Article

Functional and comparative genome analysis reveals clade-specific genome innovations in the killer fungus Candida auris

Aswathy Narayanan ${ }^{1}$, Rakesh Netha Vadnala ${ }^{2}$, Promit Ganguly ${ }^{1}$, Pavitra
Selvakumar ${ }^{2}$, Shivaprakash M Rudramurthy ${ }^{3}$, Rajendra Prasad ${ }^{4}$, Arunaloke Chakrabarti ${ }^{3}$, Rahul Siddharthan ${ }^{2}$ and Kaustuv Sanyal ${ }^{1 \#}$
${ }^{1}$ Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India; ${ }^{2}$ Computational Biology, The Institute of Mathematical Sciences/HBNI, Chennai, India; ${ }^{3}$ Postgraduate Institute of Medical Education and Research, Chandigarh, India; ${ }^{4}$ Amity Institute of Biotechnology, Haryana, India.

\#Corresponding author:
Kaustuv Sanyal
Molecular Biology \& Genetics Unit
Jawaharlal Nehru Centre for Advanced Scientific Research
Jakkur, Bangalore - 560064
India
Email: sanyal@jncasr.ac.in
Telephone: +91-80-2208 2878
Fax: +91-80-2208 2766
Homepage: http://www.jncasr.ac.in/sanyal

Abstract

The thermotolerant multidrug-resistant ascomycete Candida auris rapidly emerged since 2009 and simultaneously evolved in different geographical zones worldwide, causing superficial as well as systemic infections. The molecular events that orchestrated this sudden emergence of the killer fungus remain mostly elusive. Here, we identify centromeres in C. auris and related species, using a combined approach of chromatin immunoprecipitation and comparative genomic analyses. We find that C. auris and multiple other species in the Clavispora/Candida clade shared a conserved small regional centromere landscape lacking pericentromeres. Further, a centromere inactivation event led to karyotypic alterations in this species complex. Inter-species genome analysis identified several structural chromosomal changes around centromeres. In addition, centromeres are found to be rapidly evolving loci among the different geographical clades of the same species of C. auris. Finally, we reveal an evolutionary trajectory of the unique karyotype associated with clade 2 that consists of the drug susceptible isolates of C. auris.

Keywords: Candida haemulonii, Candida duobushaemulonii, Candida pseudohaemulonii, Candida lusitaniae, Candida fructus, chromosome number reduction, centromere relocation, ancestral genome

Introduction

First isolated from an infected ear of a patient in Japan in 2009, Candida auris emerged as a multidrug-resistant opportunistic fungal pathogen causing nosocomial infections worldwide in a short time span (Satoh et al. 2009; Schelenz et al. 2016; Morales-López et al. 2017; Vallabhaneni et al. 2017; Ruiz-Gaitán et al. 2018). It can survive at elevated temperatures and high salt concentrations, which otherwise act as physiological barriers to fungal infections (Casadevall et al. 2019; Jackson et al. 2019). As a haploid ascomycete, C. auris often displays exceptional resistance to major antifungals like azoles and common sterilization agents, rendering it a difficult pathogen to treat (Emara et al. 2015; Cadnum et al. 2017; Chowdhary et al. 2018). As an opportunistic pathogen, C. auris colonises skin and causes systemic infections, thereby posing threats to patients with other clinical conditions like diabetes mellitus, chronic renal disease, and more recently COVID-19 infections (de Cássia Orlandi Sardi et al. 2018; Rodriguez et al. 2020). C. auris emerged and evolved
simultaneously as distinct geographical clades - South Asian (clade 1), East Asian (clade 2), South African (clade 3), South American (clade 4) and a potential fifth clade from Iran (Lockhart et al. 2017; Chow et al. 2019).The clades are separated by tens of thousands of single nucleotide polymorphisms (SNPs) but exhibit clonality within a clade (Lockhart et al. 2017). The mechanisms that underlie the sudden emergence and spread of C. auris as distinct geographical clades, though mostly unknown, represent rapid evolution modes in a fungal pathogen.

Both the pathogen and its host coevolve in nature to survive the evolutionary arms race. Chromosomal reshuffling serves to generate diversity in some predominantly asexual fungal pathogens (Sun et al. 2017; Guin, Chen, et al. 2020; Sankaranarayanan et al. 2020; Schotanus \& Heitman 2020), thereby circumventing evolutionary dead ends. Chromosomal rearrangements and aneuploidy are also known to enhance drug resistance and virulence in primarily asexual fungi (Selmecki et al. 2008; Poláková et al. 2009; Legrand et al. 2019) . Centromeres (CENs), that appear as the primary constrictions on metaphase chromosomes, are emerging as a central hub of such chromosomal rearrangements contributing to karyotype diversity and speciation (Guin, Sreekumar, et al. 2020). Centromeres exhibit diversity in their properties like the length of centromeric chromatin, repeat/transposon content, and GCrichness. However, centromeric chromatin in most species is occupied by the $C E N$-specific histone variant CENP-A ${ }^{\text {Cse4 }}$, that replaces canonical histone H 3 in the centromeric nucleosomes and is regarded as the epigenetic hallmark defining $C E N$ identity (McKinley \& Cheeseman 2016; Yadav et al. 2018) . Centromeric chromatin also provides foundation for assembling several multiprotein complexes to form the kinetochore. Dynamic interactions of spindle microtubules and kinetochores result in the precise segregation of sister chromatids in daughter cells during cell division. Centromere clustering near the nuclear periphery is a conserved feature across the fungal kingdom (Sanyal \& Carbon 2002; Padmanabhan et al. 2008; Navarro-Mendoza et al. 2019; Fang et al. 2020). Due to spatial proximity, centromeres with homologous DNA sequences often participate in chromosomal rearrangements that result in chromosomal shuffling which can drive karyotype evolution and chromosome number alterations, contributing to the emergence of a new species (Guin, Chen, et al. 2020; Ola et al. 2020; Sankaranarayanan et al. 2020) .
C. auris is a sister species of three multidrug-resistant pathogens, namely, Candida haemulonii, Candida duobushaemulonii, and Candida pseudohaemulonii. These species are also closely related to another human fungal pathogen, Candida lusitaniae, and together are
classified under the Clavispora/Candida clade of the family Metschnikowiaceae (Order: Saccharomycetales) (Gabaldón et al. 2016; Muñoz et al. 2018). Centromeres are susceptible to breaks in other fungal pathogens and are likely to contribute to the vast karyotype diversity exhibited by C. auris (Chatterjee et al. 2016; Bravo Ruiz et al. 2019; Guin, Chen, et al. 2020; Sankaranarayanan et al. 2020). We believed that studying the centromere structure and function in the C. haemulonii species complex and associated species may reveal mechanisms/events underlying the rapid evolution of the multidrug resistant fungal pathogen C. auris. In this study, we identified centromeres in all four clades of C. auris and leveraged the information to locate centromeres in the C. haemulonii complex species. Functional identification of centromeres combined with comparative genome analysis in these group of species helped us propose that a centromere inactivation event from an ancestral species facilitated genome innovations that led to the clade-specific parallel evolution of C. auris.

Results

C. auris possesses small regional CENP-A ${ }^{\text {Cse4 }}$-rich GC-poor, repeat-free centromeres

The histone H3 variant CENP- $\mathrm{A}^{\mathrm{Cse} 4}$ is exclusively associated with centromeric nucleosomes. The homolog of CENP- $\mathrm{A}^{\mathrm{Cse} 4}$ was identified in C. auris, using the C. albicans CENP-A ${ }^{\mathrm{Cse} 4}$ protein sequence as the query against the C. auris genome (GenBank assembly GCA_002759435.2). The putative C. auris CENP-A ${ }^{\text {Cse4 }}$ protein is 136 amino acid long and shares a 72% sequence identity with the C. albicans homolog (C3_00860W_A) (supplementary fig. 1). Previous studies suggested that the haploid genome of C. auris is distributed in seven chromosomes (Muñoz et al. 2018). To locate centromeres on each chromosome, we constructed a strain CauI46 expressing Protein A-tagged CENP-A ${ }^{\text {Cse4 }}$ from a clade 1 Indian isolate Cau46 (supplementary fig. 2A). Immunofluorescence staining using anti-Protein A antibodies revealed punctate localization of CENP- $\mathrm{A}^{\mathrm{Cse}}$ at the nuclear periphery, suggesting typical kinetochore clustering at interphase and mitotic stages of the cell cycle (fig. 1A). High amino-acid sequence similarities with other proteins of the CENPA family and typical localization patterns of the clustered centromeres at the nuclear periphery confirmed that the identified protein is, indeed, CENP- $\mathrm{A}^{\mathrm{Cse} 4}$ in C. auris. To identify CENP-A ${ }^{\text {Cse4 }}$ associated DNA sequences as centromeric chromatin on each chromosome of C. auris, we performed CENP-A chromatin immunoprecipitation (ChIP) followed by sequencing (ChIP-sequencing) in the strain CauI46. Sonicated genomic DNA-without antibodies was also subjected to high-throughput sequencing that served as the input DNA control. The CENP-A ${ }^{\text {Cse4 }}$ ChIP-seq analysis identified a single-peak in each of the seven
different scaffolds out of 15 scaffolds of the publicly available C. auris clade 1 reference genome assembly (fig. 1B). The CENP- ${ }^{\mathrm{Cse4}}$ enriched centromeric chromatin across chromosomes spans 2516 bp to 2908 bp, with an average length of 2727 bp (table 1). Further analysis of these regions suggests that CENP-A ${ }^{\text {Cse4 }}$-enriched core centromere (CEN) loci in C. auris are largely devoid of ORFs and represent poly-(A) transcriptional cold spots (fig. 1C). To further confirm ChIP-seq results, ChIP-quantitative PCR (ChIP-qPCR) using specific primers was performed to measure CENP-A ${ }^{\mathrm{Cse} 4}$ abundance at $C E N s$ compared to a noncentromeric genomic locus, $\sim 200 \mathrm{~kb}$ away from CEN4 (far-CEN4). The same centromeric and non-centromeric primer pairs (supplementary table 3) were used to assess the canonical histone H3 occupancy in the corresponding regions by histone H3 ChIP-qPCR analysis. As expected, histone H 3 levels were significantly depleted at the CENs compared to the far-CEN region (fig. 1D). Binding of CENP-A ${ }^{\mathrm{Cse} 4}$ to transcriptionally inert, histone H3-depleted loci of comparable length on different contigs strongly indicates that these genomic regions correspond to authentic centromeric chromatin.

Homology searches for CEN sequences among themselves and against the whole genome did not yield any significant results, suggesting that each DNA sequence underlying centromeric chromatin is unique and different. A dot-plot comparing each centromere DNA sequence against itself as well as other centromeric sequences suggested the unique nature of sequences and the absence of DNA sequence repeats in C. auris centromeres (fig. 1F). Searches for specific DNA sequence motifs also did not detect any, except the poly (A) and poly (T) stretches, which are present in all the seven regions, though not exclusive to the centromeres (supplementary fig. 2B). The presence of poly(A) stretches at all centromeres prompted us to analyse the GC-content of the $C E N$ sequences identified. Two sequence features were investigated using the sliding window approach- GC content (the percentage of G and C residues in the scaffold in a sliding window of 5 kb , with a step size of 1 kb) and GC3 content (GC content at the third position of codons in the annotated ORFs, across the scaffolds). These studies revealed the overlap of C. auris centromeres with deep GC and GC3 troughs in all the scaffolds (fig. 1G).

At each of the seven centromeres in C. auris, core CENP-A ${ }^{\text {Cse4 }}$ chromatin occupies the entire ORF-free region, often extending partially to the neighbouring centromereproximal ORFs. By comparing the lengths of CENP- $\mathrm{A}^{\mathrm{Cse} 4}$-bound and the associated ORFfree regions in the previously characterized centromeres of Ascomycota, we observed that centromeric chromatin tends to possess a localized region within the gene-poor zones in species like C. albicans and S. cerevisiae. Exceptionally, the ratio of centromeric chromatin
to the remaining ORF-free pericentric region in C. auris, similar to that of C. lusitaniae, is close to 1 (supplementary fig. 2C). Thus, C. auris, like C. lusitaniae seems to lack pericentric heterochromatin(Kapoor et al. 2015). We analysed RNA-seq data available for C. auris (SRR6900290, SRR6900291, SRR6900292, SRR6900293) to examine variations of gene expression at the centromere vicinity that might indicate the presence of pericentric heterochromatin. We could not detect any suppression of gene expression in the centromere neighbourhoods (supplementary fig. 2D, E), confirming that C. auris, like C. lusitaniae, possess pericentric heterochromatin-deficient (PHD) centromeres (supplementary fig. 2F). Pericentric heterochromatin formation is a concerted function of pericentric repeats, RNA interference machinery, chromodomain proteins, methyl transferases as well as histone deacetylases. However, these factors have a patchy distribution in the fungal kingdom (Bühler \& Moazed 2007; Drinnenberg et al. 2009; Hickman et al. 2011; Alper et al. 2013). As expected, orthologs of many heterochromatin-forming proteins could not be detected in the C. auris and C. haemulonii complex species (supplementary table 4). Though orthologs of Dcr1 (the non-canonical Dicer protein) are present, Ago1 (Protein argonaute) and Rdp1 (RNA-dependent RNA polymerase) could not be detected in any of these ascomycetes.

Clade-specific karyotype alterations in C. auris involve centromeres

Clinical isolates of C. auris have been primarily classified into four geographical clades, which exhibit differences in virulence, drug resistance, and genome plasticity. Having identified centromeres in a clade 1 isolate, we sought to identify centromere loci in other clades of C. auris. Are the centromeres and their neighbourhoods conserved in sequence and location across different geographical clades? To answer this, we predicted the putative centromere coordinates in clades 2,3 , and 4 of C. auris based on gene synteny, GC-content, and ORF-content using the available assemblies (GCA_003013715.2 of strain B11220 for clade 2, GCA_005234155.1 of strain LOM for clade 3, and GCA_008275145.1 of strain B11245 for clade 4) (fig. 2A). The predictions were experimentally tested using strains expressing CENP-A ${ }^{\mathrm{Cse4}}$ - Protein A fusion proteins in each of these three clades. The predicted loci were enriched with CENP- $\mathrm{A}^{\mathrm{Cse4}}$ and depleted of canonical histone H 3 (supplementary fig. 3A, B, D, E, G, H). Like clade 1, all seven identified centromeres in each of the three clades overlap with GC- and GC3-troughs (supplementary fig. 3C, F, I)). Taken together, we identify small regional AT-rich centromere loci of all chromosomes in each of the four clades of C. auris.

Next, we performed genome-wide comparisons using the publicly available chromosome-level assemblies of C. auris to study the involvement of centromeres in cladespecific rearrangements, if any. From MLST analysis based on RPB2 (Prakash et al. 2016), $T U B 2$, and $E F B 2$ gene sequences, we observed that strain A1, isolated in China (SRS4986047), belongs to clade 3 and strain CA-AM1 (SRS7388889), isolated in Italy, belongs to clade 1 . Centromere locations in these isolates were also identified. Centromere coordinates of all the isolates analysed are listed in supplementary table 5. Based on the presence of centromeres and syntenic regions shared with CA-AM1, we propose the merger of scaffold PEKT02000002.1 to PEKT02000001.1, PEKT02000005.1 to PEKT02000003.1, and PEKT02000004.1 to PEKT02000007.1 in the current reference assembly of clade 1 to fill the gaps and construct an improved assembly.

Both GCA_014673535.1 (for strain CA-AM1) and GCA_014217455.1 (for strain A1), being complete assemblies with seven contigs, were used as clade 1 and clade 3 assembly, respectively, for genome-wide comparisons. All combinations of pair-wise comparisons revealed inter-clade chromosomal changes in C. auris. Representative images using clade 4 (GCA_008275145.1) assembly as the reference is shown in fig. 2B. Centromeres were numbered from 1 to 7 in the clade 4 assembly based on the decreasing sizes of the chromosomes harbouring them. Centromeres of clades 1,2 , and 3 were numbered based on synteny with clade 4 CENs. Cross-clade comparisons revealed the genome of clade 2 to be the most rearranged one compared to the other three clades, as reported previously (Muñoz et al. 2019) (fig. 2B). Five out of seven chromosomes in clade 2 had undergone chromosomal rearrangements, and two of these rearrangements in chromosomes 1 and 3 involve synteny breaks adjacent to the centromeres. These structural changes resulted in centromere relocations in clade 2 compared to other clades, generating significant karyotype alterations (fig. 2C). We also detected a segmental duplication in the clade 2 reference assembly (GCA_003013715.2). Duplication of a 145 kb fragment in contig000006 in the clade 2 assembly places two copies of the centromere region on the same contig, separated by 144 kb (fig. 2D).

Centromeres were earlier shown to be the most rapidly evolving loci in two closely related species of the CTG-Ser1 clade: Candida albicans and Candida dubliniensis (Padmanabhan et al. 2008). A similar genome-wide analysis among the clades of C. auris suggested that centromeres exhibit high incidence of substitution mutations compared to the intergenic regions of the genome. This is true for all the clades, though the rates of sequence changes are different (fig. 2E, supplementary table 6). Hence, a geographical clade-specific
accelerated evolution of centromere sequences in the same species is evident from these analyses.

C. haemulonii and related species share centromere properties with C. auris

The size of the C. auris genome is $12.2-12.4 \mathrm{Mb}$ that falls in the same range with genomes of phylogenetically related, multidrug-resistant, pathogenic species C. haemulonii, C._duobushaemulonii, and C. pseudohaemulonii of sizes $13.3 \mathrm{Mb}, 12.6 \mathrm{Mb}$, and 12.6 Mb , respectively (based on corresponding NCBI GenBank assemblies-see Methods). Since all these species of the C. haemulonii complex share similar biochemical properties, the misidentification of species in clinics is quite common. Gene synteny around the CEN neighbourhoods in these species is conserved compared to C. auris, enabling the prediction of $C E N$ coordinates (fig. 3A, supplementary fig. 4A, E). The predicted $C E N$ regions were also found to be histone H 3 -depleted and overlapping with scaffold GC-and GC3 minima (fig. 3B, 3C, supplementary fig. 4B-D, F-H), suggesting that these are the bona fide CENs. The identified regions are largely free of ORFs and have lengths comparable to those of C. auris CENs (supplementary table 7). Comparisons utilizing the available chromosome level assembly of C. duobushaemulonii revealed that this species is closer to clades 1,3 , and 4 than clade 2 of C. auris (supplementary fig. $5 \mathrm{~A}-\mathrm{C}$), further corroborating the distinctiveness of clade 2 , isolates of which are usually drug sensitive.

A centromere inactivation event accounts for the chromosome number alteration

 between C. lusitaniae and C. auris.Candida lusitaniae, another opportunistic pathogen, is classified under the Clavipora/Candida clade of Metschnikowiaceae and is phylogenetically close to C. auris (fig. 4A). It was previously reported to have eight AT-rich short regional CENs made up of unique DNA sequences (Kapoor et al. 2015). On the other hand, we report that C. auris has seven functional CENs identified in this study. To trace the events that led to the chromosome number reduction during the divergence of these two species, we compared the gene synteny across the centromeres in C. lusitaniae and C. auris. Though the genomes are highly rearranged (supplementary fig. 5D), we found that the gene synteny around centromeres is conserved between the two species. Intriguingly, chromosome 8 of C. lusitaniae was rearranged as three distinct fragments that fused with other chromosomes of C. auris. As a result, two C. lusitaniae centromeres (ClCEN2 and ClCEN8) were mapped to the same C. auris chromosome, based on synteny analysis (fig. 4B). ChIP-seq analysis revealed CEN2 to
be functional in C. auris out of the two regions as CENP- $\mathrm{A}^{\text {Cse4 }}$ is recruited only at CEN2. This observation illustrates a clear example of "evolution in progress" as the region corresponding to C. lusitaniae CEN8 becomes non-functional in C. auris despite gene synteny conservation between the two species around this region. ClCEN8, the functional centromere of chromosome 8 in C. lusitaniae, spans a region of around 4.5 kb , while the average centromere length is 4.3 kb . The size of the corresponding syntenic regions of the inactivated centromere (inCEN) is 1.1 kb in C. auris. In comparison, the functional centromeres of the same species have an average length of 2.7 kb . We posit that the significant, centromere-specific attrition of DNA sequence accompanied by the reduction of AT-content resulted in the centromere inactivation in C. auris (fig. 4C). Analysis at the sequence level reveals mutation rates at the inCEN to be intermediate of that of centromeres and intergenic regions, further suggesting a "transition from centromeric to intergenic region" (supplementary table 6).

A distinct $C E N$-associated structural change observed in C. auris, compared to the syntenic CEN in C. lusitaniae, is a pericentric inversion altering the relative positions of three ORFs (fig. 4D). In addition to the presence of inCEN, five centromere regions in C. lusitaniae have syntenic centromeres in C. auris. The remaining two, identified through CENP-A ${ }^{\text {Cse4 }}$ ChIP-seq, are located at synteny breakpoints and hence, are involved in chromosomal rearrangements._The immediate ORFs flanking CEN3 in C. lusitaniae are conserved in C. auris but are separated by a length of 55 kb . The centromere is located adjacent to one of the synteny blocks, resulting in partial synteny conservation (fig. 4E). We also mapped a synteny breakpoint at the centromere on chromosome 2 of C. auris. The ORFs on either side of the
C. auris CEN2 maps to different chromosomes in C. lusitaniae (fig. 4F).

The same patterns were observed in C. haemulonii, C. duobushaemulonii, and C. pseudohaemulonii, where sequences syntenic to ClCEN8-flanking blocks map to the same scaffold bearing ClCEN2 synteny regions (fig. 4G, supplementary fig. 6A, B). The region corresponding to ClCEN8 has undergone differential sequence attrition in these species, resulting in reduced sequence length (840 bp in C. haemulonii, 361 bp in C. duobushaemulonii, and 496 bp in C. pseudohaemulonii) as observed in C. auris inCEN. $C E N$-specific sequence loss has also resulted in the reduction of AT-content in these species. $C E N$-associated inversions and synteny breakpoints in these species are also identical to those in C. auris (fig. 4H-J, supplementary fig. 6C-H). The typical patterns of CEN-associated
changes in C. auris and other species of the C. haemulonii complex suggest that these events must have occurred in an immediate common ancestor before species divergence.

Putative small regional, AT-rich centromeres identified in other species of the Clavispora/Candida clade

Around 40 ascomycetous species are classified under the Clavispora/Candida clade of Metschnikowiaceae (Daniel et al. 2014). To explore the centromere properties in the Clavispora/Candida clade, we attempted CEN identification in other species for which genome assemblies are available (fig. 4A). We could locate putative centromeres in several fungal species of the Clavispora/Candida clade of Metschnikowiaceae based on the conserved gene synteny and other conserved centromere properties of C. auris and C. lusitaniae as references (supplementary table 8-12). Two possible chromosome number states were detected in the Clavispora/Candida clade, and the analysed genomes were classified into two groups - a) species which have eight AT-rich putative centromeric loci of comparable sizes, and b) species with seven AT-rich putative centromeric loci with an eighth locus that had undergone sequence loss despite synteny conservation around the orthologous but presumably inactivated centromere locus. C. lusitaniae has eight AT-rich, ORF-free centromeres of comparable lengths. Candida fructus was found to possess eight loci syntenic to each of the eight centromeres in C. lusitaniae. The identified regions are also depleted of ORFs, are GC-poor, and harbour GC-skews like C. lusitaniae centromeres (supplementary fig. 7). Each of C. auris, other species of the C. haemulonii complex, and Candida heveicola has seven ORF-free loci, which are GC-poor. The eighth locus, though syntenic to CEN8 of C. lusitaniae, has undergone sequence attrition in each of them and is likely to be inactive, like the inCEN of C. auris. We could identify loci in other related species, including Candida intermedia, Candida blattae, and Candida oregonensis syntenic to each of the seven centromeres of C. auris. All the predicted regions are ORF-free, AT-rich, and constituted by unique, repeat-free sequences (supplementary fig. 8A, B).We also identified an eighth locus syntenic to C. lusitaniae CEN8 in these species. Unlike the inCEN in C. auris with a drastically reduced sequence length, the eighth locus is of similar size as other predicted centromeres in these three species (supplementary fig. 8A, C). The conservation of sequence length suggests that they may have eight functional centromeres. Exceptionally due to a possible assembly error, two putative centromeres identified in C. intermedia map to the same scaffold. Our in silico analyses collectively suggest the existence of two chromosome number states and remarkably similar centromere properties shared by these closely related
organisms of the Clavispora/Candida clade. While all these putative CEN loci show similar gene synteny, ORF-abundance, sequence length, and GC-content, further experimental validation is required before assigning them as authentic $C E N$ loci of the respective organisms.

Clade 2 of C. auris follows a unique evolutionary trajectory

We posit that C. lusitaniae and C. fructus might have shared an immediate common ancestor CA1 with eight functional CENs, one on each chromosome ($N=8$). Chromosomal rearrangements placed regions syntenic to CEN2 and CEN8 of these two species on the same chromosome in the C. haemulonii complex species as well as three clades (clades 1,3 , and 4) of C. auris, out of which ClCEN2 is active, and ClCEN8 is inactive (inCEN) (fig. 5A). This finding indicates the existence of an immediate common ancestor ($N=7$), CA2, with a ClCEN2-inCEN configuration shared by C. auris and other species of the C. haemulonii complex. Synteny analyses enabled us to reconstruct (fig. 5A) CEN-based ancestral genomes of the immediate common ancestors of C. lusitaniae-C. fructus and C. haemulonii complexC. auris, representing chromosome number states of $N=8$ and $N=7$, respectively. We also hypothesize parallel evolution of the geographical clades of C. auris, at different time scales, diverging from a common ancestor CA3, which was derived from the ancestor CA2. Out of the four clades, clade 2 has a remarkably rearranged genome. The location of inCEN serves as a useful index for representing interclade differences. The synteny block containing C. lusitaniae CEN8 is conserved in C. haemulonii, C. pseudohaemulonii, C. duobushaemulonii as well as in C. auris clades 1,3, and 4 . The genes in the block are found distributed in two chromosomes in clade 2 , indicating that a break occurred within the block, followed by a downstream reciprocal translocation event (supplementary table 13, fig. 2B). The terminal chromosomal translocation (TCT) event in which Chr4 and Chr7 of CA3 exchanged chromosome ends might have repositioned inCEN resulting in a ClCEN5-inCEN configuration (fig. 2B, fig. 5B), exclusive to clade 2. This structural change further confirms the divergence of clade 2 from the common ancestor CA3 along a different evolutionary trajectory (fig. 5C). On analysing the whole genome synteny conservation, we observed that clades 1,3, and 4 are closer to C. duobushaemulonii (supplementary fig. 5), supporting the inference that clade 2 is unique. Also, the conservation of the C. lusitaniae CEN8-containing synteny block among the C. haemulonii complex species and all the C. auris clades except clade 2 suggests that each of these species is phylogenetically closer to C. lusitaniae than clade 2. These observations are in disagreement with an alternative model of clade 2 being
the ancestral unique strain where the event leading to chromosome number reduction happened in which case clade 2 would have shared higher similarity with C. lusitaniae. Other rearrangements causing $C E N$ relocations provide additional lines of evidence for the cladespecific divergence.

The inferred genomes can serve as references to trace $C E N$-associated rearrangements in other related species of the Clavispora/Candida clade. Other CEN-associated structural changes observed between C. lusitaniae and C. auris have an uneven distribution across the member species, indicating that C. intermedia, C. blattae, and C. oregonensis are likely to be transitional species connecting the two immediate common ancestors (supplementary table 14).

Discussion

Centromere identification revealed a typical centromere landscape in multiple species of the Clavispora/Candida clade - small regional CENs constituted by AT-rich unique sequences and embedded in ORF-free regions that are devoid of any detectable pericentric heterochromatin, DNA motifs or repeats. These closely related species either contain seven chromosomes or eight chromosomes. We propose that a centromere inactivation event in a common ancestor with eight chromosomes led to this diversity. The inactive centromere, in a pseudo-dicentric chromosome that might have formed at an intermediate stage, underwent substantial but differential attrition of centromere DNA sequence. This process might have played a crucial role in the emergence of multiple species with seven chromosomes. Inactivation of centromere function mediated by DNA sequence has been suggested previously (Jäger \& Philippsen 1989; Gordon et al. 2011; Lhuillier-Akakpo et al. 2015). Several synteny breakpoints mapped to the identified centromeres, when compared with representative species of the eight-chromosome state, add to the growing evidence that suggests centromeres as a hub of fragility (Simi et al. 1998; Kim et al. 2013) and downstream chromosomal rearrangements. Spatial proximity of clustered centromeres in fungal species with homogenized centromere DNA sequences facilitates intercentromeric recombination, possibly mediated by replication fork stalling and higher chances of double-stranded breaks, thus contributing towards karyotype evolution (Greenfeder \& Newlon 1992; Aze et al. 2016; Guin, Chen, et al. 2020). The role of AT-rich sequences and poly (A) stretches in these events, owing to their melting features and potential propensity to form non-B DNA, warrants further study as centromeres in many fungal species coincide with GC- or GC-3
troughs (Zhang \& Freudenreich 2007; Lynch et al. 2010; Navarro-Mendoza et al. 2019; Yadav et al. 2019; Sankaranarayanan et al. 2020; Talbert \& Henikoff 2020).

Whole chromosome and segmental aneuploidy are correlated with drug resistance in other fungal pathogens (Kwon-Chung \& Chang 2012). The C. auris genome is known to be highly plastic (Bravo Ruiz et al. 2019). Mapping of centromere loci should help trace genomic rearrangement events that possibly contribute to drug resistance or virulence in different clinical isolates. Centromere sequences in different geographical clades were found to evolve rapidly and differentially than the rest of the genome, suggesting that centromeres are potential candidate loci to study evolutionary trajectories emerging within a species. C. auris clade 2 has the most rearranged genome and consists of atypical isolates that differ from the other clades in terms of drug tolerance as well as pathogenicity (Iguchi et al. 2019; Muñoz et al. 2019; Sekizuka et al. 2019). The unique nature of centromere sequences can be used for accurate species-level and clade-level identification.

In this study, we reveal that the genome of clade 2 differs from the rest of the clades in the position of orthologous centromeres on the chromosomes and the location of the inactive centromere. Chromosome-level comparisons also reveal that clade 2 is more diverged from C. duobushaemulonii than the other clades. These observations directed us to conclude that C. auris clades diverged from a common ancestor that shares ancestry with the C. haemulonii complex species, and from which clade 2 diverged along a different trajectory during the parallel evolution of the geographical clades. Drastic karyotype alterations, evident from the centromere and inactive centromere locations are likely to have contributed to the distinctiveness of C. auris clade2, compared to other clades and the C. haemulonii complex species. Ascomycetous pathogens like C. albicans and C. glabrata exist as clades that exhibit geographical specificity and clade-specific phenotypic features (Dodgson et al. 2003; Soll \& Pujol 2003). Rare or no interclade recombination is observed in these species, and little is known about the genomic rearrangements or the variations at centromeres operating at the clade-level, which can, in turn, affect the recombination frequency.

We conjecture that such centromere-associated clade-specific differences might not be restricted to C. auris. Further exploration of centromere sequences and associated structural changes within a species and species complexes will yield deeper insight into the role of centromeres in generating diversity in primarily asexual fungi.

Materials and Methods

Strains, media, and growth conditions. Strains of various Candida species used in the study (listed in supplementary table 1) were grown in YPD (1\% Yeast Extract, 2\% Peptone, and 2% Dextrose) at $30^{\circ} \mathrm{C}$. The identity of the strains was confirmed by amplification and sequencing of the internal transcribed spacer (ITS) and D1/D2 regions, followed by BLAST analysis (http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi). The clade-status of different C. auris isolates used was confirmed by amplifying and sequencing regions of three housekeeping genes (TUB2, EFB1, and RPB1) harbouring polymorphic sites (supplementary table 2).

Construction of C. auris strain expressing CENP-A ${ }^{\text {Cse4 }}$ - Protein A fusion protein. The homolog of CENP- ${ }^{\text {Cse4 }}$ in C. auris was identified by BLAST using C. albicans CENP-A ${ }^{\text {Cse4 }}$ sequence as the query against the C. auris genome. It was distinguished from the canonical histone H 3 sequences by confirming the presence of CENP- $\mathrm{A}^{\mathrm{Cse} 4}$ - specific amino acid residues (Keith et al. 1999). For tagging CENP-A ${ }^{\mathrm{Cse} 4}$ with Protein A at the C -terminus, approximately 900 bp and 800 bp were used as upstream and downstream sequences, respectively to construct the tagging cassette. The 900 bp fragment (including the complete ORF and native promoter sequence) was amplified from the genomic DNA and cloned as a $K p n \mathrm{I}-\mathrm{SacI}$ fragment in the pBS-TAP-NAT plasmid. The downstream sequence was cloned as a SpeI-NotI fragment. The 3.7 kb tagging construct, as a KpnI-NotI fragment, was used to transform Cau46R. The transformation of the strains was performed as previously described(Sanyal et al. 2004). Nourseothricin (Jena Bioscience) was added at a concentration of $100 \mu \mathrm{~g} / \mathrm{ml}$ in the media for selecting transformants. The colonies obtained were subcultured in presence of nourseothricin and integration of the tagging construct in NAT^{+} transformants was confirmed by PCR.

Western Blotting. Cells were grown overnight in YPD till mid-log phase, and 3 OD equivalent cells were harvested for protein lysate preparation. The cells were suspended in $400 \mu \mathrm{~L}$ of ice-cold trichloroacetic acid (12.5%), vortexed briefly, and stored at $-20^{\circ} \mathrm{C}$ overnight. The samples were later thawed and pelleted by centrifugation at $14,000 \mathrm{rpm}$ at 4 ${ }^{\circ} \mathrm{C}$ for 10 min . The pellets were washed twice with $400 \mu \mathrm{~L}$ of ice-cold acetone (80%), airdried, suspended in an appropriate volume of lysis buffer (0.1 M NaOH and 1% SDS), and boiled for 10 min . The proteins in the lysate were separated on 12% polyacrylamide gels. The separated samples were transferred onto nitrocellulose membranes, which were then probed
with anti-Protein A antibodies (Sigma, Cat No: P3775, 1:5000 dilution in 2.5% skim milk powder (w / v in 1 xPBS)) and HRP-conjugated goat anti-rabbit secondary antibodies (Abcam, 1:10000 dilution in 2.5% skim milk powder (w / v in 1 x PBS)). The blots were developed using Chemiluminescence Ultra Substrate (Biorad) and imaged using the VersaDoc system (Biorad).

Preparation of spheroplasts. Cells were grown in 50 ml YPD till $\mathrm{OD}_{600}=0.8$ and washed with water by centrifugation at 3000 rpm for 5 min . Cells were then incubated in 10 mL of 2mercaptoethanol solution (5% in water, Himedia, Cat No. MB041) for 1 h at $30^{\circ} \mathrm{C}$ at 180 rpm. The cells were pelleted, washed, and resuspended in SCE buffer (1 M sorbitol, 100 mM sodium citrate, 10 mM EDTA at pH 8.0). Lysing enzyme from Trichoderma harzianum (Sigma, Cat No. L1412) was added at a concentration of $2.5 \mathrm{mg} / \mathrm{ml}$, and the suspension was incubated at $37^{\circ} \mathrm{C}$ at 80 rpm for 2 h . The cells were examined under a microscope to determine the proportion of spheroplasts in the suspension. The prepared spheroplasts were further processed based on the corresponding experimental design.

Indirect Immunofluorescence. C. auris CENP- $\mathrm{A}^{\mathrm{Cse}}-$ - Protein-A strain was inoculated to 1% $(\mathrm{v} / \mathrm{v})$ from an overnight culture and was grown till $\mathrm{OD}_{600}=0.8$. The cells were fixed by adding formaldehyde to a final concentration of 1% for 15 min . Spheroplasts were prepared from the fixed cells (as described above), washed with 1x PBS, and diluted in 1x PBS to a density appropriate for microscopy. Slides for microscopy were washed and coated with poly L-lysine ($10 \mathrm{mg} / \mathrm{mL}$). Twenty microlitres of the diluted cell suspension were added onto slides and incubated at room temperature for 5 min . The suspension was aspirated, and the slide was washed to remove unbound spheroplasts. The slide was treated with ice-cold methanol for 6 min , followed by ice-cold acetone for 30 sec . Blocking solution (2% non-fat skim milk powder in 1x PBS) was added to each well, and the slide was incubated for 30 min at room temperature. The blocking solution was aspirated, and rabbit anti-Protein A antibodies (Sigma, Cat No. P3775, dilution 1:1000) were added. The slide was incubated in a wet chamber for 1 h . The antibodies were aspirated, and the slide was washed 15 times, incubating the slide for 2 min for each wash. Secondary antibodies were added (Alexa flour 568 goat anti-rabbit IgG, Invitrogen, Cat No. A11011, dilution 1:1000). The slide was incubated in the dark in a wet chamber for 1 h at room temperature. The washes were repeated, and the mounting medium (70% glycerol with $100 \mathrm{ng} / \mathrm{ml}$ DAPI) was added. Clean coverslips were mounted onto the wells, and the slides were imaged using an inverted
fluorescence microscope (Zeiss Axio observer, Plan Apochromat, 100X oil). Images were processed using Zeiss ZEN system software and ImageJ.

Chromatin immunoprecipitation (ChIP). C. auris CENP-A ${ }^{\text {Cse4 }}$ - Protein-A strain was inoculated to $1 \%(\mathrm{v} / \mathrm{v})$ from an overnight culture, grown till $\mathrm{OD}_{600}=1.0$ and crosslinked by the addition of formaldehyde to a final concentration of 1% for 15 min . Quenching with 0.135 mM Glycine for 5 min was followed by preparation of spheroplasts (as described above). Following buffers were used to wash the prepared spheroplasts: 1x PBS (ice-cold), Buffer-1 (0.25% Triton X-100, 10 mM EDTA, 0.5 mM EGTA, 10 mM Na-HEPES at pH 6.5), and Buffer-2 ($200 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, 0.5 mM EGTA, 10 mM Na-HEPES at pH 6.5). One mL lysis buffer (50 mM HEPES at $\mathrm{pH} 7.4,1 \%$ Triton $\mathrm{X}-100,140 \mathrm{mM} \mathrm{NaCl}, 0.1 \%$ Na-deoxycholate, 1 mM EDTA) was added to the pellet obtained after the final wash, along with Protease inhibitor cocktail (1x). The resuspended spheroplasts were sonicated to obtain chromatin fragments in the size range of 100-400 bp. The lysate was cleared by centrifugation at $14,000 \mathrm{rpm}$ for 10 min at $4^{\circ} \mathrm{C}$. One-tenth of the lysate volume was separated to be used as the input DNA. The remaining lysate was divided into two equal fractions: Anti- Protein-A antibodies were added to one of the fractions (IP fraction) at a $20 \mu \mathrm{~g} / \mathrm{mL}$ concentration. The other fraction served as the antibody-minus control. Both the fractions were incubated overnight on a rotaspin at $4{ }^{\circ} \mathrm{C}$. Protein-A Sepharose beads were added, and the samples were incubated on a rotaspin at $4{ }^{\circ} \mathrm{C}$ for 6 h . This was followed by collecting the beads by centrifugation and sequential washes with the following buffers: twice with 1 mL low salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris at $\mathrm{pH} 8.0,150$ $\mathrm{mM} \mathrm{NaCl})$, twice with 1 mL high salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris at $\mathrm{pH} 8.0,500 \mathrm{mM} \mathrm{NaCl}$), once with 1 mL LiCl wash buffer $(0.25 \mathrm{M}$ $\mathrm{LiCl}, 1 \%$ NP-40, 1% Na-deoxycholate, 1 mM EDTA, 10 mM Tris at pH 8.0) and twice with 1 mL 1 x TE (10 mM Tris at $\mathrm{pH} 8.0,1 \mathrm{mM}$ EDTA). For each wash, the beads were rotated on a rotaspin for 5 min in the corresponding buffer, followed by centrifugation at 5400 rpm for 2 \min. The beads were suspended in 0.25 mL of elution buffer ($0.1 \mathrm{M} \mathrm{NaHCO}_{3}, 1 \% \mathrm{SDS}$), incubated at $65^{\circ} \mathrm{C}$ for 5 min , and rotated on the rotaspin for 15 min . The supernatant was collected after centrifugation. The elution step was repeated to obtain a final eluted volume of 0.5 mL . The elution buffer was also added to the stored input sample to obtain a final volume of 0.5 mL . Decrosslinking of the three samples (input, IP, and antibody-minus) was done by adding $20 \mu \mathrm{~L}$ of 5 M NaCl and overnight incubation at $65^{\circ} \mathrm{C}$. Proteins in the samples were removed by adding $10 \mu \mathrm{~L} 0.5 \mathrm{M}$ EDTA, $20 \mu \mathrm{~L} 1 \mathrm{M}$ Tris at $\mathrm{pH} 6.8,2 \mu \mathrm{~L}$ Proteinase K (20
mg / L) and incubating at $45^{\circ} \mathrm{C}$ for 3 h . An equal volume of phenol-chloroform-isoamyl alcohol (25:24:1) was added for purifying the samples, and the aqueous phase was extracted by centrifugation at $14,000 \mathrm{rpm}$ for 10 min . DNA was precipitated by adding 3 M Na -acetate ($1 / 10$ th of the volume, pH 5.2), $1 \mu \mathrm{~L}$ glycogen ($20 \mathrm{mg} / \mathrm{mL}$), and 1 mL absolute ethanol, followed by incubation at $-20^{\circ} \mathrm{C}$ overnight. The precipitated DNA was collected by centrifugation at $13,000 \mathrm{rpm}$ for 30 min at $4^{\circ} \mathrm{C}$ and was washed once with 70% ethanol. Airdried pellets were resuspended in $20 \mu \mathrm{~L}$ sterile MilliQ water with $10 \mathrm{mg} / \mathrm{mL}$ RNase. ChIPDNA from duplicates were pooled for ChIP-seq.

The same protocol was followed to determine canonical histone H3 and histone H4 occupancy at the centromeres in C. haemulonii, C. duobushaemulonii, C. pseudohaemulonii, and different clades of C. auris, with some differences. Anti-H3 antibodies (Abcam [ab1791], at a final concentration of $13 \mu \mathrm{~g} / \mathrm{mL}$), and anti-H4 antibodies (Abcam [ab10158], at a final concentration of $13 \mu \mathrm{~g} / \mathrm{mL}$) were used for immunoprecipitation. The bead washes were done for 15 min .

ChIP-seq. Library preparation: ChIP DNA obtained from CENP-A ${ }^{\text {Cse4}-P r o t e i n-A ~(4 ~ n g) ~ w a s ~}$ used to generate a sequencing library using NEBNext ${ }^{\circledR}$ Ultra ${ }^{\text {TM }}$ II DNA Library Prep Kit for Illumina (Cat No. E7645S). In brief, the fragmented DNA was subjected to end repair followed by A - tailing and adapter ligation. The product DNA was enriched by PCR amplification using Illumina index adapter primers. The amplified product was purified using Ampure beads to remove unused primers. The library was quantitated using Qubit DNA High Sensitivity quantitation assay, and library quality was checked on Bioanalyzer 2100 using Agilent 7500 DNA Kit.

Data analysis: ChIP-sequencing yielded 20816547 reads for the input, and 20959149 reads for IP. Based on the FastQC (v0.11.8) report, adaptor sequences and orphan reads were removed using Trim Galore! (v0.4.4) (http://www.bioinformatics.babraham.ac.uk/projects/). The output file was mapped onto the GenBank reference assembly for C. auris clade 1 (GCA_002759435.2) to obtain the sequence alignment map in SAM format. Conversion to BAM, sorting, and indexing was achieved using SAMtools (v1.9)(Li et al. 2009). Identification and excision of duplicates were made using MarkDuplicates scripted by Picard tools (v1.119) (http://broadinstitute.github.io/picard/). The processed binary alignment map was used as input for MACS2 (v2.1.1) (Zhang et al. 2008) along with the genome control reads (processed in the same way as the immunoprecipitation sample) to generate peaks. The
peaks were then sorted based on p-value, FDR value, and fold change. The peaks were visualized using Integrative Genomic Viewer (v2.4.1) (James T Robinson et al. 2011). Enrichment peaks were curated (fold enrichment ≥ 2.6), and the coordinates of the peaks obtained from MACS2 post-peak calling was used to extract sequences from the genome assemblies. The extracted sequences were scanned for repeats using SyMap (v4.2) (Soderlund et al. 2011), and the result was depicted as a dot plot.

ChIP-qPCR analysis. Real-time PCR was used to confirm CENP-A ${ }^{\text {Cse4 }}$ enrichment and H3 depletion in the centromere sequences, using primers specific to centromeres and noncentromeric loci (listed in supplementary table 3) and SensiFAST SYBR No ROX Kit. 1:50 dilutions for input and 1:20 dilutions of the IP were used for determining CENP-A ${ }^{\text {Cse4 }}$ enrichment. 1:50 dilutions for input and 1:5 dilutions of the IP were used for determining histone H 3 and H 4 occupancy. The program used: $94^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 94^{\circ} \mathrm{C}$ for 30 sec , appropriate T_{m} for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 30 sec for 30 cycles. The adjusted Ct values $\left(\log _{2}\right.$ of dilution factor subtracted from the Ct value of the input or IP) were used to calculate the percentage input using the formula: $100 * 2 \wedge$ (adjusted Ct of input-adjusted Ct of IP). Three technical replicates were taken for the assay, and the standard error of the mean was calculated. The plots were generated using GraphPad Prism 8.

Ortholog search and Phylogenetic tree construction: Available annotation files for S. cerevisiae (GCF_000146045.2), C. glabrata (GCF_000002545.3), C. albicans (GCF_000182965.3), C. tropicalis (GCF_000006335.3), C. dubliniensis (GCF_000026945.1), C. parapsilosis (GCA_000182765.2), D. hansenii (GCF_000006445.2), S. stipitis (GCF_000209165.1), C. neoformans (GCF_000091045.1), C. auris clade 1 (GCA_002759435.2), C. auris clade 2 (GCA_003013715.2), C. auris clade 4 (GCA_008275145.1), C. duobushaemulonii (GCF_002926085.2), C. haemulonii (GCF_002926055.2), C. pseudohaemulonii (GCF_003013735.1), C. lusitaniae (GCF_000003835.1), and C. intermedia (GCA_900106115.1) were downloaded from GenBank. Transcription and proteome data of C. lusitaniae were used to annotate the C. fructus (GCA_003707795.1) genome. C. auris clade 3 (GCA_005234155.1), C. heveicola (GCA_003708405.1), C. oregonensis (GCA_003707785.2), and C. blattae (GCA_003706955.2) genome assemblies were annotated using transcriptome and proteome data of C. auris clade 2, using MAKER (v2.31.10) (Holt \& Yandell 2011). For all given species, clusters of orthologous proteins were identified using OrthoMCL (v2.0.9) (Li et al. 2003). The single-copy orthologs present in all the species were identified and aligned using

Clustal Omega (v1.2.4) (Sievers et al. 2011). All the alignments were concatenated for each species, including the gaps. The gaps and corresponding sequences in all other species were removed. MrBayes (v2.3.5) (Ronquist \& Huelsenbeck 2003) was used for tree construction, which was visualized using FigTree (v1.4.4) (http://tree.bio.ed.ac.uk/software/figtree/). Orthologs for proteins involved in heterochromatin formation and RNAi was done using phmmer option in HMMER (EMBL-EBI) (Potter et al. 2018).

In silico analyses: Gene synteny: Centromere prediction in a candidate species was made by aligning the respective genome assembly to the reference species assembly using Mauve (Geneious v11.1.4) (Biomatters Ltd.), and the conserved synteny blocks corresponding to the ORFs flanking centromeres in the reference assembly were identified. For confirming synteny conservation, candidate species-specific local genome databases were created using Geneious. Blast analysis of five individual ORFs on either side of the centromeres in the reference species assembly was performed against the local genome database of the candidate species, using the protein sequences as queries. For genome-level comparison, coordinates of all the synteny blocks conserved between two species were obtained using SyMap (v4.2), and the circos plots were drawn using Circos (0.69-8) (Krzywinski et al. 2009). Scaffold-level and ORF-level synteny analyses identifying rearrangements were done using Easyfig (v2.2.2) (Sullivan et al. 2011).

Centromere sequence features: Python scripts were written to determine the GC\% at the third position of codons. The percentage of G and C at the third position of codons (except the stop codons) was calculated, followed by calculating the average values in a sliding window of 10 ORFs. These values were plotted for each scaffold of the genome. Annotations that are not a multiple of three were not considered for the analysis. GC\% was also calculated for the whole scaffolds with a window size of 5 kb and a sliding step of 1 kb . GC skew $((\mathrm{G}-\mathrm{C}) /(\mathrm{G}+\mathrm{C}))$ and AT skew $((\mathrm{A}-\mathrm{T}) /(\mathrm{A}+\mathrm{T}))$ were plotted for a region of 10 kb flanking the centromeres using a window size of 100 bp and a sliding step of 1 bp . The skew calculation was done in Julia (v1.2.0), and the plotting was done in R. The "geom_smooth" function with "gam" method in ggplot2 (Wickham 2009) was used to smoothen the curve.

To study trends in centromere sequence evolution in different clades of C. auris, protein sequences were extracted using agat_sp_extract_sequences.pl from the AGAT suite (https://github.com/NBISweden/AGAT), and orthologous genes found using rsd_search (Wall et al. 2003). Intergenic sequence that occurred between the same pair of orthologous
genes in pairs were identified as orthologous intergenic sequence and aligned using FSA (Bradley et al. 2009), which we previously found to have high specificity for true homology in aligning intergenic DNA sequence (Jayaraman \& Siddharthan 2010). In each of the pairwise alignments generated by FSA, the mutation rate was estimated as \#mutations/\#matches, where \#matches = number of positions where an aligned pair of nucleotides is reported; and \#mutations = number of match positions where the alignment is a mismatch. The mean and sample standard deviation over all intergenic sequences were calculated and compared to the observed numbers in centromeres.

If available, the respective genome assembly annotation files were used to report the length of ORF-free regions. Otherwise, all predicted ORFs larger than 600 bp were considered as coding sequences. Motif search was done using MEME in the MEME Suite (Bailey et al. 2009).

Gene expression: For determining the transcriptional status of centromeres, the raw sequencing reads (SRR6900290, SRR6900291, SRR6900292, SRR6900293) were aligned to the reference genome of clade 1 (GenBank assembly GCA_002759435.2) using HISAT2 (v2.1.0) (Kim et al. 2019). The aligned reads were then graphically visualized in the IGV to analyse gene expression levels at/around the centromeres on different chromosomes. For studying the transcriptional status of ORFs overlapping with or flanking the centromeres, the abundance of annotated transcripts was quantified using pseudo alignment program kallisto (v0.46.1) (Bray et al. 2016). The expression of genes around/ overlapping the centromere in TPM (transcripts per million) were compared to the global gene expression level.

Data availability

ChIP-sequencing data have been deposited in NCBI under BioProject PRJNA612018.

Acknowledgements

We thank N. Chauhan for providing the strains, V. Yadav for preliminary gene synteny analyses, L. Sreekumar for reagents, and Clevergene Biocorp Pvt. Ltd., Bengaluru for generating ChIP-sequencing data. This study was funded by the Indian Council of Medical Research (AMR/149/2018-ECD-II), Government of India, to K.S., A.C., M.S., and R.P. K.S. acknowledges the financial support of JC Bose National Fellowship (Science and Engineering Research Board, Govt. of India, JCB/2020/000021) and intramural funding from JNCASR. A.N. was a National Postdoctoral Fellow (PDF/2016/003256), supported by the

Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India. R.N.V, P.S, and R.S. acknowledge Department of Atomic Energy, Government of India for funding and the computing facilities provided by The Institute of Mathematical Sciences.

References

Alper BJ, Job G, Yadav RK, Shanker S, Lowe BR, Partridge JF. 2013. Sir2 is required for Clr4 to initiate centromeric heterochromatin assembly in fission yeast. EMBO J. 32(17):2321-2335.

Aze A, Sannino V, Soffientini P, Bachi A, Costanzo V. 2016. Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression. Nat Cell Biol. 18(6):684-691.

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009. MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res. 37(SUPPL. 2):202-208.

Bradley RK, Roberts A, Smoot M, Juvekar S, Do J, Dewey C, Holmes I, Pachter L. 2009. Fast statistical alignment. PLoS Comput Biol. 5(5).

Bravo Ruiz G, Ross ZK, Holmes E, Schelenz S, Gow NAR, Lorenz A. 2019. Rapid and extensive karyotype diversification in haploid clinical Candida auris isolates. Curr Genet. 65(5):1217-1228.

Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 34(5):525-527.

Bühler M, Moazed D. 2007. Transcription and RNAi in heterochromatic gene silencing. Nat Struct Mol Biol. 14(11):1041-1048.

Cadnum JL, Shaikh AA, Piedrahita CT, Sankar T, Jencson AL, Larkin EL, Ghannoum MA, Donskey CJ. 2017. Effectiveness of disinfectants against Candida auris and other candida species. Infect Control Hosp Epidemiol. 38(10):1240-1243.

Casadevall A, Kontoyiannis DP, Robert V. 2019. On the Emergence of Candida auris : climate change, azoles, swamps, and birds . mBio. 10(4):1-7.
de Cássia Orlandi Sardi J, Silva DR, Soares Mendes-Giannini MJ, Rosalen PL. 2018. Candida auris: Epidemiology, risk factors, virulence, resistance, and therapeutic options. Microb Pathog. 125:116-121.

Chatterjee G, Sankaranarayanan SR, Guin K, Thattikota Y, Padmanabhan S, Siddharthan R, Sanyal K. 2016. Repeat-associated fission yeast-like regional centromeres in the ascomycetous budding yeast Candida tropicalis. PLoS Genet. 12(2):1-28.

Chow NA, de Groot T, Badali H, Abastabar M, Chiller TM, Meis JF. 2019. Potential Fifth Clade of Candida auris, Iran, 2018 . Emerg Infect Dis. 25(9):1780-1781.

Chowdhary A, Prakash A, Sharma C, Kordalewska M, Kumar A, Sarma S, Tarai B, Singh A, Upadhyaya G, Upadhyay S, et al. 2018. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: Role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother. 73(4):891-899.

Daniel HM, Lachance MA, Kurtzman CP. 2014. On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. 106(1):67-84.

Dodgson AR, Pujol C, Denning DW, Soll DR, Fox AJ. 2003. Multilocus Sequence Typing of Candida glabrata Reveals Geographically Enriched Clades. J Clin Microbiol. 41(12):57095717.

Drinnenberg IA, Weinberg DE, Xie KT, Mower JP, Wolfe KH, Fink GR, Bartel DP. 2009. RNAi in budding yeast. Science. 326(5952):544-550.

Emara M, Ahmad S, Khan Z, Joseph L, Al-obaid I, Purohit P, Bafna R. 2015. Candida auris candidemia in Kuwait, 2014. Emerg Infect Dis. 21(6):1091-1092.

Fang Y, Coelho MA, Shu H, Schotanus K, Thimmappa BC, Yadav V, Chen H, Malc EP, Wang J, Mieczkowski PA, et al. 2020. Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages. PLoS Genet. 16(3):1-30.

Gabaldón T, Naranjo-Ortíz MA, Marcet-Houben M. 2016. Evolutionary genomics of yeast pathogens in the Saccharomycotina. FEMS Yeast Res. 16(6):1-10.

Gordon JL, Byrne KP, Wolfe KH. 2011. Mechanisms of chromosome number evolution in yeast. PLoS Genet. 7(7):0-3.

Greenfeder SA, Newlon CS. 1992. Replication forks pause at yeast centromeres. Mol Cell Biol. 12(9):4056-4066.

Guin K, Chen Y, Mishra R, Muzaki SRBM, Thimmappa BC, O'brien CE, Butler G, Sanyal A, Sanyal K. 2020. Spatial inter-centromeric interactions facilitated the emergence of evolutionary new centromeres. elife. 9:1-28.

Guin K, Sreekumar L, Sanyal K. 2020. Implications of the evolutionary trajectory of centromeres in the fungal kingdom. Annu Rev Microbiol. 74:835-853.

Hickman MA, Froyd CA, Rusche LN. 2011. Reinventing heterochromatin in budding yeasts: Sir2 and the origin recognition complex take center stage. Eukaryot Cell. 10(9):1183-1192.

Holt C, Yandell M. 2011. MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 12(1).

Iguchi S, Itakura Y, Yoshida A, Kamada K, Mizushima R, Arai Y, Uzawa Y, Kikuchi K. 2019. Candida auris: A pathogen difficult to identify, treat, and eradicate and its characteristics in Japanese strains. J Infect Chemother. 25(10):743-749.

Jackson BR, Chow N, Forsberg K, Litvintseva AP, Lockhart SR, Welsh R, Vallabhaneni S, Chiller T. 2019. On the origins of a species: What might explain the rise of Candida auris? J Fungi. 5(3):58.

Jäger D, Philippsen P. 1989. Stabilization of dicentric chromosomes in Saccharomyces cerevisiae by telomere addition to broken ends or by centromere deletion. EMBO J. 8(1):247-254.

James T Robinson, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011. Integrative genomics viewer. Nat Biotechnol. 29(1):24-26.

Jayaraman G, Siddharthan R. 2010. Sigma-2: Multiple sequence alignment of non-coding DNA via an evolutionary model. BMC Bioinformatics. 11:1-13.

Kapoor S, Zhu L, Froyd C, Liu T, Rusche LN, Rine J. 2015. Regional centromeres in the yeast Candida lusitaniae lack pericentromeric heterochromatin. Proc Natl Acad Sci U S A. 112(39):12139-12144.

Keith KC, Baker RE, Chen Y, Harris K, Stoler S, Fitzgerald-Hayes M. 1999. Analysis of primary structural determinants that distinguish the centromere-specific function of histone
variant Cse4p from histone H3. Mol Cell Biol. 19(9):6130-6139.
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 37(8):907-915.

Kim TM, Xi R, Luquette LJ, Park RW, Johnson MD, Park PJ. 2013. Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes. Genome Res. 23(2):217-227.

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. 2009. Circos: An information aesthetic for comparative genomics. Genome Res. 19(9):16391645.

Kwon-Chung KJ, Chang YC. 2012. Aneuploidy and Drug Resistance in Pathogenic Fungi. PLoS Pathog. 8(11):8-11.

Legrand M, Jaitly P, Feri A, d’Enfert C, Sanyal K. 2019. Candida albicans: An emerging yeast model to study eukaryotic genome plasticity. Trends Genet. 35(4):292-307.

Lhuillier-Akakpo M, Guérin F, Frapporti A, Duharcourt S. 2015. DNA deletion as a mechanism for developmentally programmed centromere loss. Nucleic Acids Res. 44(4):1553-1565.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25(16):20782079.

Li L, Stoeckert CJJ, Roos DS. 2003. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 13(9):2178-2189.

Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL, Calvo B, Cuomo CA, Desjardins CA, et al. 2017. Simultaneous emergence of multidrugresistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 64(2):134-140.

Lynch DB, Logue ME, Butler G, Wolfe KH. 2010. Chromosomal G + C content evolution in yeasts: Systematic interspecies differences, and GC-poor troughs at centromeres. Genome Biol Evol. 2(1):572-583.

McKinley KL, Cheeseman IM. 2016. The molecular basis for centromere identity and
function. Nat Rev Mol Cell Biol. 17(1):16-29.

Morales-López SE, Parra-Giraldo CM, Ceballos-Garzón A, Martínez HP, Rodríguez GJ, Álvarez-Moreno CA, Rodríguez JY. 2017. Invasive infections with multidrug-resistant yeast Candida auris, Colombia. Emerg Infect Dis. 23(1):162-164.

Muñoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, Farrer RA, Litvintseva AP, Cuomo CA. 2018. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun. 9(1):1-13.

Muñoz JF, Welsh RM, Shea T, Batra D, Gade L, Anastasia P. 2019. Chromosomal rearrangements and loss of subtelomeric adhesins linked to clade- specific phenotypes in Candida auris. bioRxiv.:754143.

Navarro-Mendoza MI, Pérez-Arques C, Panchal S, Nicolás FE, Mondo SJ, Ganguly P, Pangilinan J, Grigoriev I V., Heitman J, Sanyal K, Garre V. 2019. Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Curr Biol. 29(22):3791-3802.e6.

Ola M, O'Brien CE, Coughlan AY, Ma Q, Donovan PD, Wolfe KH, Butler G. 2020. Polymorphic centromere locations in the pathogenic yeast Candida parapsilosis. Genome Res. 30(5):684-696.

Padmanabhan S, Thakur J, Siddharthan R, Sanyal K. 2008. Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. Proc Natl Acad Sci U S A. 105(50):19797-19802.

Poláková S, Blume C, Zárate JÁ, Mentel M, Jørck-Ramberg D, Stenderup J, Piškur J. 2009. Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. Proc Natl Acad Sci U S A. 106(8):2688-2693.

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. 2018. HMMER web server: 2018 update. Nucleic Acids Res. 46(W1):W200-W204.

Prakash A, Sharma C, Singh A, Kumar Singh P, Kumar A, Hagen F, Govender NP, Colombo AL, Meis JF, Chowdhary A. 2016. Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-offlight mass spectrometry and amplified fragment length polymorphism. Clin Microbiol Infect. 22(3):277.e1-277.e9.

Rodriguez JY, Pape P Le, Lopez O, Esquea K, L A, Labiosa4, Alvarez-Moreno C. 2020. Candida auris: a latent threat to critically ill patients with COVID-19. Clin Infect Dis. ciaa1595.

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19(12):1572-1574.

Ruiz-Gaitán A, Moret AM, Tasias-Pitarch M, Aleixandre-López AI, Martínez-Morel H, Calabuig E, Salavert-Lletí M, Ramírez P, López-Hontangas JL, Hagen F, et al. 2018. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses. 61(7):498-505.

Sankaranarayanan SR, Ianiri G, Coelho MA, Reza MH, Thimmappa BC, Ganguly P, Vadnala RN, Sun S, Siddharthan R, Tellgren-Roth C, et al. 2020. Loss of centromere function drives karyotype evolution in closely related Malassezia species. elife. 9:1-33.

Sanyal K, Baum M, Carbon J. 2004. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc Natl Acad Sci U S A. 101(31):1137411379.

Sanyal K, Carbon J. 2002. The CENP-A homolog CaCse4p in the pathogenic yeast Candida albicans is a centromere protein essential for chromosome transmission. Proc Natl Acad Sci U S A. 99(20):12969-12974.

Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. 2009. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 53(1):41-44.

Schelenz S, Hagen F, Rhodes JL, Abdolrasouli A, Chowdhary A, Hall A, Ryan L, Shackleton J, Trimlett R, Meis JF, et al. 2016. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control. 5(1):1-7.

Schotanus K, Heitman J. 2020. Centromere deletion in Cryptococcus deuterogattii leads to neocentromere formation and chromosome fusions. elife. 9:1-26.

Sekizuka T, Iguchi S, Umeyama T, Inamine Y, Makimura K, Kuroda M, Miyazaki Y, Kikuchi K. 2019. Clade II Candida auris possess genomic structural variations related to an ancestral strain. PLoS One. 14(10):e0223433.

Selmecki A, Gerami-Nejad M, Paulson C, Forche A, Berman J. 2008. An isochromosome
confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol Microbiol. 68(3):624-641.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 7(539).

Simi S, Simili M, Bonatti S, Campagna M, Abbondandolo A. 1998. Fragile sites at the centromere of Chinese hamster chromosomes: A possible mechanism of chromosome loss. Mutat Res - Fundam Mol Mech Mutagen. 397(2):239-246.

Soderlund C, Bomhoff M, Nelson WM. 2011. SyMAP v3.4: A turnkey synteny system with application to plant genomes. Nucleic Acids Res. 39(10).

Soll DR, Pujol C. 2003. Candida albicans clades. FEMS Immunol Med Microbiol. 39(1):17.

Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: A genome comparison visualizer. Bioinformatics. 27(7):1009-1010.

Sun S, Yadav V, Billmyre RB, Cuomo CA, Nowrousian M, Wang L, Souciet JL, Boekhout T, Porcel B, Wincker P, et al. 2017. Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination. PLoS Biol. 15(8): e2002527.

Talbert PB, Henikoff S. 2020. What makes a centromere? Exp Cell Res. 389(2):111895.

Vallabhaneni S, Kallen A, Tsay S, Chow N, Welsh R, Kerins J, Kemble SK, Pacilli M, Black SR, Landon E, et al. 2017. Investigation of the first seven reported cases of Candida auris, a globally emerging invasive, multidrug-resistant fungus-United States, May 2013-August 2016. Am J Transplant. 17(1):296-299.

Wall DP, Fraser HB, Hirsh AE. 2003. Detecting putative orthologs. Bioinformatics. 19(13):1710-1711.

Wickham H. 2009. ggplot2 Elegant Graphics for Data Analysis. New York: Springer. https://www.springer.com/gp/book/9780387981413

Yadav V, Sreekumar L, Guin K, Sanyal K. 2018. Five pillars of centromeric chromatin in fungal pathogens. PLoS Pathog. 14(8):1-7.

Yadav V, Yang F, Reza MH, Liu S, Valent B, Sanyal K, Naqvi NI. 2019. Cellular dynamics and genomic identity of centromeres in cereal blast fungus. mBio. 10(4):1-22.

Zhang H, Freudenreich CH. 2007. An AT-Rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell. 27(3):367-379.

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, Shirley XS. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9(9).

Figure Legends

Fig. 1. CENP-A ${ }^{\text {Cse4-rich unique DNA sequences that are significantly depleted of histone }}$

 H3 define small regional centromeres (CENs) in each of seven chromosomes in C. auris clade 1. A, Indirect immunolocalization of Protein A-tagged CENP-A ${ }^{\text {Cse4 }}$ (green) shows centromeres are clustered at the periphery of the nucleus stained with DAPI (blue) at various stages of the cell cycle. Scale bar, $3 \mu \mathrm{~m} \mathbf{B}$, CENP-A ${ }^{\text {Cse4 }}$ ChIP-seq reads: Input- total DNA, IP- immunoprecipitated DNA, $C E N$-input subtracted from IP. C, Zoomed-in CENP-A ${ }^{\text {Cse4 }}$ ChIP-seq peaks (red) along with ORFs (grey) and mapped RNA-seq reads (black). The peak values are indicated. D, Fold difference in CENP-A ${ }^{\text {Cse4 }}$ and histone H 3 enrichment at the CENs compared to a control region (far-CEN4). qPCR values from three technical replicates are shown. The experiments were repeated thrice. Error bars indicate standard error of the mean (SEM). Statistical analysis: one-way ANOVA, **** P <0.0001 E, Dot-plot analysis reveals the absence of repeats and the unique nature of $C E N$ DNA sequences $\mathbf{F}, C E N$ positions ($\boldsymbol{\Delta}$) overlap with GC (一) and GC-3 (一) scaffold minima. Coordinates (in Mb) are shown on the x-axis and $\% \mathrm{GC}$, on the y-axis.Fig. 2. Chromosomal rearrangements resulted in an exclusive centromere relocation in clade 2. A, Diagram showing immediate $C E N$ neighbourhood conservation (20 kb each to the left and right of $C E N s$, marked in orange) in each of the four clades. - connects homologs; inversions, if present, are shown by - The sequence similarity is shown as a percentage. B, Circos plots showing synteny conservation between different clades. Scaffold numbers are shown on the outer-most track with empty circles marking centromere positions, GC-content is shown in the middle track (red, GC content below genome average and blue, AT content above genome average), and the inner-most track shows synteny blocks. A reciprocal translocation event in clade 2 is marked by *. C, Linear synteny plot showing CEN
relocations in clade 2 with respect to those of clade 4. CEN positions in clades 1 and 3 are similar to clade $4 C E N$ locations. $C E N$ s are shown as chromosomal constrictions.

Chromosomes are drawn to scale, and chromosomal sizes are shown. D, Schematic depicting segmental duplication (yellow) in clade 2, placing two copies of the centromere sequences (orange) in the same chromosome in the assembly GCA_003013715.2. The scaffold number and the coordinates are shown. E, Violin plot depicting mutation rates at the centromere sequences, compared to intergenic regions in each pair of clades. Standard deviation for the mutation rates at intergenic region is shown, and the mutation rates at the centromeres are shown as Z -scores (difference from mean in units of standard deviation).

Fig. 3. Conservation of centromere properties of the C. haemulonii complex species including C. auris. A, Loci in C. duobushaemulonii syntenic to C. auris CENs. The outermost track of the circos plot depicts genome scaffolds with empty circles marking CEN locations, the middle track depicts \%GC (red- GC content below genome average, blue- AT content above genome average), and the inner-most track shows synteny blocks. B, CEN positions ($\boldsymbol{\Delta}$) overlap with GC- (一) and GC-3 (一) minima. Coordinates (in Mb) are shown on the x -axis and $\% \mathrm{GC}$, on the y -axis. C, Dot-plot establishing the repeat-free and unique nature of centromere sequences in C. duobushaemulonii. The scaffold numbers are shown. D, Depletion of histone H3 at CENs on different scaffolds (shown on the x-axis), compared to a non-centromeric control region (far-CEN). qPCR values from three technical replicates, represented as percent input, are shown. The experiments were performed thrice, with similar results. Error bars indicate standard error of the mean (SEM). Statistical analysis was done using one-way ANOVA (**** $\mathrm{P}<0.0001$).

Fig. 4. CEN-inactivation mediated chromosome number variation in C. auris and C. duobushaemulonii. A, Phylogenetic tree depicting the relatedness of C. auris geographical clades and other member species of the Clavispora/Candida clade. Other species in Ascomycota with characterised/predicted centromeres are shown. Cryptococcus neoformans (Basidiomycota) is shown as the outgroup. The two chromosome number states detected in Clavispora/Candida clade are represented by $N=7$ and $N=8$. B, Chromosome-level view depicting the mapping of C. lusitaniae CEN2 and CEN8 onto a single scaffold in C. auris. connects homologs; inversions, if present, are shown by —. Inactive CEN (inCEN) is shown as $\boldsymbol{\Delta}$. The sequence similarity of homologs is shown in the key as a percentage. C, ORF-
level view showing sequence loss and subsequent loss of AT-content at inCEN. D, Pericentric inversion in C. auris changing the positions of ORFs 1,2 , and 3 , with respect to the C. lusitaniae centromere (\square. C. auris CENs are shown as \square. E, Rearrangement involving $C E N$-proximal synteny breaks separating the two synteny blocks on the same chromosome.
F, Synteny breakpoint mapped to the centromere location in C. auris chromosome 2. G, CEN inactivation, \mathbf{H}, pericentric inversion \mathbf{I}, \mathbf{J}, synteny breaks and rearrangements in C. duobushaemulonii. CENs are marked by . Inactive $C E N$ is shown as $\boldsymbol{\Delta}$.

Fig. 5. C. auris clade 2 evolved via a unique evolutionary trajectory. A, Representative genome of the common ancestor of C. auris and the C. haemulonii complex species ($N=7$), depicting chromosomal rearrangement patterns with respect to the common ancestor of C. lusitaniae and C. fructus ($N=8$). CENs in the common ancestor $(\mathrm{N}=8)$ are shown as \square, and CENs in the common ancestor $(N=7)$ are shown as . Homologs are connected by - and inversions, if present, are shown as -. The sequence similarity is shown as a percentage in the key. B, C. lusitaniae CEN2 (on Chr2, L2) and CEN8 (on Chr8, L8) map to the same scaffold in C. auris clades 1,3 and 4, whereas CEN5 (on Chr5, L5) and CEN8 map to the same scaffold in C. auris clade 2. Corresponding genomic scaffolds are shown in the outermost track, and the synteny blocks are depicted in the inner-most track. The inactive centromere is marked in black and the corresponding active centromere in yellow. C, Terminal chromosomal translocation event resulting in the relocation of inCEN ($\mathbf{\Delta})$ in clade 2. Constrictions mark CENs syntenic to C. lusitaniae CEN2 and CEN5. Sequence similarity is shown as a percentage in the key. D, A $C E N$-based model tracing the event of centromere inactivation in the common ancestor CA0, resulting in chromosome number reduction in CA2, while CA1 maintains the chromosome number of 8 . CA2 represents the common ancestor of C. auris and C. haemulonii complex, and CA3 is the common ancestor of all C. auris clades. A TCT event further repositions the inactive $C E N$ in clade 2 , representing the unique evolutionary trajectory of C. auris clade 2. CENs are numbered using C. lusitaniae as the reference.

Table 1 Centromere features in clade 1 isolate of C. auris

CEN	Scaffold \# in the reference assembly	Coordinates		Length (in bp)	
		Start	End	CENP-A region	
CEN1	PEKT02000007.1	2686849	2689484	2635	ORF-free region
CEN2	PEKT02000001.1	1063461	1066333	2872	2396
CEN3	PEKT02000003.1	788992	791542	2550	2244
CEN4	PEKT02000010.1	712902	715418	2516	2081
CEN5	PEKT02000009.1	555667	558575	2908	2396
CEN6	PEKT02000008.1	352635	355378	2743	2192
CEN7	PEKT02000006.1	268329	271195	2866	2141

Fig. 1 CENP-A ${ }^{\text {Cse4-rich unique DNA sequences that are significantly depleted of histone } \mathrm{H} 3}$ define small regional centromeres (CENs) in each of seven chromosomes in C. auris clade

1. A, Indirect immunolocalization of Protein A-tagged CENP-A ${ }^{\text {Cse4 }}$ (green) shows centromeres are clustered at the periphery of the nucleus stained with DAPI (blue) at various stages of the cell cycle. Scale bar, $3 \mu \mathrm{~m}$ B, CENP-A ${ }^{\text {Cse } 4}$ ChIP-seq reads: Input- total DNA, IP- immunoprecipitated DNA, CEN-input subtracted from IP. C, Zoomed-in CENP-ACse4 ChIP-seq peaks (red) along with ORFs (grey) and mapped RNA-seq reads (black). The peak values are indicated. D, Fold difference in CENP-A $\mathrm{A}^{\mathrm{Cse} 4}$ and histone H 3 enrichment at the CENs compared to a control region (far-CEN4). qPCR values from three technical replicates are shown. The experiments were repeated thrice. Error bars indicate standard error of the
mean (SEM). Statistical analysis: one-way ANOVA, **** P<0.0001 E, Dot-plot analysis
reveals the absence of repeats and the unique nature of CEN DNA sequences F, CEN positions ($\boldsymbol{\Delta}$) overlap with GC (一) and GC-3 (一) scaffold minima. Coordinates (in Mb) are shown on the x-axis and \%GC, on the y-axis.

A

c

D
E

Fig. 2 Chromosomal rearrangements resulted in an exclusive centromere relocation in clade 2. A, Diagram showing immediate CEN neighbourhood conservation (20 kb each to the left and right of CENs, marked in orange) in each of the four clades. - connects homologs; inversions, if present, are shown by -. The sequence similarity is shown as a percentage. B, Circos plots showing synteny conservation between different clades. Scaffold numbers are shown on the outer-most track with empty circles marking centromere positions, GCcontent is shown in the middle track (red, GC content below genome average and blue, AT content above genome average), and the inner-most track shows synteny blocks. A reciprocal translocation event in clade 2 is marked by *. C, Linear synteny plot showing CEN relocations in clade 2 with respect to those of clade 4. CEN positions in clades 1 and 3 are similar to clade 4 CEN locations. CENs are shown as chromosomal constrictions. Chromosomes are drawn to scale, and chromosomal sizes are shown. D, Schematic depicting segmental duplication (yellow) in clade 2, placing two copies of the centromere sequences (orange) in the same chromosome in the assembly GCA_003013715.2. The scaffold number and the coordinates are shown. E, Violin plot depicting mutation rates at the centromere sequences, compared to intergenic regions in each pair of clades. Standard
deviation for the mutation rates at intergenic region is shown, and the mutation rates at the centromeres are shown as Z -scores (difference from mean in units of standard deviation).

Fig. 3 Conservation of centromere properties of the C. haemulonii complex species including C. auris. A, Loci in C. duobushaemulonii syntenic to C. auris CENs. The outer-most track of the circos plot depicts genome scaffolds with empty circles marking CEN locations, the middle track depicts \%GC (red- GC content below genome average, blue- AT content above genome average), and the inner-most track shows synteny blocks. B, CEN positions ($\boldsymbol{\Delta}$) overlap with GC- (一) and GC-3 (一) minima. Coordinates (in Mb) are shown on the x-axis and \%GC, on the y-axis. C, Dot-plot establishing the repeat-free and unique nature of centromere sequences in C. duobushaemulonii. The scaffold numbers are shown. D, Depletion of histone H 3 at CENs on different scaffolds (shown on the x -axis), compared to a non-centromeric control region (far-CEN). qPCR values from three technical replicates, represented as percent input, are shown. The experiments were performed thrice, with similar results. Error bars indicate standard error of the mean (SEM). Statistical analysis was done using one-way ANOVA (**** $\mathrm{P}<0.0001$).

Fig. 4 CEN-inactivation mediated chromosome number variation in C. auris and C. duobushaemulonii. A, Phylogenetic tree depicting the relatedness of C. auris geographical clades and other member species of the Clavispora/Candida clade. Other species in Ascomycota with characterised/predicted centromeres are shown. Cryptococcus neoformans (Basidiomycota) is shown as the outgroup. The two chromosome number states detected in Clavispora/Candida clade are represented by $N=7$ and $N=8$. B, Chromosomelevel view depicting the mapping of C. Iusitaniae CEN2 and CEN8 onto a single scaffold in C. auris. - connects homologs; inversions, if present, are shown by -. Inactive CEN (inCEN) is shown as $\boldsymbol{\triangle}$. The sequence similarity of homologs is shown in the key as a percentage. C, ORF-level view showing sequence loss and subsequent loss of AT-content at inCEN. D, Pericentric inversion in C. auris changing the positions of ORFs 1,2, and 3, with respect to the C. Iusitaniae centromere (${ }^{(1) . C .}$ auris CENs are shown as . E, Rearrangement involving CEN-proximal synteny breaks separating the two synteny blocks on the same chromosome. F, Synteny breakpoint mapped to the centromere location in C. auris chromosome 2. G, CEN inactivation, H, pericentric inversion I,J, synteny breaks and
rearrangements in C. duobushaemulonii. CENs are marked by . Inactive $C E N$ is shown as -

Fig. 5 C. auris clade 2 evolved via a unique evolutionary trajectory. A, Representative genome of the common ancestor of C. auris and the C. haemulonii complex species ($N=7$), depicting chromosomal rearrangement patterns with respect to the common ancestor of C. lusitaniae and C. fructus ($N=8$). CENs in the common ancestor $(\mathrm{N}=8)$ are shown as , and CENs in the common ancestor ($N=7$) are shown as . Homologs are connected by - and inversions, if present, are shown as - The sequence similarity is shown as a percentage in the key. B, C. Iusitaniae CEN2 (on Chr2, L2) and CEN8 (on Chr8, L8) map to the same scaffold in C. auris clades 1,3 and 4, whereas CEN5 (on Chr5, L5) and CEN8 map to the same scaffold in C. auris clade 2. Corresponding genomic scaffolds are shown in the outermost track, and the synteny blocks are depicted in the inner-most track. The inactive
centromere is marked in black and the corresponding active centromere in yellow. C, Terminal chromosomal translocation event resulting in the relocation of inCEN $(\mathbf{\Delta})$ in clade 2. Constrictions mark CENs syntenic to C. Iusitaniae CEN2 and CEN5. Sequence similarity is shown as a percentage in the key. D, A CEN-based model tracing the event of centromere inactivation in the common ancestor CAO, resulting in chromosome number reduction in CA2, while CA1 maintains the chromosome number of 8 . CA2 represents the common ancestor of C. auris and C. haemulonii complex, and CA3 is the common ancestor of all C. auris clades. A TCT event further repositions the inactive CEN in clade 2, representing the unique evolutionary trajectory of C. auris clade 2. CENs are numbered using C. Iusitaniae as the reference.

