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ABSTRACT 34 
 35 
Colorectal cancer (CRC), a disease of high incidence and mortality, exhibits a large degree of 36 

inter- and intra-tumoral heterogeneity. The cellular etiology of this heterogeneity is poorly 37 

understood. Here, we generated and analyzed a single-cell transcriptome atlas of 49,859 CRC 38 

cells from 16 patients, validated with an additional 31,383 cells from an independent CRC patient 39 

cohort. We describe subclonal transcriptomic heterogeneity of CRC tumor epithelial cells, as well 40 

as discrete stromal populations of cancer-associated fibroblasts (CAFs). Within CRC CAFs, we 41 

identify the transcriptional signature of specific subtypes that significantly stratifies overall survival 42 

in more than 1,500 CRC patients with bulk transcriptomic data. We demonstrate that scRNA 43 

analysis of malignant, stromal, and immune cells exhibit a more complex picture than portrayed 44 

by bulk transcriptomic-based Consensus Molecular Subtypes (CMS) classification. By 45 

demonstrating an abundant degree of heterogeneity amongst these cell types, our work shows 46 

that CRC is best represented in a transcriptomic continuum crossing traditional classification 47 

systems boundaries. Overall, this CRC cell map provides a framework to re-evaluate CRC tumor 48 

biology with implications for clinical trial design and therapeutic development. 49 
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Main 68 

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and a leading cause of 69 

cancer-related mortality worldwide1,2. Approximately 50% of patients experience disease relapse 70 

following curative-intent surgical resection and chemotherapy3,4. Despite the high incidence and 71 

mortality of advanced CRC, few effective therapies have been approved in the past several 72 

decades5. One barrier to the development of efficacious therapeutics is the biological 73 

heterogeneity of CRC and its variable clinical course6. While landmark studies from The Cancer 74 

Genome Atlas (TCGA) have defined the somatic mutational landscape within CRC, several 75 

studies have shown that stromal signatures, including fibroblasts and cytotoxic T cells, are likely 76 

the main drivers of clinical outcomes7–12. These findings suggest that the clinical phenotypes of 77 

CRC and by extension, its tumor biology, is shaped by a complex niche of heterotypic cell 78 

interactions within the tumor microenvironment (TME)8-12.  79 

 80 

Bulk gene expression analyses by several independent groups have identified distinct CRC 81 

subtypes13–15. Reflecting both the tumor and TME, an international consortium published the 82 

Consensus Molecular Subtypes (CMS), which proposed four distinct subtypes of CRC13,14,16. 83 

Unfortunately, the association between CMS  and meaningful therapeutic response to specific 84 

agents have shown inconsistent results across studies and CMS lacks a concordance between 85 

primary and metastatic CRC tumors, limiting its utility thus for in clinical decision making17–24. As 86 

a result, an improved CMS classification or an alternative classification system is required to 87 

improve clinical utility.  88 

 89 

To overcome the limitations of bulk-RNA sequence profiling, we utilized single-cell RNA 90 

sequencing (scRNA-seq) to more thoroughly evaluate the CRC subtypes at the molecular level, 91 

including within the context of the currently defined CMS classification. We dissected heterotropic 92 

cell states of tumor epithelia and stromal cells, including a cancer-associated fibroblast 93 
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(CAF) population. The CAF population's clinical and prognostic significance became apparent 94 

when CAF signatures were applied to large, independent CRC transcriptomic cohorts.  95 

 96 

RESULTS 97 

We profiled sixteen primary colon tissue samples and eight adjacent non-malignant tissues (24 in 98 

total) using droplet-based, scRNA-seq. Altogether, we captured and retained 49,589 single cells 99 

after performing quality control for downstream analysis (Fig. 1a, supplementary table 1). All 100 

scRNA-seq data were merged and normalized to identify robust discrete clusters of epithelial cells 101 

(EPCAM+, KRT8+, and KRT18+), fibroblasts (COL1A2+), endothelial cells (CD31+), T cells 102 

(CD3D+), B cells (CD79A+), and myeloid cells (LYZ+) using canonical marker genes. Additionally, 103 

each cell type compartment was analyzed separately. Cluster v0.4.1 and manual review of 104 

differentially expressed genes in each subcluster were studied to choose the best cluster 105 

resolution without cluster destabilization (see methods)25. Cell population designation  was 106 

chosen by specific gene expression, and SingleR was also utilized for unbiased cell type 107 

recognition (see methods)26–29. 108 

 109 

In addition to cancer cells, we identified diverse TME cell phenotypes, including fibroblasts 110 

subsets (CAF-S1 and CAF-S4), endothelial cells, CD4+ subsets (naïve/memory, Th17, and 111 

Tregs),  CD8+  subsets (naïve/memory, cytotoxic, tissue-resident memory, and Mucosa-112 

Associated Invariant (MAIT) cells),  NK cells, innate lymphoid cell (ILC) types, B cell phenotypes 113 

(naïve, memory, germinal center, and plasma cells), and monocyte lineage phenotypes (C1DC+ 114 

dendritic cells, proinflammatory monocytes [IL1B, IL6, S100A8, and S100A9]), and  M2 polarized 115 

anti-inflammatory [CD163, SEPP1, APOE, and MAF]),  tumor-associated macrophages (TAMs) 116 

(Fig. 1b-d, Extended Data Figs. 1-3, and Extended Data Tables  1-4)26–29.  117 

 118 
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For validation, we additionally profiled 31,383 high-quality, single cells from an independent cohort 119 

using stringent criteria to corroborate our findings (see methods)30. Thus, a total of 81,242 high-120 

quality cells were profiled to produce a single-cell map of 40 colorectal cancer patients. The results 121 

of the primary CRC cohort (49,859 single-cells) are available at the Colon Cancer Atlas 122 

(www.websiteinprogress.com). 123 

 124 

Malignant colon cancer reveals tumor epithelial cell subclonal heterogeneity and 125 

stochastic behavior.  126 

 127 

We detected 8,965 tumor and benign epithelial cells (EPCAM+, KRT8+, and KRT18+) and, on 128 

reclustering, produced 17 epithelial clusters (designated C1 to C17) (Fig. 2a and Supplementary 129 

Table 2). Clusters were chiefly influenced by colonic epithelial markers, including those for 130 

stemness (LGR5, ASCL2, OLFM4, and STMN1), enterocytes (FABP1 and CA2), goblet cells 131 

(ZG16, MUC2, SPINK4, and TFF3), and enteroendocrine cells (PYY and CHGA) 132 

(Supplementary Fig. 2a and Supplementary Table 2). Some tumor-derived clusters (C7, C8, 133 

and C13) did not express known colon epithelial markers, potentially representing a de-134 

differentiated state of plasticity (Supplementary Fig. 2b)31. Each distinct tumor-derived cluster 135 

was predominantly patient-specific, reflecting a high degree of inter-patient tumoral cell 136 

heterogeneity. In contrast, epithelial populations derived from non-malignant tissue samples from 137 

multiple patients clustered together, a pattern observed in previous studies confirming both 138 

normal tissue homeostasis and limited sample batch effects (Fig. 2a)32,33. 139 

 140 

We next aimed to identify gene expression programs shared across these clusters using hallmark 141 

pathway analysis34. A strong overlap was observed for multiple pathways such as activation of 142 

inflammatory, epithelial-mesenchymal transformation (EMT), immune response, and metabolic 143 

pathways (Fig. 2b). Interestingly, high microsatellite instability (MSI-H) and microsatellite stable 144 
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(MSS) CRC tumors, considered clinically separate entities, demonstrated similar pathway 145 

program activation within the tumor epithelial populations. Each cluster also showed activation of 146 

unique pathways such as activation of angiogenesis (C6), Notch signaling (C14), apoptosis (C11), 147 

hypoxia (C11), and TNF signaling dysregulation (C15), among others. However, MSI-H tumors 148 

differed from MSS tumors based on immune cell infiltration (Extended Data Fig. 1).  149 

 150 

Since intratumoral heterogeneity is recognized as a key mechanism contributing to drug 151 

resistance, cancer progression, and recurrence, we next focused on dissecting potential 152 

transcriptomic states to identify heterogeneity within each patient’s tumor35–38. We found that each 153 

tumor specimen contained 2-10 distinct tumor epithelial clusters (Fig. 2c). Gene set variation 154 

analysis (GSVA) was performed on cells from individual tumor samples and illustrated the sub-155 

clonal transcriptomic heterogeneity within each specimen (Supplementary Fig. 2c)39. Clusters 156 

identified in individual pathway analysis demonstrated the up- or down-regulation of crucial 157 

metabolic and oncogenic pathways between samples, suggesting wide phenotype variations 158 

between cells from the same tumor40.  159 

 160 

Given the evidence of intratumoral epithelial heterogeneity, we next performed trajectory 161 

inference using pseudotime analysis to identify potential alignments or lineage relationships  (i.e., 162 

right versus left-sided CRC), CMS classification, or MSI status  163 

(Fig. 2d)41,42. This analysis also served as a control for inter-patient genomic heterogeneity and 164 

provided an orthogonal strategy to confirm the transcriptomic trends we identified. We detected 165 

five molecular states (S1n/t to S5n/t) with malignant and normal epithelial cells intermixed along 166 

a joint transcriptional trajectory. This observation is consistent with prior studies demonstrating 167 

that CRC cells recapitulate normal colon epithelia's multilineage differentiation process as each 168 

transcriptional state’s pathway activation in both normal and tumor cells was related to normal 169 
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colon epithelial function of nutrient absorption or maintaining colon homeostasis (Supplementary 170 

Fig. 3 and Supplementary Table 3)43,44. 171 

 172 

Additionally, tumor cells showed upregulation of embryogenesis (S2t), consistent with previous 173 

findings that tumor cells revert to their embryological states in cancer development 174 

(Supplementary Table 4)45. Interestingly, there were no significant associations with anatomic 175 

location, CMS classification, or MSI status within our dataset or an independent dataset of 31,383 176 

single cells (Supplementary Fig. 4)30. Hence, in our analysis, CRC development mainly 177 

represents a hijacking of the normal epithelial differentiation program, coupled with the acquisition 178 

of additional cancer-related and embryogenic pathways (Supplementary Fig. 3)46.  179 

 180 

CRC-associated fibroblasts in the tumor microenvironment exhibit diverse phenotypes, 181 

and specific subtypes are associated with poor prognosis.  182 

 183 

We next focused on CRC TME subpopulations. High-quality 819 fibroblasts were re-clustered into 184 

eight clusters, and then phenotypically classified into two major subtypes to assess for further 185 

CAF heterogeneity. These phenotypic subtypes were found to be immunomodulatory CAF-S1 186 

(PDGFRA+ and PDPN+) and prometastatic CAF-S4 (RGS5+ and MCAM+) (Fig. 3 and 187 

Supplementary Table 4)47. This fibroblast cluster dichotomy was also observed in the 188 

independent CRC patient scRNA-seq dataset of 31,383 cells (Supplementary Fig. 5)30. 189 

 190 

The CAF-S1 and CAF-S4 subtypes showed striking resemblances to the mCAF (extracellular 191 

matrix) and vCAF (vascular)  fibroblast subtypes, respectively, as previously described in a mouse 192 

breast cancer model48. Most clusters were found in multiple patients, albeit in varying proportions, 193 

signifying shared patterns in CAF transcriptomic programs between patients. Fibroblasts derived 194 

from MSI-H tumors were distributed similarly throughout these clusters.  195 
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 196 

CAF-S1 exhibited high chemokine expressions such as CXCL1, CXCL2, CXCL12, CXCL14, and 197 

immunomodulatory molecules including TNFRSF12A (Supplementary Fig. 6). Additionally, 198 

CAF-S1 expressed extracellular matrix genes including matrix-modifying enzymes (LOXL1 and 199 

LOX)48. To determine this population's functional significance, we compared the CAF-S1 200 

population transcriptomes to those described recently in breast cancer, lung cancer, and head 201 

and neck cancer49. We recovered five CAF subtypes, within the CAF-S1 population, including 202 

ecm-myCAF (extracellular; GJB+), IL-iCAF (growth factor, TNF and interleukin pathway; 203 

SCARA5+), detox-iCAF (detoxification and inflammation; ADH1B+), wound-myCAF (collagen 204 

fibrils and wound healing; SEMA3C), and TGFβ-myCAF (TGF-β signaling and matrisome; 205 

CST1+, TGFb1+), which were previously divided into two major subtypes: iCAF and myCAF (Fig. 206 

3b). Among these five subtypes, ecm-myCAF and TGFβ-myCAF are known to correlate with 207 

immunosuppressive environments and are enriched in tumors with high regulatory T lymphocytes 208 

(Tregs) and depleted CD8+ lymphocytes. Additionally, these subtypes are associated with 209 

primary immunotherapy resistance in melanoma and lung cancer49.  210 

 211 

The CAF-S4 population expressed pericyte markers (RGS5+, CSPG4+, and PDGFRA+), CD248 212 

(endosialin), and EPAS1 (HIF2-α),  that this particular CAF subtype is vessel-associated, with 213 

hypoxia potentially contributing to invasion and metastasis, as has been shown in another study 214 

48. CAF-S4 clustered into the immature phenotype (RGS5+, PDGFRB+, and CD36+) and the 215 

differentiated myogenic subtype (TAGLN+ and  MYH11+)(Fig. 3c and Supplementary Table 216 

4)50.   217 

 218 

Given the correlation between CMS4 and fibroblast infiltration, we next sought to test the 219 

existence of CAF-S1 and CAF-S4 signatures in bulk transcriptomic data and their association with 220 

clinical outcomes15. To this end, we interrogated and carried out a meta-analysis of eight 221 
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colorectal cancer transcriptomic datasets comprising 1,584 samples. We detected a strong and 222 

positive correlation between specific gene expressions characterizing each CAF subtype in CRC, 223 

pancreatic cancer, and non-small cell lung cancer (NSCLC) (Fig. 4) (see methods for datasets). 224 

The gene signatures were specific to each CAF-S1 and CAF-S4, thus confirming their existence 225 

in colorectal cancers and other tumor types.  226 

 227 

We found high CAF-S1 and CAF-S4 signatures associated with poor median overall-survival and 228 

early cancer recurrence (HR>1, p<0.05), irrespective of CMS subtypes in three independent CRC 229 

datasets (Supplementary Fig 7). Additionally, CAF signatures stratified the CMS4 subtype into 230 

high- and low-risk overall survival in all datasets, thus identifying additional heterogeneity and 231 

providing prognostication in this aggressive patient subgroup (Fig. 4b-d). Here, using scRNA-232 

seq, we show for the first time that high CAF infiltration in CRC is associated with poor prognosis 233 

across all molecular subtypes, and which further stratifies the CMS4 subgroup into high and low-234 

risk clinical phenotypes in CRC cohorts. 235 

 236 

Single-cell RNA sequencing reveals heterogeneity beyond Consensus Molecular Subtypes 237 

in colorectal cancers and offers therapeutic opportunities.  238 

 239 

The lack of association between tumor epithelia and CMS classification, as well as the survival 240 

differences between high- and low-risk CAF signatures across CRC molecular subtypes suggest 241 

CRCs are much more heterogeneous than the traditional classification systems have indicated 242 

(e.g. those systems defined by somatic alterations, epigenomic features, and bulk gene 243 

expression data)13,14,51,52.  244 

 245 

Among these the widely adopted CMS classification, which reflects both the malignant cell 246 

phenotypes and the TME, classified CRC into CMS1 (MSI immune), CMS2 (canonical), CMS3 247 
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(metabolic), and CMS4 (mesenchymal) subtypes  based on bulk transcriptomic signatures15. To 248 

test our hypothesis, we estimated every cell type fraction using single-cell data from eight pooled 249 

datasets (>1,500 samples) with a machine-learning algorithm, CIBERSORTx53. When we 250 

compared epithelial, immune, and stromal cell populations among the CMS subtypes, we did not 251 

detect a distinct pattern of tumor, immune, or stromal cell signatures across the different CMS 252 

subtypes. Each CMS subtype was enriched in these cell types in varying proportions but without 253 

a clear distinctions between the four subtypes, suggesting a lack of clear separation among the 254 

CMS subsets at the single-cell resolution (Fig. 5a-b). Upon analysis of four independent bulk RNA 255 

datasets, there was significant discordance in terms of  cell phenotype enrichment with respect 256 

to each CMS subtype across the datasets  except CMS4 which had predominant stromal 257 

enrichment (Supplementary Figs. 8-11)54. These discordant results could be due to intra-patient 258 

CMS heterogeneity, intratumoral variation in tumor purity, stromal and immune cell infiltration, 259 

and CMS's inability to address tumor/TME-to-tumor/TME variability, among others16.  Thus, novel 260 

approaches that consider these factors are required to stratify patients for optimal biomarker and 261 

therapeutic development. 262 

 263 

Based on the above findings, we postulate that CRC is more accurately represented in a 264 

transcriptomic continuum previously proposed by Ma et al.55. The authors analyzed bulk 265 

transcriptomic data using a novel computational framework in which denovo, unsupervised 266 

clustering methods (k-medoid, non-negative-matrix factorization, and consensus clustering) 267 

demonstrated the existence of CRC in a transcriptomic continuum56–58. They further carried out 268 

principal component analysis and robustly validated two principal components, PC Cluster 269 

Subtype Scores 1 and 2 (PCSS1 and PCSS2, respectively). We reasoned that using single-cell 270 

data could deepen our understanding of how each cell phenotype contributes to the CRC tumor 271 

microenvironment using continuous scores that inform CRC diversity beyond binning CRC into 272 

traditional classifications.  273 
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 274 

We evaluated every cell fraction (epithelial, stromal, and immune components) from our data 275 

with the Ma et al. algorithm on eight pooled bulk transcriptomic datasets, focusing on PCSS1 276 

and PCSS2, since these were validated in the original study (Fig. 5c-d). On projecting single-277 

cell expression profiles on quadrants corresponding to each of the four CMS, we noted a lack of 278 

separation of all cell phenotypes between CMS subtypes suggesting that CRC exists in a 279 

transcriptomic continuum55.  280 

 281 

To test continuous scores reproducibility, we analyzed four bulk transcriptomic datasets 282 

separately; we found that transcriptional shifts were reproducible across datasets for all major cell 283 

types (Supplementary Figs. 8-11). The continuous scores showed no reliability in classifying 284 

CRC into immune–stromal rich (CMS1/CMS4) or immune-stromal desert (CMS2/CMS3) subtypes 285 

as proposed previously 21. Thus, confirming continuous scores rather than discrete subtypes may 286 

improve classifying CRC tumors and may explain tumor-to-tumor variability,  tumor/TME-to-287 

tumor/TME and TME-to-TME variabilities 55. Of note, CAF-S1 exhibited high PCSS1 and PCSS2 288 

scores across independent datasets, correlating with the CMS4 subtype. Thus, our analysis 289 

identified CAF-S1 as a cell of origin for biological heterogeneity in CMS4 subtypes associated 290 

with poor prognosis (Supplementary table 5).  291 

 292 

DISCUSSION 293 

In the present study, we evaluated the CMS classification of CRC that have been developed by 294 

bulk RNA-seq through single-cell resolution transcriptomic analysis. We find that stromal cells 295 

engender a more significant contribution to biological heterogeneity. Although previous studies 296 

employing bulk transcriptomics have demonstrated that the degree of stromal infiltration is 297 

associated with prognosis and a small scRNAseq study utilizing 26 fibroblasts demonstrated poor 298 

survival among CAF-enriched CRC tumors especially the CMS4 subtype. Here, using much larger 299 
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sample set of 1,182 high-quality fibroblasts, we identify the CAF-S1 subtype to be the cell of origin 300 

associated with poor prognosis across all CRC CMS subtypes and not just CMS4 59. Further, we 301 

developed a novel signature of CAF infiltration and demonstrate that CMS4 can be stratified into 302 

risk groups associated with good or poor median overall survival. These findings are significant 303 

since the CMS4 subtype, is primarily  stromal-driven and is enriched in more than 40% of 304 

metastatic CRC samples from patients with worse outcomes22. We also identified CAF-S1 305 

subtypes associated with certain biological functions in other cancers, including the ecm-myCAF 306 

and TGFβ-myCAF subtypes (responsible for immunotherapy resistance in NSCLC and 307 

melanoma), and CAF-S4s known to play a role in inducing cancer cell invasion49,50. Thus, 308 

targeting CAFs to remodel the tumor microenvironment may lead to improved and much-needed 309 

therapeutic development for metastatic CRC patients22,23.  310 

 311 

Targeting of CAFs in solid tumors is being explored in multiple clinical trials with variable results60–312 

62. Such studies likely failed to address CAF heterogeneity and their complex interactions with the 313 

other cells of TME. Our study suggests that CRC may be intricately entwined with the stroma, 314 

and therefore may be amenable to stromal targeted combinatoric approaches, including 315 

monoclonal antibodies that abrogate CAF-S1 function. In future studies, the treatment of CRC  316 

patients should involve stroma targeted therapies and take the above aspects into 317 

consideration60,63. The scRNA-seq or bulk-RNA-seq signatures corresponding to CAF-S1 and 318 

CAF-S4 may serve as suitable biomarkers for tumors that are reliant on this axis. Immunotherapy 319 

responses in MSS CRC, which comprise almost 95% of metastatic CRC, are lacking; CAF 320 

subpopulations within the TME may be suppressing immune responses in these tumors 64. Based 321 

on our analysis, we speculate that targeting CAF-derived chemokines and cytokines via 322 

biospecific antibodies, vaccines, or even cell-based therapies, may enhance current checkpoint 323 

blockade strategies60. Functional validation and clinical studies will be required to confirm the 324 

clinical utility of targeting these CAF populations in CRC. 325 
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 326 

More importantly, our study's single-cell resolution enables us to investigate whether tumor cell 327 

transcriptomes, and by extension, biological phenotypes, are the primary determinant of CMS 328 

classification. Based on our findings, it appears that bulk analysis may have been confounded by 329 

varying tumor microenvironment population enrichment, and that tumor cells within each patient 330 

do not segregate into static phenotypes but rather exhibit considerable plasticity. In contrast, the 331 

single-cell analysis uncovered the complex and mixed cellular-phenotypes among each cell 332 

specific subpopulation, which projected in a transcriptomic continuum across CMS subtypes. 333 

These findings were further supported by scRNA-seq CMS classification analysis that assigned 334 

each CRC sample to multiple CMS subtypes thereby suggesting CMS heterogeneity in each CRC 335 

tumor21,65. These findings may also explain why CMS-defined populations of tumors have not 336 

been readily observed in transcriptomic data from independent CRC cohorts22,54. Our data 337 

indicate that attempts to divide CRC phenotypes into the current discrete subtypes may 338 

undermine optimal patient stratification in the clinical trial setting. Intriguingly, by applying two 339 

independent algorithms, we demonstrate that CRC tumors and their ecosystems exist in a 340 

transcriptomic continuum and not only show tumor-to-tumor variability (as proposed by Ma et al.) 341 

but also demonstrate tumor/TME-to-tumor/TME transcriptional variability at the single-cell 342 

resolution55. The continuous scores are reproducible across transcriptomic datasets, thus 343 

allowing robust identification of patient subtypes. This may help to optimize CRC treatment in 344 

future studies.   345 

 346 

In conclusion, our study lends strong support to the tumor biology models proposed by Ma et al. 347 

(and other groups) and represents a conceptual shift in our understanding of CRC pathogenesis, 348 

clinical management, and therapeutic development. Future studies will need to consider tumor-349 

TME to tumor-TME heterogeneity which will be critical for optimizing biomarkers and treatment 350 

strategies for CRC. 351 
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METHODS 385 

 386 

Patient and tissue sample collection. Patients with resectable untreated CRC who underwent 387 

curative colon resection at Rush University Medical Center (Chicago, IL, USA) were included in 388 

this Institutional Review Board (IRB)-approved study. CRC specimens from 16 patients including 389 

nine Caucasian, six African American and one Asian patient with corresponding 8 adjacent normal 390 

tissue samples were processed immediately after collection at Rush University Medical Center 391 

Biorepository and sent for scRNA-seq.  Thus our scRNA-seq atlas represent diverse patient 392 

population. The study was conducted in accordance with ethical standards and all patients 393 

provided written informed consent.  394 

 395 

Droplet based scRNA-seq - 10× library preparation and sequencing. Single-cell RNA 396 

sequencing (scRNA-seq) was performed using 10X Genomics Single Cell 5' Platform. Tumors 397 

and non-malignant samples were enzymatically dissociated (Miltenyi), filtered through a 70-398 

micron cell strainer, pelleted after centrifugation at 300 xg and resuspended in DAPI-FACS buffer 399 

(PBS, 0.04% BSA). Samples were sorted and viable singlets were gated on the basis of scatter 400 

properties and DAPI exclusion. Approximately 3000 cells were pelleted and resuspended in PBS, 401 

and cells underwent single cell droplet-based capture on 10X Chromium instruments according 402 

to the 10X Genomics Single Cell 5' Platform protocol. Transcriptome libraries post-fragmentation, 403 

end-repair, and A-tailing double-sided size selection, and subsequent  adaptor ligation also 404 

followed the manufacturer’s protocol. Illumina NextSeq 550 was used for library sequencing and 405 

data were mapped and counted using Cellranger-v3.1.0 (GRCh38/hg38).  406 

 407 

scRNA-seq data quality control, gene-expression quantification, dimensionality reduction, 408 

and identification of cell clusters. Cell Ranger was utilized to process the raw gene expression 409 

matrices per samples and all samples from multiple patients were combined in R package (v3.6.3 410 
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2020-02-29] -- "Holding the Windsock"). Seurat package (v3.2.2) was used in this integrative 411 

multimodal analysis66. Genes detected in fewer than three cells and cells expressing less than 412 

200 detected genes were filtered out and excluded from analysis. In addition, cells expressing > 413 

25% mitochondria were removed. Cell cycle scoring was performed, (for the S phase and the 414 

G2M phase) and the predicted cell cycle phases were calculated. Doublet detection and any 415 

higher-order multiplets that were not dissociated during sample preparation were removed  via 416 

the DoubletFinder (v2.0.2) package using default settings67. Following quality control one non-417 

malignant colon sample (B-cac13) was discarded due to poor data quality. Finally, 49,859 cells 418 

remained and were utilized for downstream analysis. 419 

We adopted the general protocol described in Stuart et al. (2019) to group single cells into different 420 

cell subsets66. We employed the following steps: clustering the cells within each compartment 421 

(including the selection of variable genes for each dataset based on a variance stabilizing 422 

transformation [VST]), canonical correlation analysis (CCA) to remove batch effects among the 423 

samples, reduction of dimensionality, and projection of cells onto graphs 68,69. Principal 424 

component analysis (PCA) was carried out on the scaled data of highly variable genes70. The first 425 

30 principal components (PCs) were used to cluster the cells and to perform a subtype analysis 426 

by nonlinear dimensionality reduction (t-SNE) and to construct Uniform Manifold Approximation 427 

and Projection (UMAP) for cell embeddings71,72.  We identified cell clusters under the optimal 428 

resolution by a shared nearest neighbor (SNN) modularity optimization-based clustering method. 429 

We implemented the FindClusters function of the Seurat package, which first calculated k-nearest 430 

neighbors and constructed the SNN graph. We implemented the original Louvain algorithm 431 

(algorithm = 1) for modularity optimization. Additionally, we utilized Clustree (v0.4.3) and manual 432 

review for identifying the best clustering resolution25.  433 

 434 

Major cell type detection and data visualization. To identify all major cell types, we evaluated 435 

differentially expressed markers in each identity cell group by comparing them to other clusters 436 
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using the Seurat FindAllMarkers function. We used positively expressed genes with an average 437 

expression of >/= 2-fold higher in that subcluster than the average expression in the rest of the 438 

other subclusters. We used known marker genes, which have the highest fold expression in that 439 

cluster with respect to the other clusters. We also utilized SingleR ((v0.99.10, R Package), which 440 

leverage large transcriptomic datasets of well-annotated cell types and manual annotation  for 441 

cell-type identification32,73–75. Depending on the presence of known marker genes the clusters 442 

were grouped as: epithelial cells (EPCAM, KRT8, and KRT18), fibroblasts (COL1A1, DCN, 443 

COL1A2, and C1R), endothelial cells (CLDN5, FLT1, CDH5, and RAMP2), myeloid cells (LYZ, 444 

MARCO, CD68, and FCGR3A), CD4 T cells (CD4), CD8 T cells (CD8A and CD8B),  and  B cells 445 

(MZB1), 32,48,73,76–80. The cells were eventually assembled into DGE matrices within each 446 

compartment, containing all six cell types. 447 

 448 

Major-cell type subclustering and data visualization. Each major cell type, including epithelial 449 

cells, endothelial cells, T cells, B cells, myeloid cells, and fibroblasts was reclustered and 450 

reanalyzed to study each compartment at a higher resolution to detect granular cellular 451 

heterogeneity in CRC. Clustree (v0.4.3) and manual review were utilized for optimal cluster 452 

detection. For cell annotation of each cell type, we utilized published literature gene expression 453 

signatures and manual review of differential genes among clusters. Additionally, we again utilized 454 

SingleR (v0.99.10, R Package) for unbiased cell annotation. Interestingly, reclustering of major 455 

compartments individually also detected clusters expressing hybrid markers as well as cell 456 

clusters expressing markers from distinct lineages (such as T cell clusters expressing B cells); 457 

these  were removed and excluded for further analysis. We utilized UMAP for visualization 458 

purposes. For validation, we analyzed 65,362 cells from 23 patients and applied the same quality 459 

control metrics as outlined  above,  retaining  31,383 high-quality single cells for further analysis30.  460 

These high-quality cells were analyzed utilizing the same pipelines and parameters as that for our 461 

primary cohort (Supplementary Figs. 4-5 and 12-13).  462 
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The InferCNV (v1.2.1) package was used with default paramets  to identify the evidence for 463 

somatic large-scale chromosomal copy number alteration in epithelial cells (EPCAM+, KRT8+, 464 

KRT18+)81.  Non-malignant epithelial cells were used as the control group. 465 

 466 

Trajectory analysis. We used Monocle v.2 (v2.14.0), a reverse graph embedding method to 467 

reconstruct single-cell trajectories in tumor and non-malignant epithelium82. In brief, we used UMI 468 

count matrices and the negbinomial.size() parameter to create a CellDataSet object in the default 469 

setting. We grouped projected cells on UMAP in default settings for visualization of monocle 470 

results. We defined the cumulative duration of the trajectory to show the average amount of 471 

transcriptional transition that a cell undergoes as it passes from the starting state to the end state. 472 

The cells were also ordered in pseudotime to explain the transition of cells from one state to 473 

another. 474 

 475 

Pathway- Gene set variation analysis (GSVA). Pathway analysis was performed on the 50 476 

hallmark gene sets downloaded from Molecular Signatures Database (v7.2). We used GSVA 477 

(v1.34.0),  a non-parametric, unsupervised method to estimate the gene set variations and 478 

evaluation of pathway enrichment, and pathway scores were calculated for each cell using 479 

standard settings 34,39. 480 

  481 

DNA and bulk RNA library construction. DNA and bulk RNA sequencing was performed as 482 

previously described83. One hundred nanograms of DNA from each tumor was mechanically 483 

sheared to an average size of 200 bp. Using the KAPA Hyper Prep Pack, DNA libraries were 484 

packed, hybridized into the xT probe package, and amplified with the KAPA HiFi HotStart 485 

ReadyMix. For uniformity, each sample needed to have 95% of all targeted base pairs sequenced 486 

to a minimum depth of 300x. One hundred nanograms of RNA per tumor sample was heat 487 

fragmented to a mean size of 200 base pairs in the presence of magnesium. Using random 488 
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primers, the RNA was used for first-strand cDNA synthesis, followed by second-strand synthesis 489 

and A-tailing, adapter ligation, bead-based cleanup, and amplification of the library. After library 490 

planning, the IDT xGEN Exome Test Panel was hybridized with samples. Streptavidin-coated 491 

beads and target recovery were carried out, accompanied by amplification using the KAPA HiFi 492 

library amplification package. The RNA libraries were sequenced on an Illumina HiSeq 4000 using 493 

patterned flow cell technology to achieve at least 50 million reads. 494 

 495 

Detection of somatic variation on DNA sequencing data. The tumor and normal FASTQ files 496 

were paired. For quality management measurement, FASTQ files were evaluated using FASTQC 497 

and matched with Novoalign (Novocraft, Inc.)83,84. SAM files were generated and converted to 498 

BAM files. The BAM files were sorted, and duplicates were marked. Single nucleotide variations 499 

(SNVs) were called after alignment and sorting. For discovery of copy number alterations, the de-500 

duplicated BAM files and the VCF generated from the variant calling pipeline were processed to 501 

computate read depth and variance of heterozygous germline SNVs between the tumor sample 502 

and normal sample. Binary circular segmentation was introduced and segments with strongly 503 

differential log2 ratios between the tumor and its comparator were chosen. From a combination of 504 

differential coverage in segmented regions and estimation of stromal admixture provided by 505 

analysis of heterozygous germline SNVs, an estimated integer copy number was determined  506 

  507 

Microsatellite instability status. Probes for 43 microsatellite regions were developed using 508 

Tempus xT assay83. Tumors were categorized into three groups by the MSI classification 509 

algorithm as described by Tempus: microsatellite instability-high (MSI-H), microsatellite stable 510 

(MSS) or microsatellite equivocal (MSE). MSI screening for paired tumor-normal patients used 511 

reads mapped to the microsatellite loci with at least 5 bps flanking the microsatellite. The sample 512 

was graded as MSI-H if there was a >70% chance of MSI-H classification. If the likelihood of MSI-513 

H status was 30-70%, the test findings were too ambiguous to interpret and those samples were 514 
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listed as MSE. If there was a <30% chance of MSI-H status, the sample was called MSS. 515 

Additionally, IHC results were used to classify tumors into MSS or MSI molecular subtypes. Both 516 

of these modalities were concordant and produced the same results. 517 

 518 

Bulk RNA-seq and microarray analysis. We downloaded and pooled eight colorectal gene 519 

expression datasets (GSE1306785, GSE1329485, GSE1433386, GSE1753687, GSE2091688, 520 

GSE3311389, GSE3589690, and GSE3958214), a  pancreatic  cancer dataset (GSE6216591) and 521 

a non-small cell lung cancer dataset (GSE3353292)  to validate our findings from the single cell 522 

compartments by deconvoluting the bulk gene expression profiles into pseudo single-cell 523 

resolutions. We used Affy (v1.64.0) for the data analysis and for exploration of Affymetrix 524 

oligonucleotide array probe level data93. Batch correction was carried out using  the 525 

removeBatchEffect (v3.42.2) function of the LIMMA program and CMScaller for the CMS 526 

classification (see below)94. Three datasets (GSE1753687, GSE3311389, and GSE3958214) were 527 

utilized for clinical outcome analysis94,95. 528 

 529 

Correlation patterns in bulk gene expressions for CAF compartments. To identify the top 530 

correlated CAF-marker genes within the combined eight and individual four bulk gene expression 531 

sets, we first transformed the bulk gene expression sets with log2 transformation. Next, marker 532 

genes with an average log2 FC>/= 0.5 and p<0.05 obtained from the SC analysis of CAF-S1 and 533 

CAF-S4 compartments were separately intersected with the bulk gene expression sets. Genes 534 

with an average Spearman correlation score greater than 0.8 were kept as the CAF signatures 535 

within the bulk gene expression. Heatmaps illustrating the correlation patterns within and between 536 

the CAF compartments were prepared with the heatmap.2 function from ggplot package (v3.1.1) 537 

utilizing the Pearson correlation coefficient. Heatmaps illustrating the correlation patterns within 538 

and between the CAF compartments were prepared using the ggplot package (v3.1.1) utilizing 539 

the Pearson correlation coefficient96. 540 
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 541 

 The Cox proportional hazard regression model was used to examine the significance of 20 cell 542 

types from scRNA-seq in bulk expression data. Each cell type's marker genes with an average 543 

logFC>1 and adjusted P<0.05 were intersected with the bulk expression datasets separately.  We 544 

only kept the marker genes with a high correlation with each other in bulk, which provides an 545 

average correlation score of > 0.8. The average bulk expression of each cell type's remaining 546 

marker genes was calculated and used in the hazard regression model as the representative of 547 

this cell type. For analysis of relationships with patient outcome, univariate models were 548 

calculated using Cox proportional hazard regression (coxph function from survival R package)97. 549 

 550 

Deconvoluting public bulk gene expression profiles into pseudo single-cell expressions. 551 

We used CIBERSORTx v1 to estimate composition of various cell populations in pooled eight  552 

microarray datasets53.  Signature gene matrices were created using the expression profiles of 553 

49,859 cells as the reference single cell profile. We ran the ‘hires’ module with default parameters 554 

except for the ‘rmbatchBmode,’ and the bulk-mode batch correction argument was set to true. 555 

After the deconvolution process, we normalized the gene expressions according to the cell 556 

fractions in each sample and calculated each gene’s Z-transformed expression values. The 557 

average normalized expression of each cell type across all samples was plotted with the 558 

heatmap.3 R function of the GMD package (v0.3.3)98. A signature matrix highlighting marker 559 

genes of the different cell types was prepared with a heatmap.2 R function of ggplot (v3.1.1). We 560 

also applied the same parameters to deconvolute GSE1433386, GSE1753687, GSE3311389, and 561 

GSE3958214 datasets individually.  562 

  563 

Consensus molecular subtyping of colorectal cancer (CMS Classification). We used R 564 

package CMScaller(v0.9.2), a nearest template prediction (NTP) algorithm, for the classification 565 

of gene expression datasets95. We set the permutation number to 1000 to predict the CMS classes 566 
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of the samples in the GEO datasets with a p-value < 0.05.  We ran CMScaller with default 567 

parameters. 568 

 569 

Continuous subtype discovery using scRNA-seq analysis. Bulk mRNA expression profiles of 570 

the combined and batch adjusted eight GEO datasets (GSE1306785, GSE1329485, GSE1433386, 571 

GSE1753687, GSE2091688, GSE3311389, GSE3589690, and GSE3958214),  composed of 1584 572 

samples in total, were deconvoluted into the pseudo single-cell expression profiles via 573 

CIBERSORTx utilizing the expression data consisting of 2o different cell types from our scRNA-574 

seq dataset53. We transformed the deconvoluted expression matrix with log2 transformation. The 575 

principal components cluster subtype scores (PCSSs) of the CMS subtypes among the 1584 576 

samples, were determined separately for each cell type using an algorithm published by Ma et 577 

al55. To obtain the PCSSs, the average loading vectors were used. The results obtained for 20 578 

cell types were projected on the first two PCSSs (PCSS1 and PCSS2) as they were validated by 579 

Ma et al. in their analysis using 18 datasets. We also analyzed four datasets (GSE1433386, 580 

GSE1753687, GSE3311389, and GSE3958214) to  independently confirm reproducibility of 581 

continuous scores.  582 

 583 

Statistics and reproducibility. All statistical analyses and graphs were created in R (v3.6.3) and 584 

using a Python-based computational analysis tool. Schematic representations were made using 585 

the Inkscape (https://inkscape.org/) software. Dim plots, bar plots and box plots were generated 586 

using the dittoSeq (v1.1.7) package with default parameters99. Violin plots were generated using 587 

the patchwork (v1.1.0) package and ggplot2 (v3.3.2) package in R with default parameters. 588 

Heatmaps were generated using Morpheus.R with default parameters100,101. ANOVA and pair-589 

wised t-tests for the CMS classes across the deconvoluted expression profiles were performed in 590 

R using the ggpubr R (v0.4.0) package102. The Box and Whisker plots were generated using the 591 

boxplot function of the R base package at default parameters. The mean of the log2 transformed 592 
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deconvoluted expression value of the samples in each CMS group was demonstrated with a 593 

horizontal straight line within each box.  The length of a boxplot corresponds to the interquartile 594 

range (IQR), which is defined as the range between the first and third quartiles (Q1 and Q3), 595 

whereas the whiskers are the upper and lower extreme values of the data (either data's extremum 596 

values, or the Q3+1.5*IQR and Q1-1.5*IQR values, whichever was less extreme).  597 

 598 

Survival analysis. Survival curves were obtained according to the Kaplan-Meier method survfit 599 

(v3.2-7), and differences between survival distributions were assessed by Log-rank test. The 600 

patients were divided into two groups (high/poor and low/good risk) according to their median 601 

expression values (survminer (v0.4.8)). The surv_cutpoint function uses the maximally selected 602 

rank statistics and implements standard methods for the approximation of the null distribution of 603 

maximally selected rank statistics (maxstat (v0.7-25). 604 

 605 

The proportional hazard assumption was tested to examine the fit of the model for survival of the 606 

samples in four GEO datasets (GSE1433386, GSE1753687, GSE3311389, and GSE3958214) with 607 

respect to the deconvoluted bulk mRNA expressions. For analysis of the relationships with patient 608 

outcome, multivariate models were calculated using the Cox proportional hazard regression 609 

(coxph survival R package)97. 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 
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Figure 1. Identification and clustering of single cells. a, Workflow of sample collection, 857 
sorting, and sequencing (methods contain full description for each step). b, UMAP 858 
characterization of the 49,859 cells profiled. Coloring demonstrates clusters, tumor vs. non-859 
malignant sample origin (condition), and individual sample origin. c, Identification of various cell 860 
types based on expression of specified marker genes. d, Characterization of the proportion of 861 
cell types identified in tumor vs. non-malignant tissue, sidedness (right vs. left), microsatellite 862 
instability (MSI) status, single-cell Consensus Molecular Subtypes (scCMS) classification, 863 
Consensus Molecular Subtypes (CMS) of bulk RNA-seq data, and origin of sample. The 864 
transcription counts of tumor and normal tissue cell types are demonstrated at the bottom with 865 
boxplot representation. The graph represents total clusters and cell types identified after re-866 
clustering of each cell compartment depicting global heterogeneous landscape of colorectal 867 
cancers.868 
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Figure 2. Reclustering and characterization of the epithelial compartment. a, UMAP of 
tumor and non-malignant epithelial reclustering demonstrating 17 distinct clusters. b, Heatmap 
of Hallmark pathway analysis within the epithelial cell compartment. c, Bar chart representation 
of cell proportions by sample, tissue type, MSI status, colonic location of sample, scCMS score, 
and bulk CMS score. d, Trajectory analysis of cells colored by colonic location, scCMS, MSI 
status, and bulk CMS status.
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Figure 3. Fibroblast clusters in colon and colorectal tumors. a, UMAP of 819 fibroblasts 
colored by distinct clusters, CAF status, tissue status and origin of sample.  UMAP fibroblasts 
colored by specific CAF-S1 subtypes. b, UMAP color-coded for marker genes for five CAF-S1 
subtypes as indicated. c, Heatmap showing the variable expression of fibroblast specific marker 
genes across CAF-S1, CAF-S4, and normal fibroblasts. d, Heatmap of Hallmark pathway 
analysis of CAF-S1, CAF-S4, and normal cluster. 
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Figure 4. Correlation of CAF-S1 and CAF-S4 gene profiles across human bulk 
transcriptomic data. a, Pearson’s correlation of genes from CAF-S1 and CAF-S4 profiles in 
colorectal cancer (n= 1584; CAF-S1 and CAF-S4 r > 0.8), pancreatic cancer (n= 11; CAF-S1 r = 
0.70, CAF-S4 r= 0.60), non-small cell lung cancer (n = 80; CAF-S1 r  = 0.69, CAF-S4 r = 0.67). 
b-d, Pearson correlation plots, Kaplan-Meyer survival curves, and bar plots of CMS status 
assessing CAF expression in individual CRC datasets. Plots b-c are generated from single GEO 
datasets; GSE17536 (n = 177), GSE39582 (n= 585) and GSE33113 (n= 96), respectively. Note: 
High CAF-S1 and CAF-S4 gene signatures are associated with poor survival across all CMS 
subtypes. r= coefficient correlation. 
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Figure 5. Average cell type abundance from eight pooled CRC datasets and sorted by 
bulk CMS status. a, Boxplots show the distribution of cell types within tumors with varying CMS 
status. The whiskers depict the 1.5 x IQR. The p-values for one-way ANOVA are shown in the 
figure. b, Deconvolution heatmap of different cell types by average expression using 
CIBERSORTx demonstrating cell type distribution (based on individual datasets) within each 
CMS category. c, All 20 cell types show no to little separation reported by CMS. d, All cell types 
projected on four quadrants representing CMS1-4 using PCSS1 and PCSS2 scores. Markers 
are colored by the bulk CMS status. Note that the cell types largely form a continuum along 
CMS status and are not clustered in discrete quadrants separate from one another. Cells are 
colored by bulk CMS status accordingly to origin of sample. 
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Supplementary Figure 1: Analysis of copy number variation (CNV) amongst epithelial 
cells. CNV analysis was conducted on the epithelial cell compartment. CNV alterations are 
seen in tumor-derived epithelial cells (observation). Non-malignant-derived epithelial cells were 
used as control (references). 
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Supplementary Figure 2: Epithelial cell compartment demonstrating subclonal 
heterogeneity. a, Heatmap of marker gene expression for the epithelial and tumor cells. b, 
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UMAP visualization of computational analysis of differentiation status using CytoTRACE (see 
methods). c, Heatmap representation of Hallmark pathway analysis of epithelial phenotypes 
within six different tumor samples demonstrating subclonal, intratumoral heterogeneity.  
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Supplementary Figure 3: Pathway analysis (GO ontology) of gene-expressions specific to 
each cell-state in trajectory analysis stratified by malignant and non-malignant sample of 
origin.  
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Supplementary Figure 4:  Epithelial clustering and differentiation trajectories from a 
validating cohort (Lee et al. data). a, UMAP clustering of epithelial cells colored by cluster, 
sample of origin tumor vs. normal tissue status, and microsatellite instability Status (MSI) status. 
b, Differentiation trajectories of epithelial cells colored by differentiation state. c, Differentiation 
trajectory of epithelial cell colored by state and Consensus Molecular Subtypes (CMS) status in 
single-cell and in d, Differentiation trajectory of epithelial cell colored by state and Consensus 
Molecular Subtypes (CMS) status in bulk RNA-seq using Monocle2 confirming stochastic 
behavior of tumor epithelial cells (see methods). 
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Supplementary Figure 5: Characterization of fibroblasts and their transcriptomic 
expression patterns (Lee et al. data). a, Fibroblasts colored by distinct groups, tumor vs. 
normal sample, and sample specimen. b, Dot plot demonstrating variable expression patterns of 
subtypes of CAF-S1 and CAF-S4 confirming their relevance in colorectal cancer.  
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Supplementary Figure 6: a, Kaplan-Meyer analysis of patients with high and low expression 
levels of CXCL12 (derived from CAF-S1) in the bulk transcriptomic data from GSE17536 
(n=177).  b, Kaplan-Meyer analysis of DFS and OS between patients with high and low 
expression levels of CXCL12 in the bulk transcriptomic data from GSE39582 (n=585).  
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Supplementary Figure 7: Association between relative cell abundance and patient 
survival from microarray-based datasets. a, GSE17536 (n=177). b, GSE39582 (n=585). c, 
GSE33113 (n=96). Note that CAF-S4 is not significant in GSE33113 (p=0.093). 
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Supplementary Figure 8: Cell abundance prediction for each sample and projected on 
bulk CMS on GSE39582 (n= 585). a, Boxplots show the distribution of cell types within tumors 
with varying Consensus Molecular Subtypes(CMS) status. The whiskers depict the 1.5 x IQR. 
The p-values for one-way ANOVA are shown in the figure. b, Deconvolution heatmap of cell 
type by average expression using CIBERSORTx demonstrating cell type distribution within each 
CMS status of a single dataset. c, 19 cell types show no to little separation reported by CMS. d, 
All cell types projected on four quadrants representing CMS1-4 using PCSS1 and PCSS2 
scores. Markers are colored by the bulk CMS status. Note that, largely, the cell types form a 
continuum along CMS status and are not clustered in discrete quadrants from one another. 
Cells are colored by bulk CMS status of sample of origin. 
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Supplementary Figure 9: Cell abundance prediction for each sample and projected on 
bulk CMS on GSE17536 (n= 177). a, Boxplots show the distribution of cell types within tumors 
with varying Consensus Molecular Subtyping (CMS) status. The whiskers depict the 1.5 x IQR. 
The p-values for one-way ANOVA are shown in the figure. b, Deconvolution heatmap of cell 
type by average expression using CIBERSORTx demonstrating cell type distribution within each 
CMS status of a single dataset. c, 18 cell types show no to little separation reported by CMS. d, 
All cell types projected on four quadrants representing CMS1-4 using PCSS1 and PCSS2 
scores. Markers are colored by the bulk CMS status. Note that, largely, the cell types form a 
continuum along CMS status and are not clustered in discrete quadrants from one another. 
Cells are colored by bulk CMS status of sample of origin. 
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Supplementary Figure 10: Cell abundance prediction for each sample and projected on 
bulk CMS on GSE14333 (n=290).  a, Boxplots show the distribution of cell types within tumors 
with varying Consensus Molecular Subtypes (CMS) status. The whiskers depict the 1.5 x IQR. 
The p-values for one-way ANOVA are shown in the figure. b, Deconvolution heatmap of cell 
type by average expression using CIBERSORTx demonstrating cell type distribution within each 
CMS status of a single dataset c,	19	cell	types	show	no	to	little	separation	reported	by	CMS.	d,	All	
cell	types	projected	on	four	quadrants	representing	CMS1-4	using PCSS1 and PCSS2 scores.	
Markers	are	colored	by	the	bulk	CMS	status.	Note	that,	largely,	the	cell	types	form	a	continuum	
along	CMS	status	and	are	not	clustered	in	discrete	quadrants	from	one	another. Cells are colored 
by bulk CMS status of sample of origin. 
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Supplementary Figure 11: Cell abundance prediction for each sample and projected on 2 
bulk CMS on GSE33113 (n=96).  a, Boxplots show the distribution of cell types within tumors 3 
with varying Consensus Molecular Subtypes (CMS) status. The whiskers depict the 1.5 x IQR. 4 
The p-values for one-way ANOVA are shown in the figure. b, Deconvolution heatmap of cell 5 
type by average expression using CIBERSORTx demonstrating cell type distribution within each 6 
CMS status of a single dataset c,	19	cell	types	show	no	to	little	separation	reported	by	CMS.	d,	All	7 
cell	types	projected	on	four	quadrants	representing	CMS1-4	using PCSS1 and PCSS2 scores.	8 
Markers	are	colored	by	the	bulk	CMS	status.	Note	that,	largely,	the	cell	types	form	a	continuum	9 
along	CMS	status	and	are	not	clustered	in	discrete	quadrants	from	one	another. Cells are colored 10 
by bulk CMS status of sample of origin.  11 
 12 
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4 

Supplementary Figure 12: T/NK cell data from Lee et al. a, Reclustering of T/NK cells and 14 
coloring by clusters, tumor vs. normal status, MSI status, and samples. b, Bar chart 15 
representation of cells colorized by our samples of origin, MSI status, tumor status, colonic 16 
location, Consensus Molecular Subtypes (CMS) status. 17 
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 47 

      48 

Supplementary Figure 13: T cell expression analyses across T/NK cells. a, SingleR 49 
heatmap cell type identification within each cluster. Note: doublets were removed from the 50 
further analysis. b, T/NK cell gene specific expression to identify T cell heterogeneity using 51 
published literature (see methods). 52 
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 69 
Extended Data Figure 1. T cell identification and characterization. a, UMAP reclustering of 70 
T cells colored by cell phenotype, tissue malignancy status, and sample of origin. b, Bar plot 71 
depiction of the proportion of cells colored by sample of origin, MSI status, malignancy status, 72 
tumor location, scCMS status, and bulk CMS status. c, Violin plots showing the differential 73 
expression of T cell-specific marker genes between CD4 and CD8 phenotypes. d, Heatmap of 74 
the Hallmark pathway analysis for the T cell compartment. scCMS, single-cell consensus 75 
molecular subtyping; bulk CMS, consensus molecular subtyping on Bulk RNA-seq data. 76 
 77 
Description: We reclustered and analyzed 22,525 cells from both tumors and adjacent, normal 78 
tissue samples and identified 11 CD4+ T cell and 12 CD8+ T cell clusters. We used known 79 
canonical markers and published expression signatures to identify T cell states for further 80 
analysis (see methods). We identified conventional CD4+ T cells, CD4+ Tregs, CD8+ 81 
(naive/memory, cytotoxic, resident memory, and MAIT cells), NK cells, and innate lymphoid 82 
cells (ILC). Among the conventional CD4+ T cells, we identified the central memory/naive like-83 
state (CCR7+, SELL+, and TCF7+) enriched in non-malignant samples. In contrast, Th17 cells 84 
expressing IL-17, known as critical anti-tumor effectors, were enriched in tumor samples. CD4+ 85 
Tregs (FOXP3+) expressing immune checkpoint markers and costimulatory molecules were 86 
among the most abundant T cells in the colorectal TME compared to non-malignant tissue. 87 
Among the CD8+ T cell states, CD8+ cytotoxic cells were distributed across three clusters that 88 
we labeled CD8+ effector 1, CD8+ effector 2, and CD8+ effector 3. CD8+ effector clusters 89 
expressed cytotoxicity genes and chemokines as previously described in other tumor types. 90 
CD8 effector3 was predominantly enriched in MSI-H CRC patients and represented 77% of the 91 
total CD8+ effector 3 population among the 2 MSI-H CRC samples. This cluster expressed 92 
ITGAE, LAYN, CXCL13, and T cell exhaustion markers (LAG3, HAVCR2, and CD96), possibly 93 
explaining this CD8+ cell state’s role in the response to immune checkpoint inhibitors in MSI-H 94 
colorectal tumors. Gene-set enrichment of CD8+ effectors further confirmed their distinct states. 95 
CD8+ effector 2 was a proliferative cluster with MYC activity, NOTCH activation, and EF2 96 
targets. CD8+ effector(s), CD8+ MAIT cells, and NK cells were enriched in tumors, whereas 97 
Tissue-resident memory (Trm) cells were depleted in tumor tissue. Trm induction was recently 98 
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seen to enhance cancer vaccine efficacy in other tumors, suggesting a possible therapeutic 99 
target in CRC.  100 
 101 
 102 

 103 
Extended Data Figure 2. Reclustering of B cells with characterization of clusters and 104 
phenotypes. a, UMAP depiction of B cell reclustering colored by cluster, malignancy status, 105 
and sample of origin. b, Bar plot depiction of the proportion of cells within each B cell phenotype 106 
colored by sample of origin, MSI status, malignancy status, tumor location, scCMS and bulk 107 
CMS. c, SingleR heatmap demonstration of B cell distribution within each cluster. d, B cell 108 
Hallmark pathway analysis by phenotype. scCMS, single-cell consensus molecular subtyping; 109 
bulk CMS, consensus molecular subtyping on Bulk RNA-seq data. 110 

Description: To illustrate characteristics of B cells in CRC we reclustered 9,289 B cells that 111 
clearly identified naive cells, memory cells, plasma cells, and germinal center (GC) B cells. All B 112 
cell subtypes from the CRC TME and the non-malignant colonic tissue clustered together 113 
exhibiting transcriptional similarity among non-tumor and tumor-derived cells. Memory B cells 114 
and plasma cells were enriched in tumors, while naive and GC B cells were enriched in non-115 
malignant tissue. 116 

 117 
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 125 
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Extended Data Figure 3. Reclustering of the myeloid cell compartment. a, UMAP depiction 127 
of myeloid cell reclustering colored by subtype, malignancy status, and sample of origin. b, Bar 128 
plot depiction of proportion of cells within each myeloid cell phenotype colored by sample of 129 
origin, MSI status, malignancy status, tumor location, scCMS and bulk CMS. c, SingleR 130 
heatmap demonstration of myeloid cell distribution within each cluster. scCMS, single-cell 131 
consensus molecular subtyping; bulk CMS, consensus molecular subtyping on Bulk RNA-seq 132 
data. 133 

Description: We reclustered 819 myeloid cells and identified CD1C+ dendritic cells, tumor-134 
associated macrophages (TAM and MRC1+), monocytes (S100A8+), and granulocyte clusters. 135 
We recovered key cell types including M2 polarized macrophages, as seen in other tumor types. 136 
Monocytes revealed proinflammatory phenotypes (1L1B, S100A8, and S100A9), while TAM 137 
showed anti-inflammatory signatures (APOE, SEPP1, and CD163) consistent with the role of 138 
TAM in immune suppression and cancer progression (see methods). 139 

 140 
 141 
 142 
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