1	CSF metabolites associate with CSF tau and improve prediction of					
2	Alzheimer's disease status					
3	Ruocheng Dong ¹ , Burcu F. Darst ² , Yuetiva Deming ¹ , Yue Ma ⁶ , Qiongshi Lu ³ ,					
4	Henrik Zetterberg ⁷⁻¹⁰ , Kaj Blennow ^{7,8} , Cynthia M. Carlsson ⁴⁻⁶ , Sterling C.					
5	Johnson ⁴⁻⁶ , Sanjay Asthana ^{5,6} , Corinne D. Engelman ^{1,4,6} *					
6	¹ Department of Population Health Sciences, University of Wisconsin School of					
7	Medicine and Public Health, Madison, WI, 53726, USA					
8	² Center for Genetic Epidemiology, Keck School of Medicine, University of					
9	Southern California, Los Angeles, CA, 90033, USA					
10	³ Department of Biostatistics and Medical Informatics, University of Wisconsin,					
11	Madison, WI, 53792, USA					
12	⁴ Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine					
13	and Public Health, Madison, WI, 53719, USA					
14	⁵ Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial					
15	VA Hospital, Madison, WI, 53705, USA					
16	⁶ Alzheimer's Disease Research Center, University of Wisconsin School of					
17	Medicine and Public Health, Madison, WI, 53792, USA					
18	⁷ Institute of Neuroscience and Physiology, The Sahlgrenska Academy at					
19	University of Gothenburg, Mölndal, 41390, Sweden					
20	⁸ Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital,					
21	Mölndal, 41345, Sweden					
22	⁹ UK Dementia Research Institute at UCL, London, WC1E6BT, UK					
23	¹⁰ Department of Neurodegenerative Disease, UCL Institute of Neurology,					
24	London, WC1H0AL, UK					
25	* Correspondence:					
26	Corinne D. Engelman					
27	610 Walnut Street, 1007A WARF Madison, WI, 53726, USA					
28	Phone: 608-265-5491, email: <u>cengelman@wisc.edu</u>					

29 Abstract

30	INTRODUCTION: Cerebrospinal fluid (CSF) total tau (t-tau) and
31	phosphorylated tau (p-tau) are biomarkers of Alzheimer's disease
32	(AD), yet much is unknown about AD-associated changes in tau
33	metabolism and tau tangle etiology. METHODS: We assessed the
34	variation of t-tau and p-tau explained by 38 previously identified
35	CSF metabolites using linear regression models in middle-age
36	controls from the Wisconsin Alzheimer's Disease Research Center,
37	and predicted AD/mild cognitive impairment (MCI) vs. an
38	independent set of older controls using metabolites selected by the
39	least absolute shrinkage and selection operator (LASSO).
40	RESULTS: The 38 CSF metabolites explained 70.3% and 75.7%
41	of the variance in t-tau and p-tau. Of these, 7 LASSO-selected
42	metabolites improved the prediction ability of AD/MCI vs. older
43	controls (AUC score increased from 0.92 to 0.97 and 0.78 to 0.93)
44	compared to the base model. DISCUSSION: These tau-correlated
45	CSF metabolites increase AD/MCI prediction accuracy and may
46	provide insight into tau tangle etiology.
47	
48	Keywords: Alzheimer's disease, CSF, metabolite,
49	metabolomics, t-tau, p-tau
50	

51

1. Introduction

53	One of the defining neuropathological changes in
54	Alzheimer's disease (AD) is the intraneuronal aggregates of
55	hyperphosphorylated and misfolded tau that give rise to
56	neurofibrillary tangles and neuropil threads [1]. Their
57	corresponding biomarkers in cerebrospinal fluid (CSF), total tau (t-
58	tau) and phosphorylated tau (p-tau), can predict clinical AD and its
59	progression [2]. Moreover, a new plasma p-tau biomarker (p-
60	tau181) has recently been associated with AD pathology [3].
61	Research has been done to understand tau changes and how they
62	happen [4,5]. For example, it has been shown that the
63	dysregulation of kinases and phosphatases results in three to four
64	times greater quantities of phosphorylated tau in the brains of AD
65	patients than in normal adult brains [2], but the pathologic
66	processes remain largely unknown.
67	Recent advancements in metabolomics technologies allow
68	researchers to study multiple small molecules (<1500 Da), such as
69	amino acids, fatty acids, and carbohydrates, simultaneously within
70	a biological system [6]. Metabolites can be influenced by
71	biological changes resulting from upstream molecular processes
72	such as genetic mutations, as well as exogenous changes caused by
73	environmental exposures (e.g., diet, medications, and physical
74	activity). Moreover, compared to RNA transcripts and proteins,

75	metabolites are more relevant to the current physiological state of a
76	cell, and their abnormal levels and relative ratios can reflect
77	disease progression, thus, metabolites serve as appropriate targets
78	for health outcomes research [7].
79	To date, there have been numerous targeted or untargeted
80	human blood metabolomic studies that focus on AD clinical status
81	or CSF biomarkers [8]. For example, Toledo et al. [9] have
82	conducted a network analysis using serum metabolites in
83	participants from the Alzheimer's Disease Neuroimaging Initiative
84	and found that accumulation of acylcarnitine species indicates
85	malfunction and alterations in tau metabolism. However, few
86	studies have been conducted to assess the association between CSF
87	metabolites and CSF tau. CSF communicates freely with the
88	interstitial fluid that bathes the neurons and other cell types of the
89	brain, spinal cord and the cranial and spinal nerves [10], which
90	makes it an ideal source to study the pathological changes
91	occurring in AD brains. By linking two well-established AD CSF
92	biomarkers, CSF t-tau and p-tau, which reflect tau secretion and
93	phosphorylation, and predict neurodegeneration and cortical tangle
94	formation, respectively [11], with CSF metabolites, additional
95	mechanistic information behind the development of pathological
96	alterations related to tau may be revealed. The findings from
97	studying CSF metabolites could ultimately be translated into

98 potential AD prevention through modifiable risk factors (*e.g.*,

99 dietary interventions), better prognostic indicators, or new drug

100 targets.

101	Darst et al. [12] constructed an inter-omics network
102	consisting of whole blood gene expression, plasma metabolites,
103	CSF metabolites, and AD risk factors in 1,111 non-Hispanic white
104	participants from the Wisconsin Registry for Alzheimer's
105	Prevention (WRAP). Within this inter-omics network, a cluster of
106	38 CSF metabolites was identified in the subset of 141 individuals
107	in which CSF was collected, with each individual metabolite being
108	significantly correlated (p threshold: $\leq 6.1 \times 10^{-10}$) with CSF t-tau
109	and p-tau, and these collective metabolites accounting for 60.7%
110	and 64.0% of the variation of t-tau and p-tau, respectively. In this
111	study, we aimed to (1) replicate these findings and evaluate the
112	predictive ability of these CSF metabolites in an independent
113	sample (the IMPACT cohort) from the Wisconsin Alzheimer's
114	Disease Research Center (Wisconsin ADRC); (2) examine the
115	predictive performance of the same metabolites present in plasma
116	in WRAP; (3) identify the major metabolites driving this cluster in
117	the IMPACT and WRAP cohorts and, in an independent sample,
118	evaluate whether they can be used as potential biomarkers to
119	enhance the prediction of AD or mild cognitive impairment (MCI);
120	and (5) understand the biological functions of all 38 metabolites

121	using pathway analyses to provide insight into disease-related
122	processes. Our results confirm the previous associations between
123	38 CSF metabolites and CSF tau and provide potential biological
124	mechanisms for the development of tau tangles and possible
125	candidates for CSF metabolite biomarkers or drug targets.
126	2. Methods
127	2.1 Participants
128	The Wisconsin ADRC's clinical core cohort started in 2009
129	and has well-characterized AD and MCI participants, as well as
130	healthy older controls (HOC), and the IMPACT cohort of initially
131	cognitively-unimpaired, asymptomatic middle-aged adults [13-
132	15]. The replication sample for the main analysis included 158
133	non-Hispanic white individuals from the IMPACT cohort with
134	cross-sectional CSF samples.
135	WRAP began recruitment in 2001 as a prospective cohort
136	study of initially cognitively-unimpaired, asymptomatic, middle-
137	aged adults enriched for a parental history of clinical AD [16]. The
138	WRAP cohort included 130 and 123 non-Hispanic white
139	individuals with longitudinal CSF and plasma samples,
140	respectively. Both the CSF and plasma cohorts included five
141	sibling pairs, one sibling trio and three sibling quartets. The WRAP
142	dataset was utilized to reproduce and refine the results from Darst

143 <i>et.al.</i> [12] using similar statistical models as those for the IMI	PACT
--	------

144 cohort.

145	This study	was conducted	with the ap	proval of the

- 146 University of Wisconsin Institutional Review Board, and all
- 147 participants provided signed informed consent before participation.

148 2.2 CSF and plasma sample collection and CSF biomarkers

149 quantification

- 150 Fasting CSF samples for the Wisconsin ADRC cohorts and
- 151 WRAP were collected via lumbar puncture [13] following the

same protocol and by the same group of well-trained individuals

153 [13]. Samples were sent together in two batches to the lab of Drs.

154 Blennow and Zetterberg in Sweden, where commercially available

155 enzyme-linked immunosorbent assay (ELISA) methods were used

to quantify CSF t-tau, p-tau, and amyloid-beta 1-42 (A β_{42})

157 (INNOTEST® assays HTAU AG, PHOSPHO-TAU[181P], and β -

amyloid1-42, respectively; Fujirebio, Ghent, Belgium) [13]. The

159 batch-adjusted predicted values for CSF biomarkers were used for

- all analyses [17].
- 161 In WRAP, fasting blood samples were collected in

162 ethylenediaminetetraacetic acid (EDTA) tubes; the plasma was

- pipetted off within one hour of collection and stored at $-80^{\circ}C$ [12].
- 164 A total of 141 longitudinal samples from 123 individuals in WRAP
- 165 with plasma metabolites were available for the main analysis. In

166	the Wisconsin ADRC, blood samples were collected in heparin
167	tubes, which could influence metabolite values; as such, plasma
168	metabolomics data have not been generated in Wisconsin ADRC
169	blood samples. Further details of how plasma and CSF samples
170	were processed are explained in an earlier study [12].
171	2.3 CSF metabolomic profiling and quality control
172	CSF and plasma metabolomic analyses and quantification
173	were performed in one batch by Metabolon (Durham, NC) using
174	an untargeted approach, based on Ultrahigh Performance Liquid
175	Chromatography-Tandem Mass Spectrometry platform (UPLC-
176	MS/MS) [18]. Details of the metabolomic profiling were described
177	in an earlier study [12].
178	Each metabolite value was first scaled so the median was
179	equal to one across all samples. Missing values were then imputed
180	to half the lowest level of detection for each biological metabolite
181	and 0.0001 (the lowest value that could be accepted in the analytic
182	software) for each xenobiotic metabolite. The missing percentage
183	for each of the 38 previously identified CSF metabolites prior to
184	imputation is shown in Supplemental Table 1. Metabolites with
185	zero variability between individuals, or with an interquartile range
186	of zero, were excluded (none of the 38 CSF metabolites were
187	excluded). Log10 transformation was employed to normalize the
188	data. After quality control, the previously identified 38 metabolites

189	were selected	for this	investigation.	The	distribution	of each	of the
-----	---------------	----------	----------------	-----	--------------	---------	--------

- 190 38 CSF metabolites after imputation and Log 10 transformation is
- shown in Supplemental Figure 1.
- 192 **2.4 Statistical analysis**

193 2.4.1 Prediction performance of the 38 CSF metabolites

- 194 To replicate the previously reported results in WRAP [12],
- each metabolite's association with t-tau and p-tau was tested in the
- 196 IMPACT cohort and the Bonferroni adjustment was applied to
- 197 correct for multiple testing. A meta-analysis was also conducted by
- using results from IMPACT and WRAP. To replicate the

199 performance of the cluster of 38 CSF metabolites in explaining

- 200 variation in tau pathology, we used linear regression models to
- 201 determine the prediction performance (r^2) of CSF t-tau and p-tau in
- 202 IMPACT. The base models, which included age, sex, and years of
- education, were compared to models that also included the 38 CSF
- 204 metabolites. To reproduce the results in WRAP and compare them
- to IMPACT using consistent statistical models, we determined the
- prediction performance (r^2) of the 38 CSF metabolites using linear
- 207 mixed-effects regression with random intercepts to account for
- 208 repeated measures and sibling relationships. In both IMPACT and
- 209 WRAP, we randomly split the data into a training (70%) and
- validation (30%) set and created plots to compare the observed and
- 211 predicted values. Finally, we physically combined the WRAP

212	baseline samples and IMPACT samples and re-conducted the
213	analysis to evaluate the explained variance. Sex-stratified
214	prediction differences were assessed in WRAP by fitting the
215	mentioned models in males and females separately. The number of
216	male samples in IMPACT was too small to perform sex-stratified
217	analyses while meeting the degrees of freedom needed by the
218	model. Of the original 38 CSF metabolites, 34 were also found in
219	plasma samples from WRAP and were tested together as predictors
220	for t-tau and p-tau using linear mixed-effects regression models, as
221	described above. A sensitivity analysis using only the baseline
222	samples was also conducted in WRAP for both CSF and plasma
223	metabolites. The statistical analyses here and below were all
224	conducted in R version 3.6.2. The lme4 package was used.
225	2.4.2 LASSO selection of important metabolites and their
226	prediction of AD/MCI vs. HOC
227	In order to incorporate a practical number of metabolites in
228	
220	the prediction model of AD/MCI diagnosis vs. HOC instead of
229	the prediction model of AD/MCI diagnosis vs. HOC instead of including all 38 metabolites, the least absolute shrinkage and
229	including all 38 metabolites, the least absolute shrinkage and
229 230	including all 38 metabolites, the least absolute shrinkage and selection operator (LASSO) [19] was applied to select the most
229 230 231	including all 38 metabolites, the least absolute shrinkage and selection operator (LASSO) [19] was applied to select the most important metabolites (those with non-zero estimated effects) for

235	were re-evaluated	using simila	ar model from	2.4.1 in bo	th IMPACT

- and WRAP. The ability to enhance the prediction of AD/MCI vs.
- HOC status by the metabolites selected from LASSO was
- evaluated in an independent set of participants from the Wisconsin
- ADRC using logistic regression and an area under the curve
- 240 (AUC) score. To determine prediction ability of the selected
- 241 metabolites beyond demographic factors and established
- biomarkers, base models including age, sex, years of education,
- 243 APOE ε 4 count, t-tau, p-tau, and A β_{42} were compared to the base
- 244 model replacing t-tau and p-tau with the selected metabolites and
- also the base model plus the selected metabolites from LASSO.
- 246 The analysis here used the "glmnet" package in R.
- 247 **2.4.3 Biological relevance of the 38 CSF metabolites**
- 248 An exploratory factor analysis was conducted to determine
- 249 if subsets of metabolites clustered together in latent factors
- associated with t-tau and p-tau. The factor analysis was performed
- in IMPACT and WRAP using the "psych" package in R.
- 252 Metabolites with a loading of ≥ 0.4 [20] in one particular factor and
- 253 lower loadings for the rest of the factors were considered as
- 254 members of that particular factor. Potential functional pathways of
- the 38 metabolites were identified from the Homo sapiens KEGG
- 256 pathway by conducting pathway analyses using the web-based
- software, Metabo-analyst [21], inputting the metabolites' human

- 258 metabolome database (HMDB) IDs, and using the default
- 259 hypergeometric test and the relative-betweenness centrality, which
- is a measure of centrality in a graph based on the shortest paths
- that pass through the vertex. Pathways were considered as
- important if the FDR was ≤ 0.05 or the impact was ≥ 0.1 .
- 263 **3. Results**
- 264 **3.1 Participant characteristics**
- 265 Characteristics of the participants can be found in Table 1.
- Among 158 Wisconsin ADRC IMPACT participants and 130
- 267 WRAP participants who had CSF metabolite data available,
- females comprised 74.7% of IMPACT participants and 65.4% of
- 269 participants in WRAP. The mean baseline age was significantly
- 270 younger in IMPACT (57.8 years) compared to WRAP (61.5 years).
- The mean years of education was similar (16.0 and 16.1 years in
- 272 IMPACT and WRAP, respectively). Mean CSF t-tau was
- significantly lower in IMPACT (283.1) compared to WRAP
- 274 (311.5). The correlation between t-tau and p-tau was
- approximately 0.90 in IMPACT and WRAP. The characteristics of
- each additional sub cohort of the Wisconsin ADRC and of the 123
- 277 WRAP participants in the plasma prediction analysis can also be
- found in Table 1.
- 279 **3.2 Prediction performance**

280	Each of the 38 CSF metabolites was significantly
281	associated with t-tau and p-tau in IMPACT and the direction of the
282	effect was the same as in WRAP (Supplemental Table 2). Meta-
283	analysis results are shown in Supplemental Table 3. All
284	metabolites were significantly associated with t-tau and p-tau
285	except erythritol. Base models only explained approximately 10%
286	of the variance in t-tau and p-tau in both IMPACT and WRAP
287	(Table 2). In IMPACT, the statistical model including the 38 CSF
288	metabolites and demographics together explained 70.3% of the
289	variance in t-tau and 75.7% of the variance in p-tau values. These
290	results were similar to those calculated in WRAP, where the model
291	including the 38 CSF metabolites and demographics explained
292	62.4% and 65.1% of the variance in t-tau and p-tau values,
293	respectively. Similarly, in the combined dataset, the 38 CSF
294	metabolites explained 66.1% and 72.3% of the variance in t-tau
295	and p-tau, respectively. The results of the same analysis but only
296	using baseline samples in WRAP are shown in Supplemental Table
297	4. Supplemental Figure 2 shows plots comparing the observed and
298	predicted values for t-tau and p-tau in both IMPACT and WRAP.
299	In WRAP, these metabolites explained more of the variance in the
300	t-tau and p-tau in males ($r^2=0.749$ and 0.804) than in females
301	(r^2 =0.591 and 0.640; Table 2). We did not have enough male
302	participants to fit the sex-stratified model in IMPACT; however,

304this trend was not seen in IMPACT. In WRAP, the 34 of 38305metabolites present in plasma explained 26.9% and 30.1% of the306variance in CSF t-tau and p-tau, respectively (Table 2), which is307relatively low compared to CSF metabolites. We also examined the308same 34 CSF metabolites' prediction ability and confirmed that the309lower r² values for the 34 plasma metabolites were not due to the310absence of the four metabolites (Supplemental Table 4).311 JALASSO results 312LASSO results for t-tau and p-tau in both IMPACT and313WRAP are shown in Table 3. Eight metabolites with non-zero314coefficients (ranging from 33.25 to 202.10) were chosen in315IMPACT, and twelve metabolites (coefficients ranging from -316112.48 to 333.57) were selected for t-tau in WRAP. Among the317selected metabolites, five were consistent across IMPACT and318WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X-31924228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in320iMPACT and twelve metabolites in WRAP with non-zero321coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to32230.80 in WRAP) were selected for p-tau, with seven metabolites323overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X-32410457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and3251-myristoyl-2-palmitoyl-GPC(14:0/16:0)), which included the five	303	while the female only r^2 was lower than the overall r^2 in WRAP,
 variance in CSF t-tau and p-tau, respectively (Table 2), which is relatively low compared to CSF metabolites. We also examined the same 34 CSF metabolites' prediction ability and confirmed that the lower r² values for the 34 plasma metabolites were not due to the absence of the four metabolites (Supplemental Table 4). 3.3 LASSO results LASSO results for t-tau and p-tau in both IMPACT and WRAP are shown in Table 3. Eight metabolites with non-zero coefficients (ranging from 33.25 to 202.10) were chosen in IMPACT, and twelve metabolites (coefficients ranging from - 112.48 to 333.57) were selected for t-tau in WRAP. Among the selected metabolites, five were consistent across IMPACT and WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X- 24228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in IMPACT and twelve metabolites in WRAP with non-zero coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	304	this trend was not seen in IMPACT. In WRAP, the 34 of 38
 relatively low compared to CSF metabolites. We also examined the same 34 CSF metabolites' prediction ability and confirmed that the lower r² values for the 34 plasma metabolites were not due to the absence of the four metabolites (Supplemental Table 4). 3.3 LASSO results LASSO results for t-tau and p-tau in both IMPACT and WRAP are shown in Table 3. Eight metabolites with non-zero coefficients (ranging from 33.25 to 202.10) were chosen in IMPACT, and twelve metabolites (coefficients ranging from - 112.48 to 333.57) were selected for t-tau in WRAP. Among the selected metabolites, five were consistent across IMPACT and WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X- 24228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in IMPACT and twelve metabolites in WRAP with non-zero coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	305	metabolites present in plasma explained 26.9% and 30.1% of the
 same 34 CSF metabolites' prediction ability and confirmed that the lower r² values for the 34 plasma metabolites were not due to the absence of the four metabolites (Supplemental Table 4). 3.3 LASSO results LASSO results for t-tau and p-tau in both IMPACT and WRAP are shown in Table 3. Eight metabolites with non-zero coefficients (ranging from 33.25 to 202.10) were chosen in IMPACT, and twelve metabolites (coefficients ranging from - 112.48 to 333.57) were selected for t-tau in WRAP. Among the selected metabolites, five were consistent across IMPACT and WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X- 24228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in IMPACT and twelve metabolites in WRAP with non-zero coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	306	variance in CSF t-tau and p-tau, respectively (Table 2), which is
 lower r² values for the 34 plasma metabolites were not due to the absence of the four metabolites (Supplemental Table 4). 3.3 LASSO results LASSO results for t-tau and p-tau in both IMPACT and WRAP are shown in Table 3. Eight metabolites with non-zero coefficients (ranging from 33.25 to 202.10) were chosen in IMPACT, and twelve metabolites (coefficients ranging from - selected metabolites, five were consistent across IMPACT and WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X- 24228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in IMPACT and twelve metabolites in WRAP with non-zero coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	307	relatively low compared to CSF metabolites. We also examined the
 absence of the four metabolites (Supplemental Table 4). 3.3 LASSO results LASSO results for t-tau and p-tau in both IMPACT and WRAP are shown in Table 3. Eight metabolites with non-zero coefficients (ranging from 33.25 to 202.10) were chosen in IMPACT, and twelve metabolites (coefficients ranging from - 112.48 to 333.57) were selected for t-tau in WRAP. Among the selected metabolites, five were consistent across IMPACT and WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X- 24228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in IMPACT and twelve metabolites in WRAP with non-zero coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	308	same 34 CSF metabolites' prediction ability and confirmed that the
 3.3 LASSO results LASSO results for t-tau and p-tau in both IMPACT and WRAP are shown in Table 3. Eight metabolites with non-zero coefficients (ranging from 33.25 to 202.10) were chosen in IMPACT, and twelve metabolites (coefficients ranging from - 112.48 to 333.57) were selected for t-tau in WRAP. Among the selected metabolites, five were consistent across IMPACT and WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X- 24228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in IMPACT and twelve metabolites in WRAP with non-zero coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	309	lower r^2 values for the 34 plasma metabolites were not due to the
312LASSO results for t-tau and p-tau in both IMPACT and313WRAP are shown in Table 3. Eight metabolites with non-zero314coefficients (ranging from 33.25 to 202.10) were chosen in315IMPACT, and twelve metabolites (coefficients ranging from -316112.48 to 333.57) were selected for t-tau in WRAP. Among the317selected metabolites, five were consistent across IMPACT and318WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X-31924228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in320IMPACT and twelve metabolites in WRAP with non-zero321coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to32230.80 in WRAP) were selected for p-tau, with seven metabolites323overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X-32410457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and	310	absence of the four metabolites (Supplemental Table 4).
 WRAP are shown in Table 3. Eight metabolites with non-zero coefficients (ranging from 33.25 to 202.10) were chosen in IMPACT, and twelve metabolites (coefficients ranging from - 112.48 to 333.57) were selected for t-tau in WRAP. Among the selected metabolites, five were consistent across IMPACT and WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X- 24228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in IMPACT and twelve metabolites in WRAP with non-zero coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	311	3.3 LASSO results
 coefficients (ranging from 33.25 to 202.10) were chosen in IMPACT, and twelve metabolites (coefficients ranging from - 112.48 to 333.57) were selected for t-tau in WRAP. Among the selected metabolites, five were consistent across IMPACT and WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X- 24228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in IMPACT and twelve metabolites in WRAP with non-zero coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	312	LASSO results for t-tau and p-tau in both IMPACT and
 IMPACT, and twelve metabolites (coefficients ranging from - 112.48 to 333.57) were selected for t-tau in WRAP. Among the selected metabolites, five were consistent across IMPACT and WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X- 24228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in IMPACT and twelve metabolites in WRAP with non-zero coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	313	WRAP are shown in Table 3. Eight metabolites with non-zero
 112.48 to 333.57) were selected for t-tau in WRAP. Among the selected metabolites, five were consistent across IMPACT and WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X- 24228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in IMPACT and twelve metabolites in WRAP with non-zero coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	314	coefficients (ranging from 33.25 to 202.10) were chosen in
 selected metabolites, five were consistent across IMPACT and WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X- 24228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in IMPACT and twelve metabolites in WRAP with non-zero coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	315	IMPACT, and twelve metabolites (coefficients ranging from -
 WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X- 24228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in IMPACT and twelve metabolites in WRAP with non-zero coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	316	112.48 to 333.57) were selected for t-tau in WRAP. Among the
 24228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in IMPACT and twelve metabolites in WRAP with non-zero coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	317	selected metabolites, five were consistent across IMPACT and
 IMPACT and twelve metabolites in WRAP with non-zero coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	318	WRAP (N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X-
 321 coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to 322 30.80 in WRAP) were selected for p-tau, with seven metabolites 323 overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 324 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	319	24228, and 1-palmitoyl-GPC(16:0)). Eleven metabolites in
 30.80 in WRAP) were selected for p-tau, with seven metabolites overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	320	IMPACT and twelve metabolites in WRAP with non-zero
 overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X- 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and 	321	coefficients (ranging from 1.07 to 28.80 in IMPACT and -4.06 to
324 10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and	322	30.80 in WRAP) were selected for p-tau, with seven metabolites
	323	overlapping (N-acetylneuraminate, C-glycosyl tryptophan, X-
1-myristoyl-2-palmitoyl-GPC(14:0/16:0)), which included the five	324	10457, X-24228, 1-oleoyl-GPC(18:1), 1-palmitoyl-GPC(16:0), and
	325	1-myristoyl-2-palmitoyl-GPC(14:0/16:0)), which included the five

326	metabolites overlapping in the two t-tau models. These seven
327	metabolites along with demographics explained about 59% and
328	69% of the variance in t-tau and p-tau, respectively in IMPACT
329	and 59% and 62%, respectively in WRAP (Table 2).
330	When predicting AD vs. HOC and MCI vs. HOC, the base
331	models, including age, sex, years of education, APOE E4 count, t-
332	tau, p-tau, and A β_{42} , achieved AUC scores of 0.92 and 0.78,
333	respectively. Replacing t-tau and p-tau with the seven metabolites
334	selected by LASSO, that overlapped across IMPACT and WRAP
335	for t-tau and/or p-tau, achieved AUC scores of 0.94 and 0.82. The
336	base model plus the seven metabolites collectively improved the
337	prediction ability of AD vs. HOC (AUC score increased from 0.92
338	to 0.97) and of MCI vs. HOC (AUC score increased from 0.78 to
339	0.93; Figure 1). The comparisons of results from the base model
340	plus seven LASSO selected metabolites to the base model with
341	seven randomly selected metabolites from 38 metabolites and
342	seven randomly selected metabolites from all CSF metabolites
343	with tau outcomes are shown in Supplemental Figure 3.
344	3.4 Biological relevance of the 38 metabolites
345	The biochemical names, sub-pathways, and super pathways
346	of the 38 metabolites can be found in Supplemental Table 5, which
347	also shows the loadings of each metabolite for three latent factors
348	produced through exploratory factor analysis. These factors

349	included the exact same metabolites and similar loadings for each
350	in both IMPACT and WRAP and explained about 60% of the
351	variance in the 38 metabolites. Factor 1 included 25 metabolites in
352	the following pathways: amino acids, nucleotides, carbohydrates,
353	cofactors and vitamins, energy, xenobiotics, and unknowns (no
354	confirmed biochemical names). Factor 2 was composed of eleven
355	lipids. Two lysophospholipids contributed to factor 3 and they
356	were selected by LASSO for p-tau in both IMPACT and WRAP.
357	Among the 29 known metabolites, 26 had HMDB IDs and
358	23 of these were present in the MetaboAnalyst database. In
359	pathway analyses, these 23 metabolites were enriched in two
360	KEGG pathways (Figure 2 and Table 4): (1) pentose and
361	glucuronate interconversions and (2) glycerophospholipid (GP)
362	metabolism. Three metabolites from Factor 1,
363	arabinose, arabitol/xylitol, and gulonate, were enriched in pentose
364	and glucuronate interconversions. Two metabolites, 1-palmitoyl-2-
365	palmitoleoyl-GPC(16:0/16:1) and 1-oleoyl-GPC(18:1) from
366	Factors 2 and 3, respectively, were enriched in
367	glycerophospholipid metabolism.
368	4. Discussion
369	Using a cross-sectional sample from the Wisconsin ADRC
370	IMPACT cohort, we replicated previous findings of 38 CSF

metabolites associated with t-tau and p-tau in WRAP [12]. Not

372	only was each of the 38 CSF metabolites significantly associated
373	with both tau outcomes after Bonferroni correction, but the high
374	amount of variance in tau explained by this cluster of 38 CSF
375	metabolites was confirmed in IMPACT.
376	Among these metabolites, there are 13 lipids, 7 amino
377	acids, 5 carbohydrates, 1 nucleotide, 1 energy metabolite, 1
378	cofactor and vitamin metabolite, 1 xenobiotic, and 9 unknown
379	metabolites. Some of these metabolites, such as 1,2-dipalmitoyl-
380	GPC(16:0/16:0) and stearoyl sphingomyelin(d18:1/18:0), were
381	previously reported to be associated with AD diagnosis or AD
382	pathogenesis [22,23]. Orešič et al. (2011) found that serum 1,2-
383	dipalmitoyl-GPC(16:0/16:0), also called PC(16:0/16:0), was one of
384	3 metabolites considered to be predictive markers of AD
385	progression in individuals with MCI [22]. CSF stearoyl
386	sphingomyelin(d18:1/18:0), also called SM(d18:1/18:0),
387	distinguished clinical AD from controls, with an accuracy of 70%
388	and was significantly increased in patients displaying pathological
389	levels of A β_{42} , t-tau and p-tau [23], supporting that this molecule
390	changes in patients with A/T/N pathology. Additionally, the N-
391	acetylamino acids, N-acetylvaline, N-acetylthreonine, N-
392	acetylserine, and N-acetyl-isoputreanine, were identified in our
393	study. N-acetylthreonine and N-acetylserine are the downstream
394	metabolites of the cleavage process initiated by lysosomal protease

395	tripeptidyl peptidase 1 (TPP1) [24], and previous studies [25,26]
396	suggested that increased levels of TPP1 enhance fibrillar β -
397	amyloid degradation. In support of this, a secondary analysis in our
398	study found that N-acetylserine was significantly associated with
399	A β_{42} (beta=480.38, p=0.002), providing evidence that this CSF
400	metabolite may be involved in brain amyloid pathology.
401	From the 38 metabolites, 7 were selected by LASSO in
402	both IMPACT and WRAP: N-acetylneuraminate, C-glycosyl
403	tryptophan, 1-palmitoyl-GPC(16:0), 1-oleoyl-GPC(18:1), 1-
404	myristoyl-2-palmitoyl-GPC(14:0/16:0), and two unknown
405	metabolites (X-10457 and X-24228). These improved the
406	prediction of AD vs. HOC by approximately 5% and MCI vs
407	HOC by 15% compared to a model that included the well-
408	established AD risk factors of age, sex, years of education, APOE
409	ϵ 4 count, t-tau, p-tau, and A β_{42} . A recent study in a Japanese
410	cohort found that CSF N-acetylneuraminate was significantly
411	higher in AD patients, when compared to the idiopathic normal
412	pressure hydrocephalus, and had a positive correlation with CSF p-
413	tau (r=0.55) [27]. In our study, CSF N-acetylneuraminate was
414	positively associated with both t-tau and p-tau. C-glycosyl
415	tryptophan, a sugar-loaded amino acid, has been reported to be
416	strongly associated with aging, defined by chronological age
417	(beta=2.47, p= 1.3×10^{-23}), in a human blood metabolome-wide

418	association study	[28]. In our study,	CSF C-glycosyl tryptophan
-----	-------------------	---------------------	---------------------------

- 419 was positively associated with t-tau and p-tau. Two lipids 1-
- 420 palmitoyl-GPC(16:0) (also called LysoPC(16:0/0:0)) and 1-
- 421 myristoyl-2-palmitoyl-GPC(14:0/16:0) (also called PC(14:0/16:0)),
- 422 belong to the class of lysophospholipid (LysoPCs) and
- 423 phosphatidylcholines (PCs), respectively. Previous studies have
- 424 shown that numerous plasma/serum metabolites from the LysoPC
- 425 and PC classes were significantly associated with MCI and AD
- 426 dementia or able to discriminate MCI and AD dementia cases from
- 427 controls [9,29–34]. In a randomized crossover trial that treated
- 428 mild to moderate AD patients with medium-chain triglycerides, 1-
- 429 palmitoyl-GPC(16:0) levels increased along with an improvement
- 430 in cognition [34]. These seven LASSO-selected metabolites
- 431 improved the prediction of AD and MCI status, suggesting they
- 432 may be useful biomarkers for clinical AD and MCI diagnosis.
- 433 Another interesting discovery from the LASSO results is
- that, while five metabolites were overlapping in IMPACT and
- 435 WRAP for both t-tau and p-tau, two metabolites,1-oleoyl-
- 436 GPC(18:1) (also called LysoPC(18:1(9Z)/0:0)) and 1-myristoyl-2-
- 437 palmitoyl-GPC(14:0/16:0) (also called PC(14:0/16:0)) were
- 438 selected only for p-tau, not t-tau. Since p-tau is more specific to
- 439 AD-related tau pathology than t-tau, these metabolites might

- 440 provide insight into the pathological processes involved in tau
- 441 tangle formation in AD.
- 442 When using the seven metabolites to predict AD/MCI vs.
- 443 HOC, the AUC scores from both the base model and base
- 444 model+metabolites were higher for AD than for MCI. However, a
- greater improvement in prediction accuracy for MCI vs. HOC
- 446 (15%) was achieved than AD vs. HOC (5%). One possible reason
- 447 could be that the 38 CSF metabolites were originally identified
- 448 from the WRAP cohort, whose participants were relatively young
- and have not been diagnosed with AD yet. Another explanation

450 could be that the base model, which included demographics,

451 APOE ε 4 count, and three core AD CSF biomarkers, already

- 452 achieved a very high accuracy for predicting AD vs. HOC and had
- 453 little room for improvement.
- 454 In WRAP, we were able to test the prediction of 34 of the
- 455 38 metabolites that were found in plasma. We found that these 34
- 456 metabolites collectively did not explain much variation in CSF
- 457 concentrations of t-tau and p-tau (r^2 between 0.286 and 0.303).

458 This was not due to the absence of the 4 metabolites, since the r^2 of

- the 34 metabolites in the CSF (0.621 to 0.641) was close to that
- 460 with all 38 metabolites (0.624 to 0.651) in WRAP. Moreover, the
- 461 correlations between the same 34 metabolites measured in both

462 CSF and plasma are relatively low (-0.13 to 0.30) [12]

(Supplemental Figure 4). We previously proposed that this low

464	correlation could be attributed to these metabolites not being able
465	to cross the blood brain barrier (BBB) [35]. For example,
466	cholesterol metabolism in the brain relies on its own cells to
467	produce cholesterol, and the transport of cholesterol from
468	peripheral circulation into the brain is prevented by the BBB
469	[36,37]. In this situation, the concentrations and functions of
470	metabolites like cholesterol are different across the BBB. Thus,
471	testing for these metabolites in a more readily available body fluid,
472	like blood, does not appear to be a viable option.
473	The factor analysis results suggest that the 38 metabolites
474	are associated with tau through three main clusters (1) the
475	combination of select amino acids, nucleotides, carbohydrates,
476	cofactors and vitamins, energy, xenobiotics, and unknown
477	metabolites; (2) phosphatidylcholines and sphingolipid
478	metabolism, and (3) lysophospholipids. Five metabolites from
479	these factors were enriched in (1) pentose and glucuronate
480	interconversions and (2) glycerophospholipid metabolism from the
481	pathway analysis. The pentose and glucuronate interconversion
482	pathway was suggested from genomics and metabolomics studies
483	to be involved in AD [38–40]. A urinary metabolomics study of
484	APP/PS1 transgenic mice of AD and a hippocampal metabolomics
485	study of CRND8 mice also identified this pathway [41,42]. Other

486	studies have shown that brain glucose dysregulation and pentose
487	related activities are associated with AD pathology [43-46]. Thus,
488	our results provide further potential links between molecules in
489	pentose and glucuronate metabolism, especially the three CSF
490	metabolites, arabinose, xylitol, and gulonate, and the tau
491	pathological process of AD.
492	The brain is the most cholesterol-rich organ, containing
493	glycerophospholipids, cholesterol, sphingolipids, etc. [47]. The
494	neural membranes are also composed of these lipids and the
495	evidence suggests that glycerophospholipids and
496	glycerophospholipid metabolism may associate with neural
497	membrane composition alterations, glycerolipid-derived lipid-
498	mediated oxidative stress, and neuroinflammation [9,48]. For
499	example, levels of glycerophospholipids were decreased in brain
500	autopsy samples from AD patients compared to age-matched
501	controls [49]. In another study, increased glycerophospholipid
502	levels were associated with increased activities of lipolytic
503	enzymes and elevated concentrations of phospholipid degradation
504	metabolites [50]. In our analysis, the two metabolites, 1-palmitoyl-
505	2-palmitoleoyl-GPC(16:0/16:1) and 1-oleoyl-GPC(18:1), from
506	Factors 2 and 3 were in a feedback loop and their levels were
507	influenced by the genes LCAT, PLA2G4B, and LPCAT
508	(Supplemental Figure 5.) Previous studies have suggested that

509	LCAT and LPCAT are related to AD [51,52]. Thus, by connecting
510	glycerophospholipids, especially these two metabolites with t-tau
511	and p-tau, we provide further evidence for their connections with
512	AD pathogenesis.
513	Our sample sizes were relatively small for both IMPACT
514	and WRAP; however, the 38 CSF metabolites' associations with
515	CSF t-tau and p-tau levels identified before [12] were replicated in
516	the independent IMPACT data, strengthening our confidence that
517	these 38 metabolites are important for tau pathology. However,
518	further research is necessary to understand whether a causal
519	relationship exists between these CSF metabolites and tau
520	pathology. One limitation of this study is that both IMPACT and
521	WRAP are predominantly non-Hispanic white/Caucasian, so the
522	findings of this study may not be generalizable to other
523	races/ethnicities. Another limitation is that most of the 38
524	metabolites are highly correlated with each other. LASSO selected
525	seven metabolites that have non-zero effects on tau, but the
526	resulting metabolites are still correlated with each other
527	(Supplemental Figure 6; range of 0.40 to 0.96). A more
528	sophisticated approach that can further remove non-independent
529	metabolites is needed for clinical application. A third limitation is
530	that in our pathway analysis, only three or two metabolites were
531	included in the enriched pathways (pentose and glucuronate

532 interconversions and glycerophospholipid metabolism,

respectively). Future research will be necessary to confirm these

results.

535	In summary, we aimed to replicate earlier findings of 38
536	CSF metabolites' correlation with tau and expand the biological
537	knowledge of them to better understand their roles in AD
538	pathogenesis. 38 CSF metabolites individually associated with two
539	tau outcomes significantly and, together, explained a large amount
540	of variance in tau. A subset of these metabolites, selected by
541	LASSO, improved the prediction accuracy of AD/MCI vs. HOC
542	over a model that included established predictors of AD. Two
543	promising metabolic pathways, pentose and glucuronate
544	interconversions metabolism and glycerophospholipid metabolism,
545	were identified in this study and have been shown to be related to
546	AD in previous literature. IMPACT and WRAP are ongoing
547	longitudinal studies that are continuing to collect plasma and CSF
548	from study participants, and additional data will be generated in
549	the future. These data may help fill in gaps regarding the
550	mechanisms linking metabolites and AD, improve the
551	establishment of CSF-based metabolite biomarkers, and identify
552	novel drug targets.
553	

554 Acknowledgements

555	The authors especially thank the WRAP and Wisconsin ADRC
556	participants and staff for their contributions to the studies. Without
557	their efforts this research would not be possible. This study was
558	supported by the National Institutes of Health (NIH) grants
559	[R01AG27161 (Wisconsin Registry for Alzheimer Prevention:
560	Biomarkers of Preclinical AD), R01AG054047 (Genomic and
561	Metabolomic Data Integration in a Longitudinal Cohort at Risk for
562	Alzheimer's Disease), and P30AG062715 (Wisconsin Alzheimer's
563	Disease Research Center Grant)], the Helen Bader Foundation,
564	Northwestern Mutual Foundation, Extendicare Foundation, State
565	of Wisconsin, the Clinical and Translational Science Award
566	(CTSA) program through the NIH National Center for Advancing
567	Translational Sciences (NCATS) grant [UL1TR000427], and the
568	University of Wisconsin-Madison Office of the Vice Chancellor
569	for Research and Graduate Education with funding from the
570	Wisconsin Alumni Research Foundation. This research was
571	supported in part by the Intramural Research Program of the
572	National Institute on Aging. Computational resources were
573	supported by core grants to the Center for Demography and
574	Ecology [P2CHD047873] and the Center for Demography of
575	Health and Aging [P30AG017266]. Author Y Deming was
576	supported by a training grant from the National Institute on Aging
577	[T32AG000213]. HZ is a Wallenberg Scholar supported by grants

578	from the Swedish	Research	Council	[#2018-02532]	, the Europe	ean
-----	------------------	----------	---------	---------------	--------------	-----

- 579 Research Council [#681712], the Swedish state under the
- agreement between the Swedish government and the County
- 581 Councils, the ALF-agreement [#ALFGBG-720931], the Alzheimer
- 582 Drug Discovery Foundation (ADDF), USA [#201809-2016862],
- and the UK Dementia Research Institute at UCL.
- 584 KB is supported by the Swedish Research Council (#2017-
- 585 00915), ADDF, USA [#RDAPB-201809-2016615], the Swedish
- 586 Alzheimer Foundation [#AF-742881], Hjärnfonden, Sweden
- 587 [#FO2017-0243], the Swedish state under the agreement between
- the Swedish government and the County Councils, the ALF-
- agreement [#ALFGBG-715986], and European Union Joint
- 590 Program for Neurodegenerative Disorders [JPND2019-466-236].
- 591 **Conflicts of interest**
- 592 HZ has served at scientific advisory boards for Denali, Roche
- 593 Diagnostics, Wave, Samumed and CogRx, has given lectures in
- 594 symposia sponsored by Fujirebio, Alzecure and Biogen, and is a
- 595 co-founder of Brain Biomarker Solutions in Gothenburg AB
- 596 (BBS), which is a part of the GU Ventures Incubator Program. KB
- 597 has served as a consultant or at advisory boards for Abcam, Axon,
- 598 Biogen, Lilly, MagQu, Novartis and Roche Diagnostics, and is a
- 599 co-founder of Brain Biomarker Solutions in Gothenburg AB
- 600 (BBS), which is a part of the GU Ventures Incubator Program.
- 601

602	Refe	erence
603	[1]	Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT.
604	[1]	Neuropathological Alterations in Alzheimer Disease. Cold
605		Spring Harb Perspect Med 2011;1.
606		https://doi.org/10.1101/cshperspect.a006189.
607	[2]	Zetterberg H a. Cerebrospinal fluid biomarkers for
608	[2]	Alzheimer's disease: current limitations and recent
608		developments. Current Opinion in Psychiatry 2015;28:402–9.
610		https://doi.org/10.1097/YCO.00000000000179.
611	[3]	Karikari TK, Pascoal TA, Ashton NJ, Janelidze S, Benedet
612	[5]	AL, Rodriguez JL, et al. Blood phosphorylated tau 181 as a
613		biomarker for Alzheimer's disease: a diagnostic performance
613 614		and prediction modelling study using data from four
615		prospective cohorts. The Lancet Neurology 2020;19:422–33.
616		https://doi.org/10.1016/S1474-4422(20)30071-5.
617	[4]	Barghorn S, Mandelkow E. Toward a Unified Scheme for the
618	[+]	Aggregation of Tau into Alzheimer Paired Helical Filaments.
618		Biochemistry 2002;41:14885–96.
620		https://doi.org/10.1021/bi026469j.
620 621	[5]	Jouanne M, Rault S, Voisin-Chiret A-S. Tau protein
622	[5]	aggregation in Alzheimer's disease: An attractive target for
623		the development of novel therapeutic agents. European
624		Journal of Medicinal Chemistry 2017;139:153–67.
625		https://doi.org/10.1016/j.ejmech.2017.07.070.
626	[6]	Hasin Y, Seldin M, Lusis A. Multi-omics approaches to
627	[0]	disease. Genome Biology 2017;18:83.
628		https://doi.org/10.1186/s13059-017-1215-1.
629	[7]	Enche Ady CNA, Lim SM, Teh LK, Salleh MZ, Chin A-V,
630	[']	Tan MP, et al. Metabolomic-guided discovery of Alzheimer's
631		disease biomarkers from body fluid: Metabolomic-based
632		Alzheimer's Disease Biomarkers. J Neuro Res
633		2017;95:2005–24. https://doi.org/10.1002/jnr.24048.
634	[8]	Wilkins JM, Trushina E. Application of Metabolomics in
635	r.,	Alzheimer's Disease. Front Neurol 2018;8.
636		https://doi.org/10.3389/fneur.2017.00719.
637	[9]	Toledo JB, Arnold M, Kastenmüller G, Chang R, Baillie RA,
638		Han X, et al. Metabolic network failures in Alzheimer's
639		disease: A biochemical road map. Alzheimer's & Dementia
640		2017;13:965–84. https://doi.org/10.1016/j.jalz.2017.01.020.
641	[10]	Fiandaca MS, Mapstone ME, Cheema AK, Federoff HJ. The
642		critical need for defining preclinical biomarkers in
643		Alzheimer's disease. Alzheimer's & Dementia
644		2014;10:S196–212.
645		https://doi.org/10.1016/j.jalz.2014.04.015.
646	[11]	Sato C, Barthélemy NR, Mawuenyega KG, Patterson BW,
647		Gordon BA, Jockel-Balsarotti J, et al. Tau Kinetics in

640		Nourons and the Human Control Nerrous Sustain Neuron
648		Neurons and the Human Central Nervous System. Neuron
649	[10]	2018;98:861–4. https://doi.org/10.1016/j.neuron.2018.04.035.
650	[12]	Darst BF, Lu Q, Johnson SC, Engelman CD. Integrated
651		analysis of genomics, longitudinal metabolomics, and
652		Alzheimer's risk factors among 1,111 cohort participants.
653		Genetic Epidemiology 2019;43:657–74.
654		https://doi.org/10.1002/gepi.22211.
655	[13]	Darst BF, Koscik RL, Racine AM, Oh JM, Krause RA,
656		Carlsson CM, et al. Pathway-Specific Polygenic Risk Scores
657		as Predictors of Amyloid-β Deposition and Cognitive
658		Function in a Sample at Increased Risk for Alzheimer's
659		Disease. Journal of Alzheimer's Disease 2016;55:473-84.
660		https://doi.org/10.3233/JAD-160195.
661	[14]	Racine AM, Koscik RL, Berman SE, Nicholas CR, Clark LR,
662		Okonkwo OC, et al. Biomarker clusters are differentially
663		associated with longitudinal cognitive decline in late midlife.
664		Brain 2016;139:2261–74.
665		https://doi.org/10.1093/brain/aww142.
666	[15]	Vogt NM, Romano KA, Darst BF, Engelman CD, Johnson
667		SC, Carlsson CM, et al. The gut microbiota-derived
668		metabolite trimethylamine N-oxide is elevated in Alzheimer's
669		disease. Alzheimer's Research & Therapy 2018;10:124.
670		https://doi.org/10.1186/s13195-018-0451-2.
671	[16]	Johnson SC, Koscik RL, Jonaitis EM, Clark LR, Mueller KD,
672		Berman SE, et al. The Wisconsin Registry for Alzheimer's
673		Prevention: A review of findings and current directions.
674		Alzheimer's & Dementia: Diagnosis, Assessment & Disease
675		Monitoring 2018;10:130–42.
676		https://doi.org/10.1016/j.dadm.2017.11.007.
677	[17]	Ma Y, Hulle CAV, Norton DL, Lazar KK, Chappell RJ,
678		Clark LR, et al. P1-286: TRANSFORMATION OF CSF
679		BIOMARKER VALUES BETWEEN MEASUREMENT
680		BATCHES. Alzheimer's & Dementia 2018;14:P393-5.
681		https://doi.org/10.1016/j.jalz.2018.06.292.
682	[18]	Bridgewater BR EA. High Resolution Mass Spectrometry
683		Improves Data Quantity and Quality as Compared to Unit
684		Mass Resolution Mass Spectrometry in High-Throughput
685		Profiling Metabolomics. Metabolomics 2014;04.
686		https://doi.org/10.4172/2153-0769.1000132.
687	[19]	Tibshirani R. Regression Shrinkage and Selection Via the
688		Lasso. Journal of the Royal Statistical Society: Series B
689		(Methodological) 1996;58:267–88.
690		https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.
691	[20]	Archer N, Brown RG, Reeves SJ, Boothby H, Nicholas H,
692		Foy C, et al. Premorbid Personality and Behavioral and
693		Psychological Symptoms in Probable Alzheimer Disease. The

694		American Journal of Geriatric Psychiatry 2007;15:202–13.
695		https://doi.org/10.1097/01.JGP.0000232510.77213.10.
696	[21]	Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al.
697		MetaboAnalyst 4.0: towards more transparent and integrative
698		metabolomics analysis. Nucleic Acids Res 2018;46:W486–
699		94. https://doi.org/10.1093/nar/gky310.
700	[22]	Orešič M, Hyötyläinen T, Herukka S-K, Sysi-Aho M, Mattila
	[22]	
701		I, Seppänan-Laakso T, et al. Metabolome in progression to
702		Alzheimer's disease. Translational Psychiatry 2011;1:e57–
703		e57. https://doi.org/10.1038/tp.2011.55.
704	[23]	Koal T, Klavins K, Seppi D, Kemmler G, Humpel C.
705		Sphingomyelin SM(d18:1/18:0) is Significantly Enhanced in
706		Cerebrospinal Fluid Samples Dichotomized by Pathological
707		Amyloid-β42, Tau, and Phospho-Tau-181 Levels. JAD
708		2015;44:1193–201. https://doi.org/10.3233/JAD-142319.
709	[24]	Sindelar M, Dyke JP, Deeb RS, Sondhi D, Kaminsky SM,
710		Kosofsky BE, et al. Untargeted Metabolite Profiling of
711		Cerebrospinal Fluid Uncovers Biomarkers for Severity of
712		Late Infantile Neuronal Ceroid Lipofuscinosis (CLN2 ,
713		Batten Disease). Sci Rep 2018;8:1–12.
714		https://doi.org/10.1038/s41598-018-33449-0.
	[25]	i e
715	[23]	Solé-Domènech S, Rojas AV, Maisuradze GG, Scheraga HA,
716		Lobel P, Maxfield FR. Lysosomal enzyme tripeptidyl
717		peptidase 1 destabilizes fibrillar $A\beta$ by multiple
718		endoproteolytic cleavages within the β -sheet domain. PNAS
719		2018;115:1493-8. https://doi.org/10.1073/pnas.1719808115.
720	[26]	Cruz D, El-Banna M, Majumdar A, Sleat DE, Muldowney M,
721		Lobel P, et al. Lysosomal enzyme tripeptidyl peptidase 1
722		plays a role in degradation of beta amyloid fibrils. BioRxiv
723		2019:639682. https://doi.org/10.1101/639682.
724	[27]	Nagata Y, Hirayama A, Ikeda S, Shirahata A, Shoji F,
725		Maruyama M, et al. Comparative analysis of cerebrospinal
726		fluid metabolites in Alzheimer's disease and idiopathic
727		normal pressure hydrocephalus in a Japanese cohort. Biomark
728		Res 2018;6:1–11. https://doi.org/10.1186/s40364-018-0119-x.
729	[28]	Menni C, Kastenmüller G, Petersen AK, Bell JT, Psatha M,
730	[=0]	Tsai P-C, et al. Metabolomic markers reveal novel pathways
731		of ageing and early development in human populations. Int J
732		Epidemiol 2013;42:1111–9.
		•
733 724	[^]	https://doi.org/10.1093/ije/dyt094.
734	[29]	Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre
735		TR, MacArthur LH, et al. Plasma phospholipids identify
736		antecedent memory impairment in older adults. Nature
737		Medicine 2014;20:415–8. https://doi.org/10.1038/nm.3466.
738	[30]	Klavins K, Koal T, Dallmann G, Marksteiner J, Kemmler G,
739		Humpel C. The ratio of phosphatidylcholines to

740		
740		lysophosphatidylcholines in plasma differentiates healthy
741		controls from patients with Alzheimer's disease and mild
742		cognitive impairment. Alzheimer's & Dementia: Diagnosis,
743		Assessment & Disease Monitoring 2015;1:295–302.
744	5011	https://doi.org/10.1016/j.dadm.2015.05.003.
745	[31]	Casanova R, Varma S, Simpson B, Kim M, An Y, Saldana S,
746		et al. Blood metabolite markers of preclinical Alzheimer's
747		disease in two longitudinally followed cohorts of older
748		individuals. Alzheimer's & Dementia 2016;12:815–22.
749		https://doi.org/10.1016/j.jalz.2015.12.008.
750	[32]	Li D, Misialek JR, Boerwinkle E, Gottesman RF, Sharrett
751		AR, Mosley TH, et al. Plasma phospholipids and prevalence
752		of mild cognitive impairment and/or dementia in the ARIC
753		Neurocognitive Study (ARIC-NCS). Alzheimer's &
754		Dementia: Diagnosis, Assessment & Disease Monitoring
755		2016;3:73-82. https://doi.org/10.1016/j.dadm.2016.02.008.
756	[33]	Varma VR, Oommen AM, Varma S, Casanova R, An Y,
757		Andrews RM, et al. Brain and blood metabolite signatures of
758		pathology and progression in Alzheimer disease: A targeted
759		metabolomics study. PLOS Medicine 2018;15:e1002482.
760	FO 41	https://doi.org/10.1371/journal.pmed.1002482.
761	[34]	Xu Q, Zhang Y, Zhang X, Liu L, Zhou B, Mo R, et al.
762		Medium-chain triglycerides improved cognition and lipid
763		metabolomics in mild to moderate Alzheimer's disease
764		patients with APOE4-/-: A double-blind, randomized,
765		placebo-controlled crossover trial. Clin Nutr 2019.
766	[25]	https://doi.org/10.1016/j.clnu.2019.10.017.
767 769	[33]	Pardridge WM. The blood-brain barrier: Bottleneck in brain
768 760		drug development. Neurotherapeutics 2005;2:3–14.
769 770	[26]	https://doi.org/10.1602/neurorx.2.1.3. Björkhem Ingemar, Meaney Steve. Brain Cholesterol: Long
771	[30]	Secret Life Behind a Barrier. Arteriosclerosis, Thrombosis,
772		and Vascular Biology 2004;24:806–15.
773		https://doi.org/10.1161/01.ATV.0000120374.59826.1b.
774	[37]	Zhang J, Liu Q. Cholesterol metabolism and homeostasis in
775	[37]	the brain. Protein Cell 2015;6:254–64.
776		https://doi.org/10.1007/s13238-014-0131-3.
777	[38]	Liu G, Yao L, Liu J, Jiang Y, Ma G, Chen Z, et al.
778	[90]	Cardiovascular disease contributes to Alzheimer's disease:
779		evidence from large-scale genome-wide association studies.
780		Neurobiology of Aging 2014;35:786–92.
781		https://doi.org/10.1016/j.neurobiolaging.2013.10.084.
782	[39]	Shang H, Liu G, Jiang Y, Fu J, Zhang B, Song R, et al.
783	[-]	Pathway Analysis of Two Amyotrophic Lateral Sclerosis
784		GWAS Highlights Shared Genetic Signals with Alzheimer's

705		
785		Disease and Parkinson's Disease. Mol Neurobiol
786	F 4 0 3	2015;51:361–9. https://doi.org/10.1007/s12035-014-8673-1.
787	[40]	Chen J, Xie C, Zhao Y, Li Z, Xu P, Yao L. Gene expression
788		analysis reveals the dysregulation of immune and metabolic
789		pathways in Alzheimer's disease. Oncotarget 2016;7.
790		https://doi.org/10.18632/oncotarget.12505.
791	[41]	Lin S, Liu H, Kanawati B, Liu L, Dong J, Li M, et al.
792		Hippocampal metabolomics using ultrahigh-resolution mass
793		spectrometry reveals neuroinflammation from Alzheimer's
794		disease in CRND8 mice. Anal Bioanal Chem 2013;405:5105–
795		17. https://doi.org/10.1007/s00216-013-6825-1.
796	[42]	Yu J, Kong L, Zhang A, Han Y, Liu Z, Sun H, et al. High-
797		Throughput Metabolomics for Discovering Potential
798		Metabolite Biomarkers and Metabolic Mechanism from the
799		APPswe/PS1dE9 Transgenic Model of Alzheimer's Disease.
800		J Proteome Res 2017;16:3219–28.
801		https://doi.org/10.1021/acs.jproteome.7b00206.
802	[43]	Schubert D. Glucose metabolism and Alzheimer's disease.
803		Ageing Research Reviews 2005;4:240–57.
804		https://doi.org/10.1016/j.arr.2005.02.003.
805	[44]	Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer's
806		disease a Type 3 Diabetes? A critical appraisal. Biochimica et
807		Biophysica Acta (BBA) - Molecular Basis of Disease
808		2017;1863:1078–89.
809		https://doi.org/10.1016/j.bbadis.2016.08.018.
810	[45]	An Y, Varma VR, Varma S, Casanova R, Dammer E,
811		Pletnikova O, et al. Evidence for brain glucose dysregulation
812		in Alzheimer's disease. Alzheimer's & Dementia
813		2018;14:318–29. https://doi.org/10.1016/j.jalz.2017.09.011.
814	[46]	Nho K, Kueider-Paisley A, Ahmad S, MahmoudianDehkordi
815		S, Arnold M, Risacher SL, et al. Association of Altered Liver
816		Enzymes With Alzheimer Disease Diagnosis, Cognition,
817		Neuroimaging Measures, and Cerebrospinal Fluid
818		Biomarkers. JAMA Netw Open 2019;2:e197978.
819		https://doi.org/10.1001/jamanetworkopen.2019.7978.
820	[47]	Dietschy JM, Turley SD. Cholesterol metabolism in the brain.
821		Current Opinion in Lipidology 2001;12:105.
822	[48]	Frisardi V, Panza F, Seripa D, Farooqui T, Farooqui AA.
823		Glycerophospholipids and glycerophospholipid-derived lipid
824		mediators: A complex meshwork in Alzheimer's disease
825		pathology. Progress in Lipid Research 2011;50:313–30.
826		https://doi.org/10.1016/j.plipres.2011.06.001.
827	[49]	Nitsch R, Pittas A, Blusztajn JK, Slack BE, Growdon JH,
828		Wurtman RJ. Alterations of phospholipid metabolites in
829		postmortem brain from patients with Alzheimer's disease.

850	830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 844 845 846 847 848 849	[51]	 Ann N Y Acad Sci 1991;640:110–3. https://doi.org/10.1111/j.1749-6632.1991.tb00200.x. Mulder C, Wahlund L-O, Teerlink T, Blomberg M, Veerhuis R, van Kamp GJ, et al. Decreased lysophosphatidylcholine/phosphatidylcholine ratio in cerebrospinal fluid in Alzheimer's disease. J Neural Transm 2003;110:949–55. https://doi.org/10.1007/s00702-003-0007-9. Ross BM, Moszczynska A, Erlich J, Kish SJ. Phospholipid-Metabolizing Enzymes in Alzheimer's Disease: Increased Lysophospholipid Acyltransferase Activity and Decreased Phospholipase A2 Activity. Journal of Neurochemistry 1998;70:786–93. https://doi.org/10.1046/j.1471- 4159.1998.70020786.x. Zannis VI, Koukos G, Drosatos K, Vezeridis A, Zanni EE, Kypreos KE, et al. Discrete roles of apoA-I and apoE in the biogenesis of HDL species: Lessons learned from gene transfer studies in different mouse models. Annals of Medicine 2008;40:14–28. https://doi.org/10.1080/07853890701687219.
	849 850		https://doi.org/10.1080/07853890701687219.

	CSF						
Participant		Wiscon	sin ADRC				
Characteristics	AD	MCI	НОС	IMPACT	WRAP	Р	WRAP
	(n = 38)	(n = 29)	(n = 40)	(n = 158)	(n = 130†)	values*	(n = 123)
Female: n (%)	12 (31.6)	8 (27.6)	22 (55.0)	118 (74.7)	85 (65.4)	0.11	80 (65.0)
Age in years: mean (SD)	71.4 (8.9)	74.2 (8.3)	74.1 (4.8)	57.8 (5.3)	61.5 (6.6)	< 0.001	62.6 (6.5)
Education in years: mean (SD)	14.8 (2.9)	16.3 (2.8)	16.4 (2.9)	16.0 (2.3)	16.1 (2.2)	0.50	16.1 (2.2)
CSF t-tau: mean (SD)	775.5 (332.9)	573.0 (346.9)	436.8(194.5)	283.1 (144.2)	311.5 (117.7)	0.03	318.9 (122.7)
CSF p-tau:	74.8	62 A(26 2)	52.0 (10.4)	39.8	41.5	0.10	42.6
mean (SD)	(27.3)	62.4(36.2)	52.9 (19.4)	(14.5)	(13.4)	0.10	(13.5)

851 Table 1. Wisconsin ADRC and WRAP participant characteristics.

* The p values are based on a two-sample t test conducted between the Wisconsin ADRC IMPACT cohort

and WRAP (shaded columns). †The 130 individuals had 210 longitudinal samples.

6JJ

	IMP	ACT	WRAP	
	T-tau	P-tau	T-tau	P-tau
Null models: demographics* only	0.083	0.106	0.085	0.087
Enhanced models: demographics and 38 CSF metabolites				
Overall	0.703	0.757	0.624	0.651
Female	0.787	0.791	0.591	0.640
Male	NA†	NA†	0.794	0.804
Demographics and 7 LASSO selected CSF metabolites	0.594	0.692	0.585	0.615
Demographics and 34 Plasma metabolites	NA†	NA†	0.269	0.301

867 Table 2. Prediction performance (r^2) of each model in IMPACT and WRAP.

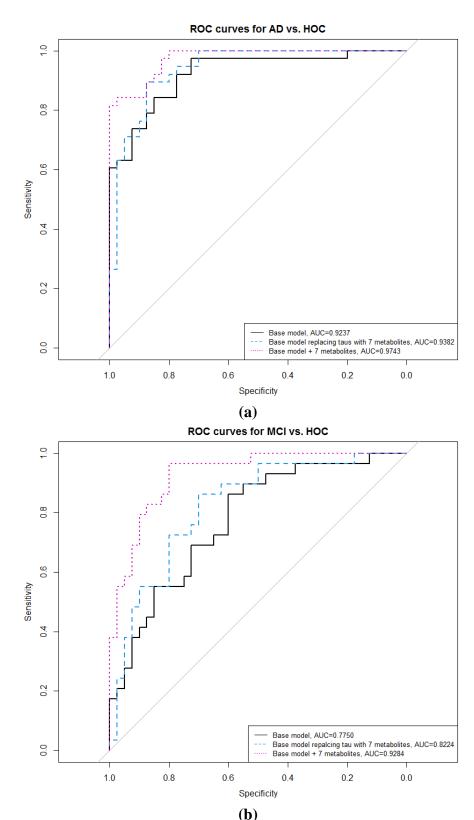
868 * Demographics are age, sex, and years of education.

* The sample size for males was too small to perform the analysis in IMPACT.

IMPACT		WRAP			
	T-t	tau			
Biochemical Name	Coefficient	Biochemical Name	Coefficient		
X - 24228	202.10	N-acetylneuraminate	333.57		
N-acetylneuraminate	188.68	C-glycosyl tryptophan	264.20		
Beta-citrylglutamate	151.01	X - 12906	97.42		
C-glycosyl tryptophan	92.25	1-oleoyl-GPC (18:1)	69.00		
N-acetylthreonine	78.41	X - 10457	62.67		
1-palmitoyl-GPC (16:0)	72.78	N6-succinyladenosine	50.65		
X - 10457	42.70	X - 24228	36.65		
X - 24699	33.25	X - 23739	28.95		
		1-palmitoyl-GPC (16:0)	1.38		
		1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)	0.21		
		X - 18887	-3.56		
		Ribonate	-112.48		
	P-t	tau			
C-glycosyl tryptophan	28.80	N-acetylneuraminate	30.80		
N-acetylneuraminate	24.98	C-glycosyl tryptophan	30.55		
Beta-citrylglutamate	15.71	X - 10457	9.80		
X - 24228	7.37	N6-succinyladenosine	7.41		
X - 10457	5.47	X - 24228	5.59		
1-palmitoyl-GPC (16:0)	4.26	X - 12906	3.66		
Cholesterol	2.52	Sphingomyelin (d18:1/14:0, d16:1/16:0)	3.05		
1-oleoyl-GPC (18:1)	2.44	X - 24699	3.04		
X - 24329	1.25	1-oleoyl-GPC (18:1)	2.33		
Gulonate	1.13	1-myristoyl-2-palmitoyl-GPC (14:0/16:0)	0.88		
-myristoyl-2-palmitoyl-GPC (14:0/16:0)	1.07	X - 18887	-2.50		
		Ribonate	-4.06		

887 Table 3. LASSO results for CSF t-tau and p-tau in IMPACT and WRAP.

888 Metabolites shaded in light grey with bold font are consistent across IMPACT and WRAP.

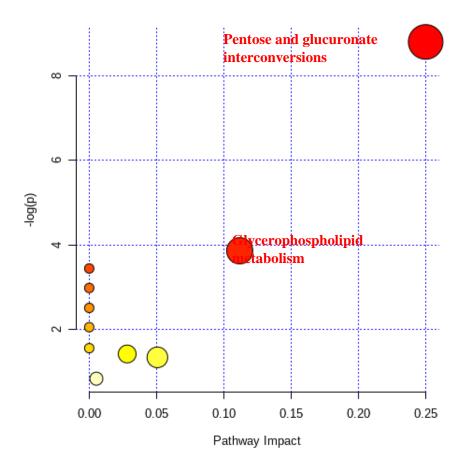

901	Table 4. Pathway analysis results for the 38 CSF metabolites.

		Pathway Impact				
KEGG Pathway	Total # Metabolites in KEGG Pathway	# Metabolites Identified in Present Study	Raw p	-Log(p)	FDR	Impact
Pentose and glucuronate interconversions	18	3	2E-04	8.80	0.01	0.25
Glycerophospholipid metabolism	36	2	0.02	3.86	0.88	0.11
Linoleic acid metabolism	5	1	0.03	3.45	0.89	0
Ascorbate and aldarate metabolism	8	1	0.05	2.98	1	0
alpha-Linolenic acid metabolism	13	1	0.08	2.51	1	0
Sphingolipid metabolism	21	1	0.13	2.06	1	0
Arachidonic acid metabolism	36	1	0.21	1.56	1	0
Steroid biosynthesis	42	1	0.24	1.42	1	0.03
Primary bile acid biosynthesis	46	1	0.26	1.34	1	0.05
Steroid hormone biosynthesis	85	1	0.43	0.84	1	0.005

Raw p is the original p value calculated from the enrichment analysis; FDR p is the p value adjusted
using False Discovery Rate; Impact is the pathway impact value calculated from the pathway topology

analysis. The shaded two pathways are considered important.

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.31.429054; this version posted February 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.


905 906

908

909 Figure 1. ROC curves and AUC scores of predictions by 6 models in the Wisconsin ADRC (a) AD vs. HOC (b)

MCI vs. HOC. Base model: age, sex, years of education, *APOE* ε4 count, t-tau, p-tau, and Aβ42; base model replacing
t-tau and p-tau with the seven selected metabolites from LASSO; and base model plus the seven selected
metabolites from LASSO.

913

Figure 2. Pathway analysis results for 23 CSF metabolites. The x-axis represents the pathway impact, and y-axis
 represents the pathway enrichment. Larger sizes and darker colors represent higher pathway impact and enrichment,
 respectively.