. Indeed, CD82 has previously 201 

been identified as a marker for prospectively isolating stem cells from human fetal and 202 

adult skeletal muscle and is a functional surface marker of long-term HSCs84,116.  203 

 204 

Deletion of CDKN1A (P21), which is the downstream mediator of p53 induced cell cycle 205 

arrest86,117, leads to cell cycle activation and exhaustion of quiescent HSCs and 206 

NSCs118,119. In addition, CDKN1A is highly expressed in noncycling intestinal crypt base 207 
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stem cells52 and revSCs15. We therefore selected CDKN1A as a candidate gene to 208 

determine whether targeting the p53 pathway would eliminate qCSCs. Significantly, 209 

shRNA mediated knockdown of CDKN1A (Figure S3) in PKH26 labelled qCSCs resulted 210 

in the elimination of PKH26Positive label-retaining qCSCs (Figure 4B and C).  211 

 212 

DISCUSSION 213 

Colon cancer is a heterogeneous tumor entity containing a subpopulation of qCSCs that 214 

may promote tumor cell heterogeneity, plasticity, and resistance to various types of 215 

stress, including resistance to conventional treatments29. However, the rarity and 216 

plasticity of qCSCs has made them an elusive and challenging cell state to define and 217 

target. Here, we provide the first whole-transcriptome analyses of a population of colon 218 

cancer patient-derived long-term label-retaining qCSCs and identify genes that may 219 

provide novel targets for their elimination. 220 

 221 

Label retention has previously been used as a strategy for the isolation of both healthy 222 

quiescent tissue stem cells and qCSCs from a variety of cancer types11,17,25,26,29,120–122. In 223 

agreement with these studies, we show that PKH26Positive LRCs isolated from colon 224 

cancer PDOs are qCSCs capable of entering the cell cycle and self-renewing after 225 

replating in adherent and non-adherent cell culture conditions and maintain long-term 226 

quiescence in xenograft models. Interestingly, in vivo these cells were located at the 227 

tumor border, suggesting that quiescence may be induced at the invasive tumor front 228 

where such cells may be primed for metastatic dissemination. This is in agreement with 229 
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previous studies showing cell cycle arrest / decreased proliferation and increased levels 230 

of Wnt signaling at the invasive front of colorectal tumors123–127. 231 

 232 

RNA-sequencing of qCSCs demonstrated that they display the molecular hallmarks of 233 

quiescence128 while also being enriched for the same developmental and stem cell 234 

associated gene sets previously described for actively cycling ALDHPositive CSCs44, which 235 

unlike PKH26Positive LRCs are enriched in PDOs.  236 

 237 

We previously reported that hedgehog signaling in active colon CSCs is non-canonical 238 

(SHH-dependent, PTCH-dependent, SMO-independent, GLI-independent) and acts as a 239 

positive regulator of Wnt signaling for CSC survival44. In agreement with our work, a 240 

subsequent study from Buczacki et al. (2018) demonstrated that qCSC survival in CRC 241 

is also dependent on non-canonical hedgehog signaling mediated regulation of Wnt 242 

signaling37. In addition, several of the genes common to both the revSCs reported by 243 

Ayyaz et al (2019)15 and qCSCs, namely CLU129, CTSD130, CDKN1A131, EMP1132, 244 

MUC3133, LAMC2134, KRT19135, LGALS3136, F3137,138, ITGB4139, CDH17140 and GSN141, 245 

are targets and/or regulators of Wnt signaling. Overall, these data demonstrate that both 246 

cycling and non-cycling CSCs share overlapping molecular profiles and further support 247 

the targeting of non-canonical hedgehog signaling to prevent disease relapse37,44,142. 248 

 249 

However, the molecular mechanisms that distinguish non-cycling qCSCs from cycling 250 

CSCs required further elucidation. p53 plays a crucial role in regulating cellular stress 251 

responses such as DNA-damage repair, senescence, apoptosis and cell cycle arrest in 252 
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virtually all cell types87,143. In addition, it is an important regulator of stem cell self-renewal 253 

and differentiation in embryonic and adult tissue stem cells77,144,145 and cancer stem 254 

cells146–148. Significantly, it has also been demonstrated to be essential for the 255 

maintenance of quiescence in HSCs, NSCs, muscle stem cells and lung progenitor 256 

cells76,78,149–151.  257 

 258 

Here we show that qCSCs, in contrast to cycling ALDHPositive CSCs44, are enriched for 259 

p53 signaling genes. p53 is mutated in 40 - 50% of CRCs. Reflecting this, half the tumors 260 

included in our study contain a p53 mutation (Table S1). However, regardless of mutation 261 

status, p53 appears to be functional in all the PDO models analyzed, as observed by p53-262 

dependent expression of CDKN1A (Figure 3D)152,153.  263 

 264 

Inhibiting the p53 pathway may therefore provide novel therapeutic “lock-out” strategies 265 

to induce the proliferation of qCSCs and thereby sensitize them to chemotherapeutics 266 

and prevent relapse128,154,155. Considering the role of p53 as a tumor suppressor and 267 

guardian of homeostasis in healthy tissues, as well as its inactivation in many cancers, 268 

most strategies to date have focused on the development of p53 activators156. However, 269 

our data, and others, suggest that strategies that activate p53 may lead to therapy 270 

resistance. For example, in breast cancer p53 induces senescence, drives resistance to 271 

therapy and is associated with poor therapeutic response and overall survival157,158. 272 

 273 

Inhibiting p53 could interfere with its role in normal tissue homeostasis or lead to the 274 

activation of senescent cancer cells in other tissues. However, healthy cells have lower 275 
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p53 expression levels than cancer cells159 and single dose treatments, that avoid the 276 

unwanted consequences of sustained p53 inhibition, may be sufficient to eliminate 277 

qCSCs. This was recently demonstrated by Webster et al. (2020) in melanoma, where a  278 

single dose of p53 inhibitor during the early stage of BRAF/MEK inhibitor treatment 279 

resulted in improved response to therapy160. 280 

 281 

In addition, targeting negative cell cycle regulators downstream of p53, such as those  282 

identified here (AKAP1280–83, CD8284,112, CDKN1A85–88, FHL289–92, GPX393–95, 283 

KIAA024796,97, LCN298–100,115, TFF2101–105, UNC5B106–108 and ZMAT3109,110), may provide 284 

novel strategies for activating cell cycle in qCSCs without affecting the role of p53 in 285 

healthy cells. For example, p53-dependent activation of p21 (CDKN1A), which we show 286 

is required for the maintenance of qCSCs, is an important axis in senescence-dependent 287 

tumor suppression. However, despite p21 playing an important role in mediating the p53-288 

dependent cellular response to stress, lack of p21 does not promote tumor 289 

development161. Furthermore, p21 maintains CSC self-renewal, limits proliferation and 290 

confers therapy resistance in numerous cancers types in which its temporal inhibition has 291 

been proposed as a strategy to overcome resistance to DNA-damaging chemotherapy 292 

and radiation60–63,162–166. Indeed, several small molecule inhibitors of p21 have been 293 

reported, including butyrolactone I167, LLW10168,  sorafenib169 and UC2288170, that could 294 

serve as novel drugs for the elimination of therapy resistant qCSCs. 295 

 296 

These data demonstrate the existence of long-term p53-dependent qCSCs in colon 297 

cancer and provide evidence supporting the temporal inhibition of p53 signaling, in 298 
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combination with standard-of-care treatments, for the elimination of qCSCs and 299 

prevention of disease relapse. The p53 target genes identified here, along with the 300 

publication of our qCSC whole-transcriptome data, will provide a valuable resource for 301 

the development of such therapeutic strategies in the future. 302 

 303 

EXPERIMENTAL PROCEDURES 304 

 305 

Human tissue samples and establishment of patient-derived cancer organoid cell 306 

cultures  307 

Tumor material was obtained with informed consent from CRC patients under approval 308 

from the local Institutional Review Board of Charité University Medicine (Charité Ethics 309 

Cie: Charitéplatz 1, 10117 Berlin, Germany) (EA 1/069/11) and the ethics committee of 310 

the Medical University of Graz  and the ethics committee of the St John of God Hospital 311 

Graz (23-015 ex 10/11). Tumor staging was carried out by experienced and board-312 

certified pathologists (Table S1). Cancer organoid cultures were established and 313 

propagated as described45,171.  314 

 315 

Cell cycle analysis and colony forming assays 316 

Cell cycle analysis was carried using the Click-iT EdU assay (Invitrogen, #C10337) and 317 

assessed by FACS on a BD LSR II analyzer. For colony forming assays, PDOs were 318 

processed to single cells and labelled with CellTracker™ CM-DiI fluorescent dye (C7000, 319 

Thermo Fisher) or PKH26 (PKH26GL, Sigma-Aldrich) following manufacturer’s 320 

instructions and DAPI (to exclude dead cells). PKH26Positive DAPINegative (live) cells were 321 
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sorted by FACS (BD FACS Aria II) into adherent Matrigel culture. After 12 days, PDOs 322 

were once again processed to single cells and sorted by FACS, seeding PKH26Positive 323 

DAPINegative  cells and PKH26Negative DAPINegative cells separately at limiting dilution into 96-324 

well adherent Matrigel and 384-well non-adherent ultra-low attachment plates at a 325 

frequency of 100 and 1 cell per well, respectively. The purity of the sorted PKH26Positive 326 

cell population was confirmed by post-sort FACS analysis. PDO sizes were determined 327 

by ImageJ software analysis. Ultra-low attachment wells containing spheroids were 328 

counted and used to calculate the CSC frequency using ELDA software 329 

(http://bioinf.wehi.edu.au/software/elda/index.html; Hu and Smyth, 2009). 330 

 331 

Xenotransplantation 332 

Housing and handling of animals followed European and German Guidelines for 333 

Laboratory Animal Welfare. Animal experiments were conducted in accordance with 334 

animal welfare law, approved by local authorities, and in accordance with the ethical 335 

guidelines of Bayer AG. PDOs were processed to single cells and labelled with PKH26 336 

(PKH26GL, Sigma-Aldrich) following manufacturer’s instructions and DAPI (to exclude 337 

dead cells). PKH26Positive DAPINegative cells were collected by FACS and immediately 338 

transplanted by injected subcutaneously in PBS and Matrigel (1:1 ratio) into female 8 – 339 

10-week-old nude-/- mice at 1000 cells per animal. The purity of the sorted PKH26Positive 340 

cell population was confirmed by post-sort FACS analysis. 341 

 342 

Immunofluorescence staining  343 
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Tumors were fixed in 4% paraformaldehyde overnight and cryopreserved in OCT 344 

compound. Immunohistochemistry of frozen sections was carried out via standard 345 

techniques with α-Tubulin (T5168, mouse monoclonal, Sigma; diluted 1:1000) and a 346 

secondary conjugated antibody at room temperature for 2 hours. For 347 

immunofluorescence imaging of PDOs, cultures were fixed in 4% paraformaldehyde for 348 

30 min at room temperature and permeabilized with 0.1% Triton X-100 for 30 min and 349 

blocked in phosphate-buffered saline (PBS) with 10% bovine serum albumin (BSA). F-350 

actin was stained with Alexa Fluor® 647 Phalloidin (#A22287, Thermo Fisher; diluted 351 

1:20) for 30 min at room temperature. Nuclei were counterstained with DAPI. Negative 352 

controls were performed using the same protocol with substitution of the primary antibody 353 

with IgG-matched controls. Cancer organoids were then transferred to microscope slides 354 

for examination using a Zeiss LSM 700 Laser Scanning Microscope.  355 

 356 

RNA Sequencing 357 

Cells were lysed in RLT buffer and processed for RNA using the RNeasy Mini Plus RNA 358 

extraction kit (Qiagen). Samples were processed using NuGEN’s Ovation RNA-Seq 359 

System V2 and Ultralow V2 Library System and sequenced on an Illumina HiSeq 2500 360 

machine as 2x125nt paired-end reads. The raw data in Fastq format were checked for 361 

sample quality using our internal NGS QC pipeline. Reads were mapped to the human 362 

reference genome (assembly hg19) using the STAR aligner (version 2.4.2a). Total read 363 

counts per gene were computed using the program “featureCounts” (version 1.4.6-p2) in 364 

the “subread” package, with the gene annotation taken from Gencode (version 19). 365 
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Variance-stabilising transformation from the Bioconductor package DESeq2172 was used 366 

for normalisation and differential-expression analysis.  367 

 368 

Viral transduction 369 

Cells were seeded in 100 µl volumes of antibiotic free culture media at 1.0 x105 cells per 370 

well in ultra-low attachment 96-well plates. Control and shRNA lentiviruses were 371 

purchased from Sigma-Aldrich (Table S2). Viral particles were added at a multiplicity of 372 

infection of 1. Cells were transduced for up to 96 h or until GFP positive cells were 373 

observed before being embedded in Matrigel for the establishment of lentiviral transduced 374 

cancer organoid cultures. Puromycin (2 µg/ml) was used to keep the cells under selection.  375 

 376 

Gene expression analysis 377 

For quantitative real-time RT-PCR analysis RNA was isolated using the RNeasy Mini Plus 378 

RNA extraction kit (Qiagen). cDNA synthesis was carried out using a Sensiscript RT kit 379 

(Qiagen). RNA was transcribed into cDNA using an oligo dTn primer (Promega) per 380 

reaction. Gene expression analysis was performed using TaqMan® Gene Expression 381 

Assays (Applied Biosystems) (Table S3) on an ABI Prism 7900HT sequence detection 382 

system (Applied Biosystems). GAPDH was used as an endogenous control and results 383 

were calculated using the Δ-ΔCt method. Data were expressed as the mean fold gene 384 

expression difference in three independently isolated cell preparations over a comparator 385 

sample with 95% confidence intervals. Survival curves were generated using the Kaplan-386 

Meier Plotter (www.kmplot.com/analysis)173. Gene ontology enrichment analysis was 387 

carried out using the Gene Ontology Resource (www.geneontology.org)174,175. 388 
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 389 

Statistical analysis 390 

GraphPad Prism 8.0 was used for data analysis and imaging. All data are presented as 391 

the means ± SD, followed by determining significant differences using the two-tailed t test. 392 

Significance of RT-PCR data was determined by inspection of error bars as described by 393 

Cumming et al. (2007)176. Gene set enrichment analysis was carried out using pre-ranked 394 

feature of the Broad Institute GSEA software version 2 using msigdb v5.1 gene sets177,178. 395 

The ranking list was derived from the fold changes calculated from the differential gene 396 

expression calculation and nominal p-values. P-values <0.05 were considered as 397 

statistically significant. The representation factor and the associated probability of finding 398 

an overlap were calculated using http://nemates.org/MA/progs/representation.stats.html. 399 

Survival curves were generated using the Kaplan-Meier Plotter 400 

(www.kmplot.com/analysis)173. For the final list of significant genes, False Discovery Rate 401 

(FDR) was computed using the Benjamini-Hochberg method179. 402 
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 858 

FIGURE LEGENDS 859 
 860 

Figure 1. Colon cancer PDOs contain a subpopulation of non-cycling cells  861 

(A) Phase contrast image of colon cancer PDOs labelled with cell-tracker dye CM-DiL 862 

after 72 h (Bar = 75 µm) (see also Table S1). (B) Representative FACS plots of EdU cell 863 

cycle analysis of 151-ML-M PDO cells at 2 h (left hand side) and 72 h (right hand side) 864 

after labelling. (C) Percentage of cells  (±SD) in G0/1, G2/M and S Phase at 2 h and 72 865 

h post EdU labelling in PDO models 151-ML-M, 162-MW-P, 195-CB-P, 249-CB-P, 278-866 

ML-P and 302-CB-M (data from three independent experiments). 867 

 868 

Figure 2. Non-cycling PDO cells are quiescent CSCs that can re-enter cell cycle and 869 

persist long-term in vivo 870 
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(A) Representative FACS plot of PKH26 labelled 278-ML-P PDO cells after 12 h (middle 871 

panel) and 12 days (right side panel) compared to non-labelled control (left side panel). 872 

(B) Frequency (±SD) of PKH26Positive LRCs in PDO models after 12 days (data from 5 873 

independent experiments). (C) FACS histograms demonstrating frequency of 874 

PKH26Positive cells in 151-ML-M PDOs at 12 h (left side panel) and 12 days (middle panel) 875 

after staining and 24 days (right side panel) after FACS isolation and serial replating of 876 

PKH26Positive cells from 12 day cultures. (D) Phase contrast of unlabeled  PDOs (negative 877 

control) (Bar = 100 µm) and (E) immunofluorescence images of PKH26 labelled PDOs at 878 

12 h and 12 days (left and middle panels) and 24 days after FACS isolation and serial re-879 

plating of PKH26Positive LRCs from 12 day cultures (right side panel). Cells are stained for 880 

F-ACTIN (green) and nuclei are counterstained with DAPI (blue) (Bars = 20 µm). (F) Mean 881 

colony size (±SD) of PKH26Negative and PKH26Positive cell derived PDOs in Matrigel culture. 882 

Data from three independent experiments. **p-value: < 0.01 (t test). (G) Limiting dilution 883 

spheroid formation assay of PKH26Negative and PKH26Positive cells. Data from three 884 

independent experiments. The p-values for pairwise tests of differences in CSC 885 

frequencies between PKH26Negative and PKH26Positive cells in 151-ML-M, 162-MW-P, 195-886 

CB-P, 249-CB-P, 278-ML-P and 302-CB-M tumors are 1.27 x 10-13, 1.87 x 10-5, 6.42 x 887 

10-11, 1.12 x 10-10, 3.5 x 10-14, 6.14 x 10-12, respectively. (H) Immunofluorescence image 888 

of a frozen PDX section derived from 1,000 PKH26 labelled 195-CB-P PDO cells 80 days 889 

post transplantation. Magnified region indicates a long-term label-retaining PKH26Positive 890 

cell. Cells are stained for a-tubulin (green) and nuclei are counterstained with DAPI (blue) 891 

(Bar = 100µm).  892 

 893 
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Figure 3. PKH26Positive qCSCs are enriched for stem cell associated gene sets and 894 

p53-interacting negative regulators of proliferation and have downregulated 895 

expression of cell cycle genes  896 

(A) RNA sequencing generated gene set enrichment analysis for organ development 897 

(nominal p-value = < 0.0005), cell development (nominal p-value = < 0.0005), nervous 898 

system development (nominal p-value = < 0.0005), embryonic development (nominal p-899 

value = 0.03), placenta (nominal p-value = < 0.0005), epithelial mesenchymal transition 900 

(nominal p-value = < 0.0005), p53 pathway (nominal p-value = < 0.0005), TNFa signaling 901 

via NFkB (nominal p-value = < 0.0005), Wnt signaling pathway (nominal p-value = 0.002) 902 

and hedgehog signaling pathway (nominal p-value = 0.002) in 12 day PKH26Positive LRCs 903 

(compared to PKH26Negative cells) from PDO models 151-ML-M, 162-MW-P, 195-CB-P, 904 

249-CB-P, 278-ML-P and 302-CB-M (n = 4 separate cell preparations). (B) Gene ontology 905 

(GO) groups downregulated in PKH26Positive LRCs. (C) Cell Cycle, transcription and 906 

protein synthesis GO terms downregulated in PKH26Positive LRCs. (D) RNA sequencing 907 

generated normalized counts for negative cell cycle regulator and p53 target genes 908 

AKAP12, CD82, CDKN1A, FHL2, GPX3, KIAA0247, LCN2, TFF2, UNC5B and ZMAT3 in 909 

PKH26Negative and PKH26Positive cells. (E) Venn diagram shows the number of upregulated 910 

RNA-sequencing generated transcripts identified in intestinal revSCs (50 genes; log fold 911 

change > 0.25, p-value < 0.05) by Ayyaz et al. (2019)15 and in PKH26Positive qCSCs (255 912 

genes; log2 fold change > 0.586, p-value < 0.05) and upregulated in both revSCs and 913 

PKH26Positive qCSCs (14 genes; representation factor 21.8, p-value < 1.452e-15). The 914 

representation factor is the number of overlapping genes divided by the expected number 915 

of overlapping genes drawn from two independent groups. A representation factor > 1 916 
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indicates more overlap than expected of two independent groups. (F) Table shows the 14 917 

genes upregulated in both revSCs and PKH26Positive qCSCs. *ITM2C is a paralog of revSC 918 

enriched Itm2b. (See also Figure S1). 919 

 920 

Figure 4. p53 target genes are indicators of poor prognosis and required for the 921 

maintenance of PKH26Positive quiescent CSCs 922 

(A) Kaplan-Meier survival curves for AKAP12, CD82, CDKN1A, FHL2, GPX3, KIAA0247, 923 

LCN2, TFF2, UNC5B and ZMAT3 in colorectal cancer patients comparing lower quartile 924 

to upper quartile (logrank p-values = 2.2E-06, 0.004, 8.1E-05, 0.00012, 0.0003, 0.049, 925 

0.00018, 5.7E-05 and 0.3, respectively). Of these, higher AKAP12, CD82, CDKN1A, 926 

FHL2, GPX3, KIAA0247, LCN2, TFF2 and UNC5B are significant at FDR < 10%. Results 927 

based upon data generated by the Kaplan-Meier Plotter (kmplot.com)173. (B) 928 

Representative FACS plot of PKH26 labelled 151-ML-M Control-GFP cells (top row) and 929 

shRNA CDKN1A-GFP cells (bottom row) after 12 h and 12 days. (C) Frequency (±SD) of 930 

PKH26Positive LRCs in shRNA CDKN1A PDO models after 12 days compared to control 931 

virus transduced cells (data from 3 independent experiments). (See also Figure S2). 932 
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Supplemental Information 
 

 
 

Figure S1: RNA-sequencing generated normalized counts for differentially expressed and 
common revSC1 molecular signature genes in PKH26Positive qCSCs compared to 
PKH26Negative cells. Related to Figure 3. 
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Figure S2: Fold expression of CDKN1A (±95% confidence intervals) in shRNA CDKN1A 
transduced PDOs from three independent experiments. Related to Figure 4. 
 
Significant differences are *p-value < 0.05; **p-value < 0.01 and were determined by inspection 
of error bars as described by Cumming et al. (2007)2. 
 

 
 

 
 
Table S1 Tissue Origin, TNM Classification and P53 status of tumors. Related to Figure 1. 
 
T: primary tumor size, N: regional lymph nodes involved, M: distant metastasis, *SNV: non-
synonymous single nucleotide variant 
 

 
 
Table S2. Lentiviral Transduction Particles. Related to Figure 4 

Patient Model Origin TNM stage Stage P53 Status

151-ML-M Liver T2 N0 M0 , M1a IVA *SNV (G266E)
162-MW-P Sigmoid colon & descending colon T3 N0 M0 IIA Wild type
195-CB-P Sigmoid colon T4a N2b M1a IVA *SNV (C135F)
249-CB-P Ascending colon T3 N0 M0 III Wild type
278-ML-P Sigmoid colon & descending colon T4a N0 M0 IIB *SNV (R273C)
302-CB-M Liver T3 N1a M1a IVA Wild type

LENTIVIRUS SIGMA PRODUCT PRODUCT NAME VECTOR TRC NUMBER

Control SHC003V
MISSION® tGFP™ Positive Control Transduction 

Particles –pLKO.1-puro-CMV-tGFP NA

shCDKN1A 1 SHCLNV-NM_000389
CDKN1A  MISSION shRNA Lentiviral Transduction 

Particles –hPGK-Puro-CMV-tGFP TRCN0000040123

shCDKN1A 2 SHCLNV-NM_000399
CDKN1A  MISSION shRNA Lentiviral Transduction 

Particles –hPGK-Puro-CMV-tGFP TRCN0000287021

shCDKN1A 3 SHCLNV-NM_000399
CDKN1A MISSION shRNA Lentiviral Transduction 

Particles –hPGK-Puro-CMV-tGFP TRCN0000287091
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Table S3. Taqman® Gene Expression Assays. Related to Figure 4. 

 

Supplementary Data 1 
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Symbol Gene Name UniGene ID
TaqMan®Gene 
Expression Assay

CDKN1A cyclin dependent kinase inhibitor 1A Hs.370771 Hs00355782_m1
GAPDH glyceraldehyde-3-phosphate dehydrogenase Hs.544577 Hs02758991_g1 
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